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A B S T R A C T

Neutron noise analysis is a predominant technique for fissile matter identification with passive methods.
Quantifying the uncertainties associated with the estimated nuclear parameters is crucial for decision-making.
A conservative uncertainty quantification procedure is possible by solving a Bayesian inverse problem with
the help of statistical surrogate models but generally leads to large uncertainties due to the surrogate models’
errors. In this work, we develop two methods for robust uncertainty quantification in neutron and gamma noise
analysis based on the resolution of Bayesian inverse problems. We show that the uncertainties can be reduced
by including information on gamma correlations. The investigation of a joint analysis of the neutron and
gamma observations is also conducted with the help of active learning strategies to fine-tune surrogate models.
We test our methods on a model of the SILENE reactor core, using simulated and real-world measurements.
1. Introduction

The identification of fissile matter is a foundational aspect of nu-
clear security and safeguards. It can be carried out through various
experimental methods, each offering complementary insights. Among
these, passive non-destructive assay techniques such as neutron time-
correlation measurements and gamma spectroscopy are commonly em-
ployed (Beddingfield and Cecil, 1998; Dewji et al., 2016; Bruggeman
et al., 1996). This work focuses on neutron correlation measurements
as a way to provide estimates of key nuclear parameters essential for
material identification. However, these estimates often carry uncertain-
ties that require thorough quantification for informed decision-making.
The uncertainty quantification necessitates the resolution of an inverse
problem, within a Bayesian framework. Sampling the posterior distri-
bution of the nuclear parameters in a Bayesian inverse problem requires
many calls to a computer model such as a Monte Carlo code for neutron
transport. Because of the cost of these computer models, and the bias
of analytical models like the point model (Pázsit and Pál, 2007), the
resolution of the inverse problem relies on surrogate models, such as
Gaussian Process (GP) models.

In this paper, we explore two approaches for incorporating gamma
time correlations into the inverse problem framework for fissile ma-
terial identification. We demonstrate that integrating gamma mea-
surements can significantly reduce uncertainties in the estimation of
nuclear parameters. These methods are applied to both experimental
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and simulated data from the SILENE reactor. Furthermore, we inves-
tigate sequential design strategies as a means to optimize surrogate
models, tailoring them to specific observational data within the inverse
problem.

2. Neutron correlations for fissile matter identification

2.1. Neutron time-correlations in the point model framework

Throughout this paper, we focus on neutron noise analysis in zero-
power systems. Neutron noise also refers to the study of neutron
fluctuations in power reactors (see for example Fry, 1971; Demaziere
and Pazsit, 2009; Ortiz-Villafuerte et al., 2006; Ando et al., 1975),
however, this is not the focus of this work.

The goal of neutron noise analysis is to identify some characteristics
of the medium based on the fluctuations of the neutron population.
It has been applied to supercritical systems during the start-up phase,
at which point the neutron population is still low enough for the
stochasticity to play a decisive role (Harris, 1965). Other works focused
on the probability of extinction of the branching process describing the
neutron population for such systems (Williams, 1979; Tantillo, 2024;
Williams and Pázsit, 2015). In Cooling et al. (2016), the focus is on
the uncertainty quantification of the estimated probability of extinc-
tion. For pulsed experiments without external sources, the intrinsic
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source term (either from 238U or 240Pu) is low and the burst time
f the pulse can vary between two successive experiments because
f the predominant stochastic fluctuations at the start-up. Numerous
tudies were conducted to estimate the behavior of the random burst
imes (Williams, 2016; Authier et al., 2014; Humbert and Méchitoua,

2004; Hansen, 1960).
In this paper, our attention is directed at zero-power subcritical

systems. The neutron fluctuations in zero-power systems depend on the
multiplicity of the fission reactions and their analysis provides insights
on the medium itself. For instance, it is common practice to infer the
prompt decay constant 𝛼 with the so-called Rossi-𝛼 method, which
studies the probability of a second detection at 𝑇 + 𝑡, given that a
neutron was detected at 𝑡 (Rossi and Greisen, 1941; Hua et al., 2021;
Kuramoto et al., 2005). It is also possible to study the auto and cross
ower spectral densities, which are obtained by Fourier transform of

the corresponding correlation function of the detector signals (Cohn,
1960; Pakari et al., 2018; Muñoz-Cobo et al., 2001; Rugama et al.,
2004). One may also analyze the distribution of the time intervals
etween two successive neutron detections. In a multiplying medium,
his distribution differs from a memoryless exponential distribution,
hich occurs for standard non-multiplying nuclear reactions (Babala,

1967).
In this paper, the main point of focus is the Feynman-𝛼 method

irst introduced in Feynman et al. (1956). This approach focuses on
he variance-over-mean ratio of the detection distribution. In a non-
ultiplying medium, this ratio is equal to one, because the detection

nd source processes are Poisson processes, and Poisson distributions
ave equal mean and variance. However, in a multiplying medium,
n excess of variance is introduced by the fission multiplicity. We will
escribe it in detail in the next paragraphs.

The Feynman-𝛼 method is based on the estimation of the Feynman
moment of the neutron count distribution. For a given time window of
size 𝑇 , the Feynman moment of order 𝑛 is denoted 𝑌𝑛(𝑇 ). It is defined
with respect to the binomial cumulants 𝛤𝑛(𝑇 ) of the distribution. The
binomial cumulants represent the average number of combinations of
𝑛 correlated detections in a time 𝑇 . Correlated detections refer to the
simultaneous detections of multiple neutrons belonging to the same
fission chain. Such neutrons are correlated in time, as opposed to
neutrons from different initial source events which are independent.

Consider the probability 𝑝𝑛(𝑡) of having detected 𝑛 neutrons at time
given zero initial neutrons and a source term in the subcritical system
iven by a compound Poisson source (like a spontaneous fission source

for example). The generating function 𝑔(𝑧, 𝑡) for the probabilities 𝑝𝑛(𝑡)
is defined for |𝑧| < 1 by:

𝑔(𝑧, 𝑡) =
+∞
∑

𝑛=0
𝑝𝑛(𝑡)𝑧𝑛. (1)

The binomial cumulants 𝛤𝑛 of this distribution are given by:

𝛤𝑛(𝑇 ) = 1
𝑛!

(

𝜕𝑛 log 𝑔(𝑧, 𝑡)
𝜕 𝑧𝑛

)

𝑧=1
. (2)

Finally, the Feynman moment of order 𝑛 is obtained by the following
relation:

𝑌𝑛(𝑇 ) =
𝑛! 𝛤𝑛(𝑇 )
𝛤1(𝑇 )

. (3)

In its original paper, Feynman used only the second order moment
𝑌2(𝑇 ) which will be denoted 𝑌 (𝑇 ) for the rest of the paper. It can
be understood as a measure of the excess variance of the detection
statistics compared to a Poisson distribution.

Under the point model approximation, the Feynman moment of
order 2 can be analytically evaluated (Bell, 1965; Pázsit and Pál, 2007).
Let 𝜌 = 𝑘𝑝−1

𝑘𝑝
< 0 be the prompt reactivity where 𝑘𝑝 is the prompt

multiplication factor. The prompt decay constant is denoted 𝛼. 𝜀𝐹 is
the Feynman efficiency defined as the number of detections over the
total number of induced fissions in the material. Consider a compound
Poisson source which is a mix of a (𝛼 , 𝑛) source and a spontaneous
 t

2 
fission source. Let 𝑆 be the source intensity expressed in source events
per second and let 𝑥𝑠 be the fraction of source neutrons born by spon-
taneous fissions. Finally, we introduce the multiplicity parameters for
the spontaneous and induced fissions. Let 𝜈 be the average number of
neutrons produced per induced fission and let 𝐷2 and 𝐷3 be the second
nd third-order Diven factor defined by 𝐷2 =

𝜈(𝜈−1)
𝜈2

and 𝐷3 =
𝜈(𝜈−1)(𝜈−2)

𝜈3
,

where 𝜈 is the random variable describing the fission multiplicity, and
the bar stands for the average. Similarly, the quantities 𝜈𝑠, 𝐷2,𝑠 and 𝐷3,𝑠
are introduced for the spontaneous fissions. Then the second Feynman
moment is given by:

𝑌2(𝑇 ) =
𝜀𝐹𝐷2

𝜌2

(

1 − 𝑥𝑠𝜌
𝜈𝑠𝐷2,𝑠

𝜈 𝐷2

) (
1 − 1 − 𝑒−𝛼 𝑇

𝛼 𝑇
)

. (4)

The Feynman-𝛼 method involves evaluating the Feynman moment and
fitting it to the previous expression to extract information on the
inetics of the system such as the prompt decay constant 𝛼 or the
eactivity 𝜌. Moreover, the point model approximation allows us to
erive an analytical relation for the average count rate 𝑅 which is
ndependent of 𝑇 .

Let us introduce the source intensities (in events per second) re-
spectively for the spontaneous fission, denoted by 𝑆𝑓 , and for the (𝛼 , 𝑛)
reactions, denoted by 𝑆𝛼 . The total count rate is thus given by :
𝑅 = − 𝜀𝐹

𝜌𝜈
(𝑆𝛼 + 𝜈𝑠𝑆𝑓 ). (5)

We have a multiplicative factor 𝜈𝑠 for the spontaneous fission term due
to the multiplicity of neutrons produced by spontaneous fission. The
parameter 𝑥𝑠 is defined with respect to these source intensities by:

𝑥𝑠 =
𝜈𝑠𝑆𝑓

𝜈𝑠𝑆𝑓 + 𝑆𝛼
. (6)

Our total source intensity 𝑆 is defined in events per second and is thus
written:

𝑆 = 𝑆𝑓 + 𝑆𝛼 . (7)

Combining (5), (6) and (7) we can write the count rate as:

𝑅 = − 1
𝑥𝑠 + 𝜈𝑠 − 𝑥𝑠𝜈𝑠

𝜀𝐹 𝜈𝑠𝑆
𝜌𝜈

(8)

which is independent of 𝑇 .
Finally, in Furuhashi and Izumi (1968), the third Feynman moment

as introduced and derived analytically, extending the method. The
hird moment is given by:

𝑌3(𝑇 ) = 3
(

𝜀𝐹𝐷2

𝜌2

)2 (

1 − 𝑥𝑠𝜌
𝜈𝑠𝐷2,𝑠

𝜈 𝐷2

) (
1 + 𝑒−𝛼 𝑇 − 2 1 − 𝑒−𝛼 𝑇

𝛼 𝑇
)

−
𝜀2𝐹𝐷3

𝜌3

(

1 − 𝑥𝑠𝜌
𝜈3𝑠𝐷3,𝑠

𝜈3𝐷3

)

(

1 − 3 − 4𝑒−𝛼 𝑇 + 𝑒−2𝛼 𝑇
2𝛼 𝑇

)

.
(9)

This work uses the notations 𝑌 (𝑇 ) for the second Feynman moment and
(𝑇 ) for the third Feynman moment as is done in Endo et al. (2006).

Our objective is to identify a fissile matter by estimating nuclear
parameters such as the multiplication factor. Because measurements of
𝑌 (𝑇 ) and 𝑋(𝑇 ) are often noisy, we also seek to evaluate the reliability
of our estimates. For that purpose, we propose a method based on
the three quantities 𝑅, 𝑌 (𝑇 ), and 𝑋(𝑇 ) and whose goal is to estimate
ome parameters of interest of the medium, while providing uncertainty
uantification on those results. The application will be restricted to the
symptotic values of the Feynman moments since we are not directly
nterested in the prompt decay constant 𝛼. The asymptotic Feynman
oments are denoted 𝑌∞ and 𝑋∞ respectively. More details on the
ractical estimation of the Feynman moments are given in Appendix A.

2.2. Gamma noise

In this paper, we seek to add the gamma noise to the problem to
provide additional information and thus reduce the estimation uncer-
ainties. Gamma correlations are generally less studied in the literature,
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Annals of Nuclear Energy 213 (2025) 111123 
mainly because of the uncertainties associated with the gamma mul-
tiplicity data. The average number of gamma produced per fission,
denoted by 𝜇, is far more uncertain than its neutron counterpart. Simi-
arly, the gamma Diven factors 𝐷(𝛾)

2 and 𝐷(𝛾)
3 are not well-known. Some

fforts have been made in this direction (Pázsit et al., 2009; Murray
et al., 2014), but these nuclear data still convey a large uncertainty.

The study of gamma noise can be performed in a very similar
ashion. One can define the gamma Feynman moments 𝑌 (𝛾)

𝑛 (𝑇 ). In this
work, we focus on the quantities (𝑅(𝛾), 𝑌 (𝛾)

∞ , 𝑋(𝛾)
∞ ) which are the analog

of the neutron count rate and Feynman moments. These quantities
can be evaluated with either sequential or triggered binning, in the
same manner as their neutron counterparts. The estimates tend to be
less noisy because we generally have more gamma events recorded
(mainly due to the higher fission multiplicity). Within the point model
framework (see Pázsit and Pál, 2007; Enqvist et al., 2010), analyt-
cal relations can be derived between 𝑥(𝛾) = (𝑘𝑝, 𝑆 , 𝑥𝑠, 𝑀𝛾 , 𝜀𝛾 ) and
𝑦(𝛾) = (𝑅(𝛾), 𝑌 (𝛾)

∞ , 𝑋(𝛾)
∞ ), where 𝜀𝛾 is the gamma efficiency defined by the

average number of gamma detection per induced fission, and 𝑀𝛾 is
the gamma multiplication defined as the average number of gammas
created by one neutron.

2.3. Uncertainty quantification in neutron noise analysis

2.3.1. Bayesian inverse problem
We continue this introduction with an overview of Bayesian inverse

problems. Denote by 𝑥 some unknown material characteristics belong-
ng to an input space  ⊂ R𝑝. Consider 𝑁 ≥ 1 neutron correlation
bservations 𝐲 = (𝑦𝑘)1≤𝑘≤𝑁 where 𝑦𝑘 = (𝑅, 𝑌∞, 𝑋∞)𝑘 is a vector of size

𝑑 = 3 containing observations of the three quantities of interest. Given
these observations, we want to estimate the corresponding material
characteristics 𝑥 and their uncertainties. The standard approach is to
use a Bayesian framework in which 𝑥 is modeled as a random variable.
We assume that 𝑥 is given by a prior probability distribution with den-
sity 𝑝(𝑥). The prior may incorporate expert knowledge or information
from other measurements. In this work, the prior is non-informative,
it is uniform on a bounded domain. Our goal is then to estimate the
posterior distribution 𝑝(𝑥|𝐲) of 𝑥 given 𝐲. Assuming the observations
are given by 𝑦𝑘 = 𝑓 (𝑥) +𝜀𝑘 with 𝜀𝑘 being independent Gaussian random
variables with zero-mean and covariance 𝐂obs, the posterior density is
btained with Bayes’ theorem:

𝑝(𝑥|𝐲) ∝ 𝑝(𝑥)
(

(2𝜋)𝑑 |𝐂obs|
)−1∕2 exp

(

−1
2

𝑁
∑

𝑘=1
‖𝑦𝑘 − 𝑓 (𝑥)‖2𝐂obs

)

(10)

where ‖𝑎‖2𝐂 = 𝑎𝑇𝐂−1𝑎 for any positive-definite matrix 𝐂 of size 𝑑 × 𝑑
and for any vector 𝑎 ∈ R𝑑 , and |𝐂obs| is the determinant of 𝐂obs.

The covariance 𝐂obs is estimated using the unbiased sample covari-
nce matrix given by:

𝐂obs =
1
𝑁

𝑁
∑

𝑘=1
(𝑦𝑘 − 𝑦)(𝑦𝑘 − 𝑦)𝑇 (11)

This posterior distribution can be sampled by Markov Chain Monte
Carlo (MCMC) methods. Having access to the posterior distribution is
key for uncertainty quantification since we can evaluate any quantity of
interest with it, such as the mean, variance, or probability of exceeding
a given threshold.

2.3.2. Gaussian process surrogate model
The Bayesian paradigm described in the previous section displays

one major flaw. It requires the so-called direct model 𝑓 , serving as
3 
the link between inputs 𝑥 and outputs 𝑦. In most applications, this
irect model is either unknown or represented by a costly computer
odel. One could also use the point model equations, but the strong

foundational assumptions of the model introduce a bias that limits the
eliability of the uncertainty quantification (Lartaud et al., 2023). Since
CMC sampling requires a large number of calls, we need an alternate
odel that is both faster than computer codes such as MCNP (Goorley

et al., 2012), and more reliable than the point model. In the field of
uncertainty quantification, a common practice is thus to use surrogate
models, usually built with supervised learning methods and serving as
emulators for complex computer codes.

In this work, we focus on Gaussian process (GP) models. These
models come with a native uncertainty quantification: at every input
𝑥, a GP model 𝑧 provides a Gaussian predictive distribution 𝑧(𝑥):

𝑧(𝑥) ∼  (𝑚(𝑥),𝐂(𝑥)) (12)

where 𝑚(𝑥) ∈ R𝑑 is the predictive mean and 𝐂(𝑥) is a 𝑑 × 𝑑 covariance
matrix. This predictive distribution is obtained by conditioning the GP
istribution by some training data (𝐱, 𝐳) where 𝐱 = (𝑥𝑖)1≤𝑖≤𝑛 are the
training inputs with 𝑥𝑖 ∈ R𝑝 and 𝐳 = (𝑧𝑖)1≤𝑖≤𝑛 are the training

utputs, with 𝑧𝑖 ∈ R𝑑 . The creation of the training dataset by numerical
imulation with the computer code MCNP is described in Section 3.4.1.

We are not providing a detailed introduction to GP theory in this
aper. The main aspects to keep in mind are the following. A GP model
s determined by the user-defined mean and covariance functions. The
raining step consists of selecting the values of some hyperparameters
embedded in the mean and covariance functions, by maximizing the
robability of the training data 𝑝(𝐳|𝐱, 𝜃). The predictive distribution
t every input point 𝑥 is Gaussian and the mean vector 𝑚(𝑥) and
ovariance matrix 𝐂(𝑥) are given by simple matrix operations. The GP
odel is thus significantly faster than our complex computer code 𝑓 .

or more details on GP theory, we refer to Rasmussen et al. (2006), and
Gramacy (2020).

In this work, we want a conservative estimate of the uncertainties.
Thus, we wish to include in the Bayesian inverse problem both the
uncertainty of the GP model and the uncertainty linked to the noise
in the observations 𝑦𝑘. This can be done by considering the following
statistical model:

𝑦𝑘 = 𝑧(𝑥) + 𝜀𝑘 = 𝑚(𝑥) + 𝜂(𝑥) + 𝜀𝑘 (13)

where 𝜂(𝑥) ∼  (0,𝐂(𝑥)) is independent of 𝜀𝑘 because the model
rror is linked to the training of the model and is independent of the
bservations. The new posterior density associated with this statistical
odel can be written as:

𝑝(𝑥|𝐲) ∝ 𝑝(𝑥)𝐿(𝐲|𝑥)

∝ 𝑝(𝑥)
|

|

|

|

𝐂(𝑥) + 1
𝑁

𝐂obs
|

|

|

|

−1∕2

× exp
(

−1
2
(𝑦 − 𝑚(𝑥))𝑇

(

𝐂(𝑥) + 1
𝑁

𝐂obs

)−1
(𝑦 − 𝑚(𝑥))

)

(14)

with 𝑦 = 1
𝑁

∑𝑁
𝑘=1 𝑦𝑘 ∈ R𝑑 .

It encompasses both sources of uncertainty, from the model bias and
the observation noise, and can be sampled by MCMC methods. The
eader may also note that having 𝐶(𝑥) = 0 for all 𝑥 ∈  leads to a
ensity proportional to that of Eq. (10).

The objective of this paper is thus to provide this posterior distribu-
ion for the inputs 𝑥(𝑛,𝛾) = (𝑘𝑝, 𝜀𝐹 , 𝑆 , 𝑥𝑠, 𝑀𝛾 , 𝜀𝛾 ) given some observations

of the quantities 𝑦(𝑛,𝛾) = (𝑅(𝑛), 𝑌 (𝑛)
∞ , 𝑋(𝑛)

∞ , 𝑅(𝛾), 𝑌 (𝛾)
∞ , 𝑋(𝛾)

∞ ).

3. Neutron and gamma inverse problem

In this section, we discuss the possibility of including gamma noise
measurements in our inverse problem resolution, with two different
approaches. Before describing these methods, we provide a brief de-
scription of the applicative case and the inverse problem observations.
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Fig. 1. Upper view (left) and side view (right) of the SILENE core as modeled in MCNP. The fissile solution is displayed in yellow, the steel in gray, and the detector in cyan.
3.1. Problem description

3.1.1. The SILENE experimental reactor
The SILENE facility was an experimental reactor designed for pulsed

experiments and subcritical multiplicity measurements and operated
between 1974 and 2014 (Humbert, 2018). The reactor was designed
to study criticality accidents occurring with fissile solutions.

The core is a cylindrical tank of 36 cm outer diameter filled with
highly enriched (93 wt. % in 235U) uranyl nitrate. A control rod is
located at the center of the core to avoid the initial power excursion
when the fissile solution is pumped into the core. The core is placed
in a large room with thick concrete walls. The reactor had three main
operation modes. It was mainly used for pulsed experiments in which
the center control rod is rapidly removed from the core to create
a power excursion up to 1000 MW. It was also possible to slowly
remove the rod with an additional source to mimic the free evolution
of a criticality accident. Finally, the reactor could also be operated in
steady-state mode, with slow adjustments of the control rod.

The internal control rod is either a boron rod with a reactivity worth
of 5.8$ or a cadmium rod with a reactivity worth of 4.1$. The rod is
inserted in a canal of 7 cm of internal diameter at the center of the core.
An external neutron source is often added below the core. The source is
a 100 mCi Am-Be source. The objective of the external neutron source
is to limit the variance of the burst time due to stochastic fluctuations
at low neutron populations.

A schematic view of the SILENE core is presented in Fig. 1. The
dotted region below the core represents the location of the Am-Be
source.

3.1.2. Neutron and gamma observations
We have access to a set of 𝑁𝑛 = 80 time list files containing

the detection instants of neutrons in the center detector, which was
obtained during one of the measurement campaigns. These files can
be post-processed with sequential binning to provide (independent)
neutron observations 𝑦(𝑛)𝑘 = (𝑅(𝑛), 𝑌 (𝑛)

∞ , 𝑋(𝑛)
∞ )𝑘.

However, we do not have access to gamma time list files. The
gamma observations (𝑅(𝛾), 𝑌 (𝛾)

∞ , 𝑋(𝛾)
∞ ) are thus generated by MCNP sim-

ulations. In total, we produce 𝑁𝛾 = 16 gamma observations. Because
of the large number of gamma events in the time list files, the filtered
triggered binning estimation of the gamma Feynman moments is too
computationally and memory intensive. The gamma Feynman moments
are thus estimated by sequential binning. We refer to Appendix A
for more details on the Feynman moments estimation. In the MCNP
4 
simulations, we do not model a gamma detector. We simply record all
gamma captures in the fissile region. This is a drastic simplification
leading to large gamma efficiencies. However, the goal of this work is
to demonstrate the feasibility of the joint neutron and gamma analysis.
We do not seek to provide the best possible gamma model in this work,
and this will be the subject of further studies and benchmarks.

3.2. Sequential approach

Our first method uses the Bayesian framework to leverage the
additional knowledge brought by gamma correlations. Indeed, the prior
distribution provides an easy way to incorporate new data in a Bayesian
model.

Consider some neutron observations 𝐲(𝑛) = (𝑦(𝑛)𝑘 )1≤𝑘≤𝑁𝑛
and some

gamma observations 𝐲(𝛾) = (𝑦(𝛾)𝑘 )1≤𝑘≤𝑁𝛾
for 𝑁𝑛, 𝑁𝛾 ≥ 1. Throughout

this paper, we recall the quantities of interest are (𝑅(𝑛), 𝑌 (𝑛)
∞ , 𝑋(𝑛)

∞ ) for
the neutron noise and (𝑅(𝛾), 𝑌 (𝛾)

∞ , 𝑋(𝛾)
∞ ) for the gamma noise. We assume

the observations are related to some input 𝑥(𝑛) and 𝑥(𝛾). Inspired by
the point models for the neutron (Pázsit and Pál, 2007) and gamma
correlations (Pázsit and Pozzi, 2005), we define 𝑥(𝑛) = (𝑘𝑝, 𝜀𝐹 , 𝑆 , 𝑥𝑠)
and 𝑥(𝛾) = (𝑘𝑝, 𝑆 , 𝑥𝑠, 𝑀𝛾 , 𝜀𝛾 ). 𝑥(𝑛) and 𝑥(𝛾) are not in the same design
space. We introduce the neutron and gamma design spaces  (𝑛) ⊂ R4

and  (𝛾) ⊂ R5.
We assume that GP surrogates are available for both the neutron

and the gamma models. They are denoted respectively by 𝑧(𝑛) and 𝑧(𝛾).
They replace the unknown direct models such that the observations are:

𝑦(𝑛)𝑘 = 𝑧(𝑛)(𝑥(𝑛)) + 𝜀(𝑛)𝑘 for 1 ≤ 𝑘 ≤ 𝑁𝑛 (15)

𝑦(𝛾)𝑘 = 𝑧(𝛾)(𝑥(𝛾)) + 𝜀(𝛾)𝑘 for 1 ≤ 𝑘 ≤ 𝑁𝛾 (16)

where 𝜀(𝑛)𝑘 ∼ 
(

𝟎,𝐂(𝑛)
obs

)

and 𝜀(𝛾)𝑘 ∼ 
(

𝟎,𝐂(𝛾)
obs

)

are the independent
and identically distributed random variables describing the observa-
tional noise. For 𝑥 ∈  (𝑛) and 𝑥(𝛾) ∈  (𝛾), we also introduce a neutron
likelihood 𝐿(𝑛) (𝐲(𝑛)|𝑥(𝑛)

)

and a gamma likelihood 𝐿(𝛾) (𝐲(𝛾)|𝑥(𝛾)
)

which
are defined with the general likelihood defined in Eq. (14). In the
sequential setting, we are thus dealing with two surrogate models in
𝑑 = 3 output dimension.

To solve our inverse problem, we proceed as follows. Starting from
a prior distribution with density 𝑝(𝑥(𝑛)) for 𝑥(𝑛) ∈  (𝑛), we solve the
Bayesian inverse problem for the neutron correlations only, using the
likelihood 𝐿(𝑛) (𝐲(𝑛)|𝑥(𝑛)

)

. We thus obtain a posterior distribution with
density 𝑝(𝑛)

(

𝑥(𝑛)|𝐲(𝑛)
)

for 𝑥(𝑛) ∈  (𝑛). Since the posterior is obtained by
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MCMC sampling, its density is derived from the Markov chain samples
by a Gaussian kernel density estimation.

Then, this posterior distribution is used as a prior in a second in-
verse problem where we introduce the gamma observations. However,
because the neutron and gamma models have different input spaces the
priors must be adjusted accordingly. One can notice that 𝑥(𝑛) and 𝑥(𝛾)
share three parameters: 𝑘𝑝, 𝑆 and 𝑥𝑠. Thus we define a prior on the
parameters (𝑘𝑝, 𝑆 , 𝑥𝑠) with the marginals of the posterior distribution
𝑝(𝑛)

(

⋅ |𝐲(𝑛)
)

. Then we affect a uniform prior for the two missing inputs
(𝑀𝛾 , 𝜀𝛾 ). For 𝑥(𝛾) ∈  (𝛾), the prior density for the gamma inverse
problem, which is denoted by 𝑝(𝛾)(𝑥(𝛾)) is then given by:

𝑝(𝛾)(𝑥(𝛾)) = 𝑝(𝑀𝛾 , 𝜀𝛾 )∫𝜀𝐹
𝑝(𝑛)(𝑘𝑝, 𝜀𝐹 , 𝑆 , 𝑥𝑠|𝐲(𝑛))𝑑 𝜀𝐹 (17)

where 𝑝(𝑀𝛾 , 𝜀𝛾 ) denotes the uniform prior density on a given subset of
R2 for the inputs 𝑀𝛾 and 𝜀𝛾 .

With this new prior distribution for the gamma inverse problem, we
can compute a second posterior distribution 𝑝(seq)

(

⋅ |𝐲(𝛾), 𝐲(𝑛)
)

whose
ensity is given, for 𝑥(𝛾) ∈  (𝛾) by:

𝑝(seq)
(

𝑥(𝛾)|𝐲(𝛾), 𝐲(𝑛)
)

∝ 𝑝(𝛾)(𝑥(𝛾))𝐿(𝛾) (𝐲(𝛾)|𝑥(𝛾)
)

. (18)

We highlight that this methodology is applicable in the reversed order,
in which the gamma inverse problem is first solved before the neutron
bservations are added.

This final posterior distribution thus regroups the knowledge of
neutron and gamma correlations. It requires surrogate models for both
the neutron and gamma direct models. However, it has one main
drawback: it treats the gamma and neutron problem sequentially and
thus does not account for any correlations between the phenomena.
This is a simplification since we expect the gamma and neutron models
to be strongly correlated. The observations 𝐲(𝑛) and 𝐲(𝛾) should not be
treated independently from one another. This is why we describe a
second approach in the next section.

3.3. Joint resolution

To account for correlations between neutron and gamma observa-
ions, one could try to solve the joint inverse problem encompassing
oth types of observations.

We define the joint input vector 𝑥(𝑛,𝛾) = (𝑘𝑝, 𝜀𝐹 , 𝑆 , 𝑥𝑠, 𝑀𝛾 , 𝜀𝛾 ) and
its design space  (𝑛,𝛾) ⊂ R6. Let 𝑝(𝑥(𝑛,𝛾)) be the uniform prior density
on  (𝑛,𝛾) and let 𝑁𝑛,𝛾 be the number of observations for the joint
inverse problem and 𝑦(𝑛,𝛾) = (𝑅(𝑛), 𝑌 (𝑛)

∞ , 𝑋(𝑛)
∞ , 𝑅(𝛾), 𝑌 (𝛾)

∞ , 𝑋(𝛾)
∞ ) the vector

containing both neutron and gamma observations.
Consider a GP surrogate model 𝑧(𝑛,𝛾) serving as an emulator for the

joint direct model. The output dimension is now 𝑑 = 6 instead of
= 3 for the sequential approach. The observations are given by the

following statistical model:

𝑦(𝑛,𝛾)𝑘 = 𝑧(𝑛,𝛾)
(

𝑥(𝑛,𝛾)
)

+ 𝜀(𝑛,𝛾)𝑘 (19)

for 1 ≤ 𝑘 ≤ 𝑁𝑛,𝛾 and where 𝜀(𝑛,𝛾)𝑘 ∼ 
(

𝟎,𝐂(𝑛,𝛾)
obs

)

where 𝐂(𝑛,𝛾)
obs is obtained

y the empirical covariance estimator applied to 𝐲(𝑛,𝛾):

𝐂(𝑛,𝛾)
obs = 1

𝑁𝑛,𝛾 − 1
𝑁𝑛,𝛾
∑

𝑘=1
(𝑦(𝑛,𝛾)𝑘 − 𝑦(𝑛,𝛾))(𝑦(𝑛,𝛾)𝑘 − 𝑦(𝑛,𝛾))𝑇 (20)

where 𝑦(𝑛,𝛾) = 1
𝑁𝑛,𝛾

∑𝑁𝑛,𝛾
𝑘=1 𝑦(𝑛,𝛾)𝑘 .

With this surrogate model, one can then define a likelihood 𝐿(𝑛,𝛾)
(

𝐲(𝑛,𝛾)|𝑥(𝑛,𝛾)
)

for 𝑥(𝑛,𝛾) ∈  (𝑛,𝛾) with (14). Finally, we obtain a posterior
istribution 𝑝(𝑛,𝛾)( ⋅ |𝐲(𝑛,𝛾)) which accounts for the correlations between
eutron and gamma observations and whose density is given for 𝑥(𝑛,𝛾) ∈

 (𝑛,𝛾) by:

𝑝(𝑛,𝛾)(𝑥(𝑛,𝛾)|𝐲(𝑛,𝛾)) ∝ 𝐿(𝑛,𝛾) (𝐲(𝑛,𝛾)|𝑥(𝑛,𝛾)
)

𝑝(𝑥(𝑛,𝛾)). (21)

Though this posterior distribution is theoretically more accurate, it
equires a surrogate model of higher dimension, able to emulate both

neutron and gamma correlations. The higher dimension for both the
input and output spaces may hinder the predictive capabilities of this
model, which would, in turn, make this approach less reliable.
5 
3.4. Building the models

In this section, we investigate both of the approaches developed
n the previous paragraphs. Consequently, we require a neutron sur-

rogate model 𝑧(𝑛) (NSM), a gamma surrogate 𝑧(𝛾) (GSM) and a joint
urrogate model 𝑧(𝑛,𝛾) (JSM) able to predict both neutron and gamma
orrelations. We will briefly describe these models in this section.

3.4.1. Training dataset creation
The first task of creating efficient surrogate models is to build train-

ing datasets. The datasets are created by MCNP simulations for both
neutron and gamma measurements. Starting from the reference ge-
ometry of SILENE, we randomly change the composition, enrichment,
source parameters, and geometry of the problem to produce new data
instances. For each instance, an analog MCNP simulation is run to pro-
duce time list files for gamma and neutron detections. From these time
list files, one can extract the measurements (𝑅(𝑛), 𝑌 (𝑛)

∞ , 𝑋(𝑛)
∞ , 𝑅(𝛾), 𝑌 (𝛾)

∞
𝑋(𝛾)

∞ ). Moreover, we record, the inputs of interest 𝑥(𝑛,𝛾) = (𝑘𝑝, 𝜀𝐹 , 𝑆 , 𝑥𝑠,
𝑀𝛾 , 𝜀𝛾 ). In this input vector, 𝑘𝑝 is obtained by an eigenvalue calculation,
𝑀𝛾 , 𝜀𝐹 , and 𝜀𝛾 are obtained by tally measurements. 𝑆 and 𝑥𝑠 are found
directly in the MCNP input file and are changed randomly at each
iteration.

This process is iterated to produce datasets for neutron and gamma
orrelations. The datasets contain 232 instances.

3.4.2. Model performance
The two approaches described earlier require three different sur-

ogate models. The sequential approach necessitates a gamma-only
odel, and a neutron-only model, while the joint approach needs a

joint model predicting gamma and neutron outputs simultaneously.
The NSM and GSM models are trained using the Linear Model of

oregionalization (LMC) for multi-output GP described in Bonilla et al.
(2007). The Coregionalization model provides a covariance structure
for a multi-output GP which can account for correlations across outputs.
A simpler method would be to consider a single scalar GP for each
output channel, however, this simplification impacts the reliability of
the uncertainty quantification (Lartaud et al., 2023).

To further improve the models, the point model equations serve as
the GP prior mean function. The hyperparameters are selected by max-
imization of the log-marginal likelihood, with the help of the bounded
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). 80% of the dataset is
used for training and the rest is kept as a test set to estimate model
performance.

The joint GP model is also an LMC model with 4 latent GPs,
each having anisotropic Matérn kernels. However, due to the higher
dimension, both for the input and output spaces, exact GP inference
is too computationally expensive in this case. Indeed, we recall that
the exact inference requires the inversion of a matrix of size 𝑛𝑑 where
𝑑 is the output dimension, and 𝑛 = 190 is the number of training
ata. This amounts to a complexity ((𝑛𝑑)3) which makes the inference

intractable.
Hence there is a need for sparse approximations to accelerate both

training and inference. The sparse variational Gaussian process (SVGP)
approach, introduced in Titsias (2009), is used in this work. Our nu-
merical developments are based on the GPyTorch package developed for
Python (Gardner et al., 2018). To evaluate the models’ performance, we
focus on the Normalized Mean Absolute Error (NMAE) and Normalized
Root Mean Square Error (NRMSE). Let 𝑛(∗) = 42 be the number of test
instances. For 1 ≤ 𝑖 ≤ 𝑛(∗), the 𝑖th input and output samples in the test
set are denoted respectively by 𝑥(∗,𝑖) and 𝑧(∗,𝑖). For the output 1 ≤ 𝑗 ≤ 𝑑,
the NMAE and NRMSE are defined by:

NMAE𝑗 =
1
(∗)

𝑛(∗)
∑

|𝑚(𝑥(∗,𝑖))𝑗 − 𝑧(∗,𝑖)𝑗 |

(22)

𝑛 𝑖=1 𝑧(∗)𝑗
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Fig. 2. Coverage probabilities evaluated on the test set for NSM, GSM and JSM.
NRMSE𝑗 =

√

√

√

√

√

√

√

1
𝑛(∗)

𝑛(∗)
∑

𝑖=1

(

𝑚(𝑥(∗,𝑖))𝑗 − 𝑧(∗,𝑖)𝑗

)2

𝑧(∗)
2
𝑗

(23)

where 𝑧(∗)𝑗 = 1
𝑛(∗)

∑𝑛(∗)
𝑖=1 𝑧

(∗,𝑖)
𝑗 . We also introduce the 𝑄2 coefficient

defined for the 𝑗th output by:

𝑄2
𝑗 = 1 −

∑𝑛(∗)
𝑖=1

(

𝑚(𝑥(∗,𝑖))𝑗 − 𝑧(∗,𝑖)𝑗

)2

∑𝑛(∗)
𝑖=1

(

𝑧(∗,𝑖)𝑗 − 𝑧(∗)𝑗
)2

. (24)

The 𝑄2 highlights the fraction of the data variance explained by the
regressor, the closer to one the better.

Since we want to guarantee the reliability of the uncertainty quan-
tification, we evaluate the coverage probabilities for different levels
of confidence 𝛼 ∈ (0, 1). In a 𝑑-dimensional setting, the coverage
probability of confidence level 𝛼, denoted by 𝐶𝑝(𝛼) is defined by:

𝐶𝑝(𝛼) = 1
𝑛(∗)

𝑛(∗)
∑

𝑖=1
1𝐼𝛼 (𝑥(∗,𝑖))

(

𝑧(∗,𝑖)
)

(25)

where 1 is the indicator function defined for a set 𝐼 by (1𝐼 (𝑧) = 1 if 𝑧 ∈
𝐼 𝑎𝑛𝑑1𝐼 (𝑧) = 0 if 𝑧 ∉ 𝐼). 𝐼𝛼(𝑥) is the credible region of confidence level
𝛼 defined by:

𝐼𝛼(𝑥) =
{

𝑦′ ∈ R𝑑
| ‖𝑦′ − 𝑚(𝑥)‖2𝐂(𝑥) ≤ 𝑞𝛼

}

(26)

and 𝑞𝛼 is the quantile of level 𝛼 of the 𝜒2 distribution with 𝑑 degrees of
freedom. 𝐼𝛼(𝑥) is the multi-dimensional analog of the credible interval.

The error metrics are shown in Table 1 for all models. One can
see that the NSM and GSM models perform well. The errors on the
gamma tend to be smaller due to the higher number of events in gamma
correlations. This is untrue for the third moment, however. To explain
this, we recall that we are using sequential binning for the gamma
training data. We do not filter out accidental gamma correlations. This
impacts the predictive errors for the gamma Feynman moments but
is more noticeable for the third moment. This explains the higher
prediction error obtained by GSM for 𝑋(𝛾)

∞ compared to that of 𝑋∞
obtained by NSM.
6 
Table 1
Error metrics for the neutron model (NSM), gamma model (GSM) and joint model
(JSM).
NSM NMAE NRMSE 𝑄2 JSM NMAE NRMSE 𝑄2

𝑅 0.008 0.011 0.9997 𝑅 0.012 0.016 0.9990
𝑌∞ 0.027 0.038 0.9983 𝑌∞ 0.046 0.092 0.9854
𝑋∞ 0.051 0.153 0.9919 𝑋∞ 0.089 0.158 0.9937

GSM NMAE NRMSE 𝑄2 JSM NMAE NRMSE 𝑄2

𝑅(𝛾) 0.004 0.006 0.9999 𝑅(𝛾) 0.012 0.018 0.9992
𝑌 (𝛾)
∞ 0.022 0.031 0.9953 𝑌 (𝛾)

∞ 0.016 0.023 0.9992
𝑋(𝛾)

∞ 0.080 0.169 0.9773 𝑋(𝛾)
∞ 0.025 0.047 0.9992

However, the joint model JSM exhibits inferior predictive capa-
bilities than these models. This can be explained by the higher di-
mensionality of the task for the JSM model, as well as by the sparse
approximation.

We also looked at the coverage probabilities for all the models.
They are plotted in Fig. 2. Since the test set has only 42 instances, the
coverage probabilities cannot be very accurate, but one can still notice
that all models provide reasonable coverage probabilities. While the
JSM model does show some tendency to overestimate uncertainties,
it maintains satisfactory coverage probabilities, which is particularly
noteworthy given its higher output dimension, surpassing even the
GSM model.

3.5. Application

Our objective is now to apply the two proposed methods to ex-
perimental and simulated measurements from the SILENE reactor. We
consider the configuration with a fissile height of ℎ = 20 cm. We recall
that the neutron observations 𝐲(𝑛) are obtained by post-treatment of
experimental time list files. Since we do not have access to experimental
gamma measurements, the gamma observations 𝐲(𝛾) are obtained from
numerical simulations with MCNP. We have a total of 𝑁𝛾 = 16
independent gamma observations.
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Fig. 3. Two-dimensional marginals w.r.t. (𝑘𝑝 , 𝑆) of the posterior distributions obtained for the neutron inverse problem (left), the sequential approach (center) and the joint
approach (right).
The posterior distributions are obtained by MCMC sampling. The
Adaptive Metropolis (AM) (Haario et al., 2001) algorithm is used
for the sequential approach, in which the two inverse problems are
solved one after the other. However, for the joint posterior distribu-
tion 𝑝(𝑛,𝛾)( ⋅ |𝐲(𝑛,𝛾)), we favor Hamiltonian Monte Carlo (HMC) sam-
pling (Betancourt, 2017) with the No U-Turn Sampler (NUTS) strategy
developed in Hoffman et al. (2014) due to the higher dimension of the
problem, for which it is more suited.

To highlight the gain in information brought by the gamma corre-
lations, we plot in Fig. 3 the two-dimensional marginals for the inputs
(𝑘𝑝, 𝑆) for the distributions 𝑝(𝑛)

(

⋅ |𝐲(𝑛)
)

, 𝑝(seq)( ⋅ |𝐲(𝑛,𝛾)), 𝑝(𝑛,𝛾)
(

⋅ |𝐲(𝑛,𝛾)
)

.
As one can see from this figure, the distribution is significantly nar-
rower when we add the gamma correlations with the sequential ap-
proach. However, the joint approach yields a wider distribution. Look-
ing back at the model performance in Table 1 and Fig. 2, the joint
model does exhibit poorer prediction capabilities, which impacts the
accuracy of the inverse problem resolution. However, we hope to
resolve this limitation by efficiently adding more numerical data points
to improve the GP surrogate model, with the help of a sequential design
strategy.

4. Sequential design strategy for the joint model

4.1. Sequential design for inverse problems

Sequential design refers to strategies for the selection of new de-
sign points to improve a statistical model. Standard strategies try to
leverage the knowledge of the model error to add training points in
regions where the model uncertainty is the largest. For GP models,
commonly used strategies are D-optimal designs which choose points
maximizing the determinant of 𝐂(𝑥) (Cook and Nachtrheim, 1980).
Many other designs exist such as I-optimal designs or maximum entropy
designs (Sacks et al., 1989). We do not seek to provide an exhaustive
list of all possible strategies.

In our context, we wish to fine-tune the surrogate model JSM
for the specific inverse problem studied. Ideally, the newly added
training points should be selected close to the posterior distribution
𝑝(𝑛,𝛾)( ⋅ |𝐲(𝑛,𝛾)). For this reason, we adapt the D-optimal strategy to our
problem by proposing a new strategy entitled Constraint Set Query
(CSQ) (Lartaud et al., 2024). The CSQ strategy seeks to maximize the
determinant of 𝐂(𝑥) for 𝑥 in a subset ℎ ⊂  (𝑛,𝛾) of the input space
defined for ℎ ∈ R+ by:

ℎ =
{

𝑥 ∈  (𝑛,𝛾)
| log 𝑝(𝑛,𝛾)(𝑥𝑚|𝐲) − log 𝑝(𝑛,𝛾)(𝑥|𝐲(𝑛,𝛾)) ≤ ℎ

}

(27)
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where 𝑥𝑚 ∈ argmax𝑥∈ (𝑛,𝛾) 𝑝(𝑛,𝛾)(𝑥|𝐲(𝑛,𝛾)) is the maximum-a-posteriori
(MAP). The newly selected training point 𝑥(new) is thus given by:

𝑥(new) ∈ argmax
𝑥∈ℎ

|𝐂(𝑥)|. (28)

This strategy guarantees that 𝑥(new) is close to the MAP and avoids
selecting points far away from the actual distribution. It is governed
by a hyperparameter ℎ which is selected by the user. In this work,
we have set ℎ = 2 allowing 𝑥(new) to spread quite far from the MAP.
A lower ℎ constrains the point closer to the MAP. An intuitive look
at the influence of ℎ can be obtained by considering a 1D Gaussian
distribution  (𝜇 , 𝜎2). For this case, ℎ = [𝜇 −

√

2ℎ𝜎 , 𝜇 +
√

2ℎ𝜎]. For
ℎ = 2, ℎ is the 95% credible region.

We apply the CSQ strategy iteratively to improve the JSM model
with 20 additional training points. The optimization problem (28) is
solved with the dual annealing algorithm implemented in scipy (Xiang
et al., 1997).

4.2. Dealing with uncontrolled inputs

One of the obstacles encountered while adapting the sequential
design strategies to our case is the lack of control over the inputs 𝑥.
Indeed, in a neutronic Monte Carlo simulation, 𝑘𝑝 is not a quantity that
can be controlled. For simple geometries, one can expect how the 𝑘𝑝
might evolve when changing the problem, but we have no complete
control over it. Similarly, 𝜀𝐹 is an output of MCNP. How can we apply
our strategies to actively improve the surrogate models in that context?

We propose the following approach. Consider 𝑥(new) ∈  (𝑛,𝛾) the
target design point recommended by the sequential design strategy. We
introduce a cost function 𝐿(𝑥, 𝑥(new)) defined for 𝑥 ∈  (𝑛,𝛾) by:

𝐿(𝑥, 𝑥(new)) =
𝑝
∑

𝑗=1
𝜔𝑗

(

𝑥𝑗 − 𝑥(new)𝑗

)2
(29)

where the 𝜔𝑗 ≥ 0 are weight factors such that ∑𝑝
𝑗=1 𝜔𝑗 = 1 and where

𝑝 = 6 is the dimension of the input space. Ideally, we would like to
reach 𝑥 = 𝑥(new) which translates to 𝐿(𝑥, 𝑥(new)) = 0. Since we do not
have complete control over 𝑘𝑝 and 𝜀𝐹 , reaching 𝑥 = 𝑥(new) appears
difficult, though we can try to minimize 𝐿.

To do so, we proceed as follows. We start by running an MCNP
simulation with 5 × 104 simulated neutrons, instead of the usual 5 × 105,
to reduce the run time. This simulation yields an input vector 𝑥. De-
pending on the target 𝑥(new), we update the geometry and composition
in the MCNP input file to produce a new 𝑥 which should be closer to
𝑥(new). For example, if 𝜀𝐹 is lower than the target, we increase the radius
of the detector region, or if 𝑘𝑝 is too large we reduce the enrichment.
We iterate this process for 10 iterations. The input file leading to the
lower loss function 𝐿(𝑥, 𝑥(new)) is then used to create the new training
instance. The weights (𝜔𝑗 )1≤𝑗≤𝑝 are selected using sensitivity analysis to
estimate the respective impacts of the input parameters. The procedure
is detailed in Appendix B.
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Fig. 4. Two-dimensional marginals w.r.t. (𝑘𝑝 , 𝑆) obtained with the JSM surrogate (left) and the updated JSM surrogate (right). The first ten design points obtained by CSQ are
also displayed.
Table 2
Mean relative error between the target optimal design points given by CSQ and the
actual points found with MCNP.

𝑘𝑝 𝜀𝐹 𝑀𝛾 𝜀𝛾
Rel. error (%) 3.6 71 63 40

Table 3
Error metrics for the previous JSM and the updated JSM.
JSM NMAE NRMSE 𝑄2 Updated JSM NMAE NRMSE 𝑄2

𝑅 0.012 0.016 0.9990 𝑅 0.007 0.009 0.9997
𝑌∞ 0.046 0.092 0.9854 𝑌∞ 0.035 0.045 0.9965
𝑋∞ 0.089 0.158 0.9937 𝑋∞ 0.096 0.317 0.9337

JSM NMAE NRMSE 𝑄2 Updated JSM NMAE NRMSE 𝑄2

𝑅(𝛾) 0.012 0.018 0.9992 𝑅(𝛾) 0.009 0.013 0.9996
𝑌 (𝛾)
∞ 0.016 0.023 0.9992 𝑌 (𝛾)

∞ 0.016 0.023 0.9992
𝑋(𝛾)

∞ 0.025 0.047 0.9992 𝑋(𝛾)
∞ 0.030 0.058 0.9988

4.3. Updated surrogate models

Using the CSQ method, we update the joint model by adding 20 new
design points. Each new simulation is conducted with a total of 5 × 105
simulated neutron histories. We present in Table 2 the mean relative
error between the target design points and the design points obtained.
The errors displayed do not reflect the accuracy of the estimation of the
parameters. They represent the lack of control that we have over these
parameters when designing an MCNP simulation. The training points
added still contribute to the improvement of the surrogate model,
although non-optimally.

The lack of control in the selection of the inputs is significant, with
some parameters such as 𝜀𝐹 and 𝑀𝛾 displaying a relative error superior
to 50%. However, we manage to get a satisfying precision on 𝑘𝑝 which
is one of the main contributors to the joint inverse problem.

The new metrics for the improved joint model are shown in Table 3.
The coverage probabilities are nearly unchanged. One can see that the
predictive means are not particularly improved, however we expect to
reduce the uncertainty of the surrogate model. This would contribute to
reducing the total amount of uncertainty, thus improving our estimates.

To highlight the reduction in the epistemic uncertainty in the model,
we also compared the determinants of the predictive covariances aver-
aged over the test set (MCD). For a surrogate model with predictive
distribution 𝑧(𝑥) ∼  (𝑚(𝑥),𝐂(𝑥)), this quantity is defined by:

MCD = 1
𝑛(∗)

𝑛(∗)
∑

𝑖=1
|𝐂(𝑥(∗,𝑖))| (30)

where we recall that 𝑥(∗,𝑖) is an instance of the test set of size 𝑛(∗).
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The ratio of these quantities, obtained for the previous joint model
and the updated model is MCDold

MCDnew
≃ 2.3. On average, the determinants

of the predictive covariances are reduced by a factor of more than 2.
Besides, thanks to the CSQ strategy, this uncertainty reduction is likely
more prominent in regions of high posterior density.

4.4. Improved posterior distribution

With the newly enriched JSM, we can sample a new joint posterior
distribution with HMC-NUTS. The marginal distribution for (𝑘𝑝, 𝑆) is
displayed in Fig. 4 (right) along with the one obtained with the old
JSM (left). The newly obtained posterior distribution shows a drastic
improvement compared to the previous one. The posterior distribution
remains more spread out than the one obtained with the sequen-
tial approach, however, this may be caused by an underestimation
of the uncertainties in the sequential approach. Indeed, the succes-
sive treatment of two inverse problems acts as if the neutron and
gamma training data were uncorrelated. This is not true, as both the
gamma and neutron Feynman moments increase with higher multipli-
cation. Thus, there is some shared information between the neutron and
gamma training data which is neglected in the sequential approach. On
the other hand, the joint approach includes correlations between the
neutron and gamma training data and is thus more reliable.

With the help of sequential design strategies, the joint approach
produces a reliable posterior distribution which reduces the uncertain-
ties in the estimation of the nuclear parameters of interest. The designs
are still hindered by the lack of control over the inputs in the design
space and possibly by the sparse approximation in the JSM model.
Developments in this direction would benefit the robustness of this
approach.

5. Conclusion

In this paper, we explored gamma correlations and their potential
to diminish uncertainties in the estimation of unknown nuclear param-
eters. We successfully demonstrated the potential gain in incorporating
gamma correlations in the resolution of the inverse problem involved in
the identification of fissile matter. The inclusion of gamma correlation
measurements can be done with either a sequential approach, in which
the neutron and gamma inverse problems are solved sequentially,
or jointly within a common framework. The sequential treatment of
neutron and gamma correlations is shown to significantly decrease the
uncertainties in the estimation of key nuclear parameters. Although
theoretically better, the joint treatment is, at first, hindered by a lack
of numerical training data for the underlying higher-dimensional sur-
rogate model. For a comprehensive joint inverse problem, the selection
of numerical design points becomes crucial in fine-tuning surrogate
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models and can be carried out with sequential design strategies adapted
to Bayesian inverse problems. Despite the lack of control over the input
data, these designs largely reduce the spread of the posterior distri-
bution in the joint approach. The uncertainty quantification is more
reliable than that of the sequential approach and proves the feasibility
of including gamma correlation measurements in the identification of
fissile matter.

The integration of gamma correlations in the identification of fissile
matter is promising but requires further development to ensure the
approach’s robustness. Notably, this work did not incorporate uncer-
tainties in nuclear data. The evaluation of neutron multiplicity data has
een significant improvements in recent years, for example with the

developments of new fission models such as FREYA (Verbeke et al.,
2015). The gamma multiplicity on the other hand has received less
ttention, necessitating further development to achieve a comprehen-

sive and reliable uncertainty quantification framework for scenarios
involving gamma correlations. Additionally, gamma correlations are
highly sensitive to uncertainties in nuclear data due to the higher
detection event rates. While gamma observations may appear to exhibit
lower noise levels, hidden uncertainties in the nuclear data could be
present. Moreover, this study was based exclusively on numerical simu-
lations of gamma correlation measurements, highlighting the necessity
of validating the proposed approach with real-world observations to
ensure reliable uncertainty quantification.
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Appendix A. Feynman moments estimation

The estimation of the Feynman moments of second and third order
is crucial for our problem. Two methods are presented here, the se-
quential binning approach which is the most straightforward, and the
filtered binning method which makes use of the additional information
on the fission chains provided by Monte Carlo codes.

A.1. Sequential binning

Let us consider first the sequential binning approach. Our objective
s to estimate the Feynman moments for a given time window 𝑇 given
he PTRAC file, which records all the detection times. Let 𝑇max be
he end time of the experiment. For a Monte Carlo simulation, this
nd time is artificial since we simulate several neutrons individually
ithout a global time scale. However, the global time scale is brought

by the chosen arbitrary source intensity 𝑆. In sequential binning, the
whole experiment is split into 𝑊 = ⌊

𝑇max
𝑇 ⌋ ∈ N time windows

of size 𝑇 numbered from 1 to 𝑊 . Let (𝑛𝑤)1≤𝑤≤𝑊 be the number of
neutrons detected in each window 𝑤. The Feynman moment are linked
to the ordinary moments (𝑀𝑝)𝑝≥1 of this count statistics which can be
estimated for 𝑝 ≥ 1 by the standard ordinary moment estimator 𝑀𝑝
defined as:

𝑀𝑝 =
1
𝑊

𝑊
∑

𝑤=1
𝑛𝑝𝑤. (A.1)

Now the Feynman moments can then be found by the following esti-
mators.

𝑌 (𝑇 ) = 𝑀2

𝑀1
−𝑀1 − 1 (A.2)

𝑋(𝑇 ) = 𝑀3

𝑀1
+ 2

(

𝑀1
2
+ 1

)

− 3
(

𝑀2

𝑀1
+𝑀2 −𝑀1

)

. (A.3)

Since we are interested in the asymptotic values of the Feynman
moments we would like to plot their evolution with 𝑇 to guarantee the
 (
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convergence towards the asymptotic value. Hence, the time windows
are merged two by two and we then proceed similarly to obtain an
estimation of 𝑌 (2𝑇 ) and 𝑋(2𝑇 ). Iteratively, we can obtain estimations
for the Feynman moments for all 𝑛𝑇 with 𝑛 ≥ 1. Of course, the
larger 𝑛 the fewer time windows, leading to more noisy estimations.
A compromise has to be made in that regard. It should be noted that
he moment estimators 𝑀𝑝 are biased. An unbiased version has been
ntroduced in Tomohiro Endo and Pyeon (2019). We expect this bias

to be very limited in our work since we have at least 𝑊 = 500 detection
gates.

A.2. Filtered triggered binning

In filtered triggered binning, we leverage the additional information
provided by the numerical simulation. In this paper, we are working
with the neutronic Monte Carlo code MCNP6. Since neutrons are
simulated one by one, for each detection we know the corresponding
source neutron. Each detection belongs to a fission chain that can be
dentified. Since the Feynman moments are the average relative number
f double and triple-correlated detections, this additional information
llows us to remove accidental correlations occurring due to random
hance. Thus, the noise in the estimations with sequential binning can
e greatly removed.

To use the information on the history number of the detection, we
proceed as follows. At each neutron detection occurring at an instant
𝑘, a time window with size 𝑇 is opened. This initial detection event
s called the triggering event. In this window, the detections between
𝑡𝑘, 𝑡𝑘 + 𝑇 ] are recorded if and only if they are truly correlated to

the triggering event, or in other words if they belong to the same
fission chain. This can be easily checked as MCNP6 provides the history
number for each of the recorded events.

Let 𝑛(𝑡)𝑘 be the number of detected neutrons in the triggered window.
Then the average number of double and triple correlated detections
denoted respectively 𝑁2𝑐 (𝑇 ) and 𝑁3𝑐 (𝑇 ) can be estimated by:

𝑁2𝑐 (𝑇 ) ≃ 𝑁2𝑐 (𝑇 ) =
𝑁det
∑

𝑘=1
𝑛(𝑡)𝑘 (A.4)

𝑁3𝑐 (𝑇 ) ≃ 𝑁3𝑐 (𝑇 ) =
𝑁det
∑

𝑘=1

𝑛(𝑡)𝑘 (𝑛(𝑡)𝑘 − 1)
2

(A.5)

where 𝑁det is the total number of detections. From these, the Feynman
moments can be estimated using:

𝑌 (𝑇 ) ≃ 𝑌 (𝑇 ) = 2𝑁2𝑐 (𝑇 )
𝑁det

(A.6)

𝑋(𝑇 ) ≃ 𝑋(𝑇 ) = 6𝑁3𝑐 (𝑇 )
𝑁det

(A.7)

These triggered binning estimators allow us to estimate the Feynman
moments while filtering out the noise due to the accidental correlations.

owever, the latter can only be used in numerical simulations, as for
ractical experiments the history number of a given detection signal
annot be recovered. Thus, for this work, the triggered binning is
nly used to generate the data that will be used to train our models.
o solve the inverse problems, the observations considered are based
n sequential binning estimations, such that they mimic real-world
xperiments.

Appendix B. Selection of the weights 𝝎𝒋

The weights (𝜔𝑗 )1≤𝑗≤𝑝 should be defined to account for the influence
f the variables. Our first attempt was to define arbitrary weights based
n our knowledge of the problem. While this may work, we refined our
ethod by using sensitivity analysis to better select the weights. The

ensitivity analysis study is performed using the Analysis of Covariance
ANCOVA) approach.
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Table B.4
First-order structural Sobol indices.
𝑠𝑗 ,𝑖 𝑅(𝑛) 𝑌 (𝑛)

∞ 𝑋(𝑛)
∞ 𝑅(𝛾) 𝑌 (𝛾)

∞ 𝑋(𝛾)
∞

𝑘𝑝 4.3 × 10−1 5.7 × 10−1 6.6 × 10−1 4.1 × 10−4 2.6 × 10−1 2.9 × 10−1
𝜀𝐹 6.8 × 10−1 3.9 × 10−1 7.4 × 10−1 1.9 × 10−6 2.1 × 10−5 2.7 × 10−6
𝑆 5.7 × 10−2 1.1 × 10−4 7.2 × 10−4 4.9 × 10−2 4.4 × 10−5 2.2 × 10−5
𝑥𝑠 6.5 × 10−2 3.2 × 10−3 1.5 × 10−3 5.0 × 10−2 2.5 × 10−3 8.7 × 10−4
𝑀𝛾 5.3 × 10−2 2.6 × 10−2 1.9 × 10−1 1.8 × 10−1 1.2 × 10−1 3.5 × 10−1
𝜀𝛾 7.2 × 10−2 7.9 × 10−3 2.2 × 10−2 4.8 × 10−1 5.3 × 10−1 4.7 × 10−1

Consider a scalar function 𝑓 of a random variable 𝑥 = (𝑥1,… , 𝑥𝑝) ∈
 for 𝑝 ≥ 1. The model response can be decomposed into a sum of
contributions such as:

𝑓 (𝑥) = 𝑓0 +
𝑝
∑

𝑖=1
𝑓𝑖(𝑥𝑖) +

∑

1≤𝑖,𝑗≤𝑝
𝑓𝑖,𝑗 (𝑥𝑖, 𝑥𝑗 ) +⋯ =

∑

𝐴∈𝑝

𝑓𝐴(𝑥𝐴) (B.1)

where 𝑝 is the set of subsets of {1,… , 𝑝}, 𝑥𝐴 is the subvector of 𝑥
here only the components in 𝐴 are kept, 𝑓𝐴(𝑥𝐴) =

∑

𝐵∈𝐴
(−1)|𝐴|−|𝐵|E

𝑓 (𝑥)|𝑥𝐵
]

, and 𝑓0 = E [𝑓 (𝑥)]. In this second expression, 𝐴 is the set of
ubsets of 𝐴, and | ⋅ | refers to the cardinality of the set.

This result is known as the Hoeffding decomposition (Sudret, 2008;
Da Veiga et al., 2021). In the case of independent inputs, the terms
f the decomposition are orthogonal. The sensitivity analysis of the
odel response 𝑓 (𝑥) can then be performed using an ANOVA (analysis

f variance) decomposition of 𝑓 (𝑥) such that:

Var [𝑓 (𝑥)] =
𝑝
∑

𝑖=1
𝑉𝑖 +

∑

1≤𝑖,𝑗≤𝑝
𝑉𝑖,𝑗 +⋯ =

∑

𝐴∈𝑝

𝑉𝐴 (B.2)

where 𝑉𝐴 = Var [𝑓𝐴(𝑥𝐴)
]

.
In the case of dependent inputs, we lose the orthogonality of the

terms in the Hoeffding decomposition. The variance is then written as:

Var [𝑓 (𝑥)] =
∑

𝐴∈𝑝

Cov
[

𝑓𝐴(𝑥𝐴), 𝑓 (𝑥)
]

(B.3)

The structural Sobol index (Hart and Gremaud, 2018) associated to the
subset 𝐴 ∈ 𝑝 is defined by:

𝑠𝐴 =
Var

[

𝑓𝐴(𝑥𝐴)
]

Var [𝑓 (𝑥)]
. (B.4)

In particular, the first-order Sobol index associated with the 𝑗th input is
{𝑗}. It represents the contribution of the 𝑗th input to the model output,
ot accounting for the correlation between the 𝑗th input and the other
nputs. These Sobol indices allow us to identify quantitatively the main
ontributors. For our application, we denote by 𝑠𝑗 ,𝑖 the uncorrelated
or structural) first-order Sobol index associated with the 𝑗th input of
(𝑛,𝛾) and the 𝑖th output of 𝑦(𝑛,𝛾). They are estimated using a Polynomial
haos Expansion (Sudret and Caniou, 2013) and are presented in

Table B.4.
Intuitively, one could increase the contributions of the outputs

whose observational variances are low, since the inverse problem is
more sensitive to these outputs. We choose the non-normalized weights
𝑗 defined by:

𝜔𝑗 =
𝑑
∑

𝑖=1
𝑠𝑗 ,𝑖

𝑦2𝑖
𝜎2𝑖

(B.5)

where 𝜎2𝑖 is the observational variance of the 𝑖th output, for 1 ≤ 𝑖 ≤ 𝑑,

nd 𝑦2𝑖 =
1

𝑁𝑛,𝛾

∑𝑁𝑛,𝛾
𝑘=1

(

𝑦(𝑛,𝛾)𝑘

)2

𝑖
. We then normalize the weights 𝜔𝑗 to have

∑𝑝
𝑗=1 𝜔𝑗 = 1.

With this empirical approach, we hope to put more weight on the
outputs 𝑅(𝑛) and 𝑅(𝛾) which exhibit low relative variance.

Data availability

Data will be made available on request.
10 
References

Ando, Yasumasa, Naito, Norio, Tanabe, Akira, Kitamura, Nobuyuki, 1975. Void
detection in BWR by noise analysis. J. Nucl. Sci. Technol. 12 (9), 597–599.

Authier, Nicolas, Richard, Benoît, Humbert, Philippe, 2014. Initiation of persistent
fission chains in the fast burst reactor Caliban. Nucl. Sci. Eng. 177 (2), 169–183.

Babala, Dšsan, 1967. Interval distributions in neutron counting statistics. Nucl. Sci. Eng.
28 (2), 243–246.

Beddingfield, D.H, Cecil, F.E, 1998. Identification of fissile materials from fission
product gamma-ray spectra. Nucl. Instrum. Methods Phys. Res. A 417 (2), 405–412.

Bell, George I., 1965. On the stochastic theory of neutron transport. Nucl. Sci. Eng. 21
(3), 390–401.

Betancourt, Michael, 2017. A conceptual introduction to Hamiltonian Monte Carlo.
arXiv preprint arXiv:1701.02434.

Bonilla, Edwin V., Chai, Kian, Williams, Christopher, 2007. Multi-task Gaussian process
prediction. Adv. Neural Inf. Process. Syst. 20.

Broyden, Charles G., 1970. The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA J. Appl. Math. 6 (1), 76–90.

Bruggeman, M., Baeten, P., De Boeck, W., Carchon, R., 1996. Neutron coincidence
counting based on time interval analysis with one-and two-dimensional rossi-
alpha distributions: an application for passive neutron waste assay. Nucl. Instrum.
Methods Phys. Res. A 382 (3), 511–518.

Cohn, Charles E., 1960. A simplified theory of pile noise. Nucl. Sci. Eng. 7 (5), 472–475.
Cook, R. Dennis, Nachtrheim, Christopher J., 1980. A comparison of algorithms for

constructing exact D-optimal designs. Technometrics 22 (3), 315–324.
Cooling, C.M., Ayres, D.A.F., Prinja, A.K., Eaton, M.D., 2016. Uncertainty and global

sensitivity analysis of neutron survival and extinction probabilities using polynomial
chaos. Ann. Nucl. Energy 88, 158–173.

Da Veiga, Sébastien, Gamboa, Fabrice, Iooss, Bertrand, Prieur, Clémentine, 2021. Basics
and Trends in Sensitivity Analysis: Theory and Practice in R. SIAM.

Demaziere, Christophe, Pazsit, Imre, 2009. Numerical tools applied to power reactor
noise analysis. Prog. Nucl. Energy 51 (1), 67–81.

Dewji, Shaheen A., Lee, Denise L., Croft, Stephen, Hertel, Nolan E., Chapman, Jef-
frey Allen, McElroy Jr., Robert Dennis, Cleveland, S., 2016. Validation of
gamma-ray detection techniques for safeguards monitoring at natural uranium
conversion facilities. Nucl. Instrum. Methods Phys. Res. A 823, 135–148.

Endo, Tomohiro, Yamane, Yoshihiro, Yamamoto, Akio, 2006. Space and energy depen-
dent theoretical formula for the third order neutron correlation technique. Ann.
Nucl. Energy 33 (6), 521–537.

Enqvist, Andreas, Pázsit, Imre, Avdic, Senada, 2010. Sample characterization using both
neutron and gamma multiplicities. Nucl. Instrum. Methods Phys. Res. A 615 (1),
62–69.

Feynman, Richard P., De Hoffmann, Frederic, Serber, Robert, 1956. Dispersion of the
neutron emission in U-235 fission. J. Nucl. Energy (1954) 3 (1–2), 64–IN10.

Fletcher, Roger, 1970. A new approach to variable metric algorithms. Comput. J. 13
(3), 317–322.

Fry, D.N., 1971. Experience in reactor malfunction diagnosis using on-line noise
analysis. Nucl. Technol. 10 (3), 273–282.

Furuhashi, Akira, Izumi, Akira, 1968. Third moment of the number of neutrons detected
in short time intervals. J. Nucl. Sci. Technol. 5 (2), 48–59.

Gardner, Jacob, Pleiss, Geoff, Weinberger, Kilian Q, Bindel, David, Wilson, Andrew G,
2018. Gpytorch: Blackbox matrix-matrix gaussian process inference with GPU
acceleration. Adv. Neural Inf. Process. Syst. 31.

Goldfarb, Donald, 1970. A family of variable-metric methods derived by variational
means. Math. Comput. 24 (109), 23–26.

Goorley, T., James, Michael, Booth, Thomas, Brown, F., Bull, J., Cox, L.J., Durkee, J.,
Elson, J., Fensin, Michael, Forster, R.A., et al., 2012. Initial MCNP6 release
overview. Nucl. Technol. 180 (3), 298–315.

Gramacy, Robert B., 2020. Surrogates: Gaussian Process Modeling, Design, and
Optimization for the Applied Sciences. Chapman and Hall/CRC.

Haario, Heikki, Saksman, Eero, Tamminen, Johanna, 2001. An adaptive Metropolis
algorithm. Bernoulli 223–242.

Hansen, G.E., 1960. Assembly of fissionable material in the presence of a weak neutron
source. Nucl. Sci. Eng. 8 (6), 709–719.

Harris, D.R., 1965. Neutron fluctuations in a reactor of finite size. Nucl. Sci. Eng. 21
(3), 369–381.

Hart, Joseph, Gremaud, Pierre A., 2018. An approximation theoretic perspective of
Sobol’s indices with dependent variables. Int. J. Uncertain. Quantif. 8 (6).

Hoffman, Matthew D., Gelman, Andrew, et al., 2014. The No-U-Turn sampler: adap-
tively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15
(1), 1593–1623.

Hua, Michael Y., Bravo, C.A., MacDonald, A.T., Hutchinson, J.D., McKenzie, G.E., et
al., 2021. Fast Rossi-alpha measurements of plutonium using organic scintillators.
In: EPJ Web of Conferences. Vol. 247, EDP Sciences, p. 09025.

Humbert, Philippe, 2018. Simulation and analysis of list mode measurements on SILENE
reactor. J. Comput. Theor. Transp. 47 (4–6), 350–363.

Humbert, Philippe, Méchitoua, Boukhmes, 2004. Simulation of Caliban reactor burst
wait time and initiation probability using a point reactor model and PANDA
code. In: Proc. Physics of Fuel Cycles and Advanced Nuclear Systems: Global
Developments (PHYSOR 2004). Chicago, Illinois.

http://refhub.elsevier.com/S0306-4549(24)00786-2/sb1
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb1
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb1
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb2
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb2
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb2
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb3
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb3
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb3
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb4
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb4
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb4
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb5
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb5
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb5
http://arxiv.org/abs/1701.02434
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb7
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb7
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb7
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb8
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb8
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb8
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb9
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb9
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb9
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb9
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb9
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb9
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb9
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb10
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb11
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb11
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb11
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb12
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb12
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb12
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb12
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb12
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb13
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb13
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb13
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb14
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb14
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb14
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb15
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb15
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb15
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb15
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb15
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb15
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb15
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb16
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb16
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb16
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb16
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb16
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb17
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb17
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb17
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb17
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb17
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb18
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb18
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb18
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb19
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb19
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb19
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb20
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb20
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb20
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb21
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb21
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb21
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb22
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb22
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb22
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb22
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb22
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb23
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb23
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb23
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb24
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb24
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb24
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb24
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb24
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb25
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb25
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb25
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb26
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb26
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb26
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb27
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb27
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb27
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb28
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb28
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb28
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb29
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb29
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb29
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb30
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb30
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb30
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb30
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb30
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb31
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb31
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb31
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb31
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb31
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb32
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb32
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb32
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb33
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb33
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb33
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb33
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb33
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb33
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb33


P. Lartaud et al. Annals of Nuclear Energy 213 (2025) 111123 
Kuramoto, R., Santos, Adimir dos, Jerez, Rogério, Bitelli, Ulysses D., Diniz, Ri-
cardo, Madi Filho, Tufic, Santos, Samuel C., 2005. Rossi-alpha experiment in the
IPEN/MB-01 research reactor. Braz. J. Phys. 35, 751–753.

Lartaud, Paul, Humbert, Philippe, Garnier, Josselin, 2023. Multi-output Gaussian
processes for inverse uncertainty quantification in neutron noise analysis. Nucl.
Sci. Eng. 197 (8), 1928–1951.

Lartaud, Paul, Humbert, Philippe, Garnier, Josselin, 2024. Sequential design for
surrogate modeling in Bayesian inverse problems. arXiv preprint arXiv:2402.16520.

Muñoz-Cobo, J.L., Rugama, Y., Valentine, T.E., Mihalczo, J.T., Perez, R.B., 2001.
Subcritical reactivity monitoring in accelerator driven systems. Ann. Nucl. Energy
28 (15), 1519–1547.

Murray, E., Smith, A.G., Pollitt, A.J., Matarranz, J., Tsekhanovich, I., Soldner, T.,
Koster, U., Biswas, D.C., 2014. Measurement of gamma energy distributions and
multiplicities using STEFF. Nucl. Data Sheets 119, 217–220.

Ortiz-Villafuerte, Javier, Castillo-Durán, Rogelio, Alonso, Gustavo, Calleros-
Micheland, Gabriel, 2006. BWR online monitoring system based on noise
analysis. Nucl. Eng. Des. 236 (22), 2394–2404.

Pakari, O, Lamirand, V, Perret, G, Braun, L, Frajtag, P, Pautz, A, 2018. Current mode
neutron noise measurements in the zero power reactor CROCUS. In: EPJ Web of
Conferences. Vol. 170, EDP Sciences, p. 04017.

Pázsit, Imre, Enqvist, Andreas, Avdic, Senada, 2009. Combined use of neutron and
gamma multiplicities for determining sample parameters. In: International Con-
ference on Mathematics, Computational Methods, and Reactor Physics (American
Nuclear Society—ANS, United States. 2009).

Pázsit, Imre, Pál, Lénard, 2007. Neutron Fluctuations: A Treatise on the Physics of
Branching Processes. Elsevier.

Pázsit, Imre, Pozzi, Sara A., 2005. Calculation of gamma multiplicities in a multiplying
sample for the assay of nuclear materials. Nucl. Instrum. Methods Phys. Res. A 555
(1–2), 340–346.

Rasmussen, Carl E., Williams, Christopher K.I., et al., 2006. Gaussian Processes for
Machine Learning, vol. 1, Springer.
11 
Rossi, Bruno, Greisen, Kenneth, 1941. Cosmic-ray theory. Rev. Modern Phys. 13 (4),
240.

Rugama, Y., Kloosterman, J.L., Winkelman, A., 2004. Experimental results from noise
measurements in a source driven subcritical fast reactor. Prog. Nucl. Energy 44
(1), 1–12.

Sacks, Jerome, Schiller, Susannah B., Welch, William J., 1989. Designs for computer
experiments. Technometrics 31 (1), 41–47.

Shanno, David F., 1970. Conditioning of quasi-Newton methods for function
minimization. Math. Comput. 24 (111), 647–656.

Sudret, Bruno, 2008. Global sensitivity analysis using polynomial chaos expansions.
Reliab. Eng. Syst. Saf. 93 (7), 964–979.

Sudret, Bruno, Caniou, Yves, 2013. Analysis of Covariance (ANCOVA) using Polynomial
Chaos Expansions. CRC Press/Balkema.

Tantillo, Francesco, 2024. New class of solutions of the ultimate extinction probability
from Galton-Watson processes. Nucl. Eng. Des. 417, 112827.

Titsias, Michalis, 2009. Variational learning of inducing variables in sparse Gaussian
processes. In: Artificial Intelligence and Statistics. PMLR, pp. 567–574.

Tomohiro Endo, Masao Yamanaka, Pyeon, Cheol Ho, 2019. Experimental validation of
unique combination numbers for third- and fourth-order neutron correlation factors
of zero-power reactor noise. J. Nucl. Sci. Technol. 56 (4), 322–336.

Verbeke, Jerome M., Randrup, J., Vogt, Ramona, 2015. Fission reaction event yield
algorithm, FREYA—For event-by-event simulation of fission. Comput. Phys. Comm.
191, 178–202.

Williams, M.M.R., 1979. An exact solution of the extinction problem in supercritical
multiplying systems. Ann. Nucl. Energy 6 (9–10), 463–472.

Williams, M.M.R., 2016. Burst wait-times in the Caliban reactor using the Gamma
probability distribution function. Nucl. Sci. Eng. 183 (1), 116–125.

Williams, M.M.R., Pázsit, Imre, 2015. The time dependence of the extinction probability
with delayed neutrons. Ann. Nucl. Energy 75, 107–115.

Xiang, Yang, Sun, D.Y., Fan, W., Gong, X.G., 1997. Generalized simulated annealing
algorithm and its application to the thomson model. Phys. Lett. A 233 (3), 216–220.

http://refhub.elsevier.com/S0306-4549(24)00786-2/sb34
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb34
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb34
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb34
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb34
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb35
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb35
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb35
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb35
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb35
http://arxiv.org/abs/2402.16520
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb37
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb37
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb37
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb37
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb37
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb38
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb38
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb38
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb38
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb38
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb39
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb39
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb39
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb39
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb39
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb40
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb40
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb40
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb40
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb40
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb41
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb41
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb41
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb41
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb41
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb41
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb41
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb42
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb42
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb42
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb43
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb43
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb43
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb43
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb43
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb44
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb44
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb44
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb45
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb45
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb45
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb46
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb46
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb46
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb46
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb46
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb47
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb47
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb47
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb48
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb48
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb48
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb49
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb49
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb49
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb50
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb50
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb50
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb51
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb51
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb51
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb52
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb52
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb52
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb53
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb53
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb53
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb53
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb53
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb54
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb54
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb54
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb54
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb54
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb55
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb55
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb55
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb56
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb56
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb56
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb57
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb57
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb57
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb58
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb58
http://refhub.elsevier.com/S0306-4549(24)00786-2/sb58

	Uncertainty quantification in Bayesian inverse problems with neutron and gamma time correlation measurements
	Introduction
	Neutron correlations for fissile matter identification
	Neutron time-correlations in the point model framework
	Gamma noise
	Uncertainty quantification in neutron noise analysis
	Bayesian inverse problem
	Gaussian process surrogate model


	Neutron and gamma inverse problem
	Problem description
	The SILENE experimental reactor
	Neutron and gamma observations

	Sequential approach
	Joint resolution
	Building the models
	Training dataset creation
	Model performance

	Application

	Sequential design strategy for the joint model
	Sequential design for inverse problems
	Dealing with uncontrolled inputs
	Updated surrogate models
	Improved posterior distribution

	Conclusion
	Declaration of competing interest
	Feynman moments estimation
	Appendix A. Feynman moments estimation
	Sequential binning
	Filtered triggered binning

	Selection of the weights ωj
	Appendix B. Selection of the weights ωj
	Data availability
	Appendix . Data availability
	References


