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Waves propagating through weakly disordered smooth linear media undergo a universal phenomenon
called branched flow. Branched flow has been observed and studied experimentally in various systems
by considering coherent waves. Recent experiments have reported the observation of optical branched
flow by using an incoherent light source, thus revealing the key role of coherent phase-sensitive effects
in the development of incoherent branched flow. By considering the paraxial wave equation as a generic
representative model, we elaborate a stochastic theory of both coherent and incoherent branched flow.
We derive closed-form equations that determine the evolution of the intensity correlation function, as
well as the value and the propagation distance of the maximum of the scintillation index, which
characterize the dynamical formation of incoherent branched flow. We report accurate numerical
simulations that are found in quantitative agreement with the theory without free parameters. Our theory
highlights the important impact of coherence and interference on branched flow, thereby providing a
framework for exploring branched flow in nonlinear media, in relation to the formation of freak waves
in oceans.
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Introduction—Waves passing through a weakly disor-
dered smooth medium with a correlation radius larger
than the wavelength form long, narrow filaments called
branches. Instead of random speckle patterns, the disordered
potential focuses waves into branches that split, creating a
treelike structure, known as branched flow (BF). Originally
observed in electrons [1–5] and microwave cavities [6,7],
BFs have been anticipated to occur with vastly different
wavelength scales [8]. They may serve as a catalyst for the
emergence of extreme nonlinear events [9–13], and freak
waves on the ocean [14–19]. BFs have also been suggested
to occur for sound waves [20], ultrarelativistic electrons in
graphene [21], flexural waves in elastic plates [22], while
they can act as a conduit for energy transmission in
scattering media [23]. BFs have been extended to random
potentials in space and time [24], to periodic potentials
[25,26], and even to active random walks [27]. More
recently, BFs have been observed experimentally with
optical waves propagating in soap films [28], and the control
of light BF throughweakly disorderedmedia has become an
important challenge [23,29–31].
The formation of BFs can be explained using geomet-

rical optics, where local maxima of the random refraction
index act as lenses, creating caustics and high wave
intensities, as originally described in Refs. [32,33].
Numerical simulations show that the scintillation index
(i.e., the relative variance of the intensity fluctuations) can
exceed one in such cases. Recent studies have used
geometrical optics or diffraction integrals in the framework
of catastrophe optics [34,35] to derive the scaling behavior

of BF dynamics [36,37] and extreme waves [38,39].
Actually, except for some particular theoretical studies
[40,41], BFs have been essentially treated in the framework
of ray caustics, then disregarding coherence or interference
effects [8]. Along this way, experiments have been carried
out essentially with coherent waves, such as coherent
electron waves [1], coherent microwaves [6,7], or with
coherent laser light [28]. On the other hand, in recent
experiments, optical BFs have been studied by using
incoherent light sources [42], revealing intriguing proper-
ties about the role of coherence in the formation and the
evolution of BFs, such as coherent interference between
the different wave fronts and the sensitivity of BFs to the
coherence of the waves.
Our aim in this Letter is to elaborate a stochastic

formulation of BFs by considering an initial random wave
function propagating in a random potential. Using the
paraxial wave (Schrödinger) equation as a representative
model, we show that interference effects deeply modify the
statistical properties of BFs. Employing multiscale and
stochastic calculus, we derive closed-form equations that
give the evolution of the intensity correlation function. In
particular we describe the evolution of the scintillation
index that characterizes the dynamical formation of inco-
herent BFs. We determine that the scintillation index is a
function of two dimensionless parameters that we identify
and that involve the statistics of the medium and of the
initial field. The theory of the stochastic dynamics of BFs is
validated by accurate numerical simulations, which are
found in quantitative agreement with the theory, without
using any adjustable parameter.
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Model—We consider the two-dimensional paraxial wave
equation [43,44]:

i∂zψ z¼−α∂2xψ zþVðz;xÞψ z; z > 0;x∈R; ð1Þ

starting from ψ z¼0ðxÞ ¼ ψoðxÞ, where ψo is a coherent or
partially coherent field and V is a smooth and slowly
varying potential, which we assume to be a random
process. We will denote by E½·� the expectation with respect
to the distribution of this random process.
We present our work in optics as a concrete example, but

the paraxial wave Eq. (1) is widespread in physics, making
the processes discussed herein broadly applicable to
various systems. In optics, the parameter α and the potential
V are related to the index of refraction n as follows:
α ¼ 1=ð2konoÞ, Vðz; xÞ ¼ ko½n2o − n2ðz; xÞ�=ð2noÞ, where
ko is the wave number in free space, no is the homogeneous
background index of refraction, and nðz; xÞ is the spatially
dependent index of refraction of the medium.
We will consider two different types of initial field.
(1) We will first consider the coherent case in which the

initial field is a plane wave: ψoðxÞ ¼ 1. The measured
intensity is jψ zðxÞj2, the mean intensity is E½jψ zðxÞj2�, and
the scintillation index (i.e., the relative variance of the
intensity) is

SzðxÞ ¼
E½jψ zðxÞj4� − E½jψ zðxÞj2�2

E½jψ zðxÞj2�2
: ð2Þ

(2) Wewill then consider, in detail, the situation in which
the initial field is a coherent or partially coherent speckled
field. We will consider the two following situations:
(c) ψo is a coherent speckled field, which will be

modeled as a stationary random field with Gaussian
statistics and correlation radius ρo (the width of the field
correlation function).
(pc) ψo is a partially coherent speckled field, which will

bemodeled as a time-dependent random field withGaussian
statistics and correlation radius ρo. Such fields can be
generated by passing a time-harmonic plane wave through
a static [case (c)] or rotating [case (pc)] diffuser, which
features a random arrangement of scattering centers. This
experimental setup has attracted considerable interest due to
its ability to mimic the properties of a thermal light source
[45,46], with the added advantage of controlling the spatial
and temporal coherence properties from the degree of
roughness of the diffuser and its rotation speed. It has been
used to investigate speckle phenomena [46], ghost imaging
[47,48], and incoherent BFs [42].
We will denote by h·i the expectation with respect to

the distribution of the initial field. In situation (c),
the measured intensity is jψ zðxÞj2, the mean intensity is
E½hjψ zðxÞj2i�, and the scintillation index is

SðcÞz ðxÞ ¼ E½hjψ zðxÞj4i� − E½hjψ zðxÞj2i�2
E½hjψ zðxÞj2i�2

: ð3Þ

In situation (pc), assuming that the response time of the
photodetector is larger than the coherence time of the field,
the measured intensity is hjψzðxÞj2i (the averaging h·i is
experimentally carried out by time averaging by the
detector over the multiple initial conditions generated by
the rotating diffuser), the mean intensity is E½hjψ zðxÞj2i�,
and the scintillation index is

SðpcÞz ðxÞ ¼ E½hjψ zðxÞj2i2� − E½hjψ zðxÞj2i�2
E½hjψ zðxÞj2i�2

: ð4Þ

Coherent initial plane wave—In this paragraph we
assume a regime in which (i) the wavelength λ ¼ 2π=ko
is much smaller than the correlation radius lc of the index
of refraction of the medium; (ii) the variance σ2n of the index
of refraction is small (hence, the variance σ2 ¼ 4π2σ2n=λ2 of
the random potential satisfies σ2 ≪ 1=λ2); (iii) the propa-
gation distance is large enough so that the evolution of the
variance of the intensity is of order one.
This situation has been intensively studied [43,49]. By a

multiscale analysis, closed-form equations can be derived
for the field and intensity correlation functions [50,51].
These equations depend on the medium statistics via the
integrated medium correlation function γ defined by

γðxÞ ¼
Z
R
E½Vð0; 0ÞVðz; xÞ�dz; ð5Þ

which can be written in the form γðxÞ ¼ σ2lcγ̃ðx=lcÞ. As a
particular example of a smooth random medium, we can
consider a medium with Gaussian correlation function
E½Vð0; 0ÞVðz; xÞ� ¼ σ2 expð−ðx2 þ z2Þ=l2

cÞ, so that γ̃ðx̃Þ ¼ffiffiffi
π

p
expð−x̃2Þ. The field correlation function is E½ψ zðxþ

ðy=2ÞÞψ̄ zðx − ðy=2ÞÞ� ¼ exp½zðγðyÞ − γð0ÞÞ� [50]. This
shows that the mean intensity is constant in z and x and
that the correlation radius of the field decays as 1=

ffiffiffi
z

p
[52].

We introduce two relevant parameters that will play a
key role: Xc ¼ σ2=3lc=α1=3 (which is dimensionless) and
zc ¼ lc=ð2σ2=3α2=3Þ (which is homogeneous to a length),
that will be shown to correspond to the propagation
distance at which the scintillation index reaches a maxi-
mum for large values of Xc. They can also be expressed as
Xc ¼ ð24=3πn1=3o Þσ2=3n lc=λ and zc ¼ ð2−1=3n2=3o Þlc=σ

2=3
n .

From Ref. [50] we find that the scintillation index does
not depend on x:

Sz ¼ D̃z=zcð0; 0Þ − 1; ð6Þ

where D̃z̃ðx̃; ỹÞ satisfies
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∂z̃D̃z̃ ¼ iX−1
c ∂x̃∂ỹD̃z̃ þ

1

2
X2
cŨðx̃; ỹÞD̃z̃; ð7Þ

starting from D̃z̃¼0ðx̃; ỹÞ ¼ 1, with Ũðx̃; ỹÞ ¼ 2γ̃ðx̃Þ þ
2γ̃ðỹÞ − γ̃ðx̃þ ỹÞ − γ̃ðx̃ − ỹÞ − 2γ̃ð0Þ [here x̃ ¼ x=lc and
ỹ ¼ y=lc]. This shows that the scintillation index is a
function of z̃ ¼ z=zc and Xc only. Equation (7) can be
solved by the split-step Fourier method [53]. Moreover,
by expanding the solution for small z̃, we get Sz ≃
½∂4x̃γ̃ð0Þ=6�ðz=zcÞ3 at leading order [with ∂

4
x̃γ̃ð0Þ ¼ 12

ffiffiffi
π

p
for a medium with Gaussian correlation].
Here are the main results.
First, the scintillation index Sz is close to 0 when z is

small (i.e., smaller than zc) and it first increases cubically
with z.

Second, when Xc is below a threshold value XðtÞ
c [XðtÞ

c is
between one and three for a medium with Gaussian
correlation function, see Fig. 1(b)], the scintillation index
is monotonically increasing towards its limit value 1
when z → þ∞.

Third, when Xc is above the threshold value XðtÞ
c , the

scintillation index reaches a maximal value larger than one at
finite propagation distance. The maximal value maxz Sz
depends only onXc, but the distance z atwhich themaximum
of the scintillation index is reached depends on Xc and zc (it
was predicted to be proportional to lc=σ

2=3
n in previous

works [32,33]). It then relaxes to its limit value 1 when
z → þ∞, where the wave field acquires Gaussian statistics
for very large propagation distances [38,51,54–56].
Finally, it is quite surprising to note that when Xc is

larger than XðtÞ
c , then the scintillation index may present two

maxima, one global and one local [see the small bump
around z=zc ¼ 2.5 in Fig. 1(b)].

We remark that the distance lc=σ
2=3
n is also the typical

spatial scale of evolution of the number of branches that a
Hamiltonian flow develops in a random potential [37]. As
discussed in Ref. [57], sec. I, a ray theory of branched flow
can predict the numbers and positions of local intensity
maxima, however it cannot predict the values of the
maxima that result from interference effects and that
depend on the coherence properties of the initial field
(see also [41]).
We have also computed the intensity correlation function

CI
z ðxÞ ¼

E½jψ zðyþ x
2
Þj2jψ zðy − x

2
Þj2� − E½jψ zðyÞj2�2

E½jψ zðyÞj2�2
; ð8Þ

which is independent of y and is given by

CI
z ðxÞ ¼ D̃z=zcðx=lc; 0Þ − 1; ð9Þ

where D̃ is the solution of Eq. (7). The intensity correlation
function is plotted in Fig. 2. Of course one has
CI
z¼0ðxÞ ¼ 0, CI

z ð0Þ ¼ Sz, CI
z ðxÞ → 0 as x → þ∞, andR

CI
z ðxÞdx ¼ 0 (this can be interpreted as an energy

conservation relation).
We have tested the validity of the theoretical predictions

by direct numerical simulations of the paraxial wave Eq. (1)
(see Ref. [57], sec. VIII). The results for the evolution of the
scintillation index in Fig. 1 and the intensity correlation
function in Fig. 2 show excellent quantitative agreements,
even though the separation of scales is not strong in the
simulations.
Incoherent initial wave: Scaling regime—From now on

we address the situation in which the initial field ψoðxÞ is a
speckled field. In addition to the assumptions (i) to
(iii) considered above for the initial plane-wave case, we
assume that ψoðxÞ has Gaussian statistics, with correlation
radius ρo larger than the wavelength λ and smaller than the

FIG. 1. Coherent initial plane wave with a medium with
Gaussian correlation: (a) Numerical simulation of Eq. (1) showing
the evolution of jψ zðxÞj2 starting from ψoðxÞ ¼ 1. Parameters:
lc=λ ¼ 100, σ2λ2 ¼ 10−4 (Xc ≈ 12.4). (b) Scintillation index Sz
versus z=zc for different values ofXc: the black dashed lines report
the theory, Eq. (6); the dotted line is the small z prediction
Sz ≃ 2

ffiffiffi
π

p ðz=zcÞ3; the colored lines are the results of the numerical
simulations, averaged over 1000 independent realizations of the
disordered potential. Parameters: from the bottom, lc=λ ¼ 10, 25,
50, 75, with σ2λ2 ¼ 10−4 for all curves, except for the top yellow
curve (Xc ≈ 12.4) where lc=λ ¼ 50, σ2λ2 ¼ 8 × 10−4.

FIG. 2. Coherent initial plane wave with a medium with
Gaussian correlation. (a) Theoretical intensity correlation func-
tion CI

z ðxÞ from Eq. (9). (b) Comparison of CI
z ðxÞ from Eq. (9)

(black dashed lines), with the numerical simulations of Eq. (1)
(colored lines), for different propagation lengths z=zc. An
average over 1000 simulations with different realizations of
the random potential Vðz; xÞ has been carried out. Parameters:
lc=λ ¼ 100, σ2λ2 ¼ 10−4 ðXc ≈ 12.4Þ.
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correlation radius lc of the index of refraction,
lc=λ ≫ ρo=λ ≫ 1.
We carry out a multiscale analysis in which a small,

dimensionless scale parameter ε encapsulates the four
assumptions listed above. Accordingly, we denote by
ε ∼ λ=lc, the order of magnitude of the ratio of the
wavelength over the correlation radius of the index of
refraction. We assume that the typical amplitude of the
fluctuations of the index of refraction is εc, with c > 0. If
we consider that the reference length is the correlation
radius of the index of refraction, we can write αε ¼
1=ð2konoÞ ¼ εα and Vε ¼ koðn2o − n2Þ=ð2noÞ ¼ εc−1V,
and the scaled paraxial wave equation has the form

i∂zψε
z¼−εα∂2xψε

zþ εc−1Vðz;xÞψε
z; z> 0;x∈R; ð10Þ

starting from ψε
z¼0ðxÞ ¼ ψε

oðxÞ. The initial field ψε
o has

a correlation radius of the order of εd (relative to the
correlation radius of the index of refraction) for some
d∈ ð0; 1Þ, which means that it is larger than the wavelength
(because d < 1) and smaller than the correlation radius of
the index of refraction (because d > 0). The correlation
function of the initial field is, therefore, of the form

D
ψε
o

�
xþ εd

y
2

�
ψε
o

�
x − εd

y
2

�E
¼ CoðyÞ: ð11Þ

For the numerical simulations we consider the Gaussian
model [62,63] in which CoðyÞ ¼ exp½−y2=ð4ρ2oÞ�. Finally,
we consider the Wigner transform after a propagation
distance of order ε−b (relative to the correlation radius of
the index of refraction):

Wε
zðx;kÞ¼

Z
R

D
ψε

z
εb

�
xþεd

y
2

�
ψε

z
εb

�
x−εd

y
2

�E
e−ikydy: ð12Þ

In the scaling regime d∈ ð1=5; 1Þ, b ¼ 1 − d, c ¼
3ð1 − dÞ=2, we get from Eq. (10) that it satisfies the scaled
Vlasov-type equation

∂zWε
z þ ∂kωk∂xWε

z −
1

εb=2
∂xV

�
z
εb

; x

�
∂kWε

z ¼ 0; ð13Þ

with the initial condition Wε
z¼0ðx; kÞ ¼ WoðkÞ ¼R

R CoðyÞe−ikydy and with ωk ¼ αk2 (see Ref. [57], sec. II).
Note that the scaling of the potential in Eq. (13) is
appropriate for the use of limit theorems for random
differential equations ([64], Chapter 6) and we will carry
out such a multiscale analysis.
Before going to the multiscale analysis, we remark

that the solution of the Vlasov equation (13) can be
expressed in terms of the solutions of random ordinary
differential equations. Indeed, using the characteristic
method, we have Wε

zðXε
zðx; kÞ; Kε

zðx; kÞÞ ¼ WoðkÞ, where
ðXε

zðx; kÞ; Kε
zðx; kÞÞ satisfies the ray equations

dXε
z

dz
¼ 2αKε

z;
dKε

z

dz
¼−

1

εb=2
∂xV

�
z
εb
;Xε

z

�
; ð14Þ

starting from Xε
z¼0ðx; kÞ ¼ x, Kε

z¼0ðx; kÞ ¼ k. A key result
(proved in Ref. [57], sec. III) that makes it possible to study
the Wigner transform is the following one: For any
X;K ∈R,

Wε
zðX;KÞ¼

Z
R2

WoðkÞδ½Xε
zðx;kÞ−X�δ½Kε

zðx;kÞ−K�dxdk:

ð15Þ

By taking an expectation (with respect to the distribution of
the random medium), one can see that the mean Wigner
transform involves the probability density function (PDF)
of ðXε

zðx; kÞ; Kε
zðx; kÞÞ. Higher-order moments of the

Wigner transform involve multivariate PDFs. Those
PDFs are computed in Ref. [57], sec. IV, and they give
the following results.
Mean Wigner transform—From Eq. (15) we get the

expression of the mean Wigner transform in the regime
ε → 0, which in turn gives the expression of the field
correlation function E½ψ zðxþ ðy=2ÞÞψ zðx − ðy=2ÞÞ� ¼
CoðyÞ expð−γ2zy2=2Þ, where γ2 ¼ −∂2xγð0Þ. This shows
that the mean intensity is constant in z and x and that
the correlation radius of the beam decays as 1=

ffiffiffi
z

p
just as in

the case of an initial coherent plane wave.
Scintillation index—We write the correlation function of

the initial field in the dimensionless form CoðyÞ ¼
C̃oðy=ρoÞ, where ρo is the correlation radius of the initial
field. We introduce the relevant dimensionless parameter
Xo ¼ σ2=3ρo=α1=3. We get that in the situation (pc) and
(c) the scintillation index does not depend on x (see [57],
sec. V):

SðpcÞz ¼ Π̃z=zcð0;0Þ−1; SðcÞz ¼ 2Π̃z=zcð0;0Þ−1; ð16Þ

where Π̃z̃ðx̃; ỹÞ is the solution to

∂z̃Π̃z̃ ¼ i∂x̃∂ỹΠ̃z̃ −
1

2

�
Γ̃ð0Þ − Γ̃ðx̃Þ�ỹ2Π̃z̃; ð17Þ

starting from Π̃z̃¼0ðx̃; ỹÞ¼ π̃oðỹ=XoÞ. Here Γ̃ðx̃Þ¼−∂2x̃γ̃ðx̃Þ,
π̃oðỹÞ ¼ jC̃oðỹÞj2=C̃oð0Þ2, while Eq. (17) can be solved by a
split-step Fourier method [53]. By expanding the solution

of Eq. (17) for small z̃, we get SðpcÞz ≃ ½∂4x̃γ̃ð0Þ=6�ðz=zcÞ3,
and SðcÞz ≃ 1þ ½∂4x̃γ̃ð0Þ=3�ðz=zcÞ3 at leading order, see
Ref. [57], sec. VI [with ∂

4
x̃γ̃ð0Þ ¼ 12

ffiffiffi
π

p
for a medium

with Gaussian correlation]. This shows that the early
dynamics of the scintillation index in situation (pc) does
not depend on the correlation radius ρo nor on the
correlation function of the initial field, and is equivalent
to the behavior valid for an initial plane wave. The
scintillation index first grows cubically and then reaches
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a maximum value, which depends on Xo ¼ σ2=3ρo=α1=3

only (it increases with Xo). It is interesting to note that Xo
(and hence the maximal scintillation indices) depends on ρo
but not on lc, while the distance z at which the maximum
of the scintillation index is reached depends on lc through
zc ¼ lc=ð2σ2=3α2=3Þ. Remember that when the initial field
is a plane wave, the maximum of the scintillation index
depends only on Xc ¼ σ2=3lc=α1=3. This shows that
speckled beams experience reduced intensity growth com-
pared to plane waves: the smaller the correlation radius of
the initial beam, the lower the maximal intensity reached by
the beam as it propagates.
The theory (obtained in the limit ε → 0) is compared to

simulations of Eq. (1). The intensity evolution in Fig. 3(a)
exhibits distinct qualitative features with respect to the
coherent excitation in Fig. 1(a). As observed experimen-
tally [42], in the coherent case, each branch is accompanied
by sidelobes arising from interference effects, which tend to
disappear when the initial condition is incoherent. In the
simulations we study the impact of ρo, σ2 and lc, on the
scintillation index. Figure 3 shows an excellent quantitative
agreement, in spite of the rather limited separation of scales
of the parameters. The simulations also confirm that the
maximum of Sz does not depend on lc, see Fig. 3(b).
Intensity correlation function—Our theoretical approach

can be exploited to compute an explicit form for the

fourth-order moments of the field. In particular, the
intensity correlation function in situation (c) is

CI ;ðcÞ
z ðxÞ¼ Π̃z=zcðx=lc;0Þþ Π̃z=zcðx=lc;Xox=ρoÞ−1: ð18Þ

This expresses a two-scale behavior: At the small scale
x ∼ ρo, the intensity correlation function decays rapidly,
while its behavior exhibits complex variations at the large
scale x ∼ lc. Similarly, the intensity correlation function in
situation (pc) is given by

CI ;ðpcÞ
z ðxÞ ¼ Π̃z=zcðx=lc; 0Þ − 1: ð19Þ

Note that it is equal to CI ;ðcÞ
z ðxÞwhen x is of the order of lc

because lc ≫ ρo and Π̃z̃ðx̃; ỹÞ → 0 as ỹ → þ∞. The inten-
sity correlation functions are plotted in Fig. 4. The two-scale
behavior of the intensity correlation function in situation
(c) is clearly visible: the limit for large x=ρo of the intensity

correlation function is the initial value for CI ;ðpcÞ
z (or CI ;ðcÞ

z )
when x is of the order of lc. This behavior can be seen in the
numerical simulations as well in Fig. 4, and it satisfies the

energy conservation relation
R
CI ;ðpcÞ
z ðxÞdx ¼ 0.

Perspectives—We have reported a general stochastic
theory of BFs by considering both coherent and incoherent
initial waves. Optics naturally provides an ideal framework
for experimentally testing and observing the theoretical

FIG. 3. Incoherent initial wave with a medium with Gaussian
correlation. (a) Numerical simulation of Eq. (1) showing the
evolution of jψzðxÞj2 starting from a coherent speckle field
[situation (c)], with ρo=λ ¼ 10, lc=λ ¼ 100, σ2λ2 ¼ 10−4.

(b)–(d) Evolution of SðcÞz versus z=zc, by varying different
parameters: the black dashed lines report the theory, Eq. (16);
the colored lines are the results of the numerical simulations,
averaged over 1000 independent realizations of the disordered
potential and of the initial random field. Parameters:
(b) ρo=λ ¼ 10, σ2λ2 ¼ 10−4; (c) lc=λ ¼ 100, σ2λ2 ¼ 10−4;
(d) ρo=λ ¼ 10, lc=λ ¼ 100.

FIG. 4. Incoherent initial wave with a medium with Gaussian
correlation. Theoretical intensity correlation function CI

z ðxÞ:
from Eq. (18) for a coherent speckle field (a) [situation (c)],
and from Eq. (19) for a partially coherent speckle field (b) [sit-
uation (pc)]. (c)–(d) Corresponding comparison of the theo-
retical correlation function CI

z ðxÞ (black dashed lines), with the
numerical simulations of Eq. (1) (colored lines), for different
propagation lengths z=zc. In situation (c), an average over 1000
realizations of Vðz; xÞ and of ψoðxÞ, has been considered. In
situation (pc) an average over 300 realizations of Vðz; xÞ, each
with 400 realizations of ψoðxÞ. Parameters: lc=λ ¼ 100,
ρo=λ ¼ 10, σ2λ2 ¼ 10−4.
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predictions. The results presented in the two-dimensional
framework can be extended to the three-dimensional one
(see Ref. [57], sec. VII). Our work paves the way for a
systematic approach to studying coherent phase-sensitive
effects in BFs, focusing on the linear propagation regime.
As shown in prior studies, linear BFs can trigger extreme
nonlinear events [9–13,65–67], with intensity peaks sig-
nificantly influenced by nonlinearity [9,68]. Our stochastic
framework offers a basis for developing a theoretical model
of nonlinear branched flow.
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