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1

The Green’s function of the wave equation

In this chapter we review a few important properties of the Green’s function,
the fundamental solution of the wave equation. These properties -reciprocity
(Proposition 1.1) and Helmholtz-Kirchhoff identity (Proposition 1.2)- are in-
strumental in the analysis of time-reversal experiments and imaging.

We consider the scalar wave model:

1

c2(x)

∂2u

∂t2
−∆xu = n(t,x). (1.1)

Here n(t,x) is the source term and c(x) is the propagation speed (parameter of
the medium), which is assumed to be constant outside a domain with compact
support. We consider the three-dimensional case x ∈ R3.

1.1 Green’s function

We introduce the time-dependent Green’s function G(t,x,y) which is the
fundamental solution of

1

c2(x)

∂2G

∂t2
−∆xG = δ(t)δ(x− y), (1.2)

with the initial conditions

G(t,x,y) = 0, ∀t < 0. (1.3)

It corresponds to the wave propagating in the medium when there is a point
source at y emitting a Dirac pulse at time 0.

If the medium is homogeneous c(x) ≡ c0, then

G(t,x,y) =
1

4π|x− y|
δ
(
t− |x− y|

c0

)
, t > 0,
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which corresponds to a spherical wave propagating at speed c0 (see for instance
[25, Chapter 2] or [23]).

The time-harmonic Green’s function is the Fourier transform of the time-
dependent Green’s function:

Ĝ(ω,x,y) =

∫
G(t,x,y)eiωtdt.

It is the solution of the Helmholtz equation

∆xĜ+
ω2

c2(x)
Ĝ = −δ(x− y), (1.4)

and it satisfies the Sommerfeld radiation condition (c(x) = c0 at infinity):

lim
|x|→∞

|x|
( x
|x|
· ∇x − i

ω

c0

)
Ĝ(ω,x,y) = 0. (1.5)

Moreover, the convergence is uniform with respect to x/|x| over the sphere
and the Sommerfeld radiation condition also implies that

lim sup
|x|→∞

|x||Ĝ(ω,x,y)| (1.6)

is bounded uniformly with respect to x/|x| over the sphere. The time-
harmonic Green’s function corresponds to the wave propagating in the medium
when there is a point source at y emitting a time-harmonic signal at fre-
quency ω.

If the medium is homogeneous c(x) ≡ c0, then

Ĝ(ω,x,y) =
1

4π|x− y|
ei

ω
c0
|x−y|. (1.7)

The solution of the wave equation with source n(t,x) can be expressed as
the convolution of the Green’s function and the source term:

u(t,x) =

∫∫
G(t− s,x,y)n(s,y)dyds. (1.8)

Throughout these notes, the integrals with respect to a time variable are
carried over (−∞,∞) and the integrals with respect to a space variable are
carried over R3, unless stated otherwise. Note however that, by (1.3), the
integral (1.8) is causal:

u(t,x) =

∫ t

−∞

∫
R3

G(t− s,x,y)n(s,y)dyds

in the sense that u at time t only depends on the values of the source term
for times smaller than t.
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The Fourier transform of the solution

û(ω,x) =

∫
u(t,x)eiωtdt

is simply given by:

û(ω,x) =

∫
Ĝ(ω,x,y)n̂(ω,y)dy.

1.2 Sommerfeld radiation condition

The Sommerfeld radiation condition plays an important role. A solution of the
Helmholtz equation is called radiating if it satisfies the Sommerfeld radiation
condition (1.5) uniformly in all directions (c(x) = c0 at infinity).

The Helmholtz equation (1.4) has an infinite number of solutions. For
example, if c(x) ≡ c0, then, for any a, the function

Ĝa(ω,x,y) =
1− a

4π|x− y|
exp

(
i
ω

c0
|x− y|

)
+

a

4π|x− y|
exp

(
− i ω

c0
|x− y|

)
is solution of the homogeneous Helmholtz equation. However, only the solution
with a = 0 satisfies the Sommerfeld radiation condition. It corresponds to a
field radiating from y. The other solutions are “unphysical”. For example, the
solution with a = 1 can be interpreted as energy coming from infinity and
sinking at y.

The important result is the following theorem (see [19, Vol. 2, Chap. IV,
Sec. 5] for a classical statement or [40] for a more detailed presentation): The
Helmholtz equation (with c bounded and constant outside a compact) has a
unique radiating solution.

1.3 Reciprocity

An important property satisfied by the Green’s function is the reciprocity
property:

Proposition 1.1. For any x,y ∈ R3, we have

Ĝ(ω,x,y) = Ĝ(ω,y,x). (1.9)

This result means that the wave recorded at x when there is a time-harmonic
source at y is equal to the wave recorded at y when there is a time-harmonic
source at x. It is obvious in the homogeneous medium case from the explicit
expression (1.7) of the time-harmonic Green’s function. In the general case
it follows from the divergence theorem as shown in the following proof. This
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proof is standard but we give it because its key arguments will be used several
times in the forthcoming sections.

Proof. We consider the equations satisfied by the Green’s function with
the source at y2 and with the source at y1 (with y1 6= y2):

∆xĜ(ω,x,y2) +
ω2

c2(x)
Ĝ(ω,x,y2) = −δ(x− y2),

∆xĜ(ω,x,y1) +
ω2

c2(x)
Ĝ(ω,x,y1) = −δ(x− y1).

We multiply the first equation by Ĝ(ω,x,y1) and subtract the second equation
multiplied by Ĝ(ω,x,y2):

∇x ·
[
Ĝ(ω,x,y1)∇xĜ(ω,x,y2)− Ĝ(ω,x,y2)∇xĜ(ω,x,y1)

]
= Ĝ(ω,x,y2)δ(x− y1)− Ĝ(ω,x,y1)δ(x− y2)

= Ĝ(ω,y1,y2)δ(x− y1)− Ĝ(ω,y2,y1)δ(x− y2).

We next integrate over the ball B(0, L) with center at 0 and radius L which
contains both y1 and y2 and use the divergence theorem:∫

∂B(0,L)

n(x) ·
[
Ĝ(ω,x,y1)∇xĜ(ω,x,y2)− Ĝ(ω,x,y2)∇xĜ(ω,x,y1)

]
dσ(x)

= Ĝ(ω,y1,y2)− Ĝ(ω,y2,y1),

where n(x) is the unit outward normal to the ball B(0, L), which is n(x) =
x/|x|.

If x ∈ ∂B(0, L) and L → ∞, then we have by the Sommerfeld radiation
condition:

n · ∇xĜ(ω,x,y) = i
ω

c0
Ĝ(ω,x,y) + o

( 1

L

)
.

Since we also have Ĝ(ω,x,y) = O(1/L), we find that, as L→∞,

Ĝ(ω,y1,y2)− Ĝ(ω,y2,y1)

= i
ω

c0

∫
∂B(0,L)

Ĝ(ω,x,y1)Ĝ(ω,x,y2)− Ĝ(ω,x,y2)Ĝ(ω,x,y1)dσ(x)

= 0,

which is the desired result. �

1.4 Helmholtz-Kirchhoff identity

Let us consider the following set up: the observation points are x1 and x2,
the medium may be inhomogeneous is a region within the ball B(0, D) with
center at 0 and radius D (see Figure 1.1).
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x
1 x

2

B(0,D)

B(0,L)

Fig. 1.1. Situation for the Helmholtz-Kirchhoff identity: The medium is homoge-
neous outside the ball B(0, D).

The Helmholtz-Kirchhoff identity (1.11) is stated in the second part of the
following theorem. It follows from the divergence theorem and the Sommerfeld
radiation condition. This identity is known in acoustics [9, p. 473] and in
optics [13, p. 419]) and it is also presented in [42]. Note that (1.11) relates a
product of two time-harmonic Green’s functions, one of them being complex
conjugated, to a time-harmonic Green’s function. The product, in the time
domain, has the form of a correlation. This explains the importance of the
Helmholtz-Kirchhoff identity for correlation-based imaging as we will see later.

Theorem 1.2. 1) For any bounded and smooth open domain Ω, the second
Green’s identity holds for any x1,x2 ∈ Ω:

Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) (1.10)

=

∫
∂Ω

n ·
[
Ĝ(ω,y,x1)∇yĜ(ω,y,x2)− Ĝ(ω,y,x2)∇yĜ(ω,y,x1)

]
dσ(y),

where n is the unit outward normal to the Ω.
2) If the medium is homogeneous (velocity c0) outside B(0, D), then

∀x1,x2 ∈ B(0, D) we have for L� D:

Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) =
2iω

c0

∫
∂B(0,L)

Ĝ(ω,x1,y)Ĝ(ω,x2,y)dσ(y).

(1.11)

The Helmholtz-Kirchhoff identity turns out to be very useful when we analyze
the scattering of waves by an obstacle, the refocusing of waves during a time-
reversal experiment, and the cross correlation of signals emitted by ambient
noise sources, as we will see later.

Proof. The proof is based essentially on the divergence theorem and the
Sommerfeld radiation condition, as the one of reciprocity that was given in
the previous section. Let us consider
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∆yĜ(ω,y,x2) +
ω2

c2(y)
Ĝ(ω,y,x2) = −δ(y − x2),

∆yĜ(ω,y,x1) +
ω2

c2(y)
Ĝ(ω,y,x1) = −δ(y − x1).

We multiply the first equation by Ĝ(ω,y,x1) and we subtract the second
equation multiplied by Ĝ(ω,y,x2):

∇y ·
[
Ĝ(ω,y,x1)∇yĜ(ω,y,x2)− Ĝ(ω,y,x2)∇yĜ(ω,y,x1)

]
= Ĝ(ω,y,x2)δ(y − x1)− Ĝ(ω,y,x1)δ(y − x2)

= Ĝ(ω,x1,x2)δ(y − x1)− Ĝ(ω,x1,x2)δ(y − x2),

using the reciprocity property Ĝ(ω,x2,x1) = Ĝ(ω,x1,x2).
We integrate over the domain Ω and we use the divergence theorem to

obtain (1.10). When Ω is the ball B(0, L), then the unit outward normal
is n = y/|y|. The Green’s function also satisfies the Sommerfeld radiation
condition

lim
|y|→∞

|y|
( y
|y|
· ∇y − i

ω

c0

)
Ĝ(ω,y,x1) = 0,

uniformly in all directions y/|y|. Using this property, we substitute

i
ω

c0
Ĝ(ω,y,x2) for n · ∇yĜ(ω,y,x2)

in the surface integral over ∂B(0, L), and

−i ω
c0
Ĝ(ω,y,x1) for n · ∇yĜ(ω,y,x1),

and we obtain the desired result. �

1.5 Application to time reversal

In this subsection we will apply the Helmholtz-Kirchhoff identity to study a
time-reversal experiment. Originally time reversal was proposed not for imag-
ing, but for energy focusing. The idea was to focus ultrasound energy on kidney
stones to destroy them [24]. However the analysis of this situation has trig-
gered most of the work on reverse-time migration and also correlation-based
imaging as we will see later. That is why we first study this idea.

A time-reversal experiment is based on the use of a special device called
time-reversal mirror, which is an array of transducers that can be used as
sources or as receivers. In a time-reversal experiment the time-reversal mirror
is used first as a receiver array, then as a source array. Let us consider the ideal
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case in which the time-reversal mirror covers the surface of the ball B(0, L)
(see Figure 1.2).

In the first step of a time-reversal experiment (Figure 1.2, left), a point
source at y emits a pulse f(t). The waves û(ω,x) are recorded at the surface
∂B(0, L):

û(ω,x) = Ĝ(ω,x,y)f̂(ω), x ∈ ∂B(0, L).

y

B(0,L)

y
y

S

B(0,L)

Fig. 1.2. A time-reversal experiment with full-aperture time-reversal mirror. In the
first step (left), the time-reversal mirror is used as an array of receivers. In the second
step (right), the time-reversal mirror is used as an array of sources.

In the second step of the experiment (Figure 1.2, right), the recorded
signals are time-reversed and sent back into the medium. The signal received
at yS is ûTR(ω,yS):

ûTR(ω,yS) =

∫
∂B(0,L)

dσ(x)Ĝ(ω,yS ,x)Ĝ(ω,x,y)f̂(ω),

where we have used the fact that the Fourier transform of the time reverse
of a real-valued function is the complex conjugate of the Fourier transform of
the function. Using reciprocity Ĝ(ω,x,y) = Ĝ(ω,y,x):

ûTR(ω,yS) =

∫
∂B(0,L)

dσ(x)Ĝ(ω,y,x)Ĝ(ω,yS ,x)f̂(ω).

By Helmholtz-Kirchhoff identity:

Ĝ(ω,y,yS)− Ĝ(ω,y,yS) =
2iω

c0

∫
∂B(0,L)

dσ(x)Ĝ(ω,y,x)Ĝ(ω,yS ,x),

we get

ûTR(ω,yS) =
Ĝ(ω,y,yS)− Ĝ(ω,y,yS)

2iω/c0
f̂(ω).
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Remember that y is the original source location. Therefore, the focal spot, i.e.
the spatial form of the time-reversed wave, is determined by the imaginary
part of the Green’s function:

ûTR(ω,yS) =
c0
ω

Im
(
Ĝ(ω,y,yS))f̂(ω). (1.12)

In a homogeneous medium with propagation speed c0 we have

Ĝ(ω,y,yS) =
1

4π|y − yS |
ei
ω|y−yS |

c0 ,

which gives the focal spot

ûTR(ω,yS) =
1

4π
sinc

(ω|y − yS |
c0

)
f̂(ω), sinc(s) :=

sin s

s
. (1.13)

This shows that the focal spot has a diameter equal to λ/2, where λ = 2πc0/ω
is the wavelength. This is the so-called diffraction limit.

Remark: In a complex medium Im
(
Ĝ(ω,y,yS)

)
can be sharper than in

a homogeneous medium. This is the “super-resolution effect” mentioned in
the recent literature [36]: if a micro-structured medium surrounds the original
source y, then the focal spot can be smaller than the diffraction limit λ/2. In-
deed, the main effect of the micro-structured medium is to modify the effective
wavelength. This can be proved by an asymptotic analysis (homogeneization
result) [4, 33, 37].

In this subsection we have presented a proof that time reversal of waves
results in a refocusing at the original source location. This proof is based
on the Helmholtz-Kirchhoff identity, which requires that the time-reversal
mirror completely surrounds the region of interest. This is the full-aperture
case. However, time-reversal refocusing happens also with spatially limited
time-reversal mirrors. This is the partial aperture case. This has been shown
experimentally, numerically, and theoretically. The proof that time-reversal
refocusing happens in the partial aperture case cannot use the Helmholtz-
Kirchhoff identity, but rather follows from asymptotic theory for wave prop-
agation (especially in the high-frequency regime). The size of the focal spot
is then larger than the diffraction limit, and takes the form of the Rayleigh
resolution formula θλ, where θ is the aperture angle, that is, the ratio of the
array diameter over the distance from the array to the source.

1.6 The scalar wave equation with noise sources

We consider the solution u of the wave equation (1.1) in a three-dimensional
inhomogeneous medium with propagation speed c(x):

1

c2(x)

∂2u

∂t2
−∆xu = n(t,x). (1.14)
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The term n(t,x) models a random field of noise sources. It is a zero-mean
stationary (in time) random process with autocorrelation function

〈n(t1,y1)n(t2,y2)〉 = F (t2 − t1)Γ (y1,y2). (1.15)

Here 〈·〉 stands for statistical average with respect to the distribution of the
noise sources. For simplicity we will consider that the process n has Gaussian
statistics.

The time distribution of the noise sources is characterized by the correla-
tion function F (t2−t1), which is a function of t2−t1 only by time stationarity.
The function F is normalized so that F (0) = 1. The Fourier transform F̂ (ω) of
the time correlation function F (t) is a nonnegative, even, real-valued function
proportional to the power spectral density of the sources:

F̂ (ω) =

∫
F (t)eiωtdt. (1.16)

The spatial distribution of the noise sources is characterized by the
autocovariance function Γ (y1,y2). In this section and the following two ones
we assume that the random process n is delta-correlated in space (but the
result can be extended for spatially correlated sources):

Γ (y1,y2) = K(y1)δ(y1 − y2). (1.17)

The function K then characterizes the spatial support of the sources.

1.7 The cross correlation function

The solution of the wave equation (1.14) has the integral representation (1.8):

u(t,x) =

∫∫
n(t− s,y)G(s,x,y)dsdy,

where G(t,x,y) is the time-dependent Green’s function (1.2).
The empirical cross correlation of the signals recorded at x1 and x2 for an

integration time T is

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt. (1.18)

It is a statistically stable quantity, in the sense that for a large integration
time T , the empirical cross correlation CT is independent of the realization
of the noise sources and it is equal to its expectation. This is stated in the
following proposition.
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Proposition 1.3. 1. The expectation of the empirical cross correlation CT
(with respect to the distribution of the sources) is independent of T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2), (1.19)

where the statistical cross correlation C(1) is given by

C(1)(τ,x1,x2) =
1

2π

∫∫
dydωF̂ (ω)K(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)e−iωτ ,

(1.20)
and Ĝ(ω,x,y) is the time-harmonic Green’s function (i.e. the Fourier trans-
form of G(t,x,y)).

2. The empirical cross correlation CT is a self-averaging quantity:

CT (τ,x1,x2)
T→∞−→ C(1)(τ,x1,x2), (1.21)

in probability with respect to the distribution of the sources.
3. The covariance of the empirical cross correlation CT satisfies:

2πTCov
(
CT (τ,x1,x2), CT (τ +∆τ,x1,x2)

)
T→∞−→

∫ [ ∫
Ĝ(ω,x1,y)Ĝ(ω,x2,y)K(y)dy

]2
F̂ (ω)2eiω(2τ+∆τ)dω (1.22)

+

∫ [ ∫
|Ĝ(ω,x1,y)|2K(y)dy

][ ∫
|Ĝ(ω,x2,y)|2K(y)dy

]
F̂ (ω)2e−iω∆τdω.

1.8 Extended distribution of sources in an
inhomogeneous open medium

In this subsection we study the emergence of the Green’s function for an
extended distribution of sources in an inhomogeneous open medium. Here we
give a simple and rigorous proof for an open inhomogeneous medium in the
case in which the noise sources are located on the surface of a sphere that
encloses both the inhomogeneous region and the sensors, located at x1 and
x2 (Figure 1.3). The proof is based on the Helmholtz-Kirchhoff identity. It is
very simple and convenient, but as we already mentioned, it requires a full
aperture illumination. However this condition is not necessary for the cross
correlation to be related to the Green’s function.

The proof can be summarized as follows: the right-hand side of the
Helmholtz-Kirchhoff identity (1.11) is related to the representation (1.20) of
the cross correlation function C(1) in the Fourier domain. Therefore, by sub-
stituting (1.11) into (1.20) we get the following proposition.

Proposition 1.4. We assume that
1) the medium is homogeneous outside the ball B(0, D) with center 0 and
radius D,
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x
1 x

2

B(0,D)

B(0,L)

Fig. 1.3. The sources are distributed on the sphere ∂B(0, L) and the medium is
homogeneous outside the ball B(0, D).

2) the sources are localized with a uniform density on the sphere ∂B(0, L) with
center 0 and radius L.
If L� D, then for any x1,x2 ∈ B(0, D), we have

∂

∂τ
C(1)(τ,x1,x2) = −c0

2

[
F ∗G(τ,x1,x2)− F ∗G(−τ,x1,x2)

]
. (1.23)

Proof. When the source distribution is uniform over the surface of the
ball B(0, L), the statistical cross correlation (1.20) reads

C(1)(τ,x1,x2) =
1

2π

∫
dωF̂ (ω)e−iωτ

∫
∂B(0,L)

dσ(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y),

and its τ -derivative is

∂τC
(1)(τ,x1,x2) = − 1

2π

∫
dωF̂ (ω)e−iωτ

×iω
∫
∂B(0,L)

dσ(y)F̂ (ω)Ĝ(ω,x1,y)Ĝ(ω,x2,y).

The left-hand side can be simplified by using the Helmholtz-Kirchhoff iden-
tity (1.11):

∂τC
(1)(τ,x1,x2) = − c0

4π

∫
dωF̂ (ω)e−iωτ

[
Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2)

]
,

which gives the desired result. �

This proposition shows that, when the noise sources surround the region
of interest, then the time-lag derivative of the cross correlation of the signals
recorded at two observation points is the Green’s function between these two
points, up to a convolution (in time) with the time covariance function of
the noise sources and a symmetrization (which means that we get in fact the
causal and the anti-causal Green’s functions). More details about imaging
with ambient noise sources can be found in [27].





2

Conventional sensor array imaging

In this chapter we give an overview of conventional sensor array imaging for
two basic problems: passive source imaging and active reflector imaging.

In the first problem, addressed in Section 2.1, the goal is to image the spa-
tial distribution of sources emitting waves that are recorded by a passive array
of receivers. The data set is a vector of N signals recorded by the N receivers.
Different imaging functions are introduced. After discussing Least-Squares
imaging we introduce the Reverse-Time imaging function and the Kirchhoff
Migration imaging function, and we carry out their resolution analysis. The
resolution properties are summarized in Section 2.2.3.

In the second problem, addressed in Section 2.3, the goal is to image
reflectors buried in the medium from the data collected by an active array
of sensors, that can be used both as sources and as receivers. The data set
is a matrix of N × N signals, where the (j, l)-th signal is recorded by the
j-th sensor when a short pulse is emitted by the l-th sensor. As in the case
of passive source imaging, we discuss Least-Squares imaging, Reverse-Time
imaging, and Kirchhoff Migration imaging, whose resolution properties are
summarized in Section 2.3.9.

2.1 Passive array imaging of sources

Here we consider the case of a passive array, which means that the sensors are
used only as receivers. The goal is to image a source.

2.1.1 Data acquisition

In the configuration described in Figure 2.1, the source y emits a pulse and
the sensors (xr)r=1,...,N record the waves. The data set is the vector of signals(
u(t,xr)

)
t∈R,r=1,...,N

. The goal of imaging is here to find the source position

y. More generally, in the case of distributed sources, the goal is to find the
source region.
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y

x
1

x
r

x
N

Fig. 2.1. Sensor array imaging of sources.

2.1.2 Imaging function

The goal is to find the spatial source distribution that is supposed to be
supported in the region Ω ⊂ R3 (that does not contain the sensor positions
(xr)r=1,...,N ). The data set is

(
u(t,xr)

)
t∈R,r=1,...,N

. The purpose of imaging

is, given the data set, to build an imaging function in the search region Ω:

I :

∣∣∣∣Ω → R+

yS 7→ I(yS)

which plots an image of the source distribution. For instance, in the case
in which there is a unique point source, we would like the imaging function
to look like a sharp peak centered at the source location. This peak is called
point spread function. The width of this peak determines the resolution of the
imaging function, which gives the precision with which the source location can
be estimated.

y

x
1

x
r

x
N

x
1

x
N

Ω

Fig. 2.2. Sensor array imaging of sources: data acquisition (left) and search region
for the imaging function (right).

2.1.3 The linear forward operator

The source term is of the form n(t,y) = ρreal(y)δ(t). The goal is to find the
source function ρreal. Here, we assume that the Green’s function is known.
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The data set is û =
(
û(ω,xr)

)
ω∈R,r=1,...,N

with

û(ω,xr) =

∫
Ω

Ĝ(ω,xr,y)ρreal(y)dy.

We define the forward operator

[Âρ](ω,xr) =

∫
Ω

Ĝ(ω,xr,y)ρ(y)dy. (2.1)

Â is the linear operator that maps the source function to the array data û:

û = Âρreal.

It goes from the space L2(Ω) equipped with the standard scalar product

(µ, ν)L2 =

∫
Ω

µ(y)ν(y)dy

to L2 := L2(R× {1, . . . , N}) equipped with the scalar product

(v̂, ŵ)L2 =

∫
dω

N∑
r=1

v̂(ω,xr)ŵ(ω,xr).

2.1.4 The adjoint operator

From the observation of the data we want to estimate ρreal. Note that Â
is usually not invertible. Therefore we look for the function ρ in L2(Ω) that
minimizes the misfit between the observed data and the theoretical prediction
obtained with ρ: The least squares inverse problem is to minimize JLS[ρ] where

JLS[ρ] =
1

2π

∫
dω

N∑
r=1

∣∣û(ω,xr)− [Âρ](ω,xr)
∣∣2. (2.2)

As we will see in the next subsection (devoted to least squares inversion),
it may be useful to consider the regularized minimization problem with the
functional JLS[ρ] + α‖ρ‖2REG. Here ‖ρ‖REG is a norm, for instance, the L2-
norm, which smoothes the problem, but which also reduces the resolution. It
is also possible to take the L1-norm, which promotes sparsity in the recon-
structed ρ (which is efficient in the case of a few well separated point sources).
L1-minimization techniques (or compressed sensing) have become popular re-
cently in order to reconstruct sparse signals from incomplete data, and in the
imaging context it would mean to minimize ‖ρ‖L1 such that ‖û− Âρ‖L2 ≤ ε
for some given positive constant ε [15].

The least squares solution to the minimization problem (2.2) solves the
normal equation
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Â∗ÂρLS = Â∗û,

where Â∗ is the adjoint operator

[
Â∗v̂

]
(y) =

∫
dω

N∑
r=1

Ĝ(ω,y,xr)v̂(ω,xr). (2.3)

Indeed, for any µ ∈ L2(Ω) and v̂ ∈ L2:

(
Âµ, v̂

)
L2

=

∫
dω

N∑
r=1

[
Âµ
]
(ω,xr)v̂(ω,xr)

=

∫
dω

N∑
r=1

∫
Ω

dyĜ(ω,xr,y)µ(y)v̂(ω,xr)

=

∫
Ω

dyµ(y)

∫
dω

N∑
r=1

Ĝ(ω,xr,y)v̂(ω,xr)

=

∫
Ω

dyµ(y)
[
Â∗v̂

]
(y) by Definition (2.3)

=
(
µ, Â∗v̂

)
L2

Remember that the complex conjugation in the frequency domain corresponds
to the time operation in the time domain. This shows that the adjoint operator
corresponds to the backpropagation of the array data to the test point y.

The normal operator Â∗Â is given by[
Â∗Âρ

]
(y) =

∫
Ω

dy′a(y,y′)ρ(y′),

with the kernel a(y,y′) =
∫

dω
∑N
r=1 Ĝ(ω,y,xr)Ĝ(ω,y′,xr).

2.1.5 Least squares inversion

We consider the problem with a fixed frequency ω to simplify the notations.
The data set is the vector û = (û(xr))r=1,...,N . It is related to the unknown

function ρreal = (ρreal(y))y∈Ω through the linear relation û = Âρreal, where

the linear operator Â is defined by (2.1). We first put this problem in a
simple matrix-vector form. In order to do that, we discretize the problem by
introducing a regular grid (yj)j=1,...,M with step δy of the search domain Ω:

[
Âρ
]
(xr) =

M∑
j=1

Ĝ(ω,xr,yj)ρ(yj)(δy)3.

The problem is reduced to find the vector ρ = (ρ(yj))j=1,...,M solution of
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û = Aρ, with the matrix Arj = Ĝ(ω,xr,yj)(δy)3.

However A is of size N ×M and even when M = N it is not invertible in
general. In order to obtain a well-formulated problem we look for the solution
of the least squares inversion problem. It consists in finding the vector ρ that
minimizes the error (misfit function):

E =
1

2
‖û−Aρ‖2 =

1

2

N∑
r=1

∣∣(û−Aρ)r
∣∣2.

An extremal point of the quadratic misfit function satisfies the constraints:

0 =
∂E
∂ρj

, 0 =
∂E
∂ρj

,

which reads

0 = −
N∑
r=1

[
Arj(û−Aρ)r

]
= −[AH(û−Aρ)]j , j = 1, . . . , N,

where the superscript H stands for conjugate transpose. The equation AH(û−
Aρ) = 0 gives the normal equations:

AHAρ = AH û.

AHA is a nonnegative matrix. When it is positive, it can be inverted:

ρ =
(
AHA

)−1
AH û.

When AHA is not positive, or when it is positive but ill-conditioned, then
it is necessary to regularize the minimization problem. A popular regulariza-
tion technique is the Tykhonov regularization: the regularized problem to be
minimized is

E =
1

2
‖û−Aρ‖2 +

1

2
α‖ρ‖2,

where α > 0. The solution to this problem is

ρ =
(
AHA + αI

)−1
AH û.

To be complete, we can add that, when α is small we obtain the Moore-
Penrose pseudo-inverse [32], that is known to be unstable and to amplify
additive noise. When α is large, the stability is enhanced but the resolution
is reduced [11].
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2.1.6 The reverse-time imaging function

The least squares imaging function is:

ILS(yS) =
[(

Â∗Â
)−1

Â∗û
]
(yS),

where
(
Â∗Â

)−1
is a (regularized) pseudo-inverse of the normal operator. It

turns out that the kernel a(y,y′) of the normal operator Â∗Â is the signal
obtained at y during a time-reversal experiment, in which a point source
at y′ emits a Dirac pulse at time 0 and the time-reversal mirror consists
of point receivers/sources at the locations xr, r = 1, . . . , N , as described in
Section 1.5. By the time-reversal refocusing property the kernel of the normal
operator is often concentrated around y = y′, which means that it is close
to a diagonal operator. Motivated by this remark we can propose to drop
the normalizing factor in the LS function, which gives a new function which
is much simpler to evaluate than and reasonably close to the least squares
function. This simplification affects, however, resolution [11]. The Reverse-
Time imaging function for the search point yS is defined by:

IRT(yS) =
1

2π

[
Â∗û

]
(yS)

=
1

2π

∫
dω

N∑
r=1

Ĝ(ω,yS ,xr)û(ω,xr). (2.4)

It is a reverse-time imaging function, since

IRT(yS) =
1

2π

∫
dω

N∑
r=1

Ĝ(−ω,yS ,xr)û(−ω,xr)

=
1

2π

∫
dω

N∑
r=1

Ĝ(ω,yS ,xr)û(ω,xr)

can be interpreted as:
IRT(yS) = uRT(0,yS)

where uRT(t,x) is the solution of the wave equation:

1

c2(x)

∂2uRT
∂t2

−∆xuRT = nRT(t,x),

with the source term supported in (t,x) ∈ (−∞, 0)× {xr, r = 1, . . . , N}:

nRT(t,x) =

N∑
r=1

u(−t,xr)δ(x− xr).

This interpretation shows that the computational cost of the imaging function
is one call to a solver of the wave equation in the background medium.
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2.1.7 Kirchhoff Migration (or travel-time migration)

It is possible to simplify the Reverse-Time imaging function. If we use the
geometric optics approximation of the Green’s function and neglect the vari-
ations of the amplitude term, that is to say, if we make the approximation
Ĝ(ω,x,y) ' exp[iωT (x,y)], where T (x,y) is the travel time from x to y,
then we get the Kirchhoff Migration imaging function:

IKM(yS) =
1

2π

∫
dω

N∑
r=1

exp[−iωT (xr,y
S)]û(ω,xr)

=

N∑
r=1

u
(
T (xr,y

S),xr
)
. (2.5)

Kirchhoff Migration (or travel time migration) has been analyzed in detail
[10] and is used extensively in practice. It is a simple way to triangulate the
location of a source using sensor array (or distributed sensors).

2.2 Passive array imaging of sources: resolution analysis

In this section we assume that a point source located at y emits a short pulse
f(t). The goal of this section is to characterize the resolution properties of
the Reverse-Time imaging function, that is to say, the spatial accuracy with
which it is possible to localize the source. This can be quantified by the width
of the peak of the imaging function at the source position. The Reverse-Time
imaging function (2.4) has the form

IRT(yS) =
1

2π

∫
ÎRT(ω,yS)f̂(ω)dω,

ÎRT(ω,yS) =

N∑
r=1

Ĝ(ω,yS ,xr)Ĝ(ω,xr,y).

We carry out a resolution analysis when the medium is homogeneous. The
Green’s function is then given by

Ĝ(ω,x,y) =
1

4π|x− y|
ei
ω|x−y|
c0 .

2.2.1 Full-aperture array

The resolution analysis in the case of a full-aperture array, that completely
surrounds the source, is an application of the analysis of the time-reversal
experiment in Section 1.5. It follows from the Helmholtz-Kirchhoff identity
(1.11) that gives
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ÎRT(ω,yS) ' c0
ω

Im
(
Ĝ(ω,y,yS)

)
=

1

4π
sinc

(ω|yS − y|
c0

)
,

up to a multiplicative constant that depends on the density of sources. We
can get the resolution estimate from the first zero (π) of the sinc function.
This shows that ÎRT(ω,yS) is a peak centered at y with width given by λ/2,
with λ = 2πc0/ω the wavelength associated to the frequency ω.

y →←

↑

↓

←→

↓

↑

(a) (b) (c)

Fig. 2.3. A point source at y emits a short pulse that is recorded by a array of
receivers that completely surrounds the source (picture a). The RT imaging function
backpropagates numerically the time-reversed recorded signals (picture b). The im-
age obtained is a peak centered at the original source location, with a sinc form and
a width of λ0/2 (picture c, in which x and z are multiples of λ0 and the modulus of
the imaging function is plotted).

If the source has central frequency ω0 and bandwidth B, with B � ω0,

f(t) =
1

2
e−iω0tf0(Bt) + c.c., (2.6)

f̂(ω) =
1

2B
f̂0

(ω − ω0

B

)
+

1

2B
f̂0

(ω + ω0

B

)
, (2.7)

then we have

IRT(yS) =
1

4π
f0(0)sinc

(ω0|yS − y|
c0

)
.

This shows that IRT(yS) is a peak centered at y with width given by λ0/2,
with λ0 = 2πc0/ω0 the wavelength associated to the central frequency ω0 (see
Figure 2.3). We have found that the resolution is λ0/2, which is a well-known
result (diffraction limit).

2.2.2 Partial-aperture array

From now on we consider the case of a finite-aperture array (see Figure 2.4).
We denote x = (x⊥ , z) ∈ R2×R. We assume that the array lies on the surface
{z = 0} and that it is dense, with a density function ψr such that
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(a) (b)

Fig. 2.4. A point source at y emits a short pulse (picture a). The RT imaging
function backpropagates numerically the time-reversed signals to form an image
(picture b).

N∑
r=1

g(xr) ' N
∫
R2

ψr(x⊥)g((x⊥ , 0))dx⊥ ,

for any test function g. As a result

ÎRT(ω,yS) = N

∫
R2

ψr(x⊥)Ĝ(ω,yS , (x⊥ , 0))Ĝ(ω,y, (x⊥ , 0))dx⊥ . (2.8)

We first carry out a high-frequency analysis of the imaging function. We
assume that the width of the source pulse fε(t) is small so that

fε(t) = f
( t
ε

)
, f̂ε(ω) = εf̂(εω),

where ε is a dimensionless parameter that characterizes the ratio of the pulse
width over the typical travel time from the array to the source. Then the
imaging function has the form

IRT(yS) =
1

2π

∫
ÎRT(ω,yS)f̂(ω)dω, (2.9)

ÎRT(ω,yS) = N

∫
R2

a(x⊥)ei
φω(x⊥ )

ε dx⊥ , (2.10)

with

a(x⊥) =
ψr(x⊥)

16π2|yS − (x⊥ , 0)| |y − (x⊥ , 0)|
,

φω(x⊥) =
ω

c0
[|yS − (x⊥ , 0)| − |y − (x⊥ , 0)|].

We first give a stationary phase result [43, Chapter VIII].

Lemma 2.1. Let D is be a compact domain in R2 and a and φ be smooth
functions such that there are at most finitely many points in D such that
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∇⊥φ(x⊥) = 0, and such that the Hessian of φ is nondegenerate at these points.
Then the value of the integral

Iε =

∫
D

a(x⊥)ei
φ(x⊥ )

ε dx⊥ ,

is at most of order ε as ε→ 0.

As explained in [43], the main contributions to the value of the integral
(in the limit ε→ 0) come from critical points, that are stationary points such
that ∇⊥φ(x⊥) = 0, and from points on the boundary ∂D such that a level
curve of φ is tangential to ∂D. This second type of points are absent if a
vanishes smoothly at the boundary of D.

Corollary 2.2. We assume that y or yS is not in the plane {z = 0}. In the
high-frequency regime ε→ 0, we have:
- if yS = y then

ÎRT(ω,y) =
N

16π2

∫
R2

ψr(x⊥)

|(x⊥ , 0)− y|2
dx⊥ = O(1), (2.11)

- if yS 6= y then
ÎRT(ω,yS) = O(ε). (2.12)

Proof. The result for yS = y is obvious. Let us assume from now on that
yS 6= y and consider the integral (2.10). The phase function φω(x⊥) is such
that

∇⊥φω(x⊥) =
ω

c0

[ x⊥ − yS⊥
|yS − (x⊥ , 0)|

− x⊥ − y⊥
|y − (x⊥ , 0)|

]
,

which is zero if and only if the line going through y and yS intersects (x⊥ , 0).
Therefore, for a given pair of points y = (y⊥ , L) and yS = (yS

⊥
, LS), there is

at most one stationary point x∗
⊥

, and in such a case it is nondegenerate as the
Hessian of the phase at that point is

H[φω](x∗
⊥

) =
ω

c0

L
LS
− 1

|y − (x∗
⊥
, 0)|3

(
L2 + (x∗2 − y2)2 −(x∗1 − y1)(x∗2 − y2)
−(x∗1 − y1)(x∗2 − y2) L2 + (x∗1 − y1)2

)
whose determinant

det H[φω](x∗
⊥

) =
ω2

c20

L2( L
LS
− 1)2

|y − (x∗
⊥
, 0)|4

is not zero (since yS 6= y and y and yS are on the same line issued from
(x∗
⊥
, 0), we have L 6= LS). The desired result then follows from Lemma 2.1. �

Corollary 2.2 shows that the imaging function has a peak at the original
source location. We would like now to characterize the resolution of the imag-
ing function. In the high-frequency regime the result in Corollary 2.2 indicates
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that the width of the peak is smaller than one. In fact, the following analysis
shows that is is of order ε.

We assume that the third coordinate L of y = (y⊥ , L) is positive. We
parameterize the search point yS as

yS = y + εz. (2.13)

Then

|x− yS | − |x− y| = −ε x− y
|x− y|

· z +O(ε2),

and therefore, as ε→ 0,

ÎRT(ω,yS) =
N

16π2

∫
R2

ψr(x⊥)

|(x⊥ , 0)− y|2
exp

(
− i ω

c0

x− y
|x− y|

· z
)

dx⊥ . (2.14)

We denote B2 = {e⊥ ∈ R2 s.t. |e⊥ | < 1} the unit disk in R2. We introduce
the function Xy : B2 → R2 defined by

Xy(e⊥) =
e⊥√

1− |e⊥ |2
L+ y⊥ .

The point (Xy(e⊥), 0) is the intersection of the line starting from y with

the direction (e⊥ ,−
√

1− |e⊥ |2) with the plane {z = 0}. The inverse of the
function Xy is

X−1y (x⊥) =
x⊥ − y⊥
|(x⊥ , 0)− y|

,

and the determinant of its Jacobian is |JacXy(e⊥)| = L2/(1− |e⊥ |2)2.
A straightforward change of variable x⊥ → X−1y (x⊥) in the expression

(2.14) of the reverse-time imaging function gives that, as ε→ 0,

ÎRT(ω,yS) =
N

16π2

∫
B2

ψr(Xy(e⊥))

1− |e⊥ |2
exp

(
i
ω

c0
(−e⊥ ,

√
1− |e⊥ |2) · z

)
de⊥ .

(2.15)
If the density of the array is constant over its support D:

ψr(x⊥) =
1

|D|
1D(x⊥),

then we have

ÎRT(ω,yS) =
N

16π2|D|

∫
By

1

1− |e⊥ |2
exp

(
i
ω

c0
(−e⊥ ,

√
1− |e⊥ |2) · z

)
de⊥ ,

(2.16)
where By = X−1y (D). The set of unit vectors

Cy =
{

(−e⊥ ,
√

1− |e⊥ |2) , e⊥ ∈ By
}
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forms the cone of illumination of the point y (ie the set of directions from
a point in the sensor array to the original source location). The function
(2.16) gives the local form of the imaging function around the original source
location, which is a peak centered at the source location with a width that
is of the order of the wavelength. In the following we consider the case of
a circular array and of a square array to get some explicit and quantitative
formulas that will allow us to distinguish the resolution in the longitudinal
direction (z) and in the transverse directions (x⊥).

Circular array

Let us assume that the source location is y = (0, L) and that the support of
the sensors is the disk with diameter a:

D = {(x⊥ , 0), |x⊥ | ≤ a/2}.

Then
By =

{
e⊥ ∈ R2, |e⊥ | ≤

a√
a2 + 4L2

}
.

We take special spherical coordinates to compute (2.16):

e⊥ = (sin θ cosφ, sin θ sinφ),

whose Jacobian determinant is |Jac e⊥(θ, φ)| = | sin θ cos θ|, and we use the

identity
∫ 2π

0
exp(ix sinφ)dφ = 2πJ0(x) to obtain:

ÎRT(ω,yS)

=
N

4π3a2

∫ θy

0

dθ

∫ 2π

0

dφ tan θ exp
(
i
ω

c0

(
− (cosφz1 + sinφz2) sin θ + cos θz3

))
=

N

2π2a2
exp

(
i
ω

c0
z3

)∫ θy

0

dθ tan θJ0

( ω
c0

sin θ|z⊥ |
)

exp
(
− 2i

ω

c0
sin2

(θ
2

)
z3

)
,

with θy = arctan(a/(2L)). If we assume that a � L, then this expression
becomes

ÎRT(ω,yS) =
Nθ2y

2π2a2
exp

(
i
ω

c0
z3

)∫ 1

0

ds sJ0

(ωθy
c0
|z⊥ |s

)
exp

(
− i

ωθ2y
2c0

z3s
2
)
,

or equivalently

ÎRT(ω,yS) =
N

16π2L2
exp

(
i
ω

c0
z3

)
Ψ
(az⊥
Lλ

,
a2z3
L2λ

)
, (2.17)

with the normalized point spread function given by (for ξ
⊥
, η ∈ R2 × R):

Ψ(ξ
⊥
, η) = 2

∫ 1

0

ds sJ0
(
π|ξ
⊥
|s
)

exp
(
− iπ η

4
s2
)
. (2.18)
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By inspection of formula (2.17-2.18) we observe that:
1) In the transverse directions, the width of the peak is λL/a, with λ = 2πc0/ω
the wavelength associated to the frequency ω, and the form of the peak is:

Ψ(ξ
⊥
, 0) = 2

∫ 1

0

ds sJ0
(
π|ξ
⊥
|s
)

= 2
J1(π|ξ

⊥
|)

π|ξ
⊥
|
,

where we have used the derivative identity ∂x(xJ1(x)) = xJ0(x).
2) In the longitudinal direction, the width of the peak is λL2/a2 and the form
of the peak is:

Ψ(0, η) = 2

∫ 1

0

ds s exp
(
− iπη

4
s2
)

= 4
1− e−i

πη
4

iπη
,

whose square modulus is

|Ψ(0, η)|2 = sinc2
(πη

8

)
.

If the source has central frequency ω0 and bandwidth B, with B � ω0, as
in (2.6), then we have

IRT(yS) =
N

32π2L2
exp

(
i
ω0

c0
z3

)
f0

(B
c0
z3

)
Ψ
( az⊥
Lλ0

,
a2z3
L2λ0

)
+ c.c. (2.19)

This shows that IRT(yS) is a peak centered at y. The transverse width of the
peak is λ0L/a, with λ0 = 2πc0/ω0 the wavelength associated to the central
frequency ω0. This is the so-called Rayleigh resolution formula. The longitu-
dinal width of the peak is min{λ0L2/a2, c0/B}. In other words, if the pulse
is narrowband in the sense that B < ω0a

2/L2, then the longitudinal form
of the peak centered at the original source location is determined by Fresnel
diffraction and it has the form (see Figure 2.5)

IRT(yS) =
Nf0(0)

32π2L2
exp

(
i
ω0

c0
z3

)
Ψ
( az⊥
Lλ0

,
a2z3
L2λ0

)
+ c.c.

If the pulse is broadband in the sense that B > ω0a
2/L2, then the longitudinal

form of the peak centered at the original source location is determined by the
pulse width and it has the form

IRT(yS) =
N

32π2L2
exp

(
i
ω0

c0
z3

)
f0

(B
c0
z3

)
Ψ
( az⊥
Lλ0

, 0
)

+ c.c.
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y=(0,L)

x
1
=(−a/2,0)

x
N
=(a/2,0)

← →

x
1
=(0,−a/2)

x
N
=(a/2,0)

(a) (b) (c)

Fig. 2.5. A point source at y = (0, 0, L) emits a short pulse that is recorded
by a circular array of receivers in {x⊥ ∈ R2, |x⊥ | ≤ a/2} × {0} (picture a). The
RT imaging function backpropagates numerically the time-reversed recorded signals
(picture b). The image obtained is a peak centered at the original source location
(picture c, in which x is in multiples of λ0L/a, z in multiples of λ0L

2/a2, and the
modulus of the function is plotted). Here we assume that the bandwidth B of the
source pulse is smaller than ω0a

2/L2 so that the form of the peak in the longitudinal
direction is not determined by the pulse form but by Fresnel diffraction.

Square array

Let us assume that the source location is y = (0, L) and that the support of
the sensors is the square with sidelength a:

D = [−a/2, a/2]× [−a/2, a/2]× {0} = {(x⊥ , 0), |x1| ≤ a/2, |x2| ≤ a/2}.

Then
By =

{
e⊥ ∈ R2, (4L2 + a2)e2j ≤ a2(1− e23−j), j = 1, 2

}
,

and

ÎRT(ω,yS) =
N

16π2a2

∫
By

de1de2
1

1− e21 − e22

× exp
(
i
ω

c0

(
− (e1z1 + e2z2) +

√
1− e21 − e22z3

))
.

If we assume that a� L, then this expression can be simplified:

ÎRT(ω,yS) =
N

16π2L2
exp

(
i
ω

c0
z3

)∫ 1/2

−1/2
ds1

∫ 1/2

−1/2
ds2

× exp
(
− i ωa

c0L
(s1z1 + s2z2)− i ωa

2

2c0L2
(s21 + s22)z3

)
,

or equivalently

ÎRT(ω,yS) =
N

16π2L2
exp

(
i
ω

c0
z3

)
Ψ
(az⊥
Lλ

,
a2z3
L2λ

)
, (2.20)
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with the normalized point spread function given by

Ψ(ξ
⊥
, η) =

∫ 1/2

−1/2
ds1

∫ 1/2

−1/2
ds2 exp

(
−2iπ(s1ξ1+s2ξ2)−iπ(s21+s22)η

)
. (2.21)

By inspection of formula (2.20-2.21) we observe that:
1) In the transverse directions, the width of the peak is λL/a and the form of
the peak is:

Ψ(ξ
⊥
, 0) =

∫ 1/2

−1/2
ds1

∫ 1/2

−1/2
ds2 exp

(
− 2iπ(s1ξ1 + s2ξ2)

)
= sinc

(
πξ1)sinc

(
πξ2
)
.

2) In the longitudinal direction, the width of the peak is λL2/a2 and the form
of the peak is:

Ψ(0, η) =

∫ 1/2

−1/2
ds1

∫ 1/2

−1/2
ds2 exp

(
− iπ(s21 + s22)η

)
=

(
C(
√

πη
4 )− iS(

√
πη
4 )
)2

πη
4

,

where we have used the tabulated Fresnel integrals [1, Section 7.3]:

C(x) =

∫ x

0

cos(s2)ds, S(x) =

∫ x

0

sin(s2)ds.

y=(0,L)

x
1
=(−a/2,0)

x
N
=(a/2,0)

← →

x
1
=(0,−a/2)

x
N
=(a/2,0)

(a) (b) (c)

Fig. 2.6. A point source at y = (0, 0, L) emits a short pulse that is recorded
by a square array of receivers in [−a/2, a/2] × [−a/2, a/2] × {0} (picture a). The
RT imaging function backpropagates numerically the time-reversed recorded signals
(picture b). The image obtained is a peak centered at the original source location
(picture c, in which x is in multiples of λ0L/a, z in multiples of λ0L

2/a2, and the
modulus of the function is plotted). Here we assume that the bandwidth B of the
source pulse is smaller than ω0a

2/L2 so that the form of the peak in the longitudinal
direction is not determined by the pulse form but by Fresnel diffraction.
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If the source has central frequency ω0 and bandwidth B, with B � ω0,
as in (2.6), then the RT imaging function is given by (2.19) with Ψ given by
(2.21). This shows that IRT(yS) is a peak centered at y (see Figure 2.6). The
transverse width of the peak is λ0L/a. The longitudinal width of the peak is
min{λ0L2/a2, c0/B}.

2.2.3 Summary of resolution analysis for passive source imaging

In this section we have analyzed the resolution properties of the Reverse-Time
imaging function. The Kirchhoff Migration imaging function can be analyzed
in the same way, as the phase terms are identical, and the results are identical
as well.

In the full aperture case, when the passive array completely surrounds
the source, the latter can be localized with a precision of the order of the
diffraction limit, that is, of the order of the central wavelength λ.

In the partial aperture case, when the passive array has a diameter a and
the distance from the array to the source is L, the latter can be localized in the
transverse direction with a precision of the order of the Rayleigh resolution
formula, that is, of the order of λL/a, where λ is the central wavelength. It
can be localized in the longitudinal direction with a precision of the order of
min{λL2/a2, c0/B}, where B is the bandwidth of the source.

The resolution formulas that we have described in this section are well
known and presented in many books. For instance, the analysis of the trans-
verse resolution formulas (for arrays of various forms) can be found in [13,
Section 8.5] and the analysis of the longitudinal ones in [13, Section 8.8].

2.3 Active array imaging of reflectors

In this section we assume that the sensor array is active, which means that
the sensors can be used as sources and/or as receivers. The goal is to find a
reflector buried into the medium.

2.3.1 Data acquisition

As described in Figure 2.7, in which the sensor array consists of N sensors, the
data acquisition is carried out in N steps. For each s = 1, . . . , N , the source
xs emits a pulse and the sensor at xr (for r = 1, . . . , N) record the wave
that we denote by u(t,xr,xs). The data set is the time-dependent response
matrix (u(t,xr,xs))t∈R,r,s=1,...,N , also called impulse response matrix. The
goal of imaging is here to find the reflector position y (more generally, find
the reflectivity function of the medium).

The data set is (u(t,xr,xs))t∈R,r,s=1,...,N . Given the data set, we wish to
build an imaging function in the search region Ω ⊂ R3:
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Fig. 2.7. Sensor array imaging of reflectors.

I :

∣∣∣∣Ω → R+

yS 7→ I(yS)

which plots an image of the reflectivity function in the search region.
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Ω

Fig. 2.8. Sensor array imaging of reflectors: data acquisition (left) and search region
for the imaging function (right).

2.3.2 Source and reflector array imaging: comparison

Source and reflector sensor array imaging are two different processes. In source
array imaging the goal is to image an unknown source given the vector of
waves recorded by the array. In reflector array imaging the goal is to image
an unknown reflectivity (i.e. the contrast in the speed of propagation) given
the matrix of waves emitted and recorded by the array:

2.3.3 Modeling

The goal is to find the propagation speed (creal(y))y∈Ω which is assumed to be
homogeneous outside the domain Ω. The Fourier transforms of the recorded
signals are

û(ω,xr,xs) = Ĝ(ω,xr,xs; creal)f̂(ω),
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Source array of sensors Reflector array of sensors/sources
The sensors (xr)r=1,...,N record The sensors (xr)r=1,...,N record
y is a source y is a reflector, xs is a source
Data:

(
u(t,xr)

)
t∈R,r=1,...,N

Data:
(
u(t,xr,xs)

)
t∈R,r,s=1,...,N

Fig. 2.9. Comparison between sensor array imaging of sources (left) and of reflectors
(right).

where f̂(ω) is the Fourier transform of the source pulse used by the array and
Ĝ(ω,x,y; c) is the Green’s function that solves the Helmholtz equation (1.4)
with the propagation speed c(x) and with the Sommerfeld radiation condition
(1.5). Here we explicitly write the dependence of the Green’s function on the
velocity c(x). Note that this dependence is nonlinear.

2.3.4 Nonlinear inversion

The data set is the matrix of signals:

û =
(
û(ω,xr,xs)

)
ω∈R,r,s=1,...,N

=
(
Ĝ(ω,xr,xs; creal)f̂(ω)

)
ω∈R,r,s=1,...,N

.

In order to estimate the propagation speed creal(x), we try so solve the ar-
ray least squares inverse problem, that is to say, to find the function c that
minimizes:

J [c] + α‖c‖2REG,

where J [c] is the misfit function

J [c] =
1

2π

∫
dω

N∑
r,s=1

∣∣û(ω,xr,xs)− Ĝ(ω,xr,xs; c)f̂(ω)
∣∣2,

α is a strength of regularization parameter, and ‖c‖REG is a norm used to
regularize the least squares problem. Note that, in contrast to the passive
imaging case, this is a nonlinear problem for the unknown propagation speed
c(x) and the misfit function is not quadratic in the unknown. It is, in general,
very difficult to solve this problem. Iterative techniques are possible, but the
solution is often very unstable and depends strongly on the initial guess. In
the seismic imaging framework, the resolution of the least squares inverse
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problem is called Full Waveform Inversion. Recent progress has been made on
this problem, using optimal transport theory (to replace the L2-norm in the
misfit function by a Wasserstein-type distance) [22], relaxation techniques [6],
or reduced order models [12], but it is not yet solved.

2.3.5 Linearization of the forward problem

We consider the following model for the speed of propagation:

1

c2(x)
=

1

c20

(
n20(x) + ρ(x)

)
, (2.22)

where c0 is a reference speed (known), n0(x) is a smooth background index
of refraction (known, typically constant), and ρ(x) is the target reflectivity
(unknown but assumed to be small). The goal of reflector imaging is to re-
construct ρ given the data set.

The Green’s function satisfies:

∆xĜ+
ω2

c20

(
n20(x) + ρ(x)

)
Ĝ = −δ(x− y).

The background Green’s function is the solution of:

∆xĜ0 +
ω2

c20
n20(x)Ĝ0 = −δ(x− y),

with the Sommerfeld radiation condition. In the Born approximation we have
the approximation:

Ĝ(ω,x,y) = Ĝ0(ω,x,y) +
ω2

c20

∫
Ĝ0(ω,x, z)ρ(z)Ĝ0(ω,z,y)dz, (2.23)

in which the first term of the right-hand side corresponds to the direct waves
(i.e. those which have not interacted with the reflector) and the second term
corresponds to the single-scattered waves emitted from the source point y,
scattered at z (in the support of ρ) and received at x. The Born approximation
is valid when the reflectivity of the reflector is small enough.

Proof. Let us consider the full Green’s function and the background
Green’s function solution of

∆zĜ(ω,z,x) +
ω2

c20
n20(z)Ĝ(ω,z,x) = −ω

2

c20
ρ(z)Ĝ(ω,z,x)− δ(z − x),

∆zĜ0(ω,z,y) +
ω2

c20
n20(z)Ĝ0(ω,z,y) = −δ(z − y).

We multiply the first equation by Ĝ0(ω,x,y) and subtract the second equation
multiplied by Ĝ(ω,x, z):
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∇z ·
[
Ĝ0(ω,z,y)∇zĜ(ω,z,x)− Ĝ(ω,z,y)∇zĜ0(ω,z,x)

]
= −ω

2

c20
ρ(z)Ĝ(ω,z,x)Ĝ0(ω,z,y)− Ĝ0(ω,z,y)δ(z − x) + Ĝ(ω,z,x)δ(z − y)

= −ω
2

c20
ρ(z)Ĝ(ω,z,x)Ĝ0(ω,z,y)− Ĝ0(ω,x,y)δ(z − x) + Ĝ(ω,y,x)δ(z − y)

reciprocity
= −ω

2

c20
ρ(z)Ĝ(ω,x, z)Ĝ0(ω,z,y)− Ĝ0(ω,x,y)δ(z − x)

+Ĝ(ω,x,y)δ(z − y).

We integrate over B(0, L) (with L large enough so that it encloses the support
of ρ):

0 = −ω
2

c20

∫
Ĝ(ω,x, z)ρ(z)Ĝ0(ω,z,y)dz − Ĝ0(ω,x,y) + Ĝ(ω,x,y).

We therefore obtain the Lippmann-Schwinger equation, which is exact:

Ĝ(ω,x,y) = Ĝ0(ω,x,y) +
ω2

c20

∫
Ĝ(ω,x, z)ρ(z)Ĝ0(ω,z,y)dz. (2.24)

This equation is used as a basis for expanding the Green’s functions when the
reflectivity ρ is small. If the full Green’s function Ĝ in the right-hand side is
replaced by the background Green’s function, then we obtain:

Ĝ(ω,x,y) ' Ĝ0(ω,x,y) +
ω2

c20

∫
Ĝ0(ω,x, z)ρ(z)Ĝ0(ω,z,y)dz,

which is the (first-order) Born approximation. �

The data set is modeled by û = (û(ω,xr,xs))ω∈R,r,s=1,...,N with

û(ω,xr,xs) =
ω2

c20

∫
Ĝ0(ω,xr, z)ρ(z)Ĝ0(ω,y,xs)dz. (2.25)

Note that we have removed Ĝ0(ω,xr,xs)f̂(ω) from the original data set, and

then rescaled by f̂(ω) for ω in the bandwidth of the source (this procedure
is known as equalization), which is possible since they are known quantities.
We define the forward operator

[Âρ](ω,xr,xs) =

∫
Ω

Ĝ0(ω,xr, z)ρ(z)Ĝ0(ω,z,xs)dz. (2.26)

It is the linear operator that maps the reflectivity function to the array data.
It goes from the space L2(Ω) equipped with the standard scalar product

(µ, ν)L2 =

∫
Ω

µ(y)ν(y)dy
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to L2 := L2(R× {1, . . . , N}2) equipped with the scalar product

(v̂, ŵ)L2 =

∫
dω

N∑
r,s=1

v̂(ω,xr,xs)ŵ(ω,xr,xs).

2.3.6 Linearized inversion

The least squares linearized inverse problem consists in minimizing JLS[ρ]
where

JLS[ρ] =
1

2π

∫
dω

N∑
r,s=1

∣∣û(ω,xr,xs)− [Âρ](ω,xr,xs)
∣∣2.

The solution of the least squares linearized inverse problem solves the normal
equations: (

Â∗Â
)
ρLS = Â∗û.

Here the adjoint operator is

[Â∗v̂](y) =

N∑
r,s=1

∫
dωĜ0(ω,y,xr)Ĝ0(ω,xs,y)v̂(ω,xr,xs).

Remember that the complex conjugation in the frequency domain corresponds
to the time-reversal operation in the time domain. This shows that the adjoint
operator corresponds to the backpropagation of the array data both from the
receiver point xr and from the source point xs to the test point y. The normal
operator is [

Â∗Âρ
]
(y) =

∫
Ω

dy′a(y,y′)ρ(y′),

with the kernel

a(y,y′) =

∫
dω

N∑
r,s=1

Ĝ0(ω,y,xr)Ĝ0(ω,xs,y)Ĝ0(ω,y′,xr)Ĝ0(ω,xs,y′).

As a result, the least squares imaging function is:

ILS(yS) =
[(

Â∗Â
)−1

Â∗û
]
(yS),

where
(
Â∗Â

)−1
is a (regularized) pseudo-inverse of the normal operator.

2.3.7 The reverse-time imaging function

Motivated again by the fact that Â∗Â is often close to a diagonal operator, we
suggest to drop this term to get a simplified imaging function. The Reverse-
Time imaging function for the search point yS is defined by:
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IRT(yS) =
1

2π

[
Â∗û

]
(yS)

=
1

2π

∫
dω

N∑
r,s=1

Ĝ0(ω,yS ,xr)Ĝ0(ω,xs,yS)û(ω,xr,xs)

=
1

2π

∫
dω

N∑
r,s=1

Ĝ0(ω,yS ,xr)Ĝ0(ω,xs,y
S)û(ω,xr,xs).(2.27)

The reverse-time imaging function can be evaluated as follows:
- Solve for s = 1, . . . , N the wave equation in the background medium

n20(x)

c20

∂2u
(s)
RT

∂t2
−∆xu(s)RT = n

(s)
RT(t,x),

with the source term supported in (t,x) ∈ (−∞, 0)× {xr, r = 1, . . . , N}:

n
(s)
RT(t,x) =

N∑
r=1

δ(x− xr)u(−t,xr;xs).

- Solve for s = 1, . . . , N the wave equation in the background medium

n20(x)

c20

∂2w(s)

∂t2
−∆xw(s) = n(s)(t,x),

with the source term:

n(s)(t,x) = δ(x− xs)δ(t).

- Evaluate for any search point yS the correlation

ĨRT(yS) =

N∑
s=1

∫ ∞
0

w(s)(t,yS)u
(s)
RT(−t,yS)dt.

This algorithm gives indeed the desired result because the wave solutions can
be expressed as

û
(s)
RT(ω,x) =

N∑
r=1

Ĝ0(ω,x,xr)û(ω,xr,xs),

ŵ(s)(ω,x) = Ĝ0(ω,x,xs),

and therefore the correlation of the wave solutions is equal to the reverse-time
imaging function:
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ĨRT(yS) =

N∑
s=1

∫ ∞
−∞

w(s)(t,yS)u
(s)
RT(−t,yS)dt

=
1

2π

N∑
s=1

∫ ∞
−∞

ŵ(s)(ω,yS)û
(s)
RT(ω,yS)dω

=
1

2π

∫ ∞
−∞

dω

N∑
r,s=1

Ĝ0(ω,yS ,xr)Ĝ0(ω,xs,y
S)û(ω,xr,xs)

= IRT(yS).

This interpretation shows that the computational cost of the reverse-time
imaging function is 2N calls to a solver of the wave equation in the background
medium with 2N sets of different sources (here we neglect the cost of the
evaluation of the correlations).

2.3.8 Kirchhoff migration (or travel-time migration)

The Kirchhoff migration (or travel time migration) is obtained as a simplifi-
cation of the reverse-time imaging function in which we take Ĝ0(ω,x,y) '
exp[iωT (x,y)], where T (x,y) is the travel time from x to y. Therefore the
Kirchhoff migration imaging function has the form:

IKM(yS) =
1

2π

∫
dω

N∑
r,s=1

exp[−iω(T (xr,y
S) + T (xs,y

S))]û(ω,xr,xs)

=

N∑
r,s=1

u
(
T (xr,y

S) + T (xs,y
S),xr,xs

)
. (2.28)

Kirchhoff Migration (or travel time migration) has been analyzed in detail
[10]. It is a simple way to triangulate the location of a reflector using an
active sensor array.

2.3.9 Summary of resolution analysis for active reflector imaging

The resolution analysis of the Reverse-Time imaging function and the Kirch-
hoff Migration imaging function goes along the same way as for passive source
imaging.

In the full aperture case, when the active array completely surrounds the
reflector, the latter can be localized with a precision of the order of the diffrac-
tion limit, that is, of the order of the central wavelength λ.

In the partial aperture case, when the active array has a diameter a and
the distance from the array to the reflector is L, the latter can be localized in
the transverse direction with a precision of the order of the Rayleigh resolution
formula, that is, of the order of λL/a, where λ is the central wavelength. It
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can be localized in the longitudinal direction with a precision of the order of
min{λL2/a2, c0/B}, where B is the bandwidth of the pulse emitted by the
array sensors.

Remark : In seismology the spatial resolution of migrated images has been
studied extensively, including situations with slowly varying background, in
[8, 18]. These studies confirm that the transverse and longitudinal resolution
is a function of the array aperture, the distance from the array to the reflector,
and the spectral bandwidth of the illuminating wave field. It is only recently
tha tthe role of the slowly varying background has been considered in medical
imaging, but it turns out that this is necessary to improve quantitative imaging
[26].

2.4 A remark about time-reversal experiments

Originally time reversal was proposed not for imaging, but for energy focusing.
The idea was to focus ultrasound energy on kidney stones to destroy them
[24]. In a time-reversal experiment the Time-Reversal Mirror (TRM) is used
first as a receiver array, then as a source array.

y

x
1

x
N

x
1

x
N

The source y emits a pulse The TRM emits the time-reversed signals
The TRM records the signals A sensor array probes the region

around the original source location

Fig. 2.10. The two steps of a time-reversal experiment.

It is striking that time reversal looks like reverse-time migration for passive
array imaging. In both cases the recorded data are backpropagated from the
array. There is, however, a difference: backpropagation is performed physically
in a Time-Reversal experiment and numerically in Reverse-Time migration:
- In Reverse-Time migration, backpropagation is carried out numerically, in
a fictitious medium (corresponding to the known background medium).
- In Time Reversal, backpropagation is carried out physically, in the real
medium.

There is no difference when the medium is perfectly known (and the nu-
merical code is perfect), but the difference will have dramatic consequences
when the medium becomes complex and partially known.
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Time-harmonic Reverse-Time imaging with
measurement noise

3.1 The data set

Let us consider the propagation of scalar waves in a three-dimensional
medium. In the presence of a localized reflector, the speed of propagation
can be modeled by

1

c2(x)
=

1

c2o

(
1 + Vref(x)

)
. (3.1)

Here
- the constant co is the known background speed,
- the local variation Vref(x) of the speed of propagation induced by the reflector
at zref is of the form

Vref(x) = σref1Ωref
(x− zref), (3.2)

where σref is the reflectivity of the reflector, zref is its center, and Ωref is a
compactly supported domain with volume l3ref that models its spatial support.

Suppose that we have co-localized time-harmonic transmitter and receiver
arrays {x1, . . . ,xn} of n elements, used to detect the reflector. In the presence
of a reflector, the field received by the jth receiving element xj when the
transmitter at xl emits a unitary time-harmonic wave is û(ω,xj ,xl), where
û(ω,x,y) the solution to the Helmholtz equation

∆xû+
ω2

c2(x)
û = −δ(x− y), (3.3)

with the Sommerfeld radiation condition imposed on û.
The data set collected by the array describes the transmit-receive process

performed at this array (see Figure 3.1). If we remove the incident field then
it can be defined as {

v̂(ω,xj ,xl), j, l = 1, . . . , n
}
, (3.4)
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Fig. 3.1. Reverse-Time imaging set-up. xl emits a time-harmonic wave that propa-
gates through the medium, is backscattered by the reflector, and is recorded by the
sensor at xj .

with
v̂(ω,xj ,xl) = û(ω,xj ,xl)− Ĝ0(ω,xj ,xl) + Ŵj,l. (3.5)

Here Ŵj,l represents the additive measurement noise. The incident field is

given in terms of the homogeneous Green’s function Ĝ0(ω,x,y) defined by

Ĝ0(ω,x,y) =
1

4π|x− y|
exp

(
i
ω

co
|x− y|

)
, (3.6)

that is the solution to

∆xĜ0(ω,x,y) +
ω2

c2o
Ĝ0(ω,x,y) = −δ(x− y), (3.7)

with the Sommerfeld radiation condition.

3.2 The forward problem

A reflector is embedded at zref and is modeled by the local variation Vref(x)
of the propagation speed as in (4.1). The full Green’s function Ĝ, that is to
say, the Green’s function of the medium in the presence of the reflector at
zref , is solution of

∆xĜ
(
ω,x,y

)
+

ω2

c2(x)
Ĝ
(
ω,x,y

)
= −δ(x− y). (3.8)

The Lippmann-Schwinger integral equation for the full Green’s function Ĝ is

Ĝ(ω,x,y) = Ĝ0(ω,x,y)

+
ω2

c2o

∫
Ĝ0(ω,x, z)Vref(z)Ĝ(ω,z,y)dz. (3.9)

Using the Born approximation, we get
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Ĝ(ω,x,y) = Ĝ0(ω,x,y)

+
ω2

c2o

∫
Ĝ0(ω,x, z)Vref(z)Ĝ0(ω,z,y)dz. (3.10)

Therefore the full Green’s function can be written as the sum

Ĝ(ω,x,y) = Ĝ0(ω,x,y) + Ĝref(ω,x,y). (3.11)

The term Ĝref is the term in the data set that corresponds to the reflector:

Ĝref(ω,x,y) =
ω2

c2o

∫
Ĝ0(ω,x, z)Vref(z)Ĝ0(ω,z,y)dz.

The approximation (3.11) is formally valid if the correction Ĝref is small com-
pared to Ĝ0, i.e., in the regime in which σref � 1, with an error that is
formally of order O(σ2

ref). We also assume that the diameter lref of the scat-
tering region Ωref is small compared to the typical wavelength. We can then
model the reflector by a point reflector (the point interaction approximation)

Vref(x) ≈ σref l3refδ(x− zref), (3.12)

and we can write the correction in the form

Ĝref(ω,x,y) =
ω2

c2o
σref l

3
refĜ0(ω,x, zref)Ĝ0(ω,zref ,y). (3.13)

The data set is therefore of the form

v̂(ω,xj ,xl) = v̂ref(ω,xj ,xl) + Ŵjl, (3.14)

with v̂ref the ideal data set in the absence of measurement noise

v̂ref(ω,xj ,xl) = Ĝref

(
ω,xj ,xl

)
=
ω2

c2o
σref l

3
refĜ0

(
ω,xj , zref

)
Ĝ0

(
ω,zref ,xl

)
, (3.15)

and Ŵjl is the measurement noise. We assume that the random variables Ŵjl

are independent and identically distributed, with a circular complex Gaussian
distribution with variance σ2

mes, that is to say, Re(Ŵjl) and Im(Ŵjl) are in-
dependent and identically distributed real-valued Gaussian random variables
with mean zero and variance σ2

mes/2.

3.3 The imaging function

In the presence of a point reflector at zref and in the presence of additive noise
the data set is of the form (3.14). We study the effect of the measurement noise
on the time-harmonic reverse-time imaging function defined by

IRT(x) =
1

n2

n∑
j,l=1

Ĝ0(ω,x,xj)Ĝ0(ω,x,xl)v̂(ω,xj ,xl). (3.16)
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3.3.1 The imaging function without measurement noise

In the absence of noise σmes = 0 the imaging function is given by

IRT(x) = I0(x), I0(x) = σref l
3
ref

ω2

c2o
H(x, zref), (3.17)

where

H(x,y) =
( 1

n

n∑
j=1

Ĝ0(ω,x,xj)Ĝ0(ω,y,xj)
)2
. (3.18)

The function x → H(x, zref) is the point spread function that describes the
spatial profile of the peak obtained at the reflector location zref in the imaging
function when the reflector is point-like.

Full-aperture array. If the sensor array is dense (i.e. the inter-sensor
distance is smaller than half a wavelength) and completely surrounds the
region of interest (for instance, it covers the surface of the ball with center
at 0 and radius L) then Helmholtz-Kirchhoff theorem states that H(x,y)
is proportional to the square of the imaginary part of the Green’s function
Ĝ0(ω,x,y). We find

H(x,y) = CLH̃(x− y), where H̃(x) = sinc2
(ω|x|
co

)
, (3.19)

and CL = 1/(4πL)4. Therefore we have

I0(x) = σ0H̃(x− zref), (3.20)

where

σ0 =
σref l

3
refω

2

(4πL)4c2o
, H̃(x) = sinc2

(2π|x|
λ

)
, (3.21)

and λ = 2πco/ω is the wavelength. This shows that the width of the point

spread function H̃(x) is of the order of λ/2, which is the Abbe diffraction
limit [13].

3.3.2 The imaging function with measurement noise

In the presence of measurement noise the imaging function is a complex Gaus-
sian random field. Its mean is the unperturbed imaging function I0 defined
by (3.17), its relation function is zero:

E
[(
IRT(x)− I0(x)

)(
IRT(x′)− I0(x′)

)]
= 0,

and its covariance functions is:
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Cov
(
IRT(x), IRT(x′)

)
=E
[(
IRT(x)− I0(x)

)(
IRT(x′)− I0(x′)

)]
,

=
σ2
mes

n2

( 1

n

n∑
j=1

Ĝ0(ω,x,xj)Ĝ0(ω,x′,xj)
)2

=
σ2
mes

n2
H(x,x′). (3.22)

If we assume that H(x,y) = CLH̃(x − y), with H̃(x) a smooth peaked
function centered at 0, as in the case of a full-aperture array discussed above,
then we can see that the messurement noise creates a speckle noise IRT − I0
in the image, which is a stationary Gaussian random field with mean zero,
variance

σ2
noise =

σ2
mes

n2
CLH̃(0), (3.23)

and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noiseHnoise(x− x′), (3.24)

with

Hnoise(x) =
H̃(x)

H̃(0)
. (3.25)

This random field is a speckle pattern whose hotspot profiles are close to the
function Hnoise(x), which is (proportional to) the point spread function of the
imaging function. Here the hotspot profile refers to the local shape of the field
around a local maximum (see Appendix 6.5).

The hotspot volume is defined as

Vc =
4π2

(detΛ)1/2
, Λ =

(
− ∂2xjxlHnoise(x) |x=0

)
j,l=1,...,3

. (3.26)

The maximum of the random field IRT(x) − I0(x) over a domain Ω whose
volume is much larger than the hotspot volume is a random quantity described
in Appendix 6.5, which is equal to a deterministic value to leading order in
|Ω|/Vc:

max
x∈Ω

{
IRT(x)− I0(x)

}
= σnoise

√
2 log

( |Ω|
Vc

)
. (3.27)

Full-aperture array. In the case in which the array completely surrounds
the region of interest, IRT(x) is a Gaussian random field with mean I0(x)
given by (4.35), variance

σ2
noise =

σ2
mes

n2
1

(4πL)4
, (3.28)
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and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noiseHnoise(x− x′), Hnoise(x) = sinc2
(2π|x|

λ

)
.

(3.29)
The speckle pattern is made of hotspots with typical radius λ and typical
amplitude σnoise. The typical shape of the hotspot is given by the function
Hnoise(x), that has a slow power law decay as 1/|x|2. The signal to noise ratio
in the image is

SNR =
I0(zref)

σnoise
=

σ0
σnoise

=
nσref l

3
refω

2

σmesc2o(4πL)2
=

nσref l
3
ref

4σmesλ2L2
. (3.30)

Note that:
- The SNR increases with the number of sensors, and this is because the
additive noise is independent from one sensor to the other one.
- The SNR decays with the square of the wavelength, because the scattering
efficiency (and therefore the reflected signal amplitude) at small wavelengths
is inversely proportional to the square of the wavelength.
- The SNR decays with the square of the distance from the array to the
reflector, because the reflected signal amplitude is inversely proportional to the
distance from the array to the reflector (in a three-dimensional homogeneous
medium).

In the case of the full-aperture array, the matrix Λ is proportional to
the identity and the hotspot volume is proportional to the wavelength to the
power three

Λ =
8π2

3λ2
I, Vc =

33/2

25/2π
λ3. (3.31)

This result shows that the SNR (3.30) should be considered with cautious. If
σnoise is of the same order as σ0, then the speckle pattern may have a local
maximum whose peak amplitude is much larger than σnoise and that could be
misinterpreted as a reflector. In [5] a detailed statistical analysis was carried
out in order to build a detection test with maximal power of detection for a
given fals alarm rate.

3.3.3 Localization error

The localization of the reflector consists in looking after the maximum of the
imaging functional (the statistical approach proposed in [5] shows that the
location of the maximum of the Reverse-Time imaging function is the Max-
imum Likelihood Estimator of the location of the reflector). In the presence
of a reflector at zref , we have seen that the imaging functional has the form

IRT(x) = I0(x) + I1(x),

where I0 is the unperturbed imaging function given by (3.17) and I1 is a com-
plex Gaussian random field with mean zero, variance σ2

noise, and covariance
function σ2

noiseHnoise(x− x′).
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We consider the case in which Hnoise is real-valued, which is the case for a
full-aperture array, and we denote by ` the width of the point spread function,
which is of the order of λ for a full-aperture array. We assume σnoise � σ0, so
that a Taylor series expansion around zref , for |x−zref | . `/SNR = `σnoise/σ0,
gives:

IRT(x) = σ0

(
1− 1

2
(x− zref)TΛ(x− zref) +

1

σ0
I1(zref)

+
1

σ0
∇I1(zref)

T (x− zref) +O
(σ3

noise

σ3
0

))
. (3.32)

It was shown in [5] that the maximum likelihood estimator of the location
of the reflector is the location of the maximum of the Reverse-Time imaging
function:

ẑ = argmax
x

∣∣IRT(x)
∣∣2.

It has the form:

ẑ = zref +
1

σ0
Re
(
Λ−1∇I1(zref)

)
+O

(
`
σ2
noise

σ2
0

)
.

To leading order (in σnoise/σ0) the estimator ẑ is unbiased, i.e. its mean is the
true location zref . Moreover, using the fact that E

[
Re∇I1(zref)Re∇I1(zref)

T
]

=
σ2
noiseΛ/2, the covariance matrix of the estimator ẑ is

E
[
(ẑ − zref)(ẑ − zref)T

]
=
σ2
noise

2σ2
0

Λ−1 =
1

2 SNR2Λ
−1, (3.33)

which is order `2/SNR2. This means that the relative error (relative to the
radius ` of the point spread function) in the localization of the reflector is
of the order of 1/SNR = σnoise/σ0. Note also that, as a byproduct of this
analysis, we find that the perturbed value of the maximum of the peak is of
the form ∣∣IRT(ẑ)

∣∣2 ' σ2
0

(
1 +

2

σ0
Re
(
I1(zref)

)
+O

(σ2
noise

σ2
0

))
, (3.34)

where Re
(
I1(zref)

)
follows a Gaussian distribution with mean 0 and variance

σ2
noise/2.

Full-aperture array. If the sensor array is dense and surrounds the re-
gion of interest, then the localization errors are independent along the three
directions and their variances are

E
[
(ẑj − zref,j)2

]
=
σ2
noise

σ2
0

3λ2

16π2
=

1

SNR2

3λ2

16π2
, j = 1, . . . , 3.

This formula shows that the resolution is proportional to the wavelength and
inversely proportional to the signal-to-noise ratio in the image (3.30). This
means that signal-to-noise ratio and resolution are related to each other. When
the noise level is vanishing and there is a point reflector, or when there are
well separated point reflectors, i.e. when the object to be imaged is sparse,
then it is possible to localize the reflectors with infinite resolution.
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Time-Harmonic Reverse-Time imaging with
clutter noise

4.1 The data set

Let us consider the propagation of scalar waves in a three-dimensional
medium. In the presence of a localized reflector and small random fluctua-
tions of the medium, the speed of propagation can be modeled by

1

c2(x)
=

1

c2o

(
1 + Vclu(x) + Vref(x)

)
. (4.1)

Here
- the constant co is the known background speed,
- the random process Vclu(x) represents the cluttered medium,
- the local variation Vref(x) of the speed of propagation induced by the reflector
at zref is of the form

Vref(x) = σref1Ωref
(x− zref), (4.2)

where σref is the reflectivity of the reflector, zref is its center, and Ωref is a
compactly supported domain with volume l3ref that models its spatial support.

Suppose that we have co-localized transmitter and receiver arrays {x1, . . . ,xn}
of n elements, used to detect the reflector. In the presence of a reflector and
small random fluctuations of the medium, the field received by the jth receiv-
ing element xj when the pulse f(t) is emitted from xl is u(t,xj ,xl), where
(t,x)→ u(t,x,y) is the solution to the scalar wave equation

1

c2(x)

∂2u

∂t2
−∆xu = f(t)δ(x− y), (4.3)

or, in the Fourier domain, (ω,x)→ û(ω,x,y) is the solution to the Helmholtz
equation

∆xû+
ω2

c2(x)
û = −f̂(ω)δ(x− y), (4.4)
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Fig. 4.1. Reverse-Time imaging set-up. xl emits a short pulse that propagates
through the scattering medium, is backscattered by the reflector, and is recorded by
the sensor at xj .

with the Sommerfeld radiation condition imposed on û.
The data set collected by the array describes the transmit-receive process

performed at this array (see Figure 4.1). If we remove the incident field then
it can be defined as {

v̂(ω,xj ,xl), ω ∈ R, j, l = 1, . . . , n
}
, (4.5)

with
v̂(ω,xj ,xl) = û(ω,xj ,xl)− Ĝ0(ω,xj ,xl)f̂(ω). (4.6)

The incident field is given in terms of the homogeneous Green’s function
Ĝ0(ω,x,y) defined by

Ĝ0(ω,x,y) =
1

4π|x− y|
exp

(
i
ω

co
|x− y|

)
, (4.7)

that is the solution to

∆xĜ0(ω,x,y) +
ω2

c2o
Ĝ0(ω,x,y) = −δ(x− y), (4.8)

with the Sommerfeld radiation condition.

4.2 A model for the scattering medium

In this section we introduce a model for the inhomogeneous medium. We
assume that the propagation speed of the medium has a homogeneous back-
ground speed value co and small fluctuations responsible for scattering:

1

c2clu(x)
=

1

c2o

[
1 + Vclu(x)

]
, (4.9)

where Vclu(x) is a random process with mean zero and covariance function of
the form
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E
[
Vclu(x)Vclu(x′)

]
= σ2

clu

√
Kclu(x)Kclu(x′)Γclu

(x− x′
lclu

)
. (4.10)

Here E stands for the expectation with respect to the distribution of the
randomly scattering medium. σclu is the standard deviation of the fluctuations.
The function x→ Kclu(x) is nonnegative valued and compactly supported, it
characterizes the spatial support of the scatterers (and the typical amplitude of
Kclu(x) is of order one). The function x→ Γclu(x/lclu) is the local correlation
function. It is normalized so that Γclu(0) = 1 and

∫
Γclu(x)dx = 1. Therefore

lclu can be considered as the correlation length of the random medium. We
assume that the standard deviation σclu is small (smaller than one) and that
correlation length lclu is small (smaller than the wavelength).

For simulation purposes, the random medium fluctuations can be seen
as Vclu(x) = σclu

√
Kclu(x)Zclu(x/lclu) where Zclu(x) is a stationary random

process with mean zero, variance one, and correlation length equal to one.
Realizations of a stationary random process can be generated by spectral
methods easily.

The clutter Green’s function Ĝclu, that is to say, the Green’s function of
the medium with clutter noise, is the fundamental solution of

∆xĜclu

(
ω,x,y

)
+

ω2

c2clu(x)
Ĝclu

(
ω,x,y

)
= −δ(x− y), (4.11)

with the Sommerfeld radiation condition, where cclu(x) is given by (4.9). The
Lippmann-Schwinger integral equation for the clutter Green’s function Ĝclu

defined by (4.11) is

Ĝclu(ω,x,y) = Ĝ0(ω,x,y)+
ω2

c2o

∫
Ĝ0(ω,x, z)Vclu(z)Ĝclu(ω,z,y)dz, (4.12)

where Ĝ0 is the Green’s function (4.8) of the homogeneous background
medium, and Vclu(x) is the random process modeling the background fluc-
tuations as described by (4.9).

4.3 The forward problem

4.3.1 Data set in the single-scattering regime

In this section we use the Born or single-scattering approximation for the
clutter Green’s function solution of (4.12) by replacing Ĝclu by Ĝ0 on the right-
hand side. This approximation takes into account single-scattering events for
the interaction of the waves with the cluttered medium:

Ĝclu

(
ω,x,y

)
= Ĝ0

(
ω,x,y

)
+ Ĝ1

(
ω,x,y

)
, (4.13)

where Ĝ1 is given by
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Ĝ1

(
ω,x,y

)
=
ω2

c2o

∫
Ĝ0

(
ω,x, z

)
Vclu(z)Ĝ0

(
ω,z,y

)
dz, (4.14)

and the error is formally of order O(σ2
clu) where σclu is the standard deviation

of Vclu(x).
Let us now assume that a reflector is embedded at zref in the cluttered

medium. We model the reflector by a local variation Vref(x) of the propagation
speed as in (4.1). The full Green’s function Ĝ, that is to say, the Green’s
function of the medium with clutter in the presence of the reflector at zref , is
solution of

∆xĜ
(
ω,x,y

)
+

ω2

c2(x)
Ĝ
(
ω,x,y

)
= −δ(x− y). (4.15)

The Lippmann-Schwinger integral equation for the full Green’s function Ĝ is

Ĝ(ω,x,y) =Ĝ0(ω,x,y)

+
ω2

c2o

∫
Ĝ0(ω,x, z)

(
Vclu(z) + Vref(z)

)
Ĝ(ω,z,y)dz. (4.16)

Using again the Born approximation, we get

Ĝ(ω,x,y) =Ĝ0(ω,x,y)

+
ω2

c2o

∫
Ĝ0(ω,x, z)

(
Vclu(z) + Vref(z)

)
Ĝ0(ω,z,y)dz. (4.17)

Therefore the full Green’s function can be written as the sum

Ĝ(ω,x,y) = Ĝ0(ω,x,y) + Ĝ1(ω,x,y) + Ĝref(ω,x,y). (4.18)

The term Ĝ1 is the term in the data set that will be responsible to speckle
noise in the image and it is of the form (4.14). The term Ĝref is the term in
the data set that corresponds to the reflector:

Ĝref(ω,x,y) =
ω2

c2o

∫
Ĝ0(ω,x, z)Vref(z)Ĝ0(ω,z,y)dz.

The approximation (4.18) is formally valid if the correction Ĝref is small com-
pared to Ĝ0, i.e., in the regime in which σref � 1, with an error that is
formally of order O(σ2

ref). We also assume that the diameter lref of the scat-
tering region Ωref is small compared to the typical wavelength. We can then
model the reflector by a point reflector (the point interaction approximation)

Vref(x) ≈ σref l3refδ(x− zref), (4.19)

and we can write the correction in the form

Ĝref(ω,x,y) =
ω2

c2o
σref l

3
refĜ0(ω,x, zref)Ĝ0(ω,zref ,y). (4.20)
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The data set is therefore of the form

v̂(ω,xj ,xl) = v̂ref(ω,xj ,xl) + ŵ(ω,xj ,xl), (4.21)

for j, l = 1, . . . , n, with v̂ref the ideal data set in the absence of random
fluctuations of the medium

v̂ref(ω,xj ,xl) =Ĝref

(
ω,xj ,xl

)
f̂(ω)

=
ω2

c2o
f̂(ω)σref l

3
refĜ0

(
ω,xj , zref

)
Ĝ0

(
ω,zref ,xl

)
, (4.22)

and ŵ the noise due to the interaction of the wave with the random fluctua-
tions of the medium

ŵ(ω,xj ,xl) =Ĝ1

(
ω,xj ,xl

)
f̂(ω)

=
ω2

c2o
f̂(ω)

∫
Ĝ0

(
ω,xj , z

)
Vclu(z)Ĝ0

(
ω,z,xl

)
dz. (4.23)

Since the correlation length lclu is small, the field ŵ is Gaussian distributed
by the Central Limit Theorem.

4.3.2 Data set in the random paraxial regime

The clutter noise model used in the previous section is rather simple and holds
in a single-scattering regime, that is to say, when the medium fluctuations are
very weak. When scattering is stronger another model should be used. Here
we address the white-noise paraxial model. This model can be used when
the central wavelength λ0 is much smaller than the correlation length lclu
of the medium and the size a of the array, which are both smaller than the
typical propagation distance from the array to the reflector. In this model
backscattering is negligible but the wave becomes progressively incoherent as
it propagates deep in the random medium. The propagation distance beyond
which the wave becomes incoherent is called scattering mean free path and it
will be identified below.

We assume that the array lies in the plane z = 0 and the medium beyond
the plane z = L (where the reflector to be imaged at zref is) is randomly
scattering (see Figure 4.2). The data set is therefore of the form

v̂(ω,xj ,xl) = Ĝref(ω,xj ,xl)f̂(ω), (4.24)

for j, l = 1, . . . , n, with

Ĝref(ω,x,y) =
ω2

c2o
σref l

3
refĜclu(ω,x, zref)Ĝclu(ω,zref ,y), (4.25)

and Ĝclu is the Green’s function of the random medium. If y = (y⊥ , 0) and
we denote zref = (zr⊥ , zr), it is of the form
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Fig. 4.2. Reverse-Time imaging set-up in the random paraxial regime. xl emits a
short pulse that propagates through the medium, is backscattered by the reflector,
and is recorded by the sensor at xj . The array is in the plane z = 0, the medium is
randomly scattering in the half space z > L. The reflector to be imaged in embedded
in the random medium.

Ĝclu(ω,zref ,y) =
ico
2ω

exp
(
i
ω

co
zr

)
ĝ(ω,zr⊥ , zr,y⊥), (4.26)

where (x⊥ , z)→ ĝ(ω,x⊥ , z,y⊥) is solution of the Itô-Schrödinger equation

dĝ =
ico
2ω

∆x⊥ ĝdz +
iω

2co
ĝ ◦ dB(x⊥ , z), (4.27)

starting from ĝ(ω,x⊥ , z = 0,y⊥) = δ(x⊥ − y⊥). Here the symbol ◦ stands for
the Stratonovich stochastic integral and B(x⊥ , z) is a real-valued Brownian
field over R2 × [L,∞) with covariance

E[B(x⊥ , z)B(x′
⊥
, z′)] =

{
min{z − L, z′ − L}C(x⊥ − x′⊥) if z, z′ > L,
0 otherwise.

(4.28)
The model (4.27) can be obtained from the scalar wave equation by a sepa-
ration of scales technique in which the three-dimensional fluctuations of the
speed of propagation c2(x⊥ , z) are described by a zero-mean random process
Vclu(x⊥ , z) that is stationary in the half space z > L and that has strong
mixing properties:

1

c2clu(x⊥ , z)
=

1

c2o

[
1 + Vclu(x⊥ , z)

]
.

If the covariance function of the process Vclu is of the form (4.10) with
Kclu((x⊥ , z)) = 1[L,∞)(z), then the covariance function C(x⊥) in (4.28) is
given by [28]:

C(x⊥) = σ2
clulcluC

( x⊥
lclu

)
, C(X⊥) =

∫ ∞
−∞

Γclu(X⊥ , z)dz. (4.29)

When the medium is homogeneous, the Green’s function of the medium is
equal to the homogeneous Green’s function in the paraxial regime (or Fresnel
approximation):
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Ĝ0(ω,x, zref) =
1

4πzr
exp

(
i
ω

co
zr + i

ω

co

|x⊥ − zr⊥ |2

2zr

)
. (4.30)

When the medium is scattering, the moments of the Green’s function of
the random medium can be computed by Itô’s formula. In particular, for any
x = (x⊥ , 0),

E
[
Ĝclu(ω,x, zref)

]
= Ĝ0(ω,x, zref) exp

(
− σ2

clulcluC(0)ω2

8c2o
(zr − L)

)
,

which shows that the scattering mean free path at frequency ω in the random
half-space z ∈ (L,∞) is

`sca(ω) =
8c2o

σ2
clulcluC(0)ω2

.

Moreover, for any x,x′ in the plane z = 0, the second-order moments are
[28, 29]

E
[
Ĝclu(ω,x, zref)Ĝclu(ω,x′, zref)

]
=Ĝ0(ω,x, zref)Ĝ0(ω,x′, zref)

× exp
(
− σ2

clulcluC(0)ω2

4c2o
(zr − L)

)
,

(4.31)

E
[
Ĝclu(ω,x, zref)Ĝclu(ω,x′, zref)

]
=Ĝ0(ω,x, zref)Ĝ0(ω,x′, zref)

× exp
(
−
|x⊥ − x′⊥ |

2

X2
c

)
, (4.32)

with the transverse correlation radius of the field

X2
c =

3c2oz
2
r lclu

ω2
0σ

2
cluD(zr − L)3

, (4.33)

and D = −∆C(0). Here and below we neglect the dependence of Xc with
respect to ω which holds when the source bandwidth B is smaller than the
central frequency ω0.

4.4 The imaging function

In the presence of a point reflector at zref and in the presence of clutter noise
the data set is of the form (4.21). We study the effect of the clutter noise on
the reverse-time imaging function defined by

IRT(x) =
1

2πn2

n∑
j,l=1

∫
dωĜ0(ω,x,xj)Ĝ0(ω,x,xl)v̂(ω,xj ,xl). (4.34)
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4.4.1 The imaging function without clutter noise

In the absence of noise σclu = 0 the imaging function is IRT(x) = IRT,0(x)
where IRT,0(x) is given by

IRT,0(x) = σref l
3
refH(x, zref), (4.35)

with

H(x,y) =
1

2π

∫
dω

ω2

c2o
f̂(ω)ĥ(ω,x,y), (4.36)

ĥ(ω,x,y) =
( 1

n

n∑
j=1

Ĝ0(ω,x,xj)Ĝ0(ω,y,xj)
)2
. (4.37)

The function x → H(x, zref) is the point spread function that describes the
spatial profile of the peak obtained at the reflector location zref in the imaging
function when the reflector is point-like.

Full-aperture array. If the sensor array is dense (i.e. the inter-sensor
distance is smaller than half a wavelength) and completely surrounds the
region of interest (for instance, it covers the surface of the ball with center

at 0 and radius L) then Helmholtz-Kirchhoff theorem states that ĥ(ω,x,y)
is proportional to the square of the imaginary part of the Green’s function
Ĝ0(ω,x,y). We find

ĥ(ω,x,y) = CLh̃(ω,x− y), where h̃(ω,x) = sinc2
(ω|x|
co

)
, (4.38)

and CL = 1/(4πL)4. Therefore, when the bandwidth B of f is smaller than its
central frequency ω0, for instance, when the source is a modulated Gaussian
with central frequency ω0 and bandwidth B � ω0:

f(t) = cos(ω0t) exp
(
− B2t2

2

)
, (4.39)

f̂(ω) =

√
π√

2B
exp

(
− (ω − ω0)2

2B2

)
+

√
π√

2B
exp

(
− (ω + ω0)2

2B2

)
, (4.40)

we have

H(x, zref) = CL
ω2
0

c2o
H̃(x− zref), (4.41)

where

H̃(x) = sinc2
(2π|x|

λ0

)
, (4.42)

and λ0 = 2πco/ω0 is the central wavelength. This shows that the width of the

point spread function H̃(x) is of the order of λ0/2, which is the Abbe diffrac-

tion limit [?]. Note also that the function H̃(x) decays slowly, as 1/|x|2, which
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will turn out to be problematic when addressing scattering media.

Finite-aperture array. If the sensor array is dense and occupies the
domain Da × {0}, with Da ⊂ R2 with diameter a, and the search region is a
domain Ω around (0, 0, L), then in the Fresnel diffraction regime λ0 � a� L

with λ
1/2
0 L3/2 � a2 � λ0L we have

ĥ(ω,x,y) = CLh̃(ω,x− y), (4.43)

where, for x = (x⊥ , x3),

h̃(ω,x) = e−2i
ω
co
x3

(
1

|Da|

∫
Da

exp
(
− iωy⊥

coL
· x⊥ − i

ω|y⊥ |2

2coL2
x3

)
dy⊥

)2

. (4.44)

This shows that the width of the function h̃(ω,x) is of the order of λL/a in
the transverse directions (x⊥) and λL2/a2 in the longitudinal direction (x3),
where λ = 2πco/ω is the wavelength associated to the frequency ω. These are
the classical Rayleigh resolution formulas for time-harmonic waves [?, Sections
8.5 and 8.8].

If the bandwidth B of the pulse is smaller than the central frequency ω0

and such that B � ω0a
2/L2, for instance, when the source is a modulated

Gaussian (4.39) with central frequency ω0 and bandwidth B, then the range
resolution is the same one as in the time-harmonic regime and we have

H(x, zref) = CL
ω2
0

c2o
H̃(x− zref), (4.45)

where

H̃(x) =
1

2
exp

(
−i2ω0x3

co

)( 1

|Da|

∫
Da

exp
(
−i2πy⊥

λ0L
·x⊥−i

π|y⊥ |2

λ0L2
x3

)
dy⊥

)2

+cc.

(4.46)

This shows that the width of the point spread function H̃(x) is of the order
of λ0L/a in the transverse directions (x⊥) and λ0L

2/a2 in the longitudinal
direction (x3). Note the loss of resolution compared to the full-aperture case,
by a factor L/a in the transverse directions and (L/a)2 in the longitudinal

direction. Note also that the function H̃(x) decays slowly, as 1/|x⊥ |2 in the
transverse direction and as 1/|x3| in the longitudinal direction. More precisely,
if the array is square with sidelength a, i.e.

Da = [−a/2, a/2]2, (4.47)

then

H̃(x) =
1

2
exp

(
− i2ω0x3

co

)
Ψ
( a

λ0L
x⊥ ,

a2

λ0L2
x3

)
+ cc, (4.48)

with
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Ψ(x1, x2, x3) =

(∫
[−1/2,1/2]2

exp
(
−i2π(s1x1+s2x2−iπ(s21+s22)x3

)
ds1ds2

)2

.

(4.49)
If the bandwidth B of the pulse is smaller than the central frequency ω0

but such that B � ω0a
2/L2, for instance, when the source is a modulated

Gaussian (4.39) with central frequency ω0 and bandwidth B, then the range
resolution is bandwidth-limited and we have

H(x, zref) = CL
ω2
0

c2o
H̃(x− zref), (4.50)

where

H̃(x) =
1

2
exp

(
− i2ω0x3

co

)
exp

(
− 2

B2x23
c2o

)
×
(

1

|Da|

∫
Da

exp
(
− i2πy⊥

λ0L
· x⊥

)
dy⊥

)2

+ cc. (4.51)

If the array is square with sidelength a, i.e.

Da = [−a/2, a/2]2, (4.52)

then

H̃(x) = cos
(2ω0x3

co

)
exp

(
− 2

B2x23
c2o

)
sinc2

( πa
λ0L

x1

)
sinc2

( πa
λ0L

x2

)
. (4.53)

This shows that the width of the point spread function H̃(x) is of the order of
λ0L/a in the transverse directions (x⊥) and co/(2B) in the longitudinal direc-
tion (x3). Note the loss of resolution compared to the full-aperture case, by a
factor L/a in the transverse directions and ω0/B in the longitudinal direction.

Note also that the function H̃(x) decays slowly, as 1/|x⊥ |2 in the transverse
direction, but may decay fast in the longitudinal direction depending on the
source spectrum (here, a Gaussian).

4.4.2 The imaging function with clutter noise in the single
scattering regime

In the presence of clutter noise in the single-scattering regime the imaging
function is a real Gaussian random field. Its mean is the unperturbed imaging
function IRT,0 defined by (4.35) and the covariance function of the imaging
function is:

Cov
(
IRT(x), IRT(x′)

)
= σ2

clu

∫∫
dydy′H(x,y)H(y′,x′)

×
√
Kclu(y)Kclu(y′)Γclu

(y − y′
lclu

)
, (4.54)
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which follows from the expression (4.23) of the cluttered noise and the form
(4.10) of the covariance function of the medium fluctuations.

Using the fact that the correlation length of the medium is small, this can
be simplified as

Cov
(
IRT(x), IRT(x′)

)
= σ2

clul
3
clu

∫
dyH(x,y)Kclu(y)H(y,x′). (4.55)

If we assume that the random scatterers are uniformly distributed in the
search region, i.e. Kclu ≡ 1, and that H(x,y) = CL(ω2

0/c
2
o)H̃(x−y) as in the

case of a full-aperture array or finite-aperture array discussed above, then we
have

Cov
(
IRT(x), IRT(x′)

)
= σ2

clul
3
cluC

2
L

ω4
0

c4o
H̃ ∗ H̃(x− x′), (4.56)

where the star stands for the convolution in R3. This shows that the speckle
noise IRT − IRT,0 in the image is a stationary Gaussian random field with
mean zero, variance

σ2
noise = σ2

clul
3
cluC

2
L

ω4
0

c4o
H̃ ∗ H̃(0), (4.57)

and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noiseHnoise(x− x′), (4.58)

with

Hnoise(x) =
H̃ ∗ H̃(x)

H̃ ∗ H̃(0)
. (4.59)

This random field is a speckle pattern whose hotspot profiles are close to the
functionHnoise(x), which is (proportional to) the autoconvolution of the point
spread function of the imaging function. Here the hotspot profile refers to the
local shape of the field around a local maximum (see Appendix 6.5).

Note also that, when the random scatterers are not uniformly distributed
in the search region, i.e. Kclu is not constant, then the slow decay (as a power

law) of the function H̃ implies that the random scatterers in a far region can
generate speckle noise everywhere in the image as shown by (4.55). As a con-
sequence it is very difficult to image through a scattering layer, even if it is
thin and the reflector to be imaged is beyond it and in a -relatively- homoge-
neous region. This is a serious drawback for reverse-time imaging.

Full-aperture array. In the case in which the array completely surrounds
the region of interest, IRT(x) is a Gaussian random field with mean IRT,0(x)
given by (4.35), variance
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σ2
noise = σ2

clul
3
cluC

2
L

ω4
0

c4o

λ30
8π
, (4.60)

and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noisehnoise

(4π|x− x′|
λ0

)
, (4.61)

with the normalized function (hnoise(0) = 1)

hnoise(x) =
Si(x)

x
, Si(x) =

∫ x

0

sinc(y)dy. (4.62)

The speckle pattern is made of hotspots with typical radius λ0 and typical
amplitude σnoise. The typical shape of the hotspot is given by the function
hnoise, that has a slow power law decay as 1/x. The signal to noise ratio in
the image is

SNR =
IRT,0(zref)

σnoise
=

2
√

2πσref l
3
ref

σclul
3/2
clu λ

3/2
0

. (4.63)

The hotspot volume is defined as

Vc =
4π2

(detΛ)1/2
, Λ =

(
− ∂2xjxlhnoise

(4π|x|
λ0

)
|x=0

)
j,l=1,...,3

. (4.64)

Here the matrix Λ is proportional to the identity and the hotspot volume is
proportional to the central wavelength to the power three:

Λ =
16π2

9λ20
I, Vc =

27

16π
λ30. (4.65)

The maximum of the function IRT −IRT,0 over a domain Ω whose volume is
much larger than the hotspot volume is a random quantity described in Ap-
pendix 6.5, which is equal to the deterministic value (3.27) to leading order
in |Ω|/Vc, with the values of σnoise and Vc as given by (4.60) and (4.65). This
result shows that the SNR (4.63) should be considered with cautious. The
speckle pattern may have a local maximum whose peak amplitude is much
larger than σnoise and that can be misinterpreted as a reflector.

Finite-aperture array. In the case in which the sensor array is dense
and occupies the square domain Da × {0}, with Da = [−a/2, a/2]2 ⊂ R2, the
bandwidth B of the pulse is smaller than the central frequency ω0 but such
that B � ω0a

2/L2, and the search region is a domain Ω around (0, 0, L),
then the field IRT(x) is a Gaussian random field with mean IRT,0(x) given
by (4.35), variance

σ2
noise = σ2

clul
3
cluC

2
L

ω4
0

c4o

co
√
π

B

λ20L
2

9a2
, (4.66)
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and covariance function:

Cov
(
IRT(x), IRT(x′)

)
= σ2

noise cos
(

2
ω0(x3 − x′3)

co

)
×hnoise

(2πa(x1 − x′1)

λ0L
,

2πa(x2 − x′2)

λ0L
,

2B(x3 − x′3)

co

)
, (4.67)

with the normalized function (hnoise(0) = 1)

hnoise(x1, x2, x3) = 36
1− sinc(x1)

x21

1− sinc(x2)

x22
exp

(
− x23

4

)
. (4.68)

The speckle pattern is made of hotspots with typical radius λ0L/a in the
transverse direction, typical radius co/(2B) in the longitudinal direction, and
typical amplitude σnoise. The signal to noise ratio in the image is

SNR =
IRT,0(zref)

σnoise
=

3
√

2 4
√
πσref l

3
ref

σclul
3/2
clu λ

3/2
0

B1/2a

ω
1/2
0 L

. (4.69)

Note the SNR reduction compared to the full-aperture case, by a factor of the
order of (B/ω0)1/2(a/L).

The hotspot volume is defined as before as Vc = 4π2(detΛ)−1/2 with

Λ =
(
− ∂2xjxlhnoise

(2πax1
λ0L

,
2πax2
λ0L

,
2Bx3
co

)
|x=0

)
j,l=1,...,3

. (4.70)

Here Λ is diagonal and we have

Λjj =
2π2a2

5λ20L
2
, j = 1, 2, Λ33 =

2B2

c2o
, Vc =

5λ30√
2π

a2ω0

L2B
. (4.71)

The maximum of the function over a domain Ω whose volume is much larger
than the hotspot volume is given by (3.27) as before with the values of σnoise
and Vc as given by (4.66) and (4.71).

4.4.3 The imaging function with clutter noise in the random
paraxial regime

In the presence of clutter noise in the random paraxial regime the imaging
function is a real random field, but its statistics is not Gaussian. However the
moments of the cluttered Green’s function are known, so it is possible to carry
out a detailed statistical analysis of the imaging function.

From the expression (4.31) of the second-order moments, we obtain that
the mean imaging function has the form

E
[
IRT(x)

]
=IRT,0(x) exp

(
− σ2

clulcluC(0)ω2

4c2o
(zr − L)

)
=σref l

3
refCL

ω2
0

c2o
H̃(x− zref) exp

(
− σ2

clulcluC(0)ω2

4c2o
(zr − L)

)
,

(4.72)
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where H̃ is defined by (4.53) and IRT,0(x) is the imaging function obtained
when the medium is homogeneous. The peak associated to the reflector is
exponentially damped as its depth increases, which is due to a loss of coherence
by scattering. This is the main difference with the clutter noise in the single-
scattering regime addressed in the previous section, in which the main peak
is always present with the same amplitude.

Using the formulas for the fourth-order moment of the random Green’s
function obtained in [30], we find that the covariance function is

Cov
(
IRT(x), IRT(x′)

)
=σ2

ref l
6
refC

2
L

ω4
0

c4o
exp

(
− (Z − zr)2

Z2
c

)
× 2π2X4

c

a4
exp

(
− B2ζ2

c2o

)
cos
(

2
ω0

co
ζ
)

× sinc2
(πa(x1 − x′1)

λ0L

)
sinc2

(πa(x2 − x′2)

λ0L

)
, (4.73)

where we have denoted x = (X⊥ + ρ
⊥
/2, Z + ζ/2) and x′ = (X⊥ − ρ⊥/2, Z −

ζ/2), we have assumed Xc � a, and we have introduced

Zc =
co
2B

(
1 +

σ2
clulcluC(0)(zr − L)B2

c2o

)1/2
.

As explained below, the depth zr − L cannot be much larger than the scat-
tering mean free path and B � ω0, so that we have in fact Zc ' co/(2B).
The fluctuations in the image has the form of a speckle pattern concentrated
around the depth zr whose hotspots have transverse radius of the order of
λ0L/a. The variance of the fluctuations relative to the maximal amplitude of
the unperturbed imaging function is 2π2X4

c /a
4, independently of the depth

zr of the reflector. Therefore the SNR of the image (when Xc � a) is

SNR =
IRT,0(zref)

Var(IRT(zref))1/2
=

a2√
2πX2

c

exp
(
− σ

2
clulcluC(0)ω2

0

4c2o
(zr−L)

)
. (4.74)

From this expression, we can state the following assertions:
- A large array is necessary to get a high SNR. Therefore the size of the array
is good both for resolution and stability. The SNR scales as the number of
independent patches in the array, which have areas of the order of X2

c while
the aera of the array is a2.
- It is all the more difficult to image the reflector as it is deep. It becomes
impossible when its depth is of the order of a few scattering mean free paths
due to the exponential decay of the SNR.
- A large bandwidth does not improve the SNR (as long as it is smaller than
the carrier frequency ω0). This is special to the random paraxial regime that
we consider in this section, in which the frequency coherence radius is rather
large. Indeed, by Itô’s formula,
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E
[
Ĝclu(ω,x, zref)Ĝclu(ω′,x, zref)

]
=Ĝ0(ω,x, zref)Ĝ0(ω′,x, zref)

× exp
(
− σ2

clulcluC(0)(ω − ω′)2(zr − L)

8c2o

)
,

which shows that the frequency coherence Ωc is given by

Ω2
c =

8c2o
σ2
clulcluC(0)(zr − L)

=
`sca(ω0)

zr − L
ω2
0 ,

and since we consider situations in which the depth zr − L of the reflector is
of the same order as `sca(ω0), we can see that the frequency coherence radius
is of the order of the central frequency.





5

Detection, localization, and characterization of
reflectors by random matrix theory

In sensor array imaging, waves are emitted by a set of sources and they are
recorded by a set of sensors in order to probe an unknown medium. The re-
sponses between each pair of source and receiver are collected and assembled in
the form of a matrix, the array response matrix. The indices of the matrix are
the index of the source and the index of the receiver. When the data are cor-
rupted by additive noise, we study the structure of the array response matrix
using random matrix theory. We start this chapter by presenting an acquisi-
tion scheme, known as Hadamard technique, for noise reduction. Hadamard
technique allows us to acquire simultaneously the elements of the array re-
sponse matrix. The feature of this technique is to divide the variance of the
noise by the number of sources. Then we investigate the statistical distribu-
tions of the singular values of the array response matrix in the presence of
point reflectors. These results can be used to design and calibrate detection
tests, to estimate the number of point reflectors point reflector in the medium,
to localize them, and to estimate their reflectivities.

5.1 Data acquisition and Hadamard technique

We consider a situation similar to the one introduced in Section 3.1. We
actually introduce a generalized set up in which the sources and receivers are
not coincident and there may be several reflectors. We consider point reflector
the Helmholtz equation:

∆zû(ω,z,x) +
ω2

c2o

(
1 +

r∑
j=1

Vj(z)
)
û(ω,z,x) = −δ(z − x) in R3 (5.1)

for x ∈ R3, with the Sommerfeld radiation condition imposed on û. Here r is
the number of localized reflectors, x is the location of the source, and

Vj(z) = ηj1Ωj (z − zj) , (5.2)
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where, for j = 1, . . . , r, Ωj is a compactly supported domain with volume |Ωj |
that describes the shape of the jth inclusion, zj is for the location of the jth
inclusion, and ηj is the contrast of the jth inclusion.

Suppose that we have a transmitter array of Ns sources located at
{x1, . . . ,xNs} and a receiver array of Nr elements located at {y1, . . . ,yNr}.
The Nr × Ns response matrix A describes the transmit-receive process per-
formed at these arrays. The field received by the nth receiving element yn
when a unit-amplitude time-harmonic wave is emitted from xm is û(ω,yn,xm).
If we remove the incident field then we obtain the (n,m)-th entry of the un-
perturbed, perfect array response matrix A0:

A0
nm = û(ω,yn,xm)− Ĝ0(ω,yn,xm) . (5.3)

The incident field is Ĝ0(ω,z,xm). However noise cannot be neglected in the
acquisition process, so we actually record a perturbed version of A0 whose
form depends on the acquisition scheme.

In the standard acquisition scheme, the response matrix is measured during
a sequence of Ns experiments. In the mth experiment, m = 1, . . . , Ns, the
mth source generates the incident field (i.e. only the mth source emits, and it
emits a unit-amplitude time-harmonic signal) and the Nr receivers record the
scattered wave which means that they measure

Ameas
nm = A0

nm +Wnm, n = 1, . . . , Nr, m = 1, . . . , Ns ,

which gives the matrix
Ameas = A0 + W , (5.4)

where A0 is the unperturbed response matrix (5.3) and Wnm are independent
complex Gaussian random variables with mean zero and variance σ2

noise.
The Hadamard technique is a noise reduction technique in the presence

of additive noise that uses the structure of Hadamard matrices. It allows to
acquire the elements of the array response matrix simultaneously.

Definition 5.1. A real Hadamard matrix H of order Ns is an Ns×Ns matrix
whose elements are −1 or +1 and such that HTH = NsI.

Real Hadamard matrices do not exist for all Ns. A necessary condition for the
existence is that Ns = 1, 2 or a multiple of 4. A sufficient condition is that Ns

is a power of two. Explicit examples are known for all Ns multiple of 4 up to
Ns = 664 [41].

Definition 5.2. A complex Hadamard matrix H of order Ns is an Ns × Ns

matrix whose elements have modulus one and such that H†H = NsI.

Here † denotes the conjugate transpose. Complex Hadamard matrices exist for
all Ns. An example is the Fourier matrix Hnm = exp(i2π(n− 1)(m− 1)/Ns).
The important result is the following one: A Hadamard matrix has maximal
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determinant among matrices with complex entries in the closed unit disk.
More exactly the determinant of any complex Ns×Ns matrix H with |Hnm| ≤
1 for all n,m = 1, . . . , Ns satisfies |det H| ≤ NNs/2

s , with equality attained by
a complex Hadamard matrix. This result has important consequences as we
describe below.
Hadamard acquisition. We now describe a general multi-source acquisition
scheme and show the importance of Hadamard matrices to build an optimal
scheme. Let H be a complex inversible Ns×Ns matrix with |Hnm| ≤ 1 for all
n,m = 1, . . . , Ns. In the multi-source acquisition scheme, the response matrix
is measured during a sequence of Ns experiments:
- In the mth experience, m = 1, . . . , Ns, all sources generate time-harmonic
signals, the m′th source generating Hm′m (the amplitude is bounded by one).
This means that we use all sources to their maximal emission capacity with
a specific coding of their phases.
- The Nr receivers record the scattered wave which means that the nth receiver
records

Bmeas
nm =

Ns∑
m′=1

A0
nm′Hm′m +Wnm = (A0H)nm +Wnm

for n = 1, . . . , Nr, and m = 1, . . . , Ns, which gives the matrix

Bmeas = A0H + W ,

where A0 is the unperturbed response matrix (5.3) and Wnm are independent
Gaussian random variables with mean zero and variance σ2

noise. The measured
response matrix Ameas is obtained by right multiplying the matrix Bmeas by
the matrix H−1:

Ameas := BmeasH−1 = A0 + W̃, W̃ = WH−1 . (5.5)

The choice of the matrix H should fulfill the property that the new noise

matrix W̃ = WH−1 has independent complex entries with mean zero and
minimal variance. We have

E
[
W̃nmW̃n′m′

]
=

Ns∑
q,q′=1

(H−1)qm(H−1)q′m′E
[
WnqWn′q′

]
= σ2

noise

Ns∑
q,q′=1

(H−1)qm(H−1)q′m′1n(n′)1q(q
′)

= σ2
noise

Ns∑
q=1

((H−1)†)mq(H
−1)qm′1n(n′)

= σ2
noise((H

−1)†H−1)mm′1n(n′).

This shows that we look for a complex matrix H with entries in the unit disk
such that (H−1)†H−1 = cI with a minimal c. This is equivalent to require



64 5 Detection, localization, and characterization of reflectors by random matrix theory

that H is proportional to a unitary matrix and that |det H| is maximal.

Using Hadamard result we know that the maximal determinant is N
Ns/2
s and

that a complex Hadamard matrix attains the maximum. In other words, the
optimal matrix H that minimizes the noise variance should be a Hadamard
matrix. The feature of the Hadamard technique is that the new noise matrix

W̃ has independent entries with Gaussian statistics, mean zero, and variance
σ2
noise/Ns:

E
[
W̃nmW̃n′m′

]
=
σ2
noise

Ns
δmm′δnn′ .

This gain of a factor Ns in the signal-to-noise ratio (compared to (5.4)) is
called the Hadamard advantage.

5.2 Singular Value Decomposition of Array Response
Matrices

5.2.1 Point Reflectors

Taking into account measurement noise, the measured response matrix Ameas

is

Ameas = A0 +
1√
Ns

W , (5.6)

where A0 is the unperturbed response matrix (5.3) and the matrix W repre-
sents the additive measurement noise, which is a random matrix with inde-
pendent and identically distributed complex entries with Gaussian statistics,
mean zero and variance σ2

noise. This particular scaling for the noise level is the
right one to get non-trivial asymptotic regimes in the limit Ns →∞. Further-
more, it is the regime that emerges from the use of the Hadamard acquisition
scheme for the array response matrix as described above.

In the Born approximation, where the volume |Ωj | of Ωj , j = 1, . . . , r, is
small, the measured field has approximately the following form:

û(ω,yn,xn) ≈ Ĝ0(ω,yn,xn) +

r∑
j=1

ρjĜ0(ω,yn, zj)Ĝ0(ω,zj ,xn), (5.7)

for n = 1, . . . , Nr, m = 1, . . . , Ns, where ρj is the coefficient of reflection
defined by

ρj =
ω2

c2o
ηj |Ωj | . (5.8)

We introduce the normalized vector of fundamental solutions from the
receiver array to the point z:

w(z) :=
1(∑Nr

l=1 |Ĝ0(ω,z,yl)|2
) 1

2

(
Ĝ0(ω,z,yn)

)
n=1,...,Nr

, (5.9)
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and the normalized vector of fundamental solutions from the transmitter array
to the point z, known as the illumination vector,

v(z) :=
1(∑Ns

l=1 |Ĝ0(ω,z,xl)|2
) 1

2

(
Ĝ0(ω,z,xm)

)
m=1,...,Ns

. (5.10)

Using (5.7) we can then write the unperturbed response matrix in the form

A0 =

r∑
j=1

σjw(zj)v(zj)
† , (5.11)

with

σj := ρj

( Nr∑
n=1

|Ĝ0(ω,zj ,yn)|2
) 1

2
( Ns∑
m=1

|Ĝ0(ω,zj ,xm)|2
) 1

2

. (5.12)

Let us assume for a while that the arrays of transmitters and receivers
are equi-distributed on a sphere englobing the point reflectors. Moreover, the
point reflectors are at a distance from the arrays of transmitters and receivers
much larger than the wavelength 2πco/ω. Provided that the positions zj of
the reflectors are far from one another or well-separated (i.e., farther than
the wavelength 2πco/ω), the vectors w(zj), j = 1, . . . , r, are approximately
orthogonal to one another, as well as are the vectors v(zj), j = 1, . . . , r. In
fact, from the Helmholtz-Kirchhoff identity (1.11), we have

1

Nr

Nr∑
n=1

Ĝ0(ω,zj ,yn)Ĝ0(ω,zi,yn) ≈ sinc
(ω|zi − zj |

co

)
(5.13)

as Nr → +∞. Moreover, sinc(ω|zi−zj |/co) ≈ 0 when |zj −zi| is much larger
than the wavelength. The matrix A0 then has rank r and its nonzero singular
values are σj , j = 1, . . . , r, with the associated left and right singular vectors
w(zj) and v(zj).

The previous observation can be extended beyond the situation where the
arrays of transmitters and receivers are equi-distributed on a sphere, and it
is a general result that the matrix A0 has rank r, singular values are σj , and
singular vectors w(zj) and v(zj), as soon as the reflectors are well-separated.
In these conditions the following proposition turns out to be very useful.

Proposition 5.3. Let A0 be a Nr × Ns matrix with rank r. Let us denote
σ1(A0) ≥ · · · ≥ σr(A

0) > 0 its nonzero singular values. Let W be a Nr ×Ns

random matrix with independent and identically distributed complex entries
with Gaussian statistics, mean zero, and variance σ2

noise. We define Ameas

by (5.6). When γ = Nr/Ns is fixed and Ns → ∞, the singular values of the
random matrix Ameas satisfy
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σj(A
meas)

Ns→∞−→

σnoise

(σ2
j (A0)

σ2
noise

+ 1 + γ + γ
σ2
noise

σ2
j (A0)

) 1
2

if σj(A
0) > γ

1
4σnoise ,

σnoise(1 + γ
1
2 ) if σj(A

0) ≤ γ 1
4σnoise

(5.14)
for any j = 1, . . . , r, in probability.

Proposition 5.3 shows how the singular values of the perturbed response ma-
trix Ameas are related to the singular values of the unperturbed response
matrix A0. We can see that there is level repulsion for the singular values
σj(A

0) that are larger than the threshold value γ1/4σnoise, in the sense that
σj(A

meas) > σj(A
0). We can also observe that the singular values σj(A

0) that
are smaller than the threshold value γ1/4σnoise are absorbed in the deformed
quarter-circle distribution of the singular values of the noise matrix W/

√
Ns,

which extends up to σnoise(1 + γ1/2) (see Proposition 5.6).

5.2.2 SVD of a Gaussian Random Matrix

As a warm-up we consider first an Nr ×Ns real matrix A with Nr ≥ Ns. We
assume that A consists of independent Gaussian noise entries with mean zero

and variance σ2
noise/Ns. We denote by σ

(Ns)
1 ≥ σ

(Ns)
2 ≥ σ

(Ns)
3 ≥ · · · ≥ σ

(Ns)
Ns

the singular values of the matrix A sorted in decreasing order and by Λ(Ns)

the corresponding density of states defined by

Λ(Ns)([a, b]) :=
1

Ns
Card

{
l = 1, . . . , Ns , σ

(Ns)
l ∈ [a, b]

}
for any a < b .

The density of states Λ(Ns) is a counting measure which consists of a sum of
Dirac masses:

Λ(Ns) =
1

Ns

Ns∑
j=1

δ
σ
(Ns)
j

.

For large Nr and Ns with Nr/Ns = γ ≥ 1 fixed we have the following results.

Proposition 5.4. Let A be an Nr ×Ns Gaussian real matrix.

(i) The random measure Λ(Ns) almost surely converges to the deterministic
absolutely continuous measure Λγ with compact support:

Λγ([σu, σv]) =

∫ σv

σu

1

σnoise
ργ

( σ

σnoise

)
dσ, 0 ≤ σu ≤ σv , (5.15)

where ργ is the deformed quarter-circle law given by

ργ(σ) =


1

πσ

√(
(γ1/2 + 1)2 − σ2

)(
σ2 − (γ1/2 − 1)2

)
if γ1/2 − 1 ≤ σ ≤ γ1/2 + 1 ,

0 otherwise.

(5.16)
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(ii) The normalized l2-norm of the singular values satisfies

Ns

[ 1

Ns

Ns∑
j=1

(σ
(Ns)
j )2−γσ2

noise

]
Ns→∞−→

√
2γσ2

noiseZ0 in distribution , (5.17)

where Z0 follows a Gaussian distribution with mean zero and variance
one.

(iii) The maximal singular value satisfies

σ
(Ns)
1 ≈ σnoise

[
γ1/2+1+

1

2N
2/3
s

(
1+γ−1/2

)1/3
Z1+o(

1

N
2/3
s

)
]

in distribution,

(5.18)
where Z1 follows a type-1 Tracy-Widom distribution.

Proof. The type-1 Tracy-Widom distribution has the pdf pTW1 defined in
Appendix 6.6. (i) is the so-called Marcenko-Pastur result [38]. (ii) follows
from the expression of the normalized l2-norm of the singular values in terms
of the entries of the matrix:

1

Ns

Ns∑
j=1

(σ
(Ns)
j )2 =

1

Ns
Tr
(
ATA

)
=

1

Ns

Nr∑
j=1

Ns∑
l=1

A2
jl ,

and from the application of the central limit theorem in the regime Ns � 1.
(iii) follows from [34]. �

A similar result can be obtained when the matrix A is an Nr × Ns

complex-valued matrix with Nr ≥ Ns and the coefficients of A are inde-
pendent complex Gaussian random variables with mean zero and variance
σ2
noise/Ns (which means that the real and imaginary parts are independent

and identically distributed Gaussian random variables with mean zero and
variance σ2

noise/(2Ns)). Then the previous proposition holds, except that the
limit of the normalized l2-norm is

√
γσ2

noiseZ0 (instead of
√

2γσ2
noiseZ0) and

the fluctuations of the maximal singular value are described in terms of a type-
2 Tracy-Widom distribution (instead of a type-1 Tracy-Widom distribution)
described in Appendix 6.6.

Proposition 5.5. Let A be an Nr ×Ns Gaussian complex matrix.

(i) The random measure Λ(Ns) almost surely converges to the deterministic
absolutely continuous measure Λγ defined by (5.15).

(ii) The normalized l2-norm of the singular values satisfies

Ns

[ 1

Ns

Ns∑
j=1

(σ
(Ns)
j )2 − γσ2

noise

]
Ns→∞−→ √

γσ2
noiseZ0 in distribution, (5.19)

where Z0 follows a Gaussian distribution with mean zero and variance
one.
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(iii) The maximal singular value satisfies

σ
(Ns)
1 = σnoise

[
γ1/2+1+

1

2N
2/3
s

(
1+γ−1/2

)1/3
Z2+o(

1

N
2/3
s

)
]

in distribution,

(5.20)
where Z2 follows a type-2 Tracy-Widom distribution.

This proposition describes the distribution of the singular values of the array
response matrix in the absence of reflector.

The response matrix using the Hadamard technique in the presence of a
point reflector and in the presence of measurement noise is

A = A0 +
1√
Ns

W, (5.21)

where A0 is a rank-one matrix with a unique non-zero singular value σ0 and W
has independent random complex entries with Gaussian statistics, mean zero

and variance σ2
noise. We still denote by σ

(Ns)
1 ≥ σ

(Ns)
2 ≥ σ

(Ns)
3 ≥ · · · ≥ σ

(Ns)
Ns

the singular values of the matrix A sorted in decreasing order.

Proposition 5.6. In the regime Ns →∞:

a) The normalized l2-norm of the singular values satisfies

Ns

[ 1

Ns

Ns∑
j=1

(σ
(Ns)
j )2 − γσ2

noise

]
Ns→∞−→ σ2

0 +
√

2γσ2
noiseZ0 in distribution,

(5.22)
where Z0 follows a Gaussian distribution with mean zero and variance
one.

b1) If σ0 < γ1/4σnoise, then the maximal singular value satisfies

σ
(Ns)
1 = σnoise

[
γ1/2+1+

1

2N
2/3
s

(
1+γ−1/2

)1/3
Z2+o(

1

N
2/3
s

)
]

in distribution,

(5.23)
where Z2 follows a type-2 Tracy-Widom distribution.

b2) If σ0 > γ1/4σnoise, then the maximal singular value has Gaussian distri-
bution with the mean and variance given by

E
[
σ
(Ns)
1

]
= σ0

[(
1 + (1 + γ)

σ2
noise

σ2
0

+ γ
σ4
noise

σ4
0

)1/2
+ o(

1

N
1/2
s

)
]
,(5.24)

Var
(
σ
(Ns)
1

)
=
σ2
noise

2Ns

[ 1− γ σ
4
noise

σ4
0(

1 + (1 + γ)
σ2
noise

σ2
0

+ γ
σ4
noise

σ4
0

)1/2 + o(1)
]
. (5.25)

This proposition describes the distribution of the singular values of the array
response matrix in the presence of a reflector.
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5.3 Detection Test

The objective of this subsection is to design specific point reflector detection
rules. To simplify the presentation, we assume from now on that the sources
and receivers are coincident so that Nr = Ns = N .

5.3.1 SVD Based Detection Test

Suppose that the array response matrix Ameas consists of independent Gaus-
sian noise coefficients with mean zero and variance σ2

noise/N . Let the ratio R
of the first singular value σ1(Ameas) over the normalized l2-norm of the other
singular values (σj(A

meas))j=2,...,N of the measured array response matrix
Ameas be defined by

R :=
σ1(Ameas)(

1
N−1

∑N
j=2 σj(A

meas)2
)1/2 . (5.26)

Using Proposition 5.6 (b and c) and Slutsky’s theorem, we obtain the following
result.

Proposition 5.7. In the absence of any point reflector, the ratio R defined
by (5.26) has the following statistical distribution

R
dist.
= 2 +

1

22/3N2/3
Z2 , (5.27)

when N is large, where Z2 is a random variable following a type 2 Tracy-
Widom distribution.

This proposition describes the statistical distribution of the ratio (5.26)
in the absence of a point reflector. As we will see, it allows us to compute
explicitly the threshold of a likelihood-ratio test.

Now we turn to the case where the array response matrix is obtained with
a single point reflector in the presence of additive noise. Then,

Ameas = A0 +
1√
N

W ,

where A0 is the unperturbed array response matrix (5.11) with r = 1 (corre-
sponding to one point reflector) and the entries of the matrix W are indepen-
dent complex Gaussian random variables with mean zero and variance σ2

noise.
Let σ0 be the nonzero singular value of A0 and let σ1(Ameas) ≥ σ2(Ameas) ≥
· · · ≥ σN (Ameas) be the singular values of the measured array response ma-
trix Ameas. Using Propositions 5.3 and 5.6 we can describe the ratio of the
maximal singular value over the normalized l2-norm as follows.
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Proposition 5.8. Let us consider the array response matrix obtained in the
presence of measurement noise with a point reflector. For σnoise < σ0, the
ratio R defined by (5.26) has the following statistical distribution

R
dist.
=

σ0
σnoise

+
σnoise
σ0

+
1√
2N

√
1− σ2

noiseσ
−2
0 Z0 , (5.28)

where Z0 follows a Gaussian distribution with mean zero and variance one.
For σnoise > σ0 we have (5.27).

This proposition describes the statistical distribution of the ratio (5.26) in
the presence of a point reflector. It allows us to compute explicitly the power
of the likelihood-ratio test which is the most powerful test for a given false
alarm rate by the Neyman-Pearson lemma.

5.3.2 Statistical Test

As in the standard statistical hypothesis testing [20, 35], we postulate two
hypotheses and derive a decision rule for deciding in between them based on
the measured array response matrix.

We define Ho the (null) hypothesis to be tested and Ha the (alternative)
hypothesis:

• Ho: there is no point reflector,
• Ha: there is a point reflector.

We want to test Ho against Ha. Two types of independent errors can be made:

• Type I errors correspond to rejecting the null hypothesis Ho when it is
correct (false alarm). Their probability is given by

α := P
(
accept Ha|Ho true

)
.

• Type II errors correspond to accepting Ho when it is false (missed detec-
tion) and have probability

β := P
(
accept Ho|Ha true

)
.

The success of the test (probability of detection, POD, or detection power)
is therefore given by 1− β.

Given the data the decision rule for accepting Ho or not can be derived
from the Neyman-Pearson lemma which asserts that for a prescribed false
alarm rate α the most powerful test corresponds to accepting Ha for the
likelihood ratio of Ha to Ho exceeding a threshold value determined by α.

Neyman-Pearson Lemma: Let Y be the set of all possible data and let
f0(y) and f1(y) be the probability densities of Y under the null and alternative
hypotheses. The Neyman-Pearson lemma [20, p. 335] states that the most
powerful test has a critical region defined by
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Yα :=

{
y ∈ Y

∣∣∣ f1(y)

f0(y)
≥ ηα

}
, (5.29)

for a threshold ηα satisfying ∫
Yα
f0(y)dy = α . (5.30)

Let the data be y. We reject Ho if the likelihood ratio f1(y)
f0(y)

> ηα and

accept Ho otherwise. The power of the (most powerful) test is

1− β =

∫
Yα
f1(y)dy . (5.31)

5.3.3 Berens’ Modeling

In [7] a framework for analyzing schemes for nondestructive inspection meth-
ods and testing for the presence of flaws was introduced. In this reliability
analysis the probability of detection (POD) as a function of flaw size played
a central role. In our notation the “flaw size” corresponds to the parameter ρ
(given by (5.8)) and we are thus interested in designing reliability tests with a
desirable performance in terms of the corresponding POD(ρ) function. In [7]
a maximum likelihood approach was used for parameter estimation, and a log
normal distribution was in particular postulated for the response variable’s
relation to point reflector strength. One parameter to be estimated is then
the variance of the Gaussian residual. Our approach here is to introduce a
physical model for the measurements, as we have described above, and then
infer a corresponding “optimal” POD function that can be associated with the
array response matrix measurements. We describe the picture deriving from
this approach below. It turns out that the resulting picture deviates somewhat
from the one derived from Berens’ modeling.

Consider the imaging of point reflectors from measurements of the array
response matrix at a single frequency ω in the presence of measurement noise,
that is, we model with an additive Gaussian noise. Assuming availability of
previous and/or multiple measurements we may assume that the variance of
the entries of the array response matrix (due to the measurement noise) is
known and equal to σ2

noise. In fact, we will see that we do not need to know
the value σ2

noise in order to build the most powerful test with a prescribed
false alarm rate.

In the absence of the point reflector (hypothesis Ho) the statistical dis-
tribution of the ratio R of the first singular value of the symmetrized array
response matrix over the normalized l2-norm of the other singular values is of
the form (5.27).

In the presence of a point reflector at position z0 and with coefficient of
reflection ρ0 (hypothesis Ha), Proposition 5.8 shows that the ratio is of the
form (5.28), with σ0 given by (5.12):
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σ0 = ρ0

( N∑
n=1

|Ĝ0(ω,z0,xn)|2
)
. (5.32)

This result is correct as long as σ0 > σnoise. When σ0 < σnoise we have (5.27).
If the data gives the ratio R, then we propose to use a test of the form

R > r for the alarm corresponding to the presence of a point reflector. By the
Neyman-Pearson lemma the decision rule of accepting Ha if and only if R > rα
maximizes the probability of detection for a given false alarm probability α

α = P(R > rα|Ho) ,

with the threshold

rα = 2 +
1

22/3N2/3
Φ−1TW2(1− α) , (5.33)

where ΦTW2(x) =
∫ x
−∞ pTW2(y)dy is the cumulative distribution function of

the Tracy-Widom distribution of type 2. The computation of the threshold
is easy since it depends only on the number of sensors N and on the false
alarm probability α. This test is therefore universal. Note that we should use
a Tracy-Widom distribution table, and not a Gaussian table. We have, for
instance, Φ−1TW2(0.99) ≈ 0.48.

The detection probability 1−β is the probability to sound the alarm when
there is a point reflector:

1− β = P(R > rα|Ha) .

For a given measurement array it depends on ρ0 and z0 through the value
σ0 defined by (5.32) and also on the noise level σnoise. Here we find that the
Probability Of Detection is

POD = Φ

(
√
N

σ0

σnoise
+ σnoise

σ0
− rα√

1− (σnoise/σ0)2

)
, (5.34)

where Φ(x) =
∫ x
−∞

1√
2π

exp(−y2/2)dy is the cumulative distribution function

of the normal distribution with mean zero and variance one. This result is
valid as long as σ0 > σnoise. When σ0 < σnoise, so that the point reflector is
“hidden in noise”, then we have 1− β = 1− ΦTW2

(
Φ−1TW2(1− α)

)
= α. Note

that, as functions of the number of sensors N , the singular value σ0 scales as
N by Eq. (5.32), while the noise level σnoise scales as 1 (with the Hadamard
technique, otherwise it would scale as

√
N). This shows that the detection

power increases with the number of sensors.

5.4 Localization and Reconstruction

In this subsection we consider the situation in which the transmitter and
receiver arrays are coincident and there are an unknown number r of point
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reflectors embedded in the medium. We would like to build algorithms that
estimate the number r of point reflectors, estimate their locations zj , and
estimate their coefficients of reflection ρj (defined by (5.8)). In the first version
of the algorithm we assume that the noise level σnoise is known. The algorithm
is then the following one.

1. Compute the singular values σj(A
meas) of the measured array response

matrix Ameas.
2. Estimate the number of reflectors by

r̂ = max
{
j, σj(A

meas) > rασnoise
}
,

where the threshold value rα, given by (5.33), ensures that the false alarm
rate (for the detection of a reflector) is α.

3. For each j = 1, . . . , r̂, estimate the positions zj of the jth reflector by look-
ing after the position ẑj of the global maximum of the subspace imaging
functional Ij(z) defined by

Ij(z) =
∣∣w(z)†wj(A

meas)
∣∣2 . (5.35)

Here, wj(A
meas) is the j-th left singular vector of the measured response

matrix (i.e., the left singular vector associated to the j-th largest singular
value) and w(z) is the normalized vector of Green’s functions defined by
(5.9).

4. For each j = 1, . . . , r̂, estimate the amplitudes ρj of the j-th reflector by

ρ̂j =
( N∑
n=1

|Ĝ0(ω,zj ,xn)|2
)−1

σ̂j , (5.36)

with σ̂j being the estimator of σj(A
0) defined by

σ̂j =
σj(A

meas)

2
+
(σj(Ameas)2

4
− σ2

noise

) 1
2

. (5.37)

The form of the estimator σ̂j comes from the inversion of relation (5.14). If we
were using σj(A

meas) as an estimator of σj(A
0), then we would over-estimate

the reflectivity coefficients of the reflectors.
Note that we do not need to compute all the singular values of the mea-

sured response matrix Ameas, only the singular values larger than 2σnoise need
to be computed.

If the noise level is not known, the first two steps of the algorithm must
be replaced by the following ones:

1. Set j = 1 and define A1 = Ameas.
2. a) Compute the largest singular value σ1(Aj) (i.e., the spectral norm of

Aj) and the associated singular vectors v1(Aj) and w1(Aj).
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b) Compute the Frobenius norm ‖Aj‖F and estimate the noise level by

σ̂noise,j =

[
‖Aj‖2F − σ2

1(Aj)

N − 4j

] 1
2

. (5.38)

c) Compute the test

Tj =

{
1 if σ1(Aj) > (2 + rα)σ̂noise,j ,
0 otherwise,

(5.39)

where the threshold value rα is given by (5.33).
d) If Tj = 1 then define Aj+1 = Aj − σ1(Aj)w1(Aj)v1(Aj)†, increase j

by one, and go to (a).
If Tj = 0 then set r̂ = j − 1 and σ̂noise = σ̂noise,j−1 (if j = 1, then

σ̂noise = σ̂noise,0 = ‖Ameas‖F /N
1
2 ) and go to 3.

The sequence of singular values σ1(Aj), j = 1, . . . , r̂, is the list of the r̂ largest
singular values σj(A

meas) of Ameas. Similarly the sequence of left singular
vectors w1(Aj), j = 1, . . . , r̂, is the list of the left singular vectors wj(A

meas)
associated to the r̂ largest singular values of Ameas. In fact, it is not necessary
to compute explicitly the Frobenius norm of Aj at each step in 2(a). We can
compute the Frobenius norm of A and then use the relation

‖Aj‖2F = ‖A‖2F −
j−1∑
l=1

σ2
1(Al) ,

or, equivalently, the recursive relation

‖A1‖2F = ‖Ameas‖2F , ‖Aj+1‖2F = ‖Aj‖2F − σ2
1(Aj), j ≥ 1 .

This algorithm provides an estimator σ̂noise of the noise level σnoise and an
estimator r̂ of the number r of significant singular values, that is, the number
of reflectors. The steps 3 and 4 of the previous algorithm are then used for the
localization and characterization of the reflectors, using the estimator σ̂noise
for σnoise.

An alternative algorithm to estimate the noise level is based on the min-
imization of the Kolmogorov-Smirnov distance between the empirical distri-
bution of the (smallest) singular values of the perturbed matrix A and the
theoretical deformed quarter-circle law. This algorithm reduces significantly
the bias but it is more computationally intensive. When N is very large, for-
mula (5.38) is sufficient for the noise level estimation.

Instead of Ij(z) defined by (5.35), other subspace imaging functionals
such as Kirchhoff-type algorithms can be used. The decomposition of the
time-reversal operator (DORT) can also be used [16, 17, 21] for detecting and
characterizing the reflectors.
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Appendix: Basic facts from analysis and
probability

In this chapter we review a few results and techniques that are used through-
out the book. In Section 6.1 we give a few well-known properties of the Fourier
transform. In Section 6.2 we state the divergence theorem. In Section 6.3 we
discuss the stationary phase method. Finally Section 6.4 we present some
results and tools of probability theory, with a focus on random process mod-
eling.

6.1 Fourier identities

Let f(t) be a “nice” real-valued function (i.e. smooth and integrable). Its
Fourier transform is defined by:

f̂(ω) =

∫
R
f(t)eiωtdt

The inverse Fourier transform is:

f(t) =
1

2π

∫
R
f̂(ω)e−iωtdω.

The following table gives the important Fourier identities that are used
throughout the book. Their proofs are straightforward by the use of change
of variables or integration by parts [23].

f(t) f̂(ω)
dnf

dtn
(−iω)nf̂(ω)

f ∗ g(t) =
∫
f(s)g(t− s)ds f̂(ω)ĝ(ω)

f(−t) f̂(ω)∫
f(s)g(t+ s)ds f̂(ω)ĝ(ω)
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The third identity is useful for time reversal: it expresses the fact that
the time reversal operation in the time domain (t) is equivalent to the com-
plex conjugation in the frequency domain (ω). The fourth identity shows that
the cross correlation of two signals involves the product of the two Fourier
transforms in the frequency domain, one of the transform being complex con-
jugated.

6.2 Divergence theorem

The divergence theorem is a basic identity that is used in this book. We refer
to [23] for a detailed statement and applications. Let V be a bounded open
subset of Rn whose boundary ∂V is C1. Let f ∈ C1(V ,Rn) where V = V ∪∂V
is the closure of V . Then∫

V

∇ · f(x)dx =

∫
∂V

n(x) · f(x)dσ(x) ,

where n(x) is the outward unit normal to ∂V at x ∈ ∂V .

6.3 Stationary-phase method

We review the stationary phase method. For more detail we refer the reader
to [43].

The one-dimensional case

Let φ and f be two smooth functions from R to R. Assume that f is compactly
supported, that φ′(s) vanishes only at s0, and that f(s0) 6= 0, φ′′(s0) 6= 0.
The integral

I(ε) =

∫
R
ei
φ(s)
ε f(s) ds

can be approximated as ε→ 0 by

lim
ε→∞

1√
ε
I(ε)e−i

φ(s0)
ε =

√
2π√

|φ′′(s0)|
ein
∗ π

4 f(s0) ,

where n∗ = sgn(φ′′(s0)) [43, Chapter II, section 3].

The n-dimensional case

The stationary phase theorem can be generalized to n-dimensional integrals
[43, Chapter IX, Theorem 1]. Let n be a positive integer. Let φ and f be two
smooth functions from Rn to R. Assume that f is compactly supported, that
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∇φ(s) vanishes only at s0, and that f(s0) and the determinant of the Hessian
Hs0(φ) of φ at s0 are nonzero. The integral

I(ε) =

∫
Rn
ei
φ(s)
ε f(s) ds

can be approximated as ε→ 0 by

lim
ε→∞

1

εn/2
I(ε)e−i

φ(s0)
ε =

(2π)n/2√
|det Hs0(φ)|

ei(2n
∗−n)π4 f(s0) , (6.1)

where n∗ is the number of positive eigenvalues of Hs0(φ). The point s0 such
that ∇φ(s0) = 0 is referred to as the stationary point. In fact there exists a
constant C that depends only on f and φ such that∣∣∣∣∣ 1

εn/2
I(ε)− (2π)n/2√

|det Hs0(φ)|
ei(2n

∗−n)π4 f(s0)ei
φ(s0)
ε

∣∣∣∣∣ ≤ C√ε . (6.2)

A degenerate case

The typical configuration that is encountered in this book is actually degener-
ate (i.e. there are an infinite number of stationary points and/or the Hessian
matrices at the stationary points are not invertible). Degenerate cases can be
addressed as explained for instance in [43], Chapter IX, section 4. We give
here the result for a particular situation in which there is a line of stationary
points and that is of interest for us.

Proposition 6.1. For any ε > 0, let us consider the integral

I(ε) =

∫
R

∫
Rn
ei
ωφ(s)
ε f(ω)g(s) dsdω ,

where φ and g are smooth functions from Rn to R, g is compactly supported, f
is a smooth function from R to R that is compactly supported (away from zero).
We assume that ∇φ(s) vanishes only at s0 ∈ Rn and that the determinant of
the Hessian Hs0(φ) of φ at s0 is nonzero. There are two cases:

1. If φ(s0) 6= 0, then

lim
ε→0

1

εn/2
I(ε) = 0 . (6.3)

2. If φ(s0) = 0, then

lim
ε→0

1

εn/2
I(ε) =

(2π)n/2g(s0)√
|det Hs0(φ)|

∫
ei(2n

∗−n)π4 sgn(ω) f(ω)

|ω|n/2
dω , (6.4)

where n∗ is the number of positive eigenvalues of Hs0(φ).
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The proof of this proposition is based on the estimate (6.2) that yields for any
ω in the support of f (that does not contain zero):∣∣∣∣∣ 1

εn/2

∫
Rn
ei
ωφ(s)
ε g(s) ds− (2π)n/2g(s0)√

|det Hs0(φ)||ω|n/2
ei(2n

∗−n)π4 sgn(ω)ei
ωφ(s0)
ε

∣∣∣∣∣ ≤ C
√
ε√
ω
,

where C depends only on φ and g. We can now integrate with respect to ω
over the support of f . If φ(s0) 6= 0, then the integral∫

R
ei(2n

∗−n)π4 sgn(ω)ei
ωφ(s0)
ε

f(ω)

|ω|n/2
dω

goes to zero as ε→ 0 by the Riemann-Lebesgue lemma, which yields (6.3). If
φ(s0) = 0, then we immediately get (6.4).

6.4 Random processes

Here we give some background on random (or stochastic) processes. A refer-
ence for this material is [14].

6.4.1 Random variables

A characteristic of noise is that it does not have fixed values in repeated mea-
surements or observations. Let us first consider such a scalar (real-valued)
quantity. It can be modeled by a random variable, for which the exact value
of a realization is not known, but for which the likelihood or empirical fre-
quency of any measurable set of values can be characterized. The statistical
distribution of a random variable can be defined as the probability measure
over R that quantifies the likelihood that the random variable takes values
in a particular measurable set. In this section we only address so-called con-
tinuous random variables, ie those whose distributions admit densities with
respect to the Lebesgue measure over R, as we will never encounter discrete or
other singular random variables in the book. The statistical distribution of a
random variable can then be characterized by its probability density function
(PDF). The PDF of a (real-valued) random variable Z is denoted by pZ(z):

P
(
Z ∈ [a, b]

)
=

∫ b

a

pZ(z) dz .

Note that pZ is a nonnegative function whose total integral is equal to one.
Given the PDF it is possible to compute the expectation of a nice function
(bounded or positive) of the random variable φ(Z), which is the weighted
average of φ with respect to the PDF pZ :

E[φ(Z)] =

∫
R
φ(z)pZ(z) dz .
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The most important weighted averages are the first- and second-order mo-
ments (we only consider random variables with finite first and second mo-
ments in this book). The mean (or expectation) of the random variable Z is
defined as

E[Z] =

∫
R
zpZ(z) dz . (6.5)

It is the first-order statistical moment. It is the deterministic value that best
approximates the random variable Z in the mean square sense:

E[Z] = argmin
a∈R

E
[
(Z − a)2

]
.

The variance is defined as

Var(Z) = E
[
|Z − E[Z]|2

]
= E[Z2]− E[Z]2, (6.6)

which is a second-order statistical moment. σZ =
√

Var(Z) is called the stan-
dard deviation, which is a measure of the average deviation from the mean.

The PDF of a noise signal is not always known in practical situations.
We often use parameters such as mean and variance to describe it. It is then
usual to assume that the noise has Gaussian PDF. This can be justified by
the maximum of entropy principle, which claims that the PDF that maxi-
mizes the entropy −

∫
pZ(z) ln pZ(z) dz with the constraints

∫
pZ(z) dz = 1,∫

zpZ(z) dz = µ, and
∫

(z − µ)2pZ(z) dz = σ2, is the Gaussian PDF

pZ(z) =
1√
2πσ

exp
(
− (z − µ)2

2σ2

)
, (6.7)

with mean µ and variance σ2. If a random variable Z has PDF (6.7), then
we write Z ∼ N (µ, σ2). Moreover, a noise signal often results from the cu-
mulative effect of many uncorrelated sources. As a consequence, based on the
central limit theorem, most measurement noise can be treated as Gaussian
noise. Recall here the central limit theorem: When a random variable Z is the
sum of n independent and identically distributed random variables, then the
distribution of Z is a Gaussian distribution with the appropriate mean and
variance in the limit n→ +∞, provided the variances are finite.

6.4.2 Random vectors

A d-dimensional random vector Z is a collection of d (real-valued) random
variables (Z1, . . . , Zd)

t. The distribution of a random vector is characterized
by the PDF pZ :

P
(
Z ∈ [a1, b1]× · · · × [ad, bd]

)
=

∫
[a1,b1]×···[ad,bd]

pZ(z) dz, for all aj ≤ bj .

The PDF pZ is a function from Rd to [0,∞) whose total integral is equal to
one. The random vector Z = (Z1, . . . , Zd)

t is independent if its PDF can be
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written as a product of the one-dimensional PDFs of the coordinates of the
vector:

pZ(z) =

d∏
j=1

pZj (zj) for all z = (z1, . . . , zd)
t ∈ Rd ,

or equivalently,

E
[
φ1(Z1) · · ·φd(Zd)

]
= E

[
φ1(Z1)

]
· · ·E

[
φd(Zd)

]
,

for all continuous bounded functions φ1, . . . , φd ∈ Cb(R,R).
Example: a d-dimensional normalized Gaussian random vector Z has the

Gaussian PDF

pZ(z) =
1

(2π)d/2
exp

(
− |z|

2

2

)
.

This PDF can be factorized into the product of one-dimensional Gaussian
PDFs, which shows that Z is a vector of independent random normalized
Gaussian variables (Z1, . . . , Zd)

t (normalized means with mean zero and vari-
ance one).

As in the case of random variables, we may not always require or may not
be able to give a complete statistical description of a random vector. In such
cases, we work only with the first and second statistical moments. Let Z =
(Zi)i=1,...,d be a random vector. The mean of Z is the vector µ = (µj)j=1,...,d:

µj = E[Zj ] .

The covariance matrix of Z is the matrix C = (Cjl)j,l=1,...,d:

Cjl = E
[
(Zj − E[Zj ])(Zl − E[Zl])

]
.

These statistical moments are enough to characterize the first two moments of
any linear combination of the components of Z. Indeed, if β = (βj)j=1,...,d ∈
Rd, then the random variable Zβ = β ·Z =

∑d
j=1 βjZj has mean:

E[Zβ] = β · µ =

d∑
j=1

βjE[Zj ] ,

and variance:

Var(Zβ) = βtCβ =

d∑
j,l=1

Cjlβjβl .

As a byproduct of this result, we can see that the covariance matrix C is
necessarily nonnegative.

If the variables are independent then the covariance matrix is diagonal. In
particular:

Var
( d∑
j=1

Zj

)
=

d∑
j=1

Var(Zj) .

The reciprocal is false in general (i.e., the fact that the covariance matrix is
diagonal does not ensure that the vector is independent).



6.4 Random processes 81

6.4.3 Gaussian random vectors

A Gaussian random vector Z = (Z1, . . . , Zd) with mean µ and covariance
matrix R (write Z ∼ N (µ,R)) has the PDF

p(z) =
1

(2π)d/2(det R)1/2
exp

(
− (z − µ)tR−1(z − µ)

2

)
, (6.8)

provided R is positive. As mentioned in the case of random variables, the
Gaussian statistics is the one that is obtained from the maximum of entropy
principle (given that the first two moments of the random vector are specified)
and from the central limit theorem. This distribution is characterized by the
characteristic function or Fourier transform of the PDF:

E[eiλ·Z ] =

∫
Rd
eiλ·zp(z) dz = exp

(
iλ · µ− λ

tRλ

2

)
, λ ∈ Rd , (6.9)

which also shows that, if λ ∈ Rd, then the linear combination λ · Z is a
real-valued Gaussian random variable with mean λ · µ and variance λtRλ.

The expectations of high-order moments of a zero-mean Gaussian vector
can be expressed as a sum of second-order moments. For instance, if Z =
(Z1, Z2, Z3, Z4) is a zero-mean Gaussian vector, then

E
[ 4∏
j=1

Zj

]
= E

[
Z1Z2

]
E
[
Z3Z4

]
+ E

[
Z1Z3

]
E
[
Z2Z4

]
+ E

[
Z1Z4

]
E
[
Z2Z3

]
.

6.4.4 Random processes

The perturbations in the index of refraction of an inhomogeneous medium,
the wave fluctuations recorded by a receiver array, or the noise that appears
in an image are described by functions of space (and/or time) with random
values, which are known as random (or stochastic) processes.

Remember that a random variable is a random number, in the sense that
a realization of the random variable is a real number and that the statisti-
cal distribution of the random variable is characterized by its PDF. In the
same way, a random process (Z(x))x∈Rd is a random function, in the sense
that a realization of the random process is a function from Rd to R, and
that the distribution of (Z(x))x∈Rd is characterized by the finite-dimensional
distributions (Z(x1), . . . , Z(xn))t, for any n, x1, . . . ,xn ∈ Rd (the fact that
the finite-dimensional distributions completely characterize the distribution of
the random process is not completely trivial and it follows from Kolmogorov’s
extension theorem).

As in the case of random variables, we may not always require a complete
statistical description of a random process, or we may not be able to obtain
it even if desired. In such cases, we work with the first and second statistical
moments. The most important ones are
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(i) Mean: E[Z(x)];
(ii) Variance: Var(Z(x)) = E

[
(Z(x)− E[Z(x)])2

]
;

(iii) Covariance function: R(x,x′) = E
[
(Z(x)−E[Z(x)])(Z(x′)−E[Z(x′)])

]
.

We say that (Z(x))x∈Rd is a stationary random process if the statistics of
the process is invariant to a shift in the origin: for any x0 ∈ Rd,

(Z(x0 + x))x∈Rd
distribution

= (Z(x))x∈Rd .

It is a statistical steady state. A necessary and sufficient condition is that,
for any integer n, for any x0,x1, . . . ,xn ∈ Rd, for any bounded continuous
function φ ∈ Cb(Rn,R), we have

E [φ(Z(x0 + x1), . . . , Z(x0 + xn))] = E [φ(Z(x1), . . . , Z(xn))] .

6.4.5 Ergodic processes

Let us consider a stationary process such that E[|Z(x)|] < ∞. We set µ =
E[Z(x)]. The ergodic theorem claims that the time average can be replaced
by the statistical average under the so-called ergodic hypothesis [14].

Theorem 6.2. If Z(x) satisfies the ergodic hypothesis, then

1

Nd

∫
[0,N ]d

Z(x)dx
N→∞−→ µ P-almost surely.

The ergodic hypothesis requires that the orbit (Z(x))x∈Rd visits all of phase
space. It is not easy to state and to understand (see Remark 6.4 below),
although it seems an intuitive notion. The following example presents an ex-
ample of a non-ergodic process.

Example 6.3. Let (Z1(t))t∈R and (Z2(t))t∈R be two ergodic processes (sat-
isfying Theorem 6.2), and denote µj = E[Zj(t)], j = 1, 2. Assume µ1 6=
µ2. Consider a Bernoulli random variable χ independent of (Z1(t))t∈R and
(Z2(t))t∈R and whose distribution is P(χ = 1) = P(χ = 0) = 1/2. Let
Z(t) = χZ1(t) + (1 − χ)Z2(t), which is a stationary process with mean
µ = 1

2 (µ1 + µ2). The time-averaged process satisfies

1

T

∫ T

0

Z(t)dt = χ

(
1

T

∫ T

0

Z1(t)dt

)
+ (1− χ)

(
1

T

∫ T

0

Z2(t)dt

)
T→∞−→ χµ1 + (1− χ)µ2,

which is a random limit different from µ. The time-averaged limit depends on
χ because Z has been trapped in a part of phase space. The process (Z(t))t∈R
is not ergodic.
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Remark 6.4 (Complement on ergodic theory). Here we give a rigorous state-
ment of an ergodic theorem (it is not necessary for what follows). Let (Ω,A,P)
be a probability space; that is:

• Ω is a non-empty set,
• A is a σ-algebra on Ω,
• P : A → [0, 1] is a probability (i.e. P(Ω) = 1 and P(∪jAj) =

∑
j P(Aj) for

any numerable family of disjoint sets Aj ∈ A).

Let θx : Ω → Ω, x ∈ Rd, be a measurable group of shift operators (i.e.
θ−1x (A) ∈ A for any A ∈ A and x ∈ Rd, θ0 = Id and θx+y = θx ◦ θy for any
x,y ∈ Rd) that preserves the probability P (i.e. P(θ−1x (A)) = P(A) for any
A ∈ A and x ∈ Rd).

The group (θx)x∈Rd is said to be ergodic if the invariant sets are negligible
or of negligible complementary, i.e.

θ−1x (A) = A for all x ∈ Rd =⇒ P(A) = 0 or 1.

We then have the following proposition.

Proposition 6.5. Let f : (Ω,A,P)→ R and Z(x, ω) = f(θx(ω)).

1. Z is a stationary random process.
2. If f ∈ L1(P) and (θx)x∈Rd is ergodic, then

1

Nd

∫
[0,N ]d

Z(x, ω)dx
N→∞−→ E[f ] =

∫
Ω

fdP P-almost surely.

6.4.6 Mean square theory

In this subsection we introduce a weaker form of the ergodic theorem, that
holds true under a simple and explicit condition. Let (Z(x))x∈Rd be a sta-
tionary process with finite variance E[Z2(0)] <∞. We introduce the autocor-
relation function

c(x) = E [(Z(y)− µ)(Z(y + x)− µ)] ,

where µ = E[Z(y)]. Both c and µ do not depend on y by stationarity.
By stationarity, c is an even function:

c(−x) = E [(Z(y)− µ)(Z(y − x)− µ)] = E [(Z(y′ + x)− µ)(Z(y′)− µ)]

= c(x).

By Cauchy-Schwarz inequality, c reaches its maximum at 0:

c(x) ≤ E
[
(Z(y)− µ)2

]1/2 E [(Z(y + x)− µ)2
]1/2

= c(0),

and c(0) = Var(Z(0)).
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Proposition 6.6. Assume that
∫
Rd |c(x)|dx <∞. Let

S(N) =
1

Nd

∫
[0,N ]d

Z(x)dx.

Then
E
[
(S(N)− µ)2

] N→∞−→ 0,

more exactly

NdE
[
(S(N)− µ)2

] N→∞−→ ∫
Rd
c(x)dx.

One should interpret the condition
∫
Rd |c(x)|dx < ∞ as “the autocovariance

function c(x) decays to 0 sufficiently fast as |x| → ∞.” This hypothesis is
a mean square version of mixing: Z(y) and Z(y + x) are approximatively
independent for large lags x. Mixing substitutes for independence in the law
of large numbers. An example of mixing process for d = 1 is the piecewise
constant process defined by:

Z(s) =
∑
k∈Z

fk1[Lk,Lk+1)(s),

with independent and identically distributed random variables fk, L0 = 0,
Lk =

∑k
j=1 lj and independent exponential random variables lj with mean 1.

Here we have c(τ) = Var(f1) exp(−|τ |).
Proof. The proof consists in a straightforward calculation. We give it in

the case d = 1:

E
[
(S(N)− µ)2

]
= E

[
1

N2

∫ N

0

dt1

∫ N

0

dt2(Z(t1)− µ)(Z(t2)− µ)

]
symmetry

=
2

N2

∫ N

0

dt1

∫ t1

0

dt2c(t1 − t2)

τ = t1 − t2
h = t2

=
2

N2

∫ N

0

dτ

∫ N−τ

0

dhc(τ)

=
2

N2

∫ N

0

dτ(N − τ)c(τ) =
2

N

∫ ∞
0

dτcN (τ),

where cN (τ) = c(τ)(1− τ/N)1[0,N ](τ). By Lebesgue’s convergence theorem:

NE
[
(S(N)− µ)2

] N→∞−→ 2

∫ ∞
0

c(τ)dτ,

which gives the desired result. �

Note that the L2(P) convergence implies convergence in probability as the
limit is deterministic. Indeed, by Chebychev inequality, for any δ > 0,
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P (|S(N)− µ| ≥ δ) ≤
E
[
(S(N)− µ)2

]
δ2

N→∞−→ 0.

Note also that we can obtain by the same method that, for any k ∈ Rd,

NdE

[∣∣∣ ∫
[0,N ]d

(
Z(x)− µ

)
eik·xdx

∣∣∣2] N→∞−→
∫
Rd
c(x)eik·xdx,

which shows that the Fourier transform of the covariance function of a station-
ary process is nonnegative. This is a preliminary form of Bochner’s theorem
which claims that a function c(x) is a covariance function of a stationary
process if and only if its Fourier transform is nonnegative. The Fourier trans-
form of the covariance function is the power spectral density of the stationary
process.

6.4.7 Gaussian processes

We say that a random process (Z(x))x∈Rd is Gaussian if any linear com-
bination Zλ =

∑n
i=1 λiZ(xi) has Gaussian distribution (for any integer n,

xi ∈ Rd, λi ∈ R). In this case Zλ has Gaussian distribution with PDF

pZλ(z) =
1√

2πσλ
exp

(
− (z − µλ)2

2σ2
λ

)
, z ∈ R ,

where the mean and variance are given by

µλ =

n∑
i=1

λiE[Z(xi)] , σ2
λ =

n∑
i,j=1

λiλjE[Z(xi)Z(xj)]− µ2
λ .

The first two moments of the Gaussian process (Z(x))x∈Rd

µ(x1) = E[Z(x1)],

R(x1,x2) = E
[
(Z(x1)− E[Z(x1)])(Z(x2)− E[Z(x2)])

]
,

characterize the finite-dimensional distributions of the process. Indeed, the
finite-dimensional distribution of (Z(x1), . . . , Z(xn))t has PDF p(z1, . . . , zn)
that can be characterized by its Fourier transform:∫

Rn
ei

∑n
j=1 λjzjp(z1, . . . , zn) dz1 · · · dzn

= E[ei
∑n
j=1 λjZ(xj)] = E[eiZλ ] =

∫
R
eizpZλ(z) dz = exp

(
iµλ −

σ2
λ

2

)
= exp

(
i

n∑
j=1

λjµ(xj)−
1

2

n∑
j,l=1

λjλlR(xj ,xl)
)
,
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which shows with (6.9) that (Z(x1), . . . , Z(xn))t has a Gaussian PDF with
mean (µ(xj))j=1,...,n and covariance matrix (R(xj ,xl))j,l=1,...,n. As a conse-
quence the distribution of a Gaussian process is characterized by the mean
function (µ(x1))x1∈Rd and the covariance function (R(x1,x2))x1,x2∈Rd .

It is rather easy to generate a realization of a Gaussian process (Z(x))x∈Rd
whose mean µ(x) and covariance function R(x,x′) are given. If (x1, . . . ,xn)
is a grid of points, then the following algorithm is a random generator of
(Z(x1), . . . , Z(xn))t:

• compute the mean vector mi = E[Z(xi)] and the covariance matrix Cij =
E[Z(xi)Z(xj)]− E[Z(xi)]E[Z(xj)];

• generate a random vector Y = (Y1, . . . , Yn)t of n independent Gaussian
random variables with mean 0 and variance 1 (use randn in matlab, or use
the Box-Müller algorithm for instance);

• compute Z = m+ C1/2Y .

The vector Z has the distribution of (Z(x1), . . . , Z(xn))t because it has
Gaussian distribution (since it is the linear transform of the Gaussian vector
Y ) and it has the desired mean vector and covariance matrix.

Note that the computation of the square root of the matrix C is expen-
sive from the computational point of view, and one usually chooses to use
Cholesky’s method to compute it. This simulation method is actually called
Cholesky’s method. We will see in the next section a faster algorithm when
the process is stationary.

6.4.8 Stationary Gaussian processes

We here focus our attention to stationary Gaussian processes. Since the dis-
tribution of a Gaussian process is characterized by its first two moments, a
Gaussian process is stationary if and only if its mean µ(x) is constant and its
covariance function R(x,x′) depends only on the lag x′ − x. Let us consider
a stationary Gaussian process (Z(x))x∈Rd with mean zero and covariance
function c(x) = E[Z(x′)Z(x′ + x)]. By Bochner’s theorem [31], the Fourier
transform of c is necessarily nonnegative. The spectral representation of the
real-valued stationary Gaussian process (Z(x))x∈Rd is:

Z(x) =
1

(2π)d

∫
Rd
e−ik·x

√
ĉ(k)n̂k dk ,

with (n̂k)k∈Rd a complex white noise, i.e., n̂k is complex-valued, Gaussian,
n̂−k = n̂k, E [n̂k] = 0 and E

[
n̂kn̂k′

]
= (2π)dδ(k − k′) (the representation is

formal, one should in fact use stochastic integrals dŴk = n̂kdk with respect to
Brownian motions). A complex white noise is actually the Fourier transform
of a real white noise: we have n̂k =

∫
eik·xn(x)dx where (n(x))x∈Rd is a real

white noise, i.e n(x) real-valued, Gaussian, E [n(x)] = 0, and E [n(x)n(x′)] =
δ(x− x′).
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It is quite easy to generate a realization of a stationary Gaussian process
(with mean zero and covariance function c(x)) using its spectral represen-
tation and Fast Fourier Transforms. In dimension d = 1, if we fix a grid of
points xj = (j − 1)∆x, j = 1, . . . , n, then one can generate a realization of
the random vector (Z(x1), . . . , Z(xn))t by the following algorithm:

• evaluate the covariance vector c = (c(x1), . . . , c(xn))t;
• generate a random vector Y = (Y1, . . . , Yn)t of n independent Gaussian

random variables with mean 0 and variance 1;
• filter with the square root of the discrete Fourier transform (DFT) of c:

Z = IFT
(√

DFT(c) · ×DFT(Y )
)
,

where ·× is the element-wise multiplication.

Then the vector Z is a realization of (Z(x1), . . . , Z(xn))t. In practice one
uses FFT and IFFT instead of DFT and IFT, and one obtains a periodized
version of the random vector (Z(x1), . . . , Z(xn))t, due to the FFT. This is
good enough when the size n∆x is much larger than the correlation length
of the process (i.e. the width of the covariance function c). It is possible
to remove the end points of the grid over a band of thickness of the order
of the correlation length to remove this periodization effect. In practice this
spectral algorithm is more efficient than the Cholesky’s method. It can be
readily extended to generate a realization of a stationary Gaussian process in
dimension d > 1.

6.4.9 Vector- and complex-valued Gaussian processes

We finally introduce Gaussian multi-valued processes, which are natural ex-
tensions of the real-valued Gaussian processes discussed in the previous sub-
sections.

We say that a Rp-valued process (Z(x))x∈Rd is a Gaussian process if any
finite linear combination

∑
i λiZji(xi) is a real-valued Gaussian random vari-

able, for λi ∈ R, ji ∈ {1, . . . , p}, xi ∈ Rd. Therefore the coordinate functions
(Z1(x))x∈Rd , . . ., (Zp(x))x∈Rd are real-valued random processes, more exactly
they are correlated real-valued Gaussian processes. The distribution of the
Rp-valued Gaussian process (Z(x))x∈Rd is characterized by its vector-valued
mean function µ(x) = E[Z(x)] and its matrix-valued covariance function
R(x,x′) = (Rij(x,x

′))i,j=1,...,p, with Rij(x,x
′) = E[Zi(x)Zj(x

′)]. In partic-
ular, the coordinate functions (Zi(x))x∈Rd and (Zj(x))x∈Rd are independent
if and only if Rij(x,x

′) = 0 for all x,x′ ∈ Rd.
We say that a C-valued process (Z(x))x∈Rd is a Gaussian process if any

finite linear combination
∑
i λiRe(Z(xi)) +

∑
j λ
′
jIm(Z(x′j)) is a real-valued

Gaussian random variable. A C-valued Gaussian process (Z(x))x∈Rd can be
seen as a R2-valued Gaussian process (Z̃(x))x∈Rd with Z̃ = (Re(Z), Im(Z))t.
Its distribution can be characterized by the vector-valued mean function µ̃(x)
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and the matrix-valued covariance function R̃ associated to (Z̃(x))x∈Rd . It can
as well be characterized by the complex-valued mean function µ(x) = E[Z(x)],
the covariance function R(x,x′) = E[(Z(x)− µ(x))(Z(x′)− µ(x′))], and the
relation function Q(x,x′) = E[(Z(x) − µ(x))(Z(x′) − µ(x′))]. The PDF of
the random vector (Z(x1), . . . , Z(xn)) (with respect to the Lebesgue measure
over Cn) is

p(z) =
1

πn det(D)1/2 det(D−C
t
D−1C)1/2

× exp

[
− 1

2

(
z −m
z −m

)t(D C

C
t

D

)−1(
z −m
z −m

)]
,

where Dij = R(xi,xj), Cij = Q(xi,xj), mi = µ(xi).
A circularly symmetric complex Gaussian process is a C-valued Gaussian

process such that µ(x) = 0 and Q(x,x′) = 0 for any x,x′ ∈ Rd. Its distri-
bution is characterized by its covariance function R(x,x′) = E[Z(x)Z(x′)].
If, additionally, the covariance function R is real-valued, then the real and
imaginary parts (Re(Z(x)))x∈Rd and (Im(Z(x)))x∈Rd are independent and
identically distributed, they are both Gaussian processes with mean zero and
covariance function R(x,x′)/2.

6.5 Some results on Gaussian random fields

Let (Z(x))x∈R3 be a stationary Gaussian random field with mean zero. The
statistical distribution of the random field is characterized by the covariance
function:

c(x) = E
[
Z(x′)Z(x′ + x)

]
.

We assume here that c is smooth, so that the realizations of the random field
are smooth [3, Theorem 1.4.2]. As we will see below, the relevant statistical
information about local and global maxima of the field is in the variance

u20 = c(0) = E[Z(x)2]

and in the Hessian matrix of the correlation function

Λ =
(E[∂xjZ(x)∂xlZ(x)

]
E
[
Z(x)2

] )
j,l=1,...,3

=
(
−
∂2xjxlc(0)

c(0)

)
j,l=1,...,3

.

6.5.1 Local maxima of a Gaussian random field

Let Ω ⊂ R3 be a bounded domain. Let us denote by MΩ
u the number of local

maxima of Z(x) in Ω with values larger than u:

MΩ
u = Card

{
local maxima of (Z(x))x∈Ω with values larger than u

}
.
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We have [2, Theorem 6.3.1]

E[MΩ
u ] =

|Ω|
Vc

u2

u20
exp

(
− u2

2u20

)(
1 +O

(u0
u

))
, for u� u0,

where Vc is the hotspot volume defined in terms of the determinant of the
Hessian of the correlation function as:

Vc =
4π2

(detΛ)1/2
.

6.5.2 Global maximum of a Gaussian random field

Let us denote by ZΩmax the global maximum of the field over the domain Ω:

ZΩmax = max
x∈Ω

Z(x).

Using [2, Theorem 6.9.4] when |Ω| � Vc, the statistical distribution of ZΩmax

is of the form

ZΩmax = u0

[
A
( |Ω|
Vc

)
+B

( |Ω|
Vc

)
Z0

]
,

where Z0 follows a Gumbel distribution with cumulative distribution function
P(Z0 ≤ x) = exp(−e−x),

A(V ) =
√

2 log(V ) +
log
[
2 log(V )

]√
2 log(V )

,

B(V ) =
1√

2 log(V )
.

To leading order, the value of the global maximum is deterministic and given
by

ZΩmax ' u0

√
2 log

( |Ω|
Vc

)
.

6.5.3 The local shape of a local maximum

We first state a classical and fundamental lemma about Gaussian vectors.

Lemma 6.7. Let us consider a Rn1+n2-valued random vector

(
y1
y2

)
with

Gaussian statistics:

L
((

y1
y2

))
∼ N

((
y1

y2

)
,

(
R11 R12

R21 R22

))
.

The mean vectors y1 and y2 are in Rn1 and Rn2 , respectively, the covariance
matrix R11 has size n1×n1, R12 has size n1×n2, R21 = RT

12 has size n2×n1,
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and R22 has size n2×n2. Assume that the distribution of y2 is not degenerate,
i.e., that R22 is invertible. Then, conditioned on y2, the distribution of y1 is
Gaussian:

L
(
y1|y2

)
∼ N

(
y1 + R12R

−1
22 (y2 − y2),R11 −R12R

−1
22 R21

)
.

Using this lemma one can show that, given that the random field Z(x) has
a local maximum at x0 with peak amplitude u (with u � u0), then we have
locally around x0:

Z(x) ' u
[c(x− x0)

u20
+ o(1)

]
, [u� u0].

Proof. Let us fix x0 ∈ R3. The random vector Z(x)
Z(x0)
∇Z(x0)


has Gaussian distribution:

N

(0
0
0

 ,

 c(0) c(x− x0) −∇c(x− x0)T

c(x− x0) c(0) 0
−∇c(x− x0) 0 c(0)Λ

).
Applying the above lemma, the distribution of Z(x) given Z(x0) = u and
∇Z(x0) = 0 is

N
(c(x− x0)

c(0)
u, c(0)− ∇c(x− x0)TΛ−1∇c(x− x0)

c(0)

)
.

This gives the desired result when u� u0 = c(0)1/2.

6.6 Random Matrix Theory

Our main goal in this appendix is to describe the distribution of the eigen-
values or singular values of random matrices. Here we analyze the eigenvalues
of classical models of random diagonalizable matrices and we then extend the
results to the singular values of the random matrices of interest in the con-
text of imaging in Chapter 5. We look for different types of results. On the
one hand we look for the description of the global distribution of the singu-
lar values, and on the other hand we also look for a detailed description of
the maximal singular value. There are different types of approaches. Some of
them are based on the asymptotic expansions of explicit expressions (for some
special models) and they give the more detailed results. Other approaches are
based on tools of complex analysis (using in particular Stieltjes transforms of
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measures) and allow to obtain asymptotic results for a large class of random
matrices. As will be shown, the distribution of the singular values depends on
the structure of the matrix (symmetric, Hermitian, etc), on the correlation
between the random coefficients of the matrix, but not much on the marginal
distribution of the coefficients (in the limit of large matrices). A remarkable
point is that there are universal results, corresponding to a kind of “central
limit theorem”, but with unusual scaling and limit distribution. A good ref-
erence is the book [39].

6.6.1 Gaussian Orthogonal Ensemble

We consider first a simple model of random matrices in

Sn = { symmetric real matrices of size n× n } .

Consider the random matrix M such that

(i) (Mjl)1≤j<l≤n are independent and identically distributed N (0, 1);
(ii) (Mjj)1≤j≤n are independent and identically distributed N (0, 2);
(iii)Mjl = Mlj for 1 ≤ j < l ≤ n.

We then say that M is a GOE(n)-matrix (GOE stands for Gaussian Orthog-
onal Ensemble). This model is invariant by any rotation: If P is a n × n
orthogonal matrix (i.e., PTP = PPT = I) and M is a GOE(n)-matrix, then

the random matrix M̃ = PMPT is a GOE(n)-matrix. Indeed, the matrix M̃
is still symmetric, with Gaussian entries, and one can check that the means
and covariances of the entries are the ones of the GOE(n)-matrix distribution.

By independence of the coefficients the distribution of M has a pdf with
respect to the measure dM =

∏
1≤j<l≤n dMjl

∏
1≤j≤n dMjj :

pS(M) =
∏

1≤j<l≤n

1√
2π

exp
(
−
M2
jl

2

) ∏
1≤j≤n

1√
4π

exp
(
−
M2
jj

4

)
.

Using the symmetry Mjl = Mlj we can write the pdf as

pS(M) = cn exp
(
−
∑

1≤i,j≤nM
2
ij

4

)
,

with cn = (2π)−n(n−1)/2(4π)−n/2. We recognize the trace of MMt = M2 in
the exponent which allows us to write

pS(M) = cn exp
(
− Tr(M2)

4

)
. (6.10)

The following theorem holds.
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Theorem 6.8. Let M be a GOE(n)-matrix. Let (λ1, . . . , λn) be the eigen-
values of M sorted in decreasing order. Then the distribution of the random
vector (λ1, . . . , λn) has the pdf

p(λ1, . . . , λn) =
1

Zn
exp

(
− 1

4

n∑
i=1

λ2i

) ∏
1≤i<j≤n

(λi − λj) ,

for some normalizing constant Zn.

We can notice that the eigenvalues are not independent because the pdf
cannot be written as a product of one-dimensional pdfs. In particular, the
presence of the product

∏
1≤i<j≤n(λi−λj) is a manifestation of level repulsion:

the pdf becomes small when two eigenvalues are close to each other. Note
finally that this theorem is valid for any n and gives the complete answer to
the question: what is the distribution of the eigenvalues of a GOE(n) matrix
? However the answer takes a form that is not easy to understand when n is
large, and it is desirable to determine the behavior of the eigenvalues in this
asymptotic framework.

Proof (of Theorem 6.8). We give the essential steps of the proof. For any sym-
metric and real matrix M we can associate the eigenvalues (λj(M))j=1,...,n.
This map is well-defined provided we require the eigenvalues to be sorted in
decreasing order. From the spectral representation of symmetric matrices, the
matrix M can be written as

M = PΛPT ,

where P is an orthogonal matrix and Λ is the diagonal matrix with diagonal
entries λl(M), l = 1, . . . , n. For each l = 1, . . . , n, the vector (Pjl)j=1,...,n is
an eigenvector of M with eigenvalue λl, and we can choose the first nonzero
coefficient of the vector (Pjl)j=1,...,n to be positive. Note that the decomposi-
tion is then unique provided the eigenvalues are simple, but it is not unique
if there are multiple eigenvalues.

If we denote by dP the Haar measure on the set On of orthogonal matrices
(which is the uniform measure on On) and by dΛ the measure dλ1 · · · dλn,
then for any test function f

E[f(λ1, . . . , λn)] =

∫
f(λ1(M), . . . , λn(M))pS(M)dM

=

∫∫
f(λ1, . . . , λn)pS(PΛPT )

∣∣∣Jac
∂M

∂Λ∂P

∣∣∣dPdΛ
=

∫∫
f(λ1, . . . , λn)cne

− 1
4

∑n
j=1 λ

2
j

∣∣∣Jac
∂M

∂Λ∂P

∣∣∣dPdΛ ,

where we have used the fact that

Tr((PΛPT )2) = Tr(PΛPTPΛPT ) = Tr(Λ2) =

n∑
j=1

λ2j .
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The set On of orthogonal matrices is a set with n(n− 1)/2 parameters (it is a
compact Lie group of dimension n(n− 1)/2). Therefore the Jacobian matrix
can be written as

Jac
∂M

∂Λ∂P
=

(
∂M
∂Λ
∂M
∂P

)
n lines
n(n− 1)/2 lines .

Note that ∂M
∂Λ does not depend on (λj)

n
j=1 and ∂M

∂P is linear in (λj)
n
j=1, be-

cause the decomposition M = PΛPT is linear in Λ. The determinant of the
Jacobian matrix is therefore a polynomial in (λj)

n
j=1 of degree n(n − 1)/2.

Moreover, this polynomial cancels as soon as λj = λl for some pair of indices
(j, l) (because the map (Λ,P) 7→M is not one-to-one), therefore it must con-
tain the factor

∏
j<l(λj−λl). Since the degree of the polynomial is n(n−1)/2,

it must be proportional to this product and we must have∣∣∣Jac
∂M

∂Λ∂P

∣∣∣ =
∏
j<l

(λj − λl)F (P)

for some function F that we do not need to compute. We have

E[f(λ1, . . . , λn)] =

∫
f(λ1, . . . , λn)e−

1
4

∑n
j=1 λ

2
j

∏
j<l

(λj − λl)dΛ×
∫
cnF (P)dP ,

which gives the desired result. �

6.6.2 Gaussian Unitary Ensemble

The previous result can be extended to the Gaussian Unitary Ensemble
(GUE). This is a model of random matrices in

Un = { Hermitian complex matrices of size n× n } .

Consider the random matrix M such that

(i) (Mjl = MR
jl + iM I

jl)1≤j<l≤n where MR
jl and M I

jl are independent and
identically distributed N (0, 1/2);

(ii) (Mjj)1≤j≤n are independent and identically distributed N (0, 1);
(iii)Mjl = Mlj for 1 ≤ j < l ≤ n.

We then say that M is a GUE(n)-matrix. This model is invariant by any
unitary transform: If P is a n×n unitary matrix and M is a GUE(n)-matrix,

then the random matrix M̃ = PMP† is a GUE(n)-matrix, where † stands

for the conjugate transpose. Indeed, the matrix M̃ is still Hermitian, with
Gaussian entries, and one can check that the means and covariances of the
entries are the ones of the GUE(n)-matrix distribution. By independence of
the coefficients the distribution of M has a pdf with respect to the measure
dM =

∏
1≤j<l≤n dM

R
jldM

I
jl

∏
1≤j≤n dMjj which is of the form
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pU (M) = cn exp
(
− Tr(M2)

2

)
for some constant cn. Let (λ1, . . . , λn) be the eigenvalues of M sorted in
decreasing order. Then the distribution of the random vector (λ1, . . . , λn) has
the pdf

p(λ1, . . . , λn) =
1

Zn
exp

(
− 1

2

n∑
i=1

λ2i

) ∏
1≤i<j≤n

(λi − λj)2

for some normalizing constant Zn.

6.6.3 Asymptotic distributions of the eigenvalues

Given the complete expressions of the joint pdf of the eigenvalues (λ1, . . . , λn)
of a GOE(n)-matrix or of a GUE(n)-matrix, it is possible to study their
asymptotic distributions as n → +∞ [39]. We first need to take an appro-
priate scaling. We will analyze the asymptotic behavior of the eigenvalues

(λ
(n)
1 , . . . , λ

(n)
n ) of the matrix M/

√
n, where M is a GOE(n)-matrix or a

GUE(n)-matrix. Let us first consider the density of states, that is, the random
counting measure ρ(n) such that

ρ(n)([a, b]) =
1

n
Card

{
j = 1, . . . , n , λ

(n)
j ∈ [a, b]

}
for any a < b .

The random quantity ρ(n)([a, b]) is the proportion of eigenvalues of the random
matrix M/

√
n that belong to the interval [a, b]. It can be shown that the

density of states converges with probability one as n→∞ to a deterministic
continuous measure ρsc

ρ(n)([a, b])
n→∞−→

∫ b

a

ρsc(λ)dx ,

where

ρsc(λ) =
1

2π

√
4− λ21[−2,2](λ) ,

and 1[−2,2] is the characteristic function of [−2, 2]. The distribution with den-

sity λ 7→ (1/2π)
√

4− λ21[−2,2](λ) is called the semi-circle distribution as its
graph has the form of a semi-circle. Here, ρsc(λ)dλ gives the proportion of
eigenvalues in the interval [λ, λ+ dλ]. We find that the asymptotic density of
states is the pdf of the semi-circle distribution ρsc(λ).

Let us now consider the largest eigenvalue

λ(n)max = max
(
λ
(n)
1 , . . . , λ(n)n

)
.

From the result on the density of states, we can anticipate that λ
(n)
max converges

to 2 as n→∞, and this is indeed the case. The fluctuations of λ
(n)
max around
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its limit 2 are interesting because they exhibit an anomalous scaling behavior
(which is not the one corresponding to a central limit theorem) and the distri-
bution of the fluctuations is original in the sense that they are not Gaussian

but they follow the so-called Tracy-Widom distribution. More exactly, if λ
(n)
max

is the maximal eigenvalue of M/
√
n where M is a GOE(n)-matrix (resp. a

GUE(n)-matrix), then
n2/3(λ(n)max − 2)

converges in distribution as n→ +∞ to a Tracy-Widom distribution of type
1 (resp. type 2). The type-1 Tracy-Widom distribution has the pdf pTW1 such
that: ∫ y

−∞
pTW1(x)dx = exp

(
− 1

2

∫ ∞
y

(ϕ(x) + (x− y)ϕ2(x)) dx
)
,

where ϕ is the solution of the Painlevé equation

ϕ′′(x) = xϕ(x) + 2ϕ(x)3, ϕ(x)
x→+∞
≈ Ai(x) , (6.11)

with Ai being the Airy function. The expectation is
∫
xpTW1(x)dx ≈ −1.21

and the variance is approximately 1.61.
The type-2 Tracy-Widom distribution has the pdf pTW2(x) such that∫ y

−∞
pTW2(x)dx = exp

(
−
∫ ∞
y

(x− y)ϕ2(x)dx
)
.

The expectation is
∫
xpTW2(x)dx ≈ −1.77 and the variance is approximately

0.81.

6.6.4 Wishart model

As a warm-up towards the statistical analysis of singular values of random
matrices (with no special symmetry), we consider the Wishart model. Let
A be a m × n real random matrix whose coefficients are independent and
identically distributed with the Gaussian distribution with mean zero and
variance one. Let us consider the symmetric n× n real random matrix

W =
1

m
ATA =

(
1

m

m∑
k=1

AkiAkj

)
i,j=1,...,n

and let us denote by (λ
(n)
1 , . . . , λ

(n)
n ) the eigenvalues of W. If m/n → c > 0

as n→∞, then the density of states ρ(n) of W,

ρ(n)([a, b]) =
1

n
Card

{
j = 1, . . . , n , λ

(n)
j ∈ [a, b]

}
,

converges to the measure
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ρ(λ) = (1− c)+δ(λ) +
1

2πλ

√
[(λ− λ−)(λ+ − λ)]+ ,

with x+ = max(x, 0), λ± = (1 + c)± 2
√
c. In the case m = n we find

ρ(λ) =
1

2π
√
λ

√
4− λ1[0,4](λ) . (6.12)

Taking into account that the eigenvalues of W are the squares of the sin-
gular values of A, this result shows that the density of states of the singu-
lar values of A converges to the quarter-circle law with density ρqc(σ) =
1
π

√
4− σ21[0,2](σ).
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