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I. RAY THEORY OF BRANCHED FLOW

One of the main tools used to describe and understand
the properties of branched flow has been the ray tracing
method. Rays are constructed as the characteristic curves
of the eikonal equation obtained by considering rapidly os-
cillating solution of the paraxial Eq.(1) (main text) [1]

ψz(x) = A(z, x)eiS(z,x)/δ, (S1)

where δ is an order counting parameter that expresses the
assumption that the local phase S(z, x) of the wave varies
rapidly in comparison with its amplitude A(z, x). Expand-
ing the wave equation in a hierarchical fashion in powers of
δ−1 yields a system of equations for the local phase and am-
plitude as asymptotic series in δ. The leading-order equation
is the eikonal equation:

−∂zS0 = α (∂xS0)
2

+ V (z, x), (S2)

with S0 the first term in the asymptotic series of S. The
eikonal equation can be interpreted as a Hamilton-Jacobi
equation for a Hamiltonian H(z, x, kz, kx) that determines
the ray trajectories. The Hamiltonian is obtained by making
the substitution (∂zS0, ∂xS0)→ (kz, kx):

H = kz + αk2x + V (z, x). (S3)

The condition H = 0 is the local dispersion relation.
The rays are parametrized curves, (x(s), z(s)), that are

the solutions of Hamilton’s equations:

ẋ = ∂kxH, ż = ∂kzH, k̇x = −∂xH, k̇z = −∂zH, (S4)

where the dot represents a derivative with respect to the
ray parameter s. Since the Hamiltonian is linear in kz, we
have ż = 1 and therefore we can choose the z coordinate
to parametrize the rays. Plugging the expression for the
Hamiltonian, the equations to be solved are

ẋ = 2αkx, k̇x = −∂xV, k̇z = −∂zV, (S5)

together with the initial conditions (x(z = 0), kx(z =
0), kz(z = 0)). From the definition of the momentum, we
have kx(z = 0) = ∂xS(z = 0, x) and kz is then found by
solving the condition H = 0.

In the case of a coherent plane wave, S(z = 0, x) is con-
stant and therefore kx(z = 0) = 0 for all rays (all the rays are
parallel to each other). In the case of an incoherent initial
speckle field, kx 6= 0 and the launched rays are not parallel.
Figures S1-S2 report the ray dynamics and the solution of
the paraxial Eq.(1) (main text) for the same realization of

FIG. S1: Coherent initial plane wave. Example of a
congruence of rays for a single realization of the random
potential. Panel (a) shows a realization of the random

potential V (z, x) together with the rays associated with an
initial coherent plane wave at z = 0. Panel (b) shows the
BF obtained by solving the paraxial Eq.(1) (main text)
with the potential shown in (a), superimposed with the

congruence of rays. We can see the formation of caustics
which are associated with increases in wave intensity.
Parameters are the same as in Fig. 1(a) (main text).

the random potential and for different initial conditions: co-
herent plane wave in Fig. S1, and incoherent speckled field in
Fig. S2 (panels (a) and (b) report two different realizations of
the speckle field). We can clearly see the formation of caus-
tics which are associated with increases in wave intensities.
This illustrates the fact that the rays equations can predict
the positions of the maximal intensities, but the values of the
maxima result from interference effects that depend on the
coherence properties of the initial field. This was discussed
in [2] by using a simple random phase model. The determi-
nation of the statistics of the values of the intensity maxima
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FIG. S2: Incoherent initial wave. (a) Evolution of the BF
obtained by solving the paraxial Eq.(1) (main text),

superimposed with the congruence of rays. (b) Same as in
(a), except that a different realization of the initial

incoherent speckle field is considered. The realization of the
random potential V (z, x) in (a) and (b) is the same as in

Fig. S1. As in the case of the initial plane wave, we can see
the formation of caustics despite the fact that the rays are

not all launched parallel to each other due to the initial
phase variations. Parameters are the same as in Fig. 3(a)

(main text).

require a detailed multiscale analysis as carried out in the
main text.

II. SCALED VLASOV EQUATION

We consider the Wigner transform W ε
z (x, k) defined by

Eq.(12) (main text). From Eq.(10) (main text), it satisfies
the scaled Vlasov-type equation

∂zW
ε
z + ε1−d−b∂kωk∂xW

ε
z

+ εc−b−1i

∫
R

[
V (

z

εb
, x+ εd

y

2
)− V (

z

εb
, x− εd y

2
)
]

×
〈
ψεz

εb
(x+ εd

y

2
)ψεz

εb
(x− εd y

2
)
〉

exp(−iky)dy = 0,

with ωk = αk2, which gives after expansion of the last term
of the left-hand side

∂zW
ε
z + ε1−d−b∂kωk∂xW

ε
z − εc+d−b−1∂xV

( z
εb
, x
)
∂kW

ε
z

= O(εc+3d−b−1), (S6)

with the initial condition W ε
z=0(x, k) =Wo(k). In the scaling

regime d ∈ (1/5, 1), b = 1 − d, c = 3(1 − d)/2, we have
1 − d − b = 0, c + d − b − 1 = −b/2, and c + 3d − b − 1 =
(5d− 1)/2 > 0, so that we can neglect the remainder in (S6)
and we get that W ε

z satisfies (13) (main text) with the initial
condition W ε

z=0(x, k) =Wo(k).
Note that the scaling regime addressed here is different

from the one used to derive the paraxial white-noise (or Itô-
Schrödinger) model [3–6]. The paraxial white-noise model is
valid when d = 0, b = 1, c = 3/2, that is to say, when the
wavelength is much smaller than the correlation radius of the
medium, which is itself of the same order as the correlation
radius of the initial field.

III. PROOF OF EQUATION (15) (MAIN TEXT)

We have

W ε
z (X,K) =

∫
R2

W ε
z (x′, k′)δ(x′ −X)δ(k′ −K)dx′dk′.

We make the change of variables (x′, k′) 7→ (x, k) with x′ =
Xε
z (x, k), k′ = Kε

z (x, k):

W ε
z (X,K) =

∫
R2

W ε
z (Xε

z (x, k),Kε
z (x, k))δ(Xε

z (x, k)−X)

× δ(Kε
z (x, k)−K)|DetJεz(x, k)|dxdk,

where Jεz(x, k) is the Jacobian

Jεz(x, k) =

(
∂Xε

z

∂x (x, k)
∂Xε

z

∂k (x, k)
∂Kε

z

∂x (x, k)
∂Kε

z

∂k (x, k)

)
.

On the one hand we have W ε
z (Xε

z (x, k),Kε
z (x, k)) = Wo(k)

and on the other hand we can compute

d

dz

∂Xε
z

∂x
= 2α

∂Kε
z

∂x
,

∂Xε
z

∂x
|z=0 (x, k) = 1,

d

dz

∂Kε
z

∂x
= − 1

εb/2
∂2xV (

z

εb
, Xε

z )
∂Xε

z

∂x
,

∂Kε
z

∂x
|z=0 (x, k) = 0,

d

dz

∂Xε
z

∂k
= 2α

∂Kε
z

∂k
,

∂Xε
z

∂k
|z=0 (x, k) = 0,

d

dz

∂Kε
z

∂k
= − 1

εb/2
∂2xV (

z

εb
, Xε

z )
∂Xε

z

∂k
,

∂Kε
z

∂k
|z=0 (x, k) = 1,

which gives

d

dz
DetJεz =

( d
dz

∂Xε
z

∂x

)∂Kε
z

∂k
+
∂Xε

z

∂x

( d
dz

∂Kε
z

∂k

)
−
( d
dz

∂Kε
z

∂x

)∂Xε
z

∂k
− ∂Kε

z

∂x

( d
dz

∂Xε
z

∂k

)
= 2α

∂Kε
z

∂x

∂Kε
z

∂k
− 1

εb/2
∂2xV(

z

εb
, Xε

z )
∂Xε

z

∂x

∂Xε
z

∂k

+
1

εb/2
∂2xV(

z

εb
, Xε

z )
∂Xε

z

∂x

∂Xε
z

∂k
− 2α

∂Kε
z

∂x

∂Kε
z

∂k
= 0,
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hence DetJεz = DetJεz=0 = DetI = 1. This gives the desired
result Eq.(15) (main text).

IV. DIFFUSION APPROXIMATION THEORY

This section contains the technical results that are needed
to characterize the statistics of the wave field, in particular
the width of the envelope, the correlation radius of the field
and the scintillation index. The potential V is a smooth, sta-
tionary, random process with mean zero and integrable co-
variance function. Applying diffusion-approximation theory
[7, Chapter 6], we can show from (14) (main text) that, for
any integer n, for any x1, . . . , xn ∈ R, for any k1, . . . , kn ∈ R,
the R2n-valued process (Xε

z (xj , kj),K
ε
z (xj , kj))

n
j=1 converges

in distribution as ε → 0 to the Markov diffusion process
(Xz(xj , kj),Kz(xj , kj))

n
j=1 with the infinitesimal generator

L(n) =

n∑
j=1

2αKj
∂

∂Xj
+

1

2

n∑
j,j′=1

Γ(Xj−Xj′)
∂2

∂Kj∂Kj′
, (S7)

where

Γ(x) =

∫ ∞
−∞

E
[
∂xV (0, 0)∂xV (z, x)

]
dz. (S8)

As a particular example of smooth random medium, we can
consider a potential V with Gaussian correlation function,
variance σ2 and correlation radius `c. We then have

Γ(x) = 2
√
πσ2`−1c

(
1− 2x2

`2c

)
exp

(
− x2

`2c

)
. (S9)

Application n = 1. Let x, k ∈ R. The pdf

p
(1)
z (X,K;x, k) of (Xz(x, k),Kz(x, k)) satisfies the Fokker-

Planck equation

∂zp
(1)
z = (L(1))∗p(1)z , (S10)

starting from p
(1)
z=0(X,K;x, k) = δ(X − x)δ(K − k), where

L(1) = 2αK∂X +
Γ(0)

2
∂2K ,

and (L(1))∗ is the adjoint of L(1). Eq. (S10) has the form

∂zp
(1)
z = −2αK∂Xp

(1)
z +

Γ(0)

2
∂2Kp

(1)
z . (S11)

It is possible to solve this equation (by taking a Fourier trans-
form in (X,K)) and we get the expression of the pdf of the
limit process (Xz(x, k),Kz(x, k)):

p(1)z (X,K;x, k) =
1√

2πΓ(0)z
exp

(
− (K − k)2

2Γ(0)z

) 1√
2πΓ(0) z

3

3

× exp
(
− 3(X − x− α(K + k)z)2

2Γ(0)z3

)
.

(S12)

Application n = 2. Let x1, x2, k1, k2 ∈
R. The pdf p

(1)
z (X1, X2,K1,K2;x1, x2, k1, k2) of

(Xz(xj , kj),Kz(xj , kj))
2
j=1 satisfies the Fokker-Planck

equation

∂zp
(2)
z = (L(2))∗p(2)z , (S13)

starting from p
(2)
z=0(X1, X2,K1,K2;x1, x2, k1, k2) = δ(X1 −

x1)δ(X2 − x2)δ(K1 − k1)δ(K2 − k2), where L(2) is the in-
finitesimal generator of (Xz(xj , kj),Kz(xj , kj))

2
j=1:

L(2) =2αK1
∂

∂X1
+ 2αK2

∂

∂X2
+

1

2
Γ(0)

( ∂2

∂K2
1

+
∂2

∂K2
2

)
+ Γ(X1 −X2)

∂2

∂K1∂K2
. (S14)

We introduce

R =
X1 +X2

2
, Q = X1 −X2, (S15)

U =
K1 +K2

2
, V = K1 −K2, (S16)

where Xj = Xz(xj , kj), Kj = Kz(xj , kj), j = 1, 2. The
infinitesimal generator of the process (Rz, Qz, Uz, Vz) is

L = 2αU∂R+2αV ∂Q+
1

4

(
Γ(0)+Γ(Q)

)
∂2U+

(
Γ(0)−Γ(Q)

)
∂2V .

(S17)
In particular, the process (Qz, Vz) is Markov with generator

L = 2αV ∂Q +
(
Γ(0)− Γ(Q)

)
∂2V . (S18)

V. EXPRESSION OF THE SCINTILLATION
INDEX FOR INCOHERENT INITIAL CONDITIONS

From Eq.(15) (main text) we get the expression of the
second-order moment of the Wigner transform in the limit
ε→ 0:

lim
ε→0

E
[
W ε
z (X1,K1)W ε

z (X2,K2)
]

=

∫
R4

Wo(k1)Wo(k2)

× p(2)z (X1,K1, X2,K2;x1, k1, x2, k2)dx1dk1dx2dk2,
(S19)

where p
(2)
z is the solution of the Fokker-Planck equation

(S13). The second-order moment of the intensity in situ-
ation (pc) is

E
[〈∣∣ψεz

εb
(X)

∣∣2〉2]
=

1

(2π)2

∫
R2

E
[
W ε
z (X,K1)W ε

z (X,K2)
]
dK1dK2. (S20)

The second-order moment of the intensity in situation (c)
is

E
[〈∣∣ψεz

εb
(X)

∣∣4〉]
=

2

(2π)2

∫
R2

E
[
W ε
z (X,K1)W ε

z (X,K2)
]
dK1dK2, (S21)
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where we have used Isserlis’ theorem [8]〈
ψεo(x)ψεo(y)ψεo(x

′)ψεo(y
′)
〉

=
〈
ψεo(x)ψεo(y)

〉 〈
ψεo(x

′)ψεo(y
′)
〉

+
〈
ψεo(x)ψεo(y

′)
〉 〈
ψεo(x

′)ψεo(y)
〉
.

By Eq.(S19) and the change of variables (S15-S16) we then
get:

lim
ε→0

E
[〈∣∣ψεz

εb
(R)
∣∣2〉2]

=
1

(2π)2

∫
R6

Wo(u+
v

2
)Wo(u−

v

2
)

× pz(R, 0, U, V |r, q, u, v)dUdV drdqdudv

=
1

(2π)2

∫
R

[ ∫
R
Wo(u+

v

2
)Wo(u−

v

2
)du
]

×
[ ∫

R2

pz(0, V |q, v)dqdV
]
dv, (S22)

which does not depend on R. By (S18), in the last line
pz(Q,V |q, v) is the pdf solution of

∂zpz = −2αV ∂Qpz +
(
Γ(0)− Γ(Q)

)
∂2V pz, (S23)

starting from pz=0(Q,V |q, v) = δ(Q− q)δ(V − v). Eq.(S22)
can be rewritten as

lim
ε→0

E
[〈∣∣ψεz

εb
(R)
∣∣2〉2] = Πz(0, 0) (S24)

in terms of the function Πz defined by

Πz(Q,S) =

∫
R3

pz(Q,V |q, v)πo(v)eiSV dqdvdV, (S25)

with πo(v) = 1
(2π)2

∫
RWo(u+ v

2 )Wo(u− v
2 )du. The function

Πz is the solution of

∂zΠz = 2iα∂Q∂SΠz −
(
Γ(0)− Γ(Q)

)
S2Πz, (S26)

starting from Πz=0(Q,S) =
∫
πo(v)eiSvdv = |Co(S)|2. This

gives Eqs.(16-17) (main text).

VI. PROOF OF THE SMALL z-EXPANSION

Let Π̃z̃ be the solution of (17) (main text). We consider
the functions

M̃j,z̃(x̃) = (−i)j∂jỹΠ̃z̃(x̃, ỹ) |ỹ=0 .

They satisfy the equations

∂z̃M̃0,z̃ = −∂x̃M̃1,z̃,

∂z̃M̃1,z̃ = −∂x̃M̃2,z̃,

∂z̃M̃2,z̃ = −∂x̃M̃3,z̃ +
(
Γ̃(0)− Γ̃(x̃)

)
M̃0,z̃,

starting from M̃j,z̃=0(x̃) = M̃j,o := (−iXo)
j π̃

(j)
o (0). For

small z̃ and using the fact that M̃j,o does not depend on
x̃, we get successively:

M̃2,z̃(x̃) = M̃2,o +
(
Γ̃(0)− Γ̃(x̃)

)
M̃0,oz̃ + o(z̃),

M̃1,z̃(x̃) = M̃1,o +
1

2
∂x̃Γ̃(x̃)M̃0,oz̃

2 + o(z̃2),

M̃0,z̃(x̃) = M̃0,o −
1

6
∂2x̃Γ̃(x̃)M̃0,oz̃

3 + o(z̃3).

By Eq.(16) (main text) this gives the desired result for

the small z-expansions of S
(c)
z and S

(pc)
z since M̃0,o = 1.

More specifically, we get S
(pc)
z = γ̃4

6
z3

z3c
+ o

(
z3

z3c

)
, S

(c)
z =

1 + γ̃4
3
z3

z3c
+ o

(
z3

z3c

)
, with γ̃4 = −∂2x̃Γ̃(0) = ∂4x̃γ̃(0), where

γ(x) =
∫
R E[V (0, 0)V (z, x)]dz = σ2`cγ̃

(
x/`c

)
. For a medium

with Gaussian correlation function, γ̃(x̃) =
√
π exp(−x̃2) and

γ̃4 = 12
√
π.

VII. EXTENSION TO THE
THREE-DIMENSIONAL CASE

The results described in this paper can be readily extended
to the three-dimensional paraxial wave equation:

i∂zψz = −α
(
∂2x1

+ ∂2x2

)
ψz + V (z,x)ψ, (S27)

for z > 0, x = (x1, x2) ∈ R2. As an illustration, let us
assume that that the initial field is Gaussian with Wigner
transform independent of x:∫

R2

〈
ψo(x +

y

2
)ψo(x−

y

2
)
〉
e−ik·ydy = W̃o(ρok), (S28)

and that the medium fluctuations have Gaussian covariance
function:

E
[
V (0,0)V (z,x)

]
= σ2 exp

(
− |x|

2 + z2

`2c

)
. (S29)

Under such circumstances, in the situation (pc) the scintil-
lation index defined by (4) (main text) has the form

S(pc)
z = Π̃z/zc(0,0)− 1, (S30)

while in the situation (c) the scintillation index defined by
(3) (main text) has the form

S(c)
z = 2Π̃z/zc(0,0)− 1. (S31)

The scintillation index in situations (c) and (pc) depends
on the function Π̃z̃ that is the solution of:

∂z̃Π̃z̃ = i∇x̃ ·∇ỹΠ̃z̃−
1

2

2∑
j,l=1

(
Γ̃jl(0)− Γ̃jl(x̃)

)
ỹj ỹlΠ̃z̃, (S32)

starting from Π̃z̃=0(x̃, ỹ) = |C̃o(ỹ/Xo)|2/C̃o(0)2, where C̃o is

the inverse Fourier transform of W̃o and

Γ̃(x̃) = 2
√
π

(
I− 2

(
x̃21 x̃1x̃2
x̃1x̃2 x̃22

))
exp

(
− |x̃|2

)
. (S33)

VIII. NORMALIZATION AND SIMULATIONS

We performed numerical simulations of the paraxial wave
equation Eq.(1) (main text) by normalizing the spatial vari-
ables with respect to the wavelength λ:

i∂z′ψz′(x
′) = −α′∂2x′ψz′ + V ′(z′, x′)ψz′ , (S34)
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where x′ = x/λ, z′ = z/λ, V ′ = λV = π(n2o − n2(z′, x′))/no,
and α′ = α/λ = 1/(4πno) ' 0.053 with a reference refractive
index of no = 1.5. Accordingly, the normalized initial cor-
relation length is ρ′o = ρo/λ, and the normalized variance of
the random potential is σ′2 = E[V ′2] = λ2σ2. Note that the
relevant parameters are invariant with respect to the normal-
ization, Xc = X ′c = σ′2/3`′c/α

′1/3, Xo = X ′o = σ′2/3ρ′o/α
′1/3,

and zc/λ = z′c = 1/(2σ′2/3α′2/3).
The normalized paraxial Eq.(S34) is solved using a pseudo-

spectral split-step method, with a frequency cutoff of the
spectral grid k′c = 2π (i.e., kc = 2π/λ = ko refers to the
light wavenumber in dimensional units), so that the spatial
discretization is dx′ = 1/2 (i.e., dx = λ/2 in dimensional
units). In all simulations, the size of the spatial window,
Tx′ , is chosen to be much larger than `′c. Typically, we

take Tx′/`′c ' 40. Each realization of the random processes
V ′(x′, z′) and ψz′=0(x′) are defined in the spectral domain
using Gaussian correlation functions characterized by `′c and
ρ′o respectively. The results presented in the main part of
the text are the results of the numerical simulations, aver-
aged over 1000 realizations in cases: 1) of an initial plane
wave and 2) of a coherent speckled field, corresponding to
situation (c). In the case of a partially coherent speckled
initial field, situation (pc), we perform 300 realizations of
the potential V ′(x′, z′). For each of those realizations, we
perform an average over 400 realizations of the initial field
ψz′=0(x′). The different realizations are performed in par-
allel using HPC resources from DNUM CCUB (Centre de
Calcul de l’Université de Bourgogne).
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