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Bridging Rayleigh-Jeans and Bose-Einstein condensation of a guided fluid of light
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We consider the free-propagation geometry of a light beam (or fluid of light) in a multimode waveguide. As a
result of the effective photon-photon interactions, the photon fluid thermalizes to an equilibrium state during its
conservative propagation. In this configuration, Rayleigh-Jeans (RJ) thermalization and condensation of classical
light waves have been recently observed experimentally in graded index multimode optical fibers characterized
by a two-dimensional parabolic trapping potential. As is well known, the properties of RJ condensation differ
substantially from those of Bose-Einstein (BE) condensation: The condensate fraction decreases quadratically
with the temperature for BE condensation, while it decreases linearly for RJ condensation. Furthermore, for
quantum particles the heat capacity tends to zero at low temperatures and it takes a constant value in the
classical particle limit at high temperatures. This is in contrast with classical RJ waves, where the specific
heat takes a constant value at low temperatures and tends to vanish above the condensation transition in the
normal (uncondensed) state. Here we reconcile the thermodynamic properties of BE and RJ condensation: By
introducing a frequency cutoff inherent to light propagation in a waveguide, we derive generalized expressions
of the thermodynamic properties that include the RJ and BE limits as particular cases. We extend the approach
to encompass negative temperatures. In contrast to positive temperatures, the specific heat does not display
a singular behavior at negative temperatures, reflecting the noncritical nature of the transition to a macroscopic
population of the highest-energy level. Our work contributes to understanding the quantum-to-classical crossover
in the equilibrium properties of light, within a versatile experimental platform based on nonlinear optical
propagation in multimode waveguides.

DOI: 10.1103/PhysRevA.110.063530

I. INTRODUCTION

There is a current growing interest in studying both clas-
sical and quantum fluids of light [1–5]. We consider in this
article the cavityless configuration, where the fluid of light is
a quasimonochromatic beam that freely propagates in a con-
servative (Hamiltonian) nonlinear medium of the Kerr type.
The nonlinear photon-photon interactions can be viewed as
the photonic counterpart to weakly interacting atomic Bose
gases [3,6]. Indeed, fluids of light rely on the formal anal-
ogy between a laser field propagating through a nonlinear
medium and the temporal evolution of a two-dimensional
(2D) quantum fluid. In this way, 2D fluid of lights have been
used to probe various phenomena, such as the generation
of superfluid Bogoliubov sound waves [7–11], analog grav-
ity and cosmology [12], complex vortex dynamics [13,14],
precondensation [15], and the dynamical formation of prether-
malized equilibrium states [16–18]. It is in this configuration
that Bose-Einstein (BE) condensation and thermalization of
photons have been predicted theoretically in a conservative
free-propagation geometry of a beam of light [19]. Note that
other forms of condensation processes have been studied in

optical cavity systems [1,2], either in the genuine quantum
BE regime [20–25] or in the classical regime [26–33], with
specific nonequilibrium features leading to different forms of
universal properties [34].

From a different perspective, several studies based on the
wave turbulence theory [35–40] predict that nonlinear waves
can exhibit a phenomenon of Rayleigh-Jeans (RJ) thermal-
ization and condensation [41–55]. Although the physics of
BE condensation and RJ condensation can be viewed differ-
ently, the underlying mathematical origin is similar, because
of the common singular behavior (vanishing denominator) of
the equilibrium Bose distribution for quantum particles and
the equilibrium RJ distribution for classical waves [37,42].

In the context of optics, RJ thermalization of light waves
propagating in nonlinear media has been studied theoreti-
cally and experimentally for a long time [56–61]. However,
it should be stressed that the thermalization to the RJ distri-
bution is not properly defined, because it leads to diverging
expressions of the optical power (number of particles in a
corpuscular picture) and the kinetic energy of the beam. This
problem, known as the ultraviolet catastrophe of classical
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waves, can be regularized by introducing a frequency cutoff.
The introduction of a frequency cutoff is commonly used to
develop a classical field description of quantum Bose gases
for highly occupied modes [62–64], in line with the fact that
the BE distribution recovers the classical RJ distribution for
these modes. On the other hand, an effective physical fre-
quency cutoff was proposed in Ref. [65] by considering the
propagation of optical waves in a waveguide configuration.
Considering the example of a multimode fiber (MMF) exhibit-
ing a parabolic beam trapping potential, i.e., a graded-index
MMF, it was shown theoretically that, owing to the Kerr
nonlinearity, the optical field thermalizes through its propa-
gation in the MMF toward the RJ mode power equilibrium
distribution [65]. The finite number of modes of the MMF
then introduces a natural frequency cutoff, so that the process
of RJ thermalization turns out to be properly defined, with
converging expressions of both the energy and number of
particles. Recently, the observation of RJ thermalization was
reported experimentally in graded-index MMFs [66–70], as
an explanation for the effect of spatial beam cleaning [71–74],
along with its thermodynamic interpretation [75–89] (see the
recent review article [5]). In related more recent works, it
has been pointed out that, for higher-order modes, the output
mode power distribution that accompanies the beam self-
cleaning experiments of [67,68] can be fitted by the BE law
(see Ref. [90]), as confirmed by recent experiments in long
spans (up to 1 km) of graded-index fibers [90,91]. As origi-
nally recognized in Ref. [78] for multimode optical systems,
this observation is consistent with the fact that the RJ distri-
bution can be viewed as a limiting case to the BE distribution
for highly populated modes. From a different perspective, a
generalized optical thermodynamics approach was discussed
in [92], which ultimately suggests the BE distribution as the
natural convergence limit of light thermalization and conden-
sation in MMFs. This raises interesting questions about the
relevance of the BE distribution to describe light thermaliza-
tion in MMFs.

On the other hand, different numerical simulations have
argued that a system of classical oscillators can equilibrate,
in certain regimes, to a quantum BE distribution [93]. This
puzzling issue was clarified recently in Ref. [94] by extensive
numerical simulations based on the random matrix theory,
which showed that the RJ distribution (instead of the BE
distribution) plays the role of universal attractor for weakly
nonlinear systems.

It should be stressed that the thermodynamic equilibrium
properties derived from the BE and RJ equilibria are of funda-
mentally different nature. Let us consider the example of a 2D
parabolic trapping potential that is relevant to the optical fiber
experiments, where RJ thermalization was recently reported
[66–68]. In the BE case, the transition to condensation is char-
acterized by a condensate fraction that decreases quadratically
with the temperature approximately (T/Tc)2, where Tc is the
critical temperature of the condensation transition [95]. In
contrast, according to the RJ equilibrium, the condensate frac-
tion decreases linearly with the temperature approximately
T/Tc, as confirmed experimentally in Ref. [66]. Even more
surprising are the properties of the specific heat, which is
known to be an important quantity for characterizing the phase

transition to condensation [95]. In the BE case, the quantum
property of frozen degrees of freedom imposes CV → 0 at
low temperatures. This is in contrast with the RJ distribution,
where at low temperatures the heat capacity tends to a constant
(CV → M, with M the number of fiber modes), as a result
of the theorem of energy equipartition inherent to classical
statistical mechanics. Conversely, at high temperatures, CV

tends to a constant in the classical particle limit of the BE
distribution [95], whereas CV → 0 for guided RJ waves [66].
It turns out that, so far, there is no evident connection that is
established between RJ condensation observed in MMFs and
the well-known equilibrium properties of BE condensation.

Our aim in this article is to clarify some of the puzzling
issues discussed above. Our main result is to bridge the
thermodynamic equilibrium properties of RJ and BE conden-
sation. By introducing a frequency cutoff inherent to light
propagation in a waveguide, we derive generalized theoretical
expressions that unify the RJ and the BE equilibrium proper-
ties. Our generalized expressions of the condensate fraction
and specific heat include the RJ and BE regimes as particular
cases and thus explain the crossover between classical RJ
condensation and quantum BE condensation. In this way, we
elucidate that in typical MMF experiments where the number
of photons involved greatly exceeds the number of modes,
light condensation is characterized by the classical RJ distri-
bution. Furthermore, the bounded energy spectrum inherent to
light propagation in a waveguide configuration entails the ex-
istence of negative-temperature equilibrium states [96–98], a
property originally pointed out for classical multimode optical
systems in Ref. [78]. Here we extend the negative-temperature
RJ equilibrium states observed recently in MMFs [99] to the
BE photon regime and analyze the peculiar quantum features
of the specific heat for negative temperatures. From a broader
perspective, this work contributes to the understanding of the
quantum-to-classical transition in the framework of a flexi-
ble experimental platform based on the free propagation of
beams of light in nonlinear media, such as optical fibers
[66–68,100], atomic vapors [3,7,12,14,15,18,101], and pho-
torefractive crystals [8,9,13].

II. BE AND RJ EQUILIBRIA

We recall that achieving complete spatial thermalization
of a beam of light throughout its propagation in a non-
linear medium requires a guided configuration. Indeed, a
nonconfined speckled beam would experience a significant
diffraction during its propagation, which would lead to a
significant reduction of the power at the beam center. This
inevitably affects the process of thermalization, whose equi-
librium properties are only properly defined in the presence of
a trapping potential.

Aside from these technical aspects, the presence of an inho-
mogeneous trapping potential is known to significantly affect
the properties of the phase transition to condensation [102]. In
the following we consider the concrete example of a parabolic
(graded-index) MMF, in which RJ thermalization has been ob-
served and studied [66–68,70,99]. As will be discussed below
in detail, we anticipate that the parabolic trapping potential
plays a key role in two dimensions, since it enables a true
phase transition to condensation in the thermodynamic limit,
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which is in contrast with a 2D uniform trapping potential,
i.e., step-index optical waveguide [95]. Accordingly, the term
“condensation” refers here to a phase transition that occurs be-
low a critical value of the temperature and that is characterized
by a macroscopic population of the fundamental mode. More
precisely, we consider a parabolic potential V (r) = q|r|2 in
two dimensions that is truncated at V0 = qR2, where R is the
fiber radius and q (in m−3) a constant determined by the fiber
characteristics. The guided mode eigenvalues are well approx-
imated by the ideal harmonic potential βp = β0(px + py + 1)
(in m−1), where p labels the two integers (px, py) that specify
a mode. The regular spacing among groups of degenerate
modes is β0 = √

2q/k0, where k0 = 2πn0/λ, with λ the laser
wavelength. The number G of groups of degenerate modes
(number of energy levels) in the truncated parabolic potential
and the corresponding number of modes M are given by

G = V0/β0, M = G(G + 1)/2 � G2/2. (1)

We assume throughout the paper that G � 1 (highly multi-
mode waveguide).

The number of photons np at thermal equilibrium in the
mode p = (px, py) is given by the BE statistics [19],

nBE
p = 1

exp
(

εp−μ

kBT

)
− 1

, (2)

where T (in kelvins) and μ (in joules) are the physical tem-
perature and the chemical potential, respectively, and kB is the
Boltzmann constant. The energy per particle in the mode p
is εp = h̄c0βp (in joules), with c0 = c/n0 the group velocity
of light in the fiber (n0 being the core refractive index) and
h̄ the Planck constant. This expression of εp can be obtained
by writing the temporal evolution equation for the quantum
electric-field operator in the Heisenberg picture (see Ref. [6]
for details). In order to make a link with the RJ distribution,
it proves convenient to define an optical temperature T̃ =
kBT/(h̄c0) (in m−1), as well as an optical chemical potential
μ̃ = μ/(h̄c0) (in m−1), so that

nBE
p = 1

exp
(

βp−μ̃

T̃

)
− 1

. (3)

The recent experiments in MMFs [66–68] have reported the
observation of light thermalization to the RJ equilibrium
distribution

nRJ
p = T̃

βp − μ̃
. (4)

Note that the BE distribution recovers the RJ distribu-
tion in the limit where the modes are highly populated
[35,62–64,78]. The total number of photons is N = ∑

p np

and the corresponding total kinetic energy E = ∑
p εpnp. We

define in the following the optical energy Ẽ = E/(h̄c0) =∑
p βpnp (in m−1).
Before proceeding, it is important to recall that thermaliza-

tion to equilibrium does not necessarily imply a phenomenon
of condensation. A well-known example is provided by the
blackbody radiation, in which the number of photons N is
not conserved, so that the chemical potential is zero in the

Bose distribution, μ = 0 [103]. Consequently, the Bose dis-
tribution no longer describes a phase transition toward a
macroscopic population of the fundamental mode; the pho-
ton gas exhibits thermalization, but not condensation (see
Refs. [20,21]). In a similar way, there exist a large number
of classical wave systems (capillary waves, acoustic waves,
Rossby planetary waves [37], or vibrating elastic plates [40])
that do not conserve the number of particles N , so that μ = 0,
and condensation does not take place. In other words, the
equilibrium distribution does not exhibit a singular behavior
and the fundamental mode does not become macroscopically
populated, i.e., neq

0 is of the same order as any other neq
p�=0,

whatever the energy (or the temperature).
It is also noteworthy that, in the strongly nonlinear regime,

the condensed component forms a distinct phase characterized
by unique properties compared to the thermal (uncondensed)
component. For instance, the presence of a strong condensate
modifies the linear dispersion relation of the thermal com-
ponent, so that the condensate amplitude neq

0 is not simply
given by the RJ or BE distributions (3) and (4) taken at
p= 0. One needs to resort to a Bogoliubov-like transformation
[104] in order to properly describe the condensate fraction at
equilibrium (see Refs. [42,95] for the quantum and classical
approaches, respectively). The modified Bogoliubov disper-
sion relation has been recently measured experimentally in
an optical system [7]. It is at the origin of well-distinguished
physical properties that have been investigated experimentally
in fluids of light, such as superfluidity [8,11,105,106], or the
turbulence flow of superfluid light past an obstacle [9,10],
in relation to quantum vortex dynamics and the Berezinskii-
Kosterlitz-Thouless transition [13].

In contrast to the strongly nonlinear regime of con-
densation, so far, the experiments on RJ thermalization in
MMFs have been carried out in the weakly nonlinear regime
[66–70]. As is well known from the weak turbulence theory
[35–37,107], in the weakly nonlinear regime the formation
of large-scale coherent structures (vortices, solitons, shock or
rogue waves, etc.) is essentially ruled out. More precisely,
it was shown in Ref. [82] that the Bogoliubov nonlinear
renormalization of the dispersion relation can be neglected
in the experiments of RJ thermalization [66–70] and that the
condensate is stable with respect to the focusing nonlinearity
in MMFs.

The weakly nonlinear hypothesis has permitted the de-
velopment of a kinetic wave turbulence description of the
nonequilibrium process of RJ thermalization observed in
MMFs [65,75,76,100]. Indeed, in the weakly nonlinear
regime, the nonlinear (interaction) contribution to the energy
can be neglected so that the linear energy Ẽ refers to the
conserved linear Hamiltonian [65]. The equilibrium properties
can then be investigated in the framework of the ideal gas
approximation, by neglecting nonlinear interactions. Accord-
ingly, N and Ẽ are conserved quantities during light propaga-
tion in the nonlinear medium so that the optical temperature
and chemical potential (T̃ , μ̃) at equilibrium, i.e., at the fiber
output, are determined uniquely by the conserved number of
particles and optical energy (N and Ẽ ), an important property
that has been rigorously proved only recently in Ref. [79] on
the basis of Bolzano’s theorem. In other terms, there is no
thermostat in the optical experiments [66–68]: By keeping
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constant the number of particles N , the energy Ẽ plays the
role of the control parameter in the transition to condensation
for this microcanonical statistical ensemble. Here we first
follow the traditional treatment of BE condensation, where the
temperature is the control parameter of the phase transition to
condensation. Then in Sec. IV we convert the expressions of
the condensate fraction as a function of the energy.

The starting point of our analysis is the BE distribution
with a frequency cutoff, which, as discussed above, has its ori-
gin in the finite number of modes inherent to light propagation
in the waveguide configuration. Next we study different limits
in terms of the mode occupations: In the limit of weak mode
occupations, we recover the equilibrium properties known for
the BE case, whereas in the limit of strong mode occupations,
we recover the equilibrium properties known for the RJ case.

III. CONDENSATE FRACTION VS TEMPERATURE

A. Density of states and thermodynamic limit

In order to derive analytically tractable expressions and
thereby gain physical insight into the relationship between
BE and RJ condensation, in the following we introduce the
so-called semiclassical approximation [95], where the discrete
sums involved in the number of particles (N = ∑

p np) and
the energy (Ẽ = ∑

p βpnp) can be replaced by continuous
integrals. As is well known, the passage from discrete to con-
tinuous sums is justified when specific conditions are met. The
number of photons must be large N � 1, as well as the num-
ber of groups of modes G � 1. In addition, the equilibrium
distribution must populate a large number of mode groups.
This is usually verified when the optical energy is high, typi-
cally Ẽ � Ẽ0, where Ẽ0 = Nβ0 is the minimum energy when
all photons populate the fundamental mode. This latter condi-
tion can also be expressed in terms of an optical temperature,
which should be much larger than the spacing levels of the
parabolic potential T̃ � β0 (or equivalently kBT � h̄ε0) [95].
The density of states reads1

ρ(β ) = β

β2
0

for β � V0 (5)

and ρ(β ) = 0 for β > V0. Aside from its truncation at V0 that
is inherent to the waveguide configuration, this expression of
the density of states coincides with that of Ref. [95]. Note in
particular that the number of modes is approximated by

M =
G∑
p

1 �
∫ V0

0
ρ(β )dβ = G2/2,

where
∑G

p = ∑
0�px+py<G denotes the sum truncated by the

finite number of modes of the waveguide. Also, the number of
particles and the optical energy read

N =
∫ V0

0
ρ(β )n(β )dβ, Ẽ =

∫ V0

0
ρ(β )βn(β )dβ, (6)

1In the continuous limit we have
∑

0�px+py<G →∫ G
0 d px

∫ G−px

0 d py = ∫ V0
0 dβ ρ(β ), where the computation of

the density of states ρ(β ) = ∫ G
0 d px

∫ G−px

0 d pyδ(β − β0(px + py ))
gives Eq. (5).

where n(β ) stands for either the BE or the RJ distributions

nBE(β ) = 1

e
β−μ̂

T̃ − 1
, nRJ(β ) = T̃

β − μ̂
, (7)

with the shifted chemical potential μ̂ = μ − β0. In these ex-
pressions the continuous variable β ∈ [0,V0]. We can however
observe that a singularity of the BE and RJ distributions at
β = 0 can occur when μ̂ = 0. This means that the semiclas-
sical approximation needs to be updated in such a situation
[95]. The discrete sums involved in the number of particles
N and the energy Ẽ should then be decomposed in discrete
components supported on the fundamental mode and contin-
uous components that represent the contributions of the other
modes. This will give an updated version of Eq. (6); we are
going to study this situation in the next section.

The passage from discrete sums to continuous integrals
is also important to study the thermodynamic limit. In the
presence of a parabolic confining potential, the density of
photons is Nβ2

0 (in m−2) [95], so that the thermodynamic limit
is defined as N → ∞, β0 → 0, while keeping constant

Nβ2
0 = const, V0 = const. (8)

It was shown in Ref. [65] that RJ condensation occurs in
the thermodynamic limit in the presence of a 2D parabolic
potential. In addition, the experimental results of the transition
to condensation reported in Ref. [66] were found to be close
to the thermodynamic limit, despite the presence of finite-
size effects inherent to the real experiment. In the following
section we justify the approach by studying the convergence
to the (continuous) thermodynamic limit. We consider the
general case as well as the RJ and BE limits.

B. Condensate fraction: Convergence
to the thermodynamic limit

1. Beyond the thermodynamic limit

From the formal point of view, quantum BE condensation
[95] and classical RJ condensation [65,66] originate in the
singularity of the equilibrium distributions at μ̃ = β0. The
physical behavior goes as follows: By keeping constant the
number of photons N and by decreasing the temperature T̃ ,
the chemical potential μ̃ increases and tends toward the fun-
damental mode eigenvalue from below, μ̃ → β−

0 . This general
behavior is illustrated in Fig. 1, in which we report the chem-
ical potential vs the temperature obtained from the relation

N =
G∑
p

1

e(βp−μ̃)/T̃ − 1
. (9)

Each curve refers to fixed values of (N, G,V0), and then for
a given temperature T̃ , Eq. (9) is solved to get the corre-
sponding μ̃, which gives μ̃(T̃ ). In Fig. 1 the potential depth is
set equal to V0 = 181 346 m−1 for all curves. This particular
value is chosen because it corresponds to a commercially
available graded-index MMF with a rather large number of
mode groups G � 276 (β0 = 657 m−1). Then the different
curves reported in Fig. 1 with an increasing value of G cor-
respond to an increase of the system size, i.e., an increase of
the fiber radius, while keeping V0 = const.
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FIG. 1. Convergence to the thermodynamic limit for N/G2 = 1:
(a) chemical potential vs temperature, μ̃(T̃ ); (b) fugacity vs tem-
perature, z = e(μ̃−β0 )/T̃ ; and (c) condensate fraction vs temperature,
n0(T̃ )/N . The solid lines refer to the computation of the discrete
sums beyond the thermodynamic limit from Eqs. (9) and (10). By
increasing N and G [while keeping N/G2 = const and V0 = const;
see Eq. (14)], the system size increases and approaches the thermo-
dynamic limit [blue dashed lines, from Eqs. (11) and (13)], where the
curves (a) μ̃(T̃ ), (b) z(T̃ ), and (c) n0(T̃ )/N display a singular cusped
behavior at T̃ = T̃c [solution of Eq. (12)]. The intermediate regime
is considered with N/G2 = 1 (see Figs. 2 and 3 for N/G2 � 1 and
N/G2 	 1, respectively).

The important point to note in Fig. 1(a) is that, as the sys-
tem size increases and approaches the thermodynamic limit
(8), the chemical potential tends to reach the fundamental
mode eigenvalue at a specific critical temperature T̃c that
will be defined below. For completeness, we also report in
Fig. 1(b) the corresponding behavior of the fugacity, defined

by z = e(μ̃−β0 )/T̃ , which will be shown to play an important
role in the subsequent analysis.

Let us now analyze the behavior of the condensate frac-
tion. At variance with Eq. (7), the condensate amplitude
does not diverge beyond the thermodynamic limit, because
the chemical potential is smaller than the fundamental mode
eigenvalue μ̃ < β0 so that n0 = 1/(e(β0−μ̃)/T̃ − 1). Equiva-
lently, following the usual treatment of BE condensation [95],
the condensate fraction is computed by isolating n0, that is,
N = n0 + ∑G

p�=0 nBE
p , which immediately gives

n0

N
= 1 − 1

N

G∑
p�=0

1

e(βp−μ̃)/T̃ − 1
. (10)

The relation μ̃(T̃ ) obtained above from Eq. (9) can be sub-
stituted in Eq. (10) to get n0/N vs T̃ . The corresponding
curves of the condensate fraction vs temperature reported in
Fig. 1(c) evidence that the transition to condensation becomes
critical as the system approaches the thermodynamic limit, as
revealed by a singular behavior (discontinuous derivative) of
n0(T̃ )/N at T̃ = T̃c in the thermodynamic limit (blue dashed
line). Conversely, the singularity at the phase transition is
smoothed out by finite-size effects beyond the thermodynamic
limit [see Fig. 1(c)].

To complete our study, we also report in Figs. 2 and 3
the convergence to the thermodynamic limit of the chemi-
cal potential, the fugacity, and the condensate fraction, for
the regimes N/G2 � 1 and N/G2 	 1, which will be shown
to correspond to the RJ and BE regimes, respectively (see
Fig. 4).

2. Thermodynamic limit

Let us now focus the analysis of the transition to con-
densation in the thermodynamic limit. As discussed above
in Sec. III A, in this limit the discrete sum in Eq. (9) can be
converted into a continuous integral so that the number of
photons (6) reads

N = G2
∫ 1

0

x

z−1 exp
(V0

T̃
x
) − 1

dx, (11)

where we have introduced the change of variable x = β/V0

and we recall that z = e(μ̃−β0 )/T̃ . For a set of values (N, G,V0),
Eq. (11) provides the temperature dependence of the chemical
potential μ̃(T̃ ) and of the fugacity z(T̃ ) in the thermodynamic
limit [see Figs. 1(a) and 1(b) (blue dashed line)]. The key
observation is that, in this limit, the chemical potential ex-
actly reaches the fundamental mode eigenvalue μ̃ = β0, i.e.,
z = 1, at a nonvanishing critical temperature T̃c > 0, which is
therefore defined by

N

G2
=

∫ 1

0

x

exp
(

V0

T̃c
x
)

− 1
dx

=
(

T̃c

V0

)2(V0

T̃c
ln(1 − e−V0/T̃c ) − g2(e−V0/T̃c ) + π2

6

)
,

(12)
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FIG. 2. Convergence to the thermodynamic limit for N/G2 � 1:
(a) μ̃(T̃ ), (b) z(T̃ ), and (c) n0(T̃ )/N . The solid lines refer to the
computation of the discrete sums beyond the thermodynamic limit
from Eqs. (9) and (10). By increasing N and G [while keeping
N/G2 = const and V0 = const; see Eq. (14)], the system size in-
creases and approaches the thermodynamic limit [blue dashed lines,
from Eqs. (11) and (13)], where the curves (a) μ̃(T̃ ), (b) z(T̃ ), and (c)
n0(T̃ )/N display a singular cusped behavior at T̃ = T̃c [solution of
Eq. (12)]. The RJ regime is considered with N/G2 = 10 (see Fig. 4).

where gp(z) = 1
�(p)

∫ ∞
0 dx xp−1

z−1ex−1 = ∑∞
l=1

zl

l p is the Bose func-
tion, with the Gamma function �(p) = (p − 1)! [95].

As discussed above through Eq. (7), in the continuous
limit, the BE and RJ distributions exhibit a vanishing de-
nominator for β = 0 at μ̃ = β0 (or μ̂ = 0). The singularity is
treated by splitting the condensate and the thermal contribu-
tion [95]: N = n0 + ∫ V0

0 dβ ρ(β )/[exp(β/T̃ ) − 1] for T̃ � T̃c.

FIG. 3. Convergence to the thermodynamic limit for N/G2 	 1:
(a) μ̃(T̃ ), (b) z(T̃ ), and (c) n0(T̃ )/N . The solid lines refer to the
computation of the discrete sums beyond the thermodynamic limit
from Eqs. (9) and (10). By increasing N and G [while keeping
N/G2 = const and V0 = const; see Eq. (14)], the system size in-
creases and approaches the thermodynamic limit [blue dashed lines,
from Eqs. (11) and (13)], where the curves (a) μ̃(T̃ ), (b) z(T̃ ), and (c)
n0(T̃ )/N display a singular cusped behavior at T̃ = T̃c [solution of
Eq. (12)]. The BE regime is considered with N/G2 = 0.1 (see Fig. 4).

The condensate fraction can then be written in the form

n0

N
= 1 − G2

N

∫ 1

0

x

exp
(V0

T̃
x
) − 1

dx. (13)

Note that at T̃ = T̃c the condensate vanishes n0 = 0 and (13)
recovers Eq. (12). Actually, Eq. (12) determines the value of
the dimensionless parameter T̃c/V0 as a function of N/G2 [see
Fig. 4 (blue solid line)]. In practice, for a real experiment with
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FIG. 4. Critical temperature: T̃c/V0 vs N/G2. The blue solid line
corresponds to the exact general expression given in Eq. (12). The
green dashed line reports Eq. (17), which corresponds to the BE limit
that is valid for N/G2 	 1. The orange dashed line reports Eq. (18),
which corresponds to the RJ limit that is valid for N/G2 � 1. Note
the square-root scaling T̃c/V0 ∼ √

N/G2 for the BE case and the
linear scaling T̃c/V0 ∼ N/G2 for the RJ case.

finite-size effects, the values of N , G, and V0 are given. Note
however that the quantity

N/G2 = Nβ2
0/V 2

0 (14)

remains constant by increasing the system size up to the
thermodynamic limit [see Eq. (8)]. The convergence to the
thermodynamic limit of the condensate fraction is illustrated
in Fig. 1(c) for the intermediate regime with N/G2 = 1, as
well as in Figs. 2(c) and 3(c) for the RJ regime (N/G2 � 1)
and BE regime (N/G2 	 1), respectively. Note in particular
that in all regimes, the condensate fraction exhibits a singular
behavior at the critical temperature T̃c, which is smoothed out
by finite-size effects.

We remark that the convergence to the thermodynamic
limit by increasing the system size is faster in the RJ regime
than in the BE regime. Indeed, we will show below that in
the BE regime (N/G2 	 1), we have T̃c/V0 ∼

√
N/G2 [see

Eq. (17)]. Accordingly, in the BE regime the discrete sum (9)
can be approximated by an integral, with an error that scales
as β0/T̃c ∼ 1/

√
N . Conversely, in the RJ regime (N/G2 � 1)

we have T̃c/V0 ∼ N/G2 [see Eq. (18)], so that the discrete
sum (9) can be approximated by an integral, with an error
that scales as β0/T̃c ∼ G/N . Consequently, the error resulting
from approximating the discrete sum (9) by an integral is
much smaller in the RJ regime than in the BE regime, since
G/N =

√
G2/N/

√
N 	 1/

√
N .

In the following we consider in our plots the commer-
cially available graded-index MMF specified above through
Fig. 1, with the parameters G = 276, V0 = 181 346 m−1, and
β0 = 657 m−1 (numerical aperture equal to 0.29).

3. Uniform trapping potential (step-index MMF)

Let us discuss the case of step-index MMFs, which are
characterized by a homogeneous circular trapping poten-
tial, i.e., V (r) = 0 for |r| � R and V (r) = V0 for |r| > R,

with R the fiber core radius. For a uniform trapping po-
tential, the density of states in two dimensions is known
to be a constant that does not depend on β: ρ = k0A/(2π )
for β � V0 [108], where A = πR2 is the area of the fiber
core and we recall that k0 = 2πn0/λ. Because the density
of states is constant, the integrals in Eqs. (12) and (13) in-
volve

∫ 1
0 1/[exp(V0x/T̃ ) − 1]dx, which no longer converges

(the integrand is equivalent to 1/x at x = 0). Accordingly,
the transition to condensation for a homogeneous trapping
potential does not take place in the thermodynamic limit
for a positive critical temperature, i.e., it occurs at zero
temperature T̃c = 0.

Let us analyze this aspect in more detail. For a 2D ho-
mogeneous system, the thermodynamic limit refers to the
limits N → ∞ and A → ∞, while keeping constant the par-
ticle density N/A = const and V0 = const. Note that the fiber
core area is proportional to the number of modes, since M =∫ V0

0 ρdβ = k0AV0/(2π ), so that the thermodynamic limit can
be equivalently taken by letting N → ∞ and M → ∞, while
keeping N/M = const and V0 = const. Accordingly, we re-
port in Fig. 5 the condensate fraction vs temperature for a
homogeneous circular waveguide in the intermediate regime
(N/M = 1), the RJ regime (N/M = 10), and the BE regime
(N/M = 0.1). The condensate fraction n0/N is computed from
Eq. (10), which involves a discrete sum over the modes, and
it is thus valid beyond the thermodynamic limit.2 We remark
in Fig. 5 that the behaviors of the condensation curves are in
contrast with those discussed above through Figs. 1–3 for the
parabolic trapping potential (graded-index MMF): As the area
A of the system increases, the curves in Fig. 5 do not tend
to converge to a single-cusped curve at some positive critical
temperature T̃c > 0. The key observation in Fig. 5 is that, for a
given temperature T̃ , the condensate fraction n0/N decreases
to zero as the size of the system increases. In other words, the
observation of a macroscopic population of the fundamental
mode is a manifestation of finite-size effects, which tends
to disappear as the system size increases. In this way, the
photon gas exhibits a process of thermalization to equilibrium,
but not condensation. It is indeed well known that there is
no phase transition to condensation in a 2D homogeneous
trapping potential, neither for RJ waves [65] nor BE particles
[95]. For this reason, we do not consider in the following the
case of step-index MMFs and instead focus our analysis on
graded-index MMFs.

C. Condensate fraction: BE limit

The expression of the condensate fraction given in Eq. (13)
is exact and valid in general. Let us now consider the BE
and RJ condensation limits. As we will see, the BE limit is
obtained when the total number of photons is much smaller

2The discrete sums over the modes in Eq. (10) are carried out
by considering the propagation constants associated with a circular
homogeneous trapping potential βl,s = x2

l,s/(2k0R2), with xl,s the sth
zero of the Bessel function of the first kind Jl (x). For concrete-
ness, in the plot of Fig. 5 we have considered the same value of
V0 = 181 346 m−1 that is considered in Figs. 1–3 for the parabolic
potential.
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FIG. 5. Thermalization without condensation for a uniform trap-
ping potential (step-index MMF). The condensate fraction n0/N is
plotted vs T̃ /V0 computed from Eq. (10) beyond the thermodynamic
limit, in (a) the intermediate regime N/M = 1, (b) the RJ regime
N/M = 10, and (c) the BE regime N/M = 0.1. At variance with
Figs. 1–3, by increasing the system size, i.e., by increasing N and
M while keeping N/M = const and V0 = const, the curves do not
converge to a single-cusped curve, because in the thermodynamic
limit the critical temperature for condensation vanishes T̃c = 0. Note
that, for a given temperature T̃ > 0, the condensate amplitude de-
creases to zero in the thermodynamic limit n0(T̃ ) → 0. The photon
gas exhibits thermalization to equilibrium, but there is no phase
transition to condensation in the thermodynamic limit.

than the number of fiber modes. Indeed, from (12) we have

N/G2 = (T̃c/V0)2
∫ V0/T̃c

0 x/[exp(x) − 1]dx. If N/G2 	 1, then
T̃c/V0 	 1 and therefore N/G2 � (T̃c/V0)2

∫ ∞
0 x/[exp(x) −

1]dx (because the integral is convergent),

N = G2
∫ ∞

0

x

exp
(

V0

T̃c
x
)

− 1
dx = G2ζ (2)

(
T̃c

V0

)2

, (15)

where ζ (p) = gp(1) = ∑∞
l=1 1/l p is the Riemann ζ function.

Then, for N 	 M, Eq. (13) recovers the expression of the BE
condensate fraction without a frequency cutoff, that is,

nBE
0

N
= 1 −

(
T̃

T̃c

)2

, (16)

with the critical temperature T̃c = β0
√

N/ζ (2) [95]. Note that
this expression can also be written

T̃c/V0 =
√

N/G2/ζ (2). (17)

This expression is reported in Fig. 4 (see the green dashed
line).

D. Condensate fraction: RJ limit

The RJ limit is obtained in the opposite case, whenever
the total number of photons is much larger than the number
of guided modes. Indeed, if N � G2, then we have T̃c � V0

by (12) and we can expand exp(V0

T̃c
x) � 1 + V0x/T̃c so that

Eq. (12) takes the form

T̃c/V0 = N/G2. (18)

The RJ regime then corresponds to the case N/M � T̃c/V0 �
1, where M � G2/2 is the number of fiber modes. Equa-
tion (18) is reported in Fig. 4 (see the orange dashed line). The
critical temperature for RJ condensation is then T̃c = NV0/G2

and the condensate fraction takes the form

nRJ
0

N
= 1 − T̃

T̃c
. (19)

Referring back to the thermodynamic limit discussed above
through Eq. (8), it becomes apparent that the transition
to condensation takes place for a nonvanishing posi-
tive critical temperature in the thermodynamic limit, i.e.,
T̃c = Nβ2

0/V0 > 0.

E. Discussion

We report in Fig. 6(a) the condensate fraction vs temper-
ature in the BE limit N/G2 	 1, which is characterized by
a quadratic behavior, and in the RJ limit N/G2 � 1, where
it exhibits a linear behavior. The condensate fraction in the
intermediate case for N/G2 = 1 is also reported from the exact
general expression given by Eq. (13), which exhibits a hybrid
quadratic-linear behavior, at small and at high temperatures,
respectively.

To summarize, the optical beam thermalizes in the classical
RJ condensation regime for T̃c/V0 � 1, and quantum effects
start to play a role when T̃c becomes of the order of V0. More
precisely, for T̃c = V0 we have

N = G2
∫ 1

0

x

exp(x) − 1
dx � 0.777 × G2 � M,

and quantum condensation effects arise when the photon num-
ber N decreases and approaches the number of modes M. This
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FIG. 6. Condensate fraction: (a) n0/N vs T̃ /T̃c obtained from
Eq. (16) in the BE limit (green dashed line) and from Eq. (19) in
the RJ limit (orange dashed line). In the intermediate case (blue
solid line), it is obtained from the exact general expression (13)
with N/G2 = 1. Note the hybrid behavior, which is almost quadratic
at low temperatures T̃ /T̃c 	 1 and almost linear near the critical
temperature T̃ /T̃c � 1. (b) Corresponding condensate fraction as a
function of the energy: n0/N vs Ẽ/Ẽc is obtained from Eq. (21) in
the BE limit, from Eq. (22) in the RJ limit, and in the intermediate
case with N/G2 = 1. Note that, for clarity, the temperature in (a) has
been scaled with respect to the different critical temperatures T̃c in the
BE regime [see Eq. (17)], in the RJ regime [see Eq. (18)], and in the
general case [from Eq. (12)], respectively; the same has been done in
(b) with the critical energies Ẽc in the BE regime, in the RJ regime,
and in the general case. For completeness, we report in the insets the
same curves by scaling the temperature (energy) with respect to the
same critical temperature T̃ ∗

c (energy Ẽ∗
c ) corresponding to N/G2 = 1

(note the logarithmic scale on the horizontal axis).

is illustrated in Fig. 4, which reports T̃c/V0 vs N/G2 for the
exact general case [Eq. (12)], while the BE limit [Eq. (17)]
and the RJ limit [Eq. (18)] provide the corresponding approx-
imations for N/G2 	 1 and N/G2 � 1, respectively.

The above picture is consistent with the fact that the RJ
distribution closely approximates the exact BE distribution for
highly occupied modes. The BE and RJ distributions are given
in Eq. (7). We report in Fig. 7 the BE and RJ distributions
at T̃ = T̃c, where the value of T̃c has been determined by
solving the exact relation (12) for a given value of N/G2. For
N/G2 � 1, the RJ distribution is a good approximation of the

FIG. 7. Equilibrium distribution: BE and RJ equilibrium distri-
butions from Eqs. (7) for N/G2 = 100 (upper curves) and N/G2 =
0.1 (lower curves). In the regime N/G2 � 1, the RJ distribution
nRJ(β ) (green dotted line) is a good approximation of the BE distribu-
tion nBE(β ) (orange solid line). For N/G2 = 0.1 (lower curves), the
agreement is limited to highly occupied low-order modes nBE(β ) �
nRJ(β ) � 1, whereas a significant discrepancy between the BE
(green solid line) and RJ (orange dotted line) distributions emerges
for weakly occupied higher-order modes (see the text for details).

BE distribution. Conversely, for N/G2 = 0.1 the good agree-
ment is limited to highly occupied low-order modes, whereas
a deviation between the BE and RJ distributions emerges for
weakly populated higher-order modes.

IV. CONDENSATE FRACTION VS ENERGY

As previously discussed (end of Sec. II), in the free-
propagation geometry considered in MMFs experiments,
thermalization of the beam of light occurs without any ther-
mostat. By keeping N constant, the control parameter of the
transition to condensation is not the temperature, but the
energy Ẽ of the speckled beam launched in the MMF (see
[66]). Considering the condensed regime (μ̃ = β0), the kinetic
energy defined in Sec. II then reads

Ẽ = V0G2
∫ 1

0

x2

exp
(V0

T̃
x
) − 1

dx, (20)

and the corresponding critical value of the energy to con-
densation Ẽc is obtained by setting T̃ = T̃c in this equation.
Note that the energy in (20) neglects the contribution from
the fundamental mode since, as discussed in Sec. III A, in the
continuous approximation Ẽ � Ẽ0 = Nβ0.

Following the analysis in the preceding section, we obtain,
in the BE regime,

nBE
0

N
= 1 −

(
Ẽ

Ẽc

)2/3

, (21)

with Ẽc = 2ζ (3)T̃ 3
c /β2

0 = 2ζ (3)N3/2β0/ζ (2)3/2. In the RJ
regime we obtain

nRJ
0

N
= 1 − Ẽ

Ẽc
, (22)
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FIG. 8. Specific heat for positive temperatures. (a) Plot of C̃V (T̃ )
for N/G2 = 0.01. The blue solid line reports the exact general ex-
pression [Eq. (23) for T̃ � T̃c and Eq. (27) for T̃ > T̃c]. The green
dashed line reports the BE limit [Eq. (24) for T̃ � T̃c and Eq. (32)
for T̃ > T̃c]. Note the quadratic behavior of C̃V (T̃ ) at small tempera-
tures. For T̃ /T̃c � 1, the BE case tends to the classical particle limit
C̃BE

V = 2N (energy equipartition among particles), whereas C̃V → 0
for the general case because of the finite number of modes of the
waveguide. (b) Plot of C̃V (T̃ ) for N/G2 = 100. The blue solid line
reports the general expression [Eq. (23) for T̃ � T̃c and Eq. (27)
for T̃ > T̃c]. The orange dashed line reports the RJ case [Eq. (25)
for T̃ � T̃c and Eq. (35) for T̃ > T̃c]. For T̃ � T̃c, C̃RJ

V = G2/2 as a
consequence of the classical wave limit (energy equipartition among
modes). (c) Plot of C̃V (T̃ ) in the intermediate regime N/G2 = 1 for
the exact general expression [Eqs. (23) and (27)]. The specific heat
exhibits hybrid features inherited from the BE and RJ cases.

with Ẽc = NV0/2. The linear behavior of the transition to
condensation of classical waves was reported experimentally
in Ref. [66]. Note in this respect that finite-size effects make

the transition to condensation smoother, a feature that was
discussed in Ref. [66]. For clarity, we report in Fig. 6(b) the
condensate fractions vs energy for the BE and RJ regimes, as
well as the intermediate regime for N/G2 = 1.

V. SPECIFIC HEAT

The specific heat is known as an important quantity for
characterizing the phase transition of BE condensation [95].
On the other hand, the properties of the specific heat across the
condensation of RJ waves have been discussed in Ref. [66],
while optical calorimetric measurements have been reported
in MMFs through the analysis of heat exchanges in Ref. [70].

As discussed in the Introduction, the specific heat vs
temperature has noteworthy distinguished properties for a
classical RJ system and a quantum BE system. In this sec-
tion we derive a generalized expression of the specific heat
that encompasses both the RJ and BE cases and that recov-
ers the corresponding expressions in their respective limits.
The specific heat is defined by C̃V = (dẼ/dT̃ )N,M , where the
number of modes M plays the role of the system volume.
Note that here we have the relation C̃V = CV /kB, where CV =
(dE/dT )N,V is the standard definition of the specific heat.

A. Specific heat in the condensed regime T̃ � T̃c

1. General case

In the condensed regime T̃ � T̃c, we set μ̃ = β0, and by
taking the derivative of the energy in Eq. (20), we obtain the
specific heat

C̃V =
(

V0

T̃

)2

G2
∫ 1

0

x3 exp(V0x/T̃ )

[exp(V0x/T̃ ) − 1]2
dx. (23)

This expression is general and it is valid for any value of
N/G2. We now discuss the BE and RJ limits.

2. BE regime

In the BE regime N 	 G2, we have V0/T̃c � 1. We also
have V0/T̃ � 1 since T̃ � T̃c and we find

C̃BE
V = 6N

ζ (3)

ζ (2)

(
T̃

T̃c

)2

. (24)

This quadratic behavior of the specific heat recovers the ex-
pression of a 2D harmonically trapped Bose gas [95]. In
particular, C̃BE

V → 0 as T̃ → 0, which is a consequence of the
quantum notion of frozen degrees of freedom [see Fig. 8(a)].

3. RJ regime

In the RJ regime N � G2, we have V0/T̃c 	 1. As long as
we have V0/T̃ 	 1, we get, as in [66],

C̃RJ
V = G2/2 � M. (25)

Then we recover the result that, according to the RJ statistics,
C̃RJ

V → G2/2 for T̃ � T̃c, as illustrated in Fig. 8(b). This be-
havior is a consequence of the theorem of energy equipartition
among the modes inherent to classical statistical mechanics.
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FIG. 9. Quantum depletion of the specific heat for N/G2 � 1.
The specific heat C̃V is plotted vs Ẽ/Ẽ0 [from Eq. (23)] for N/G2 =
10 (blue line). Also plotted is the corresponding condensate fraction
n0/N vs Ẽ/Ẽ0 (orange line). Note the depletion of C̃V → 0 for Ẽ �
30Ẽ0, i.e., over approximately 30 groups of modes. This manifesta-
tion of quantum effects for N/G2 � 1 is due to the strong population
of the fundamental mode (more than approximately 80%), which
rarefies the population of the other modes and thus invalidates the
RJ approximation.

4. Quantum depletion of the specific heat

It is interesting to note that quantum effects can man-
ifest even for N � G2. Indeed, when T̃ becomes small
enough so that V0/T̃ ∼ 1, then we need to use Eq. (23).
When T̃ is so small that V0/T̃ � 1, then we have
C̃BE

V = 6ζ (3)T̃ 2/β2
0 = 6Nζ (3)(T̃ /T̃c)2(N/G2). In this regime

Ẽ/Ẽ0 = 2ζ (3)(T̃ /V0)3(G2/N )G, where Ẽ0 = Nβ0 denotes
the lowest energy when all particles populate the fundamental
mode. Accordingly, an appreciable deviation from the RJ
behavior occurs for G � N/G2 � 1. This is illustrated in
Fig. 9, which evidences the quantum depletion of the spe-
cific heat over a large number (approximately 30) of groups
of modes; note that C̃V deviates from the RJ value G2/2
for Ẽ � 30Ẽ0. Such unexpected manifestation of quantum
effects for N � G2 is due to the strong condensate fraction
for Ẽ � 30Ẽ0 (typically larger than 80% in Fig. 9), so that
the RJ condition (N − n0)/G2 � 1 is no longer verified. In
other terms, the population of the modes gets rarefied and the
condition np�=0 � 1 is no longer verified, which invalidates
the RJ statistics.

B. Specific heat in the normal regime T̃ > T̃c

1. General case

Above the transition to condensation T̃ > T̃c, the chem-
ical potential verifies μ̃ < β0, as discussed above through
Fig. 1(a). The expression of the energy takes the general form

Ẽ = V0G2
∫ 1

0

x2

z−1 exp
(V0

T̃
x
) − 1

dx, (26)

where we recall that z = exp(μ̂/T̃ ) is the fugacity, with μ̂ =
μ̃ − β0, which is a function of the temperature μ̂(T̃ ). Since
T̃ > T̃c, we have z < 1 [see Fig. 1(b)].

By computing the derivative of the energy (26) with respect
to the temperature, we obtain

C̃V (T̃ ) = V0

T̃
G2

∫ 1

0

x2z−1 exp
(V0

T̃
x
)

[
z−1 exp

(V0

T̃
x
) − 1

]2

×
(

V0

T̃
x + T̃

z

dz

dT̃

)
dx. (27)

In this expression, we need the function z(T̃ ). As discussed
in Sec. III B, this function is obtained by numerically solving
Eq. (11) for V0 and N/G2 given. Typical examples of z(T̃ ) are
reported in Figs. 1(b), 2(b), and 3(b) in the RJ, the BE, and the
intermediate regimes, which show that z reaches 1 at T̃ = T̃c,
as expected. Furthermore, the specific heat is computed by
keeping constant N , so that dN/dT̃ = 0 gives

T̃

z

dz

dT̃
= −V0

T̃

∫ 1
0

x2 exp(V0x/T̃ )
[z−1 exp(V0x/T̃ )−1]2 dx∫ 1

0
x exp(V0x/T̃ )

[z−1 exp(V0x/T̃ )−1]2 dx
. (28)

Once z(T̃ ) is obtained by solving (11), it can be substituted
in Eq. (28). The corresponding expression of T̃

z
dz
dT̃

is then
substituted in Eq. (27) to get C̃V (T̃ ). We report in Figs. 8(a)
and 8(b) the specific heat CV (T̃ ) in the BE and RJ regimes,
respectively, as well as in the intermediate regime N/G2 = 1
in Fig. 8(c), where it exhibits properties reminiscent of both
the BE and RJ regimes, as we will now discuss in more detail.

2. BE regime

In the BE regime we have V0/T̃c � 1. For T̃ > T̃c so that
V0/T̃ � 1, we get

Ẽ = V0G2
∫ ∞

0

x2

z−1 exp
(V0

T̃
x
) − 1

dx = 2
T̃ 3

β2
0

g3(z), (29)

where gp(z) = 1
�(p)

∫ ∞
0 dx xp−1

z−1ex−1 = ∑∞
l=1

zl

l p is the Bose func-

tion [95]. By the property g′
p(z) = z−1gp−1(z), we find

C̃BE
V = T̃ 2

β2
0

(
6g3(z) + 2

T̃

z

dz

dT̃
g2(z)

)
. (30)

In the BE regime Eqs. (11) and (28) can be simplified by
letting the upper bounds of the integrals go to infinity,

N = T̃ 2

β2
0

g2(z),
T̃

z

dz

dT̃
= −2

g2(z)

g1(z)
, (31)

and we obtain

C̃BE
V = 2N

(
3

g3(z)

g2(z)
− 2

g2(z)

g1(z)

)
, (32)

where z can be determined from T̃ by g2(z) = (T̃c/T̃ )2ζ (2).
As discussed above through Figs. 1(a) and 1(b), by de-

creasing the temperature T̃ → T̃ +
c , the chemical potential

increases μ̃ → β−
0 and the fugacity increases to one z → 1−.

Recalling that g1(z) = − ln(1 − z), then ζ (1) = ∞, which
gives C̃BE

V = 6Nζ (3)/ζ (2). On the other hand, according to
Eq. (24), for T̃ → T̃ −

c , C̃BE
V = 6Nζ (3)/ζ (2). Then the specific

heat is continuous at the transition to condensation, which
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is in contrast with the case of a three-dimensional parabolic
potential, where the specific heat is known to exhibit a dis-
continuity [95]. Note however that the specific heat exhibits a
pronounced cusp at T̃c [see Fig. 8(a)].

For T̃ � T̃c, z → 0 and gp(z) � z, so that C̃BE
V = 2N [see

Fig. 8(a)]. Recalling that C̃V = CV /kB, we obtain CBE
V /NkB =

2. Indeed, at high temperatures, the Bose gas behaves as a
classical ideal gas, and the equipartition theorem of classi-
cal statistical mechanics stipulates that each quadratic degree
of freedom contributes kBT/2 to the average value of the
energy. Here the quadratic contributions of the kinetic and
potential energies add to each other in two dimensions for
N particles; hence E = 2NkBT . Note that this result, which
is inherent to the classical limit of particles (Boltzmann equi-
librium distribution), differs from the classical limit of waves
(RJ equilibrium distribution), discussed above through the RJ
distribution [see Eq. (25)].

The energy equipartition, as well as the fact that the spe-
cific heat takes a constant value C̃BE

V = 2N for T̃ � T̃c, is
in marked contrast with the decay C̃BE

V → 0 evidenced in
Fig. 8(a) for the waveguide configuration (blue solid line).
We derive in the Appendix the high-temperature asymptotic
behavior of the fugacity and the specific heat for the BE case
in the classical (Boltzmann) gas limit in the presence of a
frequency cutoff:

z � 2N

G2
+ 4NV0

3G2T̃
, (33)

C̃BE
V � NV 2

0

18T̃ 2
. (34)

The quadratic algebraic decay of the specific heat for high
temperatures in Eq. (34) is confirmed by the plot of the exact
general expression of C̃BE

V (T̃ ) given in Eq. (27), as evidenced
in Fig. 10(a).

3. RJ regime

In the RJ regime we have V0/T̃c 	 1. For all T̃ > T̃c we
have V0/T̃ 	 1. Considering the RJ limit of Eqs. (11) and
(27), we obtain, after a lengthy calculation,

C̃RJ
V (μ̃)

G2/2
= 1 + 2{1 + (μ̂/V0) ln[(V0 − μ̂)/(−μ̂)]}2

V0/(V0 − μ̂) − ln[(V0 − μ̂)/(−μ̂)]
, (35)

where we recall that μ̂ = μ̃ − β0. This expression of the
specific heat recovers the expression obtained in Ref. [66]
[see Eq. (15) of the Supplementary Material therein], with
the number of modes M � G2/2. To obtain the specific heat
as a function of the temperature C̃RJ

V (T̃ ), we make use of
N = T̃

∑G
p 1/(βp − μ), which reads, in the continuous limit,

T̃ (μ̂)

Ẽ0
= 1

G + (μ̂/β0) ln(1 − V0/μ̂)
, (36)

where we recall that Ẽ0 = Nβ0. The parametric plot of
Eqs. (35) and (36) with respect to μ̂ gives C̃RJ

V (T̃ ) [see
Fig. 8(b)]. Note in Fig. 8(b) that CRJ

V exhibits a cusp at T̃ = T̃c:

lim
T̃ → T̃ +

c

∂C̃RJ
V

∂T̃
=−∞. (37)

FIG. 10. High-temperature behavior of C̃V ∼ 1/T̃ 2. Because of
the finite number of modes inherent to the guided configuration of
the fluid of light, the specific heat tends to zero at high tempera-
tures. The blue solid line reports C̃V /N vs T̃ /V0 from the general
expression in Eq. (27). (a) For the classical (Boltzmann) particle limit
N/G2 = 0.01 and (b) for the classical RJ wave limit N/G2 = 100.
The orange dashed line reports the corresponding theoretical predic-
tions: (a) Eq. (34) and (b) Eq. (38). The log-log plot evidences the
predicted power-law decay C̃V ∼ 1/T̃ 2.

Let us now consider the specific heat at high temperatures.
The expansion of the general expression (35) provides the
following asymptotic behavior for T̃ � T̃c:

C̃RJ
V � 1

9

N2β2
0

T̃ 2
. (38)

This algebraic decay of the specific heat for high tem-
peratures is confirmed by the behavior of the general
expression of C̃V (T̃ ) given in Eq. (27), as illustrated in
Fig. 10(a). It is interesting to note that this algebraic scaling
is the same as that found above in the regime N/G2 	 1
[see Eq. (34)].

We conclude this section by recalling that the decay to zero
of the specific heat at high temperatures, C̃V → 0 for T̃ → ∞,
is a consequence of the finite number of modes inherent to the
optical waveguide configuration. This aspect will be discussed
in more detail in the forthcoming section devoted to negative
temperatures.
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FIG. 11. Fugacity w = e(μ̃−V0 )/T̃ at negative temperatures
T̃ < 0 obtained by solving Eq. (39). Note that w → 1− only at
zero temperature. The inverted condensation of particles in the
highest-energy level does not occur in the thermodynamic limit
[compare to Fig. 1(b), where z → 1− at T̃ = T̃c > 0, as expected
from the phase transition to condensation for positive temperatures].

VI. NEGATIVE TEMPERATURES
FOR THE BE STATISTICS

The physical idea of negative temperatures was originally
conceived in the seminal works by Onsager [96] and Ramsey
[97]. In recent decades, many works have been devoted to
the theoretical understanding of these unusual equilibrium
states. Negative temperatures are now broadly accepted, in
line with different experimental observations [98,109–113].
As a matter of fact, negative temperatures were originally ob-
served experimentally in nuclear spin systems [114] and more
recently with cold atoms in optical lattices [115]. Further-
more, negative temperatures originally predicted by Onsager
in the statistical description of point vortices [96] have been
recently observed in 2D quantum superfluids [116,117]. More
recently, negative temperatures have been predicted for clas-
sical multimode optical wave systems in the seminal work
[78] and subsequently observed in these systems with light
waves in Refs. [99,118]. In particular, Ref. [99] reported the
observation of light thermalization to negative-temperature RJ
states in the free propagation of speckled beams in MMFs.
In the following we extend the existence of such negative-
temperature equilibria to the quantum regime (see Fig. 12).

A. Energy and entropy for negative temperatures

We recall that negative temperatures owe their existence
to the finite number of modes supported by the fiber. As a
consequence, the energy spectrum is bounded from above
Ẽ � Emax = GẼ0, where Emax is the highest value of the en-
ergy, obtained when all photons populate the highest-energy
level. Such a macroscopic population of the highest-energy
level may suggest an inverted condensation to occur at neg-
ative temperatures. To analyze this aspect, we first note that
for T̃ < 0, the condition nBE

p � 0 imposes μ̃ � V0 [see the
horizontal dashed line in Fig. 12(b)]. Accordingly, the number
of photons can be appropriately written for negative tempera-

FIG. 12. Negative temperatures. (a) Entropy S̃ vs energy. The
vertical dashed line at Ẽ = Ẽ∗ separates positive and negative tem-
peratures. The upper panels report equilibrium distributions for
positive temperatures T̃ > 0 (Ẽ < Ẽ∗) and negative temperatures
T̃ < 0 (Ẽ > Ẽ∗) featured by an inverted population, while for
1/T̃ → 0 (Ẽ = Ẽ∗) the equilibrium distribution is homogeneous.
(b) Chemical potential μ̃/β0 − 1 vs energy. Note the asymptotic
behavior μ̃ → β−

0 for Ẽ → 0 (horizontal dashed line) correspond-
ing to condensation in the lowest-energy level (fundamental mode)
and μ̃ → V +

0 for Ẽ → Ẽmax = GẼ0 corresponding to a macroscopic
population of the highest-energy level (highest-order mode group).
(c) Temperature vs energy. (d) Plot of C̃V vs Ẽ/Ẽ0 for N/G2 = 1.
Note that C̃V → 0 for T̃ → 0+, i.e., Ẽ → 0, and for T̃ → 0−, i.e.,
Ẽ → Ẽmax. Here C̃V exhibits a cusp at the transition to condensation
T̃ = T̃c > 0. However, the cusp gets smoothed at T̃ < 0 [see the
right arrow in (d)] because the inverted condensation leading to the
macroscopic population of the highest-energy level does not occur in
the thermodynamic limit.

063530-13



L. ZANAGLIA et al. PHYSICAL REVIEW A 110, 063530 (2024)

tures in the form

N

G2
=

∫ 1

0

1 − x

w−1 exp
(

V0

−T̃
x
)

− 1
dx, (39)

where we have introduced an analogous of the fugacity for
negative temperatures

0 < w = e(μ̃−V0 )/T̃ � 1. (40)

Indeed, in analogy with positive temperatures where z → 1−
for T̃ → 0+, for negative temperatures we have w → 1− for
T̃ → 0−, which leads to a macroscopic population of the
highest mode group at the energy level Ẽmax. However, at
variance with BE condensation in the fundamental mode
for T̃ > 0, negative-temperature condensation in the highest-
energy level does not occur in the thermodynamic limit
because the integral

N

G2
=

∫ 1

0

1 − x

exp
(

V0

−T̃c
x
)

− 1
dx (41)

does not converge for x = 0. This means that μ̃ does not
reach V0 for a nonvanishing critical temperature T̃c < 0. This
is illustrated in Fig. 11(b), which shows that w → 1 only at
zero temperature.

The expression of the beam energy is obtained, in a similar
way, as

Ẽ

Ẽ0
= G3

N

∫ 1

0

(1 − x)2

w−1 exp
(

V0

−T̃
x
)

− 1
dx. (42)

For a given value of N/G2, Eq. (39) can be solved to determine
the function w(T̃ ), which can be substituted in (42) to get
Ẽ (T̃ ) [see Fig. 12(c)].

Let us now analyze the evolution of the entropy with the
energy, where we recall the basic definition of the tempera-
ture 1/T = (∂S/∂E )M,N . The entropy is given by S̃ = S/kB =∑G

p (nBE
p + 1) ln(nBE

p + 1) − nBE
p ln(nBE

p ) [95], which can also
be written in the form

S̃ = 1

T̃

G∑
p

βp − μ̃

e(βp−μ̃)/T̃ − 1
−

G∑
p

ln(1 − e(μ̃−βp)/T̃ ).

By taking the continuous limit, we obtain the expression of
the entropy

S̃ = G2
∫ 1

0

(1 − x)[V0x/(−T̃ ) − ln(w)]

w−1 exp
(V0x

−T̃

) − 1
dx

− G2
∫ 1

0
(1 − x) ln[1 − w exp(V0x/T̃ )]dx. (43)

The evolution of the entropy with the energy is reported
in Fig. 12(a). Starting at minimum energy where only the
fundamental mode is populated, an increase in energy leads to
an occupation of a larger number of fiber modes and therefore
an increase of entropy. As the temperature approaches infin-
ity, all fiber modes become equally populated (see the upper
panels in Fig. 12). This refers to the most disordered state
where the entropy reaches a maximum for nBE

p = n∗ so that
N = n∗G2/2 and Ẽ∗ = Ẽ0(1 + 2G/3). Negative-temperature

equilibrium states occur for E > E∗, where the entropy de-
creases by increasing the energy. In this case, higher-order
modes are more populated than low-order modes, which leads
to an inverted modal population (see the upper panels of
Fig. 12).

B. Heat capacity for negative temperatures

The specific heat for negative temperatures is obtained by
following a procedure similar to that for positive temperatures.
We obtain

C̃V = V0

T̃
G2

∫ 1

0

(1 − x)2w−1 exp
(

V0

−T̃
x
)

[
w−1 exp

(
V0

−T̃
x
)

− 1
]2

×
(

V0

−T̃
x + T̃

w

dw

dT̃

)
dx. (44)

The parametric plot of C̃V in Eq. (44) and Ẽ in Eq. (42) with
respect to the temperature provides C̃V vs Ẽ/Ẽ0, which is
reported in Fig. 12(d).

We have already discussed in detail the properties of the
specific heat for positive temperatures through Fig. 8. Near
the transition to negative temperatures, we note that C̃V → 0
for Ẽ → Ẽ∗ [99]. This is because the temperature diverges to
infinity T̃ → ±∞ when Ẽ → Ẽ∓

∗ , so that a variation of T̃
does not significantly affect Ẽ , which entails C̃V → 0 near
Ẽ∗. This means that the equilibrium is not constrained by
the conservation of the energy (the Lagrange multiplier 1/T̃
is zero) but solely by the conservation of N , which merely
explains the homogeneous nature of the modal distribution for
Ẽ = Ẽ∗ in Fig. 12 (upper panels) (see Ref. [119]).

Next we note that the specific heat tends to zero for neg-
ative temperatures when the highest-energy level becomes
macroscopically populated, C̃V → 0 for T̃ → 0−. This behav-
ior is reminiscent of the quantum property of frozen degrees
of freedom, in a way similar to positive temperatures when
the fundamental mode becomes macroscopically populated,
C̃V → 0 for T̃ → 0+. Note however a fundamental difference
between positive and negative temperatures: For positive tem-
peratures the specific heat exhibits a cusp at the critical energy
Ẽc (or temperature T̃c in Fig. 8) of the transition to condensa-
tion. In contrast, for negative temperatures, the cusp of the
specific heat is smoothed out [see the arrow in Fig. 12(d)].
This crucial difference is due to the fact that the transition
to condensation is a genuine phase transition for positive
temperatures, whereas for negative temperatures there is no
phase transition, as discussed above through Eq. (41). In other
words, the cusp (smooth) behavior of the specific heat for
positive (negative) temperatures reflects the critical (regular)
nature of the transition toward a macroscopic population of
the lowest- (highest-)energy level.

VII. DISCUSSION AND CONCLUSION

We have clarified the links between the effect of RJ
condensation recently observed in MMFs and the well-
documented equilibrium properties of the quantum BE
condensation. By introducing a frequency cutoff inherent to
the guided propagation of a beam of light, we derived gener-
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alized expressions of the condensate fraction and the specific
heat, which include the previously known RJ and BE limits
as particular cases. In this way, we described the crossover
between classical RJ waves and quantum BE particles. In par-
ticular, we reconciled the quantum property of frozen degrees
of freedom, characterized by a vanishing specific heat at zero
temperatures (CV → 0 as T → 0), with the classical RJ wave
limit exhibiting constant specific heat (C̃V = CV /kB → M for
T 	 Tc). We then showed that the quantum depletion of the
specific heat at low temperatures can also occur in the sup-
posedly classical regime (N � M) in the presence of a strong
condensate (see Fig. 9). Our analysis also distinguishes the
classical RJ wave limit characterized by an energy equiparti-
tion among the modes at low temperatures from the classical
particle limit at high temperatures that is characterized by
an energy equipartition among the particles. In addition, we
showed that the specific heat exhibits a universal algebraic
decay law CV ∼ 1/T 2 for T → ∞ for both the classical par-
ticle (Boltzmann) limit (N 	 M) and the classical RJ wave
limit (N � M) (see Fig. 10). Furthermore, the analysis of
the specific heat at negative temperatures exhibits distinctive
properties when compared with the case of positive temper-
atures [see Fig. 12(d)]. In particular, the cusp of the specific
heat characterizing the phase transition to condensation for
positive critical temperature (Tc > 0) is smoothed out at neg-
ative temperatures, reflecting the noncritical nature of the
transition to a macroscopic population of the highest-energy
level.

We recall that, in our study, we considered the case of
a parabolic trapping potential. The parabolic potential is a
significant representative example, because it corresponds
to the experiments in MMFs where RJ condensation was
observed [5,66–68]. Our analysis can be extended to other
forms of potentials. The most natural one could be the ho-
mogeneous trapping potential, corresponding to the so-called
step-index MMFs. However, the density of states is constant
ρ(β ) = const for a homogeneous potential, so that neither
RJ condensation nor BE condensation can take place in the
thermodynamic limit in two dimensions, i.e., the macroscopic
population of the fundamental mode is not a consequence of
a phase transition. For this reason, step-index MMFs with a
uniform trapping potential were not of particular interest for
our study.

We have shown that, in general, when the number of pho-
tons greatly exceeds the number of available modes (N � M),
the condensation properties are described by the classical RJ
distribution of optical waves, while quantum condensation ef-
fects start to play a role when the number of photons decreases
and approaches the number of modes. This is also supported
by the experiments realized in MMFs that have reported the
observation of RJ condensation [66–68]. Indeed, the number
of photons involved in the experiments is related to the optical
power P by N/τ � P/h̄ω0, where ω0 is the central frequency
of the quasimonochromatic laser beam. When long (typically
nanosecond) optical pulses are launched in the fiber, the time
duration τ can be reasonably chosen to be of the order of the
effective time duration over which the photons can interact
with each other throughout their propagation in the fiber,
τ � L/(vg,max − vg,min), where vg,max (vg,min) are the group ve-
locities of the highest (lowest) mode and L is the fiber length.

The RJ thermalization and condensation were demonstrated in
[66] with P = 7 kW at the laser wavelength λ = 1.06 µm and
a MMF of L = 12 m supporting M � 120 modes (G � 15),
which gives τ � 2 ps, and N ∼ 1011 photons. The experiment
is thus clearly in the RJ regime, as the number of photons N far
outweighs the number of modes M. Note that N/M is exceed-
ingly large, so that the conclusion would remain unchanged
by considering different effective timescales τ . This indicates
that the investigation of photon condensation, as described
by the genuine quantum BE distribution, should require a
different experimental setup, with a larger number of modes or
a smaller number of photons, and larger nonlinear interaction
coefficients, so as to increase the rate of thermalization to
equilibrium.

On the other hand, it has been pointed out that, for
higher-order modes, the output mode power distribution that
characterizes the beam self-cleaning experiments of [67,68]
can be properly fitted by the BE law, see Refs. [90,91]
(supplementary notes therein, respectively). This has been
confirmed by recent experiments of mode power redistribution
as a consequence of beam propagation in long spans (up to
1 km) of graded-index fibers, in the presence of a signifi-
cant temporal walkoff, and random coupling among the fiber
modes [90,91]. These experiments realized with ultrashort
pump pulses (subpicosecond regime) then involve complex
(2D + 1) spatiotemporal effects, whose detailed description
goes beyond the purely 2D spatial thermodynamic approach
developed in the present work.

As a future perspective, it would also be interesting to carry
out optical experiments aimed at studying the transition to
condensation beyond the weakly nonlinear regime explored
so far in MMFs [66–70]. In the strongly nonlinear regime, the
condensate evolves as a distinct phase from the thermal un-
condensed component, exhibiting unique physical properties
such as the superfluidity of Bogoliubov sound waves or the
turbulent dynamics related to quantized vortices, as recently
studied in BE atomic condensates [120]. For instance, consid-
ering the 2D defocusing regime of a fluid of light, it would be
interesting to study the crossover between the condensation
transition and the Berezinskii-Kosterlitz-Thouless transition
associated with vortex-antivortex pairing.

We finally note that another important aspect has not
been addressed in this paper, namely, the dynamics of the
out-of-equilibrium process that drives the beam of light to
thermal equilibrium. As mentioned above, nonequilibrium
thermalization is described in detail by the wave turbulence
theory in the weakly nonlinear regime [35–38]. As a mat-
ter of fact, light propagation in an optical fiber is known
to be affected by a structural disorder due to refractive in-
dex fluctuations introduced by inherent imperfections and
environmental perturbations [121–126]. In this way, the ob-
servation of RJ thermalization in MMFs has stimulated the
development of a wave turbulence theory that takes into
account the impact of disorder [75,76,84,85,100] (see also
[127,128]). This revealed in particular that a time-dependent
weak disorder can significantly increase the rate of ther-
malization to RJ equilibrium [75,76], while strong disorder
can inhibit RJ thermalization [100]. These works were con-
ducted in the framework of purely classical nonlinear waves.
Consequently, the development of quantum photon fluid ex-
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periments aimed at observing BE condensation would hold
fundamental significance, particularly in connection with the
nonequilibrium many-body physics of disordered quantum
Bose gases [129–136].
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APPENDIX: C̃V FOR T̃ → ∞ IN THE REGIME N/G2 � 1

Bose-Einstein integrals with a frequency cutoff may be
treated as Debye integrals. Let us define

Is(ω, z) =
∫ ω

0

xs

z−1e(V0/T̃ )x − 1
dx. (A1)

Then, by expanding the denominator in a harmonic series of
the fraction for ze−V0x/T̃ 	 1,

1

z−1eV0x/T̃ − 1
=

∞∑
n=1

zne−n(V0/T̃ )x.

The Debye integral becomes

Is(ω, z) =
∞∑

n=1

zn
∫ ω

0
xse−n(V0/T̃ )xdx,

which can easily be integrated. In particular, in the limit
ω → ∞,

lim
ω→∞ Is(ω, z) = s!(T̃ /V0)s+1gs+1(z),

where gs(z) is the previously defined Bose function.
For a finite number of modes, the energy in Eq. (26) and

the number of particles in Eq. (11) read

Ẽ = V0G2I2(1, z)

= T̃ G2

V 2
0

∞∑
n=1

zn

n3
{2T̃ 2 − [T̃ 2 + (T̃ + nV0)2]e−nV0/T̃ },

N = G2I1(1, z)

= T̃ G2

V 2
0

∞∑
n=1

zn

n2
[T̃ − (T̃ + nV0)e−nV0/T̃ ].

By expanding for z 	 1 and V0/T̃ 	 1, we get

Ẽ � G2V0z

[
1

3
− V0

4T̃
+ O

(
V 2

0

T̃ 2

)
+ O(z)

]
,

N � G2z

[
1

2
− V0

3T̃
+ O

(
V 2

0

T̃ 2

)
+ O(z)

]
.

Note that only the first terms n = 1 are kept in the expansions,
which is equivalent to considering the classical particle limit
where the Bose distribution recovers the Boltzmann distribu-
tion. Hence, the relevant thermodynamic quantities are

z � N

G2

[
2 + 4V0

3T̃
+ O

(
V 2

0

T̃ 2

)
+ O

(
N

G2

)]
, (A2)

Ẽ � NV0

[
2

3
− V0

18T̃
+ O

(
V 2

0

T̃ 2

)
+ O

(
N

G2

)]
, (A3)

C̃V � NV 2
0

18T̃ 2

[
1 + O

(
V0

T̃

)
+ O

(
N

G2

)]
. (A4)

Note that the fugacity does not vanish at high temperatures,
z → 2N/G2 as T̃ → ∞. Also note that we have assumed z 	
1, so that Eqs. (A2)–(A4) are valid in the regime N/G2 	 1.
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