Inverse Problems and Imaging

Josselin Garnier (Ecole Polytechnique)

https://www.josselin-garnier.org

First lecture: friday, january 16, 2026, 9:00-12:00 (ENS, room 17Z25).
Material on the course website.

Validation: project (notebook jupyter 4 oral presentation).



Sensor array imaging

e Sensor array imaging (echography in medical imaging, sonar, non-destructive
testing, seismic exploration, radar, etc) has two steps:

- data acquisition: an unknown medium is probed with waves; waves are
emitted by a source (or a source array) and recorded by a receiver array.

- data processing: the recorded signals are processed to identify the quantities

of interest (reflector locations, etc).

e Example:

Ultrasound echography

e Standard imaging techniques require:

- good receivers,

- suitable conditions for wave propagation (ideally, the “target” is embedded in
a homogeneous medium),

- controlled and known sources.



Sensor array imaging

e Goal: Propose and study imaging techniques that are robust with respect to:
- measurement noise,
- the complexity of the medium (heterogeneous medium),

- the control and the knowledge of the sources.

e More generally: resolution of ill-posed inverse problems.

— Introduce probabilistic and statistical techniques:
- Least squares optimization,

- Bayesian analysis,

- Random matrix theory,

- Spectral theory for stationary processes,

- (Gaussian processes.



Application 1: Ultrasound echography in concrete
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Application 1: Ultrasound echography in concrete
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Application 1: Ultrasound echography in concrete
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Application 2: Reflection seismology
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An inverse problem: Velocity estimation problem

e Direct problem: Given the velocity map ¢ = (¢(x))zeq of the medium,
compute the wavefield solution of the wave equation

02 — P(2)Alp'® (t,z) = f(t)o(z —z5), teR, ze,

starting from p'®)(t,z) =0, t < 0.

At the locations of the receivers:
dy s(t) = p(t,z,), rs=1,.,N

— forward map

D:c—d
where d = ((dy,s(t)) 7 s—1)t€ tmin tmas] » 1 the array response matrix.
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Full Waveform Inversion (FWI)

FWI fits the model prediction D|c| with the measured data d,,eqs

(least-square minimization):

¢ = argmin Opwrlc],
C

N tmax
Orwrlc] = || Dlc] - dm6a8||2 — Z / Dlc] (t)r,s - dmeaS(t)T,8|2dtv

with ¢ = (¢())zeq-
Mathematical formulation: a PDE constrained minimization problem.

Resolution by iterative methods (Newton, Gauss-Newton, steepest-descent,

Problem: The objective function Opw|c| is not convex in c.
— optimization needs hard to get good initial guess.



Topography of the FWI objective function
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Probing pulse is a modulated Gaussian pulse with central frequency 6 H z
and bandwidth 4H z.

N = 30 sensors and N; = 39 time samples at interval 7 = 0.0435s.

Search velocity has two parameters: the bottom velocity and depth of the
interface (the angle and top velocity are known).

Objective function:

OFW][C] — ||dmeas — D[C]H%



A short history of Full Waveform Inversion (FWI)
Regularization |[Virieux and Operto 2009]:

¢ =argmin {||D[c] — dpmeas|” + AReg|c]},
with Reg[c] = |lc/|72, |lellLt, lellTv, ... (Bayesian interpretation).

Progressive time continuation (layer stripping): Proceed hierarchically from
the shallow part to the deep part [Sheng et al. 2006].

Progressive frequency continuation: Successive inversion of subdata sets of
increasing high-frequency content [Bunks et al. 1995].

Optimal transport: Wasserstein distance instead of least-squares [Engquist
et al. 2016].

Extension (or relaxation) strategies: model-space extension [Symes 2008],
source-space extension [Huang et al. 2018], receiver-space extension

[Benziane et al. 2025].
Use of reduced-order models [Borcea et al., 2024].

What about robustness/stability with respect to measurement noise,
complexity of the medium, control of the sources ?
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Topographies of the FWI and ROM objective functions
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e Search velocity has two parameters: the contrast and the depth of the

interface (the angle and top velocity are known).

e F'WI objective function:
Orwilc] = [|D[e] — d™*||3
e ROM objective function:

OROM[C] _ HArom[C] . Arom,measH%



Theory: Cross correlation of signals transmitted by noise sources

piece of signal recorded at x
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Numerical simulation of wave propagation

with many noise sources (o) and two receivers at © and y (A)

How to extract information from the recorded signals u,(t) and wuy(t) 7

These signals are just noise !



Theory: Cross correlation of signals transmitted by noise sources

piece of signal recorded at x
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Numerical simulation of wave propagation

with many noise sources (o) and two receivers at © and y (A)

— Compute the cross Co%relation of the recorded signals

CLy® = 7 [ us(o)uys +0)ds

0
and extract the travel time between the receivers at  and y.
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Application 3: Seismic interferometry
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