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Abstract. Waveform inversion seeks to estimate an inaccessible heterogeneous medium from data gathered by
sensors that emit probing signals and measure the generated waves. It is an inverse problem for a
second order wave equation or a first order hyperbolic system, with the sensor excitation modeled as
a forcing term and the heterogeneous medium described by unknown, spatially variable coefficients.
The traditional ``full waveform inversion"" (FWI) formulation estimates the unknown coefficients via
minimization of the nonlinear, least squares data fitting objective function. For typical band-limited
and high frequency data, this objective function has spurious local minima near and far from the
true coefficients. Thus, FWI implemented with gradient based optimization algorithms may fail,
even for good initial guesses. Recently, it was shown that it is possible to obtain a better behaved
objective function for wave speed estimation, using data driven reduced order models (ROMs) that
capture the propagation of pressure waves, governed by the classic second order wave equation.
Here we introduce ROMs for vectorial waves, satisfying a general first order hyperbolic system.
They are defined via Galerkin projection on the space spanned by the wave snapshots, evaluated
on a uniform time grid with appropriately chosen time step. Our ROMs are data driven: They are
computed in an efficient and noniterative manner, from the sensor measurements, without knowledge
of the medium and the snapshots. The ROM computation applies to any linear waves in lossless and
nondispersive media. For the inverse problem we focus attention on acoustic waves in a medium with
unknown variable wave speed and density. We show that these can be determined via minimization
of an objective function that uses a ROM based approximation of the vectorial wave field inside
the inaccessible medium. We assess the performance of our inversion approach with numerical
simulations and compare the results to those given by FWI.
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1. Introduction. Waveform inversion is an important technology in radar and sonar imag-
ing [18, 16, 25, 7], seismology and geophysical exploration [36, 42], medical imaging with
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ultrasound [38], and so on. It is an inverse problem concerned with the estimation of an inac-
cessible, heterogeneous medium, from time resolved measurements of the wave field, gathered
with source and receiver sensors.

Mathematically, the heterogeneous medium is modeled by unknown variable coefficients
in second order wave equations, or first order hyperbolic systems of equations. The forcing in
these equations is localized at sources that emit probing signals, which are typically pulses.
The unknown coefficients depend on the type of waves: They are the bulk modulus and
mass density for acoustic waves, the dielectric permittivity and magnetic permeability for
electromagnetic waves, and the Lam\'e parameters and density for elastic waves.

Much of the existing literature is concerned with scalar (acoustic pressure) waves, modeled
by the second order wave equation with constant density and unknown variable bulk modulus,
which in turn determines the variable wave speed. This is a simplification, but the problem
remains difficult because the mapping between the unknown wave speed and the pressure
field at the receivers is complicated and nonlinear. In fact, for application relevant high
frequency probing pulses and back-scattering data acquisition geometries, where the sources
and receivers lie on the same side of the medium, the nonlinear, least squares data fitting
objective function has numerous spurious minima, far and near the true wave speed. This
behavior is known as ``cycle skipping."" It is the main difficulty faced by the ``full waveform
inversion"" (FWI) approach implemented with gradient based minimization of the least squares
data misfit, even for reasonable initial guesses [42].

The nonlinear least squares data fitting formulation of inversion has received a lot of at-
tention since its introduction in geophysics in [29, 39]. It was named ``full waveform inversion""
in [33] to emphasize that it uses full seismogram information, not just arrival times. FWI is
a computationally intensive, PDE constrained optimization that relies on application specific
expertise in algorithms, parametrization, and regularization [32, 4]. Most studies consider
the time domain formulation, but they may involve sequential frequency band filtering of the
data, from low to high. Low frequencies help in estimating the kinematics (smooth part of
the wave speed) which mitigates cycle skipping. There are also FWI methods that operate in
the frequency domain, with low to high frequency sweeps and also with complex frequencies.
The Ph.D. thesis [23] is a comprehensive study of such methods. The research in FWI con-
tinues and the methodology is used outside the geophysics community, for example, in brain
imaging with low frequency ultrasound [17], ground penetrating radar [30], and nondestruc-
tive evaluation of corroded materials [34]. There remain challenges to overcome, especially
for applications with high frequency waves, where the bandwidth is small with respect to the
central frequency of the probing pulses.

There are other waveform inversion approaches, beyond FWI. For example, the source type
integral equation (STIE) method introduced in [26] uses the observation that inhomogeneities
in the medium introduce ``scattering source currents"" that are related to the measured wave
field by linear integral operators. Unfortunately, these operators have a large null space. To
deal with the nonuniqueness, the STIE method uses multiple excitations and frequencies and
it estimates the scattering currents and subsequently the material properties via a nonlinear
iterative procedure. The STIE methodology has been extended to medical imaging with MRI
in [3].

Among other, more recent advances to waveform inversion, we mention the following three.
One approach is to minimize the data misfit in the Wasserstein metric [21, 44]. The resulting
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 853

objective function is improved; it is demonstrably convex for some simple models [22], although
the result does not hold for general media [14, Figure 3.3]. Another approach is the ``modeling
operator extension"" [28] or ``extended FWI"" [41, 43]. It introduces additional degrees of
freedom in the optimization, e.g., an unknown source signal in addition to the wave speed,
and then systematically drives the optimization toward a meaningful result. This approach
has been analyzed for a transmission data acquisition geometry in a simple medium in [37],
but guarantees for general media and back-scattering data are lacking. A third approach,
introduced in [19] for one-dimensional media (see also the early study [40]) and then developed
further in [20, 8, 9, 11, 13, 12, 14] for more general media, computes from the data a reduced
order model (ROM). This is a matrix that captures essential features of wave propagation
in the unknown medium, and therefore, it can be used to define objective functions that are
amenable to gradient based minimization [13, 12, 14].

The advantage of FWI, extended FWI, and the Wasserstein metric approaches is that they
work with arbitrary placement of the sources and receivers. So far, the ROM methodology has
been limited to full knowledge of the ``array response matrix"" gathered by a collection (active
array) of coinciding sources and receivers. Active arrays are used, for example, in radar and
phased array ultrasonics, but are not feasible in all applications. Two other data acquisition
setups, where the array response matrix can be obtained via some processing, are described
in [14, section 4] and [12]. Nevertheless, general source and receiver placements have not been
addressed so far. The advantage of the ROM approach, first documented in [12, 14], is that
it can estimate strongly heterogeneous media for which the other approaches have failed.

In this paper we extend the ROM inversion methodology to first order hyperbolic systems
that govern all types of linear waves in nondispersive and lossless media. The ROM derivation
is general, but we focus attention on multiparametric inversion for acoustic waves, where the
wave speed c and density \rho are to be estimated from measurements of the vectorial wave field,
with components given by the acoustic pressure and velocity. Like in [20, 8, 9, 11, 13, 12, 14],
the ROM is defined via Galerkin projection [5, 27, 15] on the space spanned by the wave
snapshots, sampled on a uniform time grid, with step \Delta t chosen according to the Nyquist
sampling criterion for the probing source signals. The snapshots are vector valued fields that
are unknown at points inside the medium. We show that they satisfy an exact time stepping
scheme driven by a ``wave propagator"" operator. The ROM is a matrix of size determined
by the number of source excitations and time steps up to the duration of measurements. It
is defined as the orthogonal projection of the wave propagator operator onto the unknown
space of the snapshots. We derive the nonlinear mapping between the wave measurements at
the sensors and the ROM and then obtain a data driven ROM construction via a noniterative
procedure that uses efficient tools from numerical linear algebra.

The results in [20, 8, 9, 11, 13, 12, 14] are specialized for the second order wave operator
\partial 2
t  - c2\Delta and are based on the positive definiteness and self-adjointness of  - c2\Delta , in the

L2
c - 2 inner product, weighted by c - 2. For first order hyperbolic systems the wave operator is

\partial t+\scrL , with skew-adjoint, first order partial differential operator \scrL . This changes the technical
aspects of the ROM construction, which is new and different from the previous studies. In
the second order formulation [20, 8, 9, 11, 13, 12, 14], the wave field is scalar valued (acoustic
pressure) and the propagator is a self-adjoint operator. Here, the wave field is vectorial
and it can be expressed mathematically as a time-dependent flow, with unitary propagator
operator e - \Delta t\scrL defined in terms of the unitary semigroup generated by \scrL . The data driven
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854 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

computation of the ROM is novel and the ROM propagator has a different algebraic structure.
It was block tridiagonal and symmetric in [20, 8, 9, 11, 13, 12, 14], whereas here we obtain a
block upper Hessenberg ROM propagator, that can be interpreted as a special, upwind finite
difference scheme for the causal wave propagation. From the practical point of view, the first
order formulation considered in this paper opens the door to addressing vector waves such as
elastic and electromagnetic and to explore the use of different types of (polarized) sources and
receivers.

We use the ROM to obtain an approximation of the vectorial wave field at the inaccessible
points inside the medium, a.k.a. the ``internal wave."" This approximation is consistent with
the measurements but the internal wave does not solve the hyperbolic system of equations un-
less the estimates of c and \rho are right. This motivates our multiparametric inversion approach
which minimizes the discrepancy between the internal wave and the solution of the hyperbolic
system, throughout the domain. This is different from the FWI approach, which minimizes
the misfit of the wave at the sensor locations. As demonstrated by numerical simulations,
our objective function is better suited for minimization with gradient based algorithms, like
Gauss--Newton, than that of FWI.

As far as we know, no existing waveform inversion methodology comes with a mathematical
guarantee of convergence to the true solution, i.e., the objective function is not convex. We
cannot prove convexity either, but what we can show is that the ROM can resolve better the
medium from the same data. There are many technical ``tricks"" that one can use to improve
the performance of FWI [23, 32]. Our goal is to compare how the same optimization algorithm,
with the same data, parametrization of the unknowns, and regularization strategy, performs
on our objective function versus that of FWI. We point the reader to [12, 14] for an explicit
comparison of the FWI and a ROM based objective function in a two-dimensional search
domain for the velocity c. The performance of the ROM introduced in this paper is similar to
that in [12, 14] for the case of a medium with constant density \rho . Thus, those results stand
and demonstrate, at least in those simple cases, the advantage of the ROM based inversion.
Here we are interested in the more difficult problem, where we search for both c and \rho .

The paper is organized as follows. We begin in section 2 with the derivation of the data
driven ROM for a general first order hyperbolic system. In section 3 we specialize the result to
acoustic waves in a medium with unknown wave speed c and density \rho . The multiparametric
inversion is discussed in section 4. We also give there numerical simulation results. We end
with a brief summary in section 5.

2. ROM for first order hyperbolic systems. Since we deal with a time domain formu-
lation, where the measurements are recorded for a duration T , we use the hyperbolicity of
the problem and the finite wave speed to truncate the domain of wave propagation, which
is typically the whole space \BbbR d, to \Omega \subset \BbbR d, with d \in \{ 2,3\} . We let \Omega be a bounded and
simply connected domain, with T dependent diameter, and with piecewise smooth boundary
\partial \Omega , modeled with some appropriate homogeneous boundary conditions.1 For example, for
acoustic waves, \partial \Omega may be sound hard or sound soft. For electromagnetic waves, we may
assume a perfectly conducting \partial \Omega .

1Because \Omega is defined via truncation, the choice of boundary conditions does not affect the measurements
up to time T .
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 855

All linear waves in lossless and nondispersive media are governed by a first order hyperbolic
system of the form

\partial t\bfitpsi \bfitepsilon (t,\bfitx ) +\scrL \bfitpsi \bfitepsilon (t,\bfitx ) = \bfitf \bfitepsilon (t,\bfitx ), t\in \BbbR , \bfitx \in \Omega .(2.1)

The dimension m of the vectorial wave field \bfitpsi \bfitepsilon \in \BbbR m depends on d and the type of waves. For
example, in d-dimensional acoustics, the components of \bfitpsi \bfitepsilon are the pressure and velocity, so
m= d+1. In three-dimensional electromagnetics (d= 3), the wave consists of the electric and
magnetic fields, so m= 6. In two-dimensional electromagnetics (a three-dimensional case with
medium invariant in one direction) the governing equations decouple into two polarizations
with m= 3 each.

The variable t in (2.1) denotes time and \scrL is a first order, skew-adjoint partial differential
operator with respect to \bfitx , acting on m-dimensional vectorial functions in \bfitL 2(\Omega ), with ho-
mogeneous boundary conditions. The vector \bfitepsilon = (\epsilon 1, \epsilon 2)\in \scrE \subset \BbbN 2 indexes the wave excitation,
represented by the m-dimensional vector function \bfitf \bfitepsilon in \bfitL 

2(( - ts, ts)\times \Omega ), that models a source
localized2 at point \bfitx \epsilon 1 , with polarization indexed by \epsilon 2. In some applications, the forcing \bfitf \bfitepsilon 

may be a separable function of t and \bfitx . For generality, we allow the probing signals to change
from one source to another. These signals are assumed to be pulses, supported in time in the
interval ( - ts, ts), with modulation at central (carrier) frequency \nu . Prior to the excitation,
there is no wave,

\bfitpsi \bfitepsilon (t,\bfitx ) = \bfzero , t < - ts, \bfitx \in \Omega .(2.2)

The unknown coefficients that model the heterogeneous medium are in \scrL . The waveform
inversion problem is to determine them from the time-dependent array response matrix \bfitA 
with entries

\bfitA \bfitepsilon \prime ,\bfitepsilon (t) =

\int ts

 - ts

dt\prime 
\int 
\Omega 
d\bfitx [\bfitf \bfitepsilon \prime ( - t\prime ,\bfitx )]T\bfitpsi \bfitepsilon (t - t\prime ,\bfitx ).(2.3)

Here T denotes the transpose, while \bfitepsilon = (\epsilon 1, \epsilon 2) and \bfitepsilon 
\prime = (\epsilon \prime 1, \epsilon 

\prime 
2) are two-dimensional indexes

in \scrE \subset \BbbN 2. Since \bfitf \bfitepsilon \prime is supported near the location \bfitx \epsilon \prime 1 of one of the sensors, the measurements
are approximated by \bfitpsi \bfitepsilon evaluated there. That we consider this wave field along the force \bfitf \bfitepsilon \prime 

is a requirement of our data driven ROM construction. We show in the next section that for
acoustic waves, (2.3) models measurements of the velocity.

2.1. Time stepping and the snapshots. Denote by n\scrE the cardinality of the set \scrE \subset \BbbN 2 of
excitation indexes. To simplify notation, we gather the solutions of (2.1), for all the excitations,
in the matrix valued wave field

\bfitpsi (t,\bfitx ) = (\bfitpsi \bfitepsilon (t,\bfitx ))\bfitepsilon \in \scrE (2.4)

with m rows and n\scrE columns. Similarly, we gather all the forces in

\bfitf (t,\bfitx ) = (\bfitf \bfitepsilon (t,\bfitx ))\bfitepsilon \in \scrE \in \BbbR m\times n\scrE .(2.5)

2Localized means that the support is contained in a ball centered at \bfitx \epsilon 1 with a radius that is small with
respect to the wavelength.
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856 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

The solution of (2.1) can be written as

\bfitpsi (t,\bfitx ) =

\int t

 - ts

dt\prime e - (t - t\prime )\scrL \bfitf (t\prime ,\bfitx ),(2.6)

where e - t\scrL is the unitary semigroup generated by \scrL . This operator is understood to act
columnwise on \bfitf . Let us shift the time axis by a finite time3 \tau \geq ts and define the new,
m-dimensional field

\bfitvarphi (t,\bfitx ) =\bfitpsi (t+ \tau ,\bfitx )(2.7)

with initial state

\bfitvarphi (0,\bfitx ) =\bfitvarphi 0(\bfitx ) =

\int ts

 - ts

dt\prime e - (\tau  - t\prime )\scrL \bfitf (t\prime ,\bfitx ).(2.8)

Here we used that \bfitf is supported in ( - ts, ts). Equation (2.6) implies that \bfitvarphi satisfies the
homogeneous equation

\partial t\bfitvarphi (t,\bfitx ) +\scrL \bfitvarphi (t,\bfitx ) = \bfzero , t > 0, \bfitx \in \Omega ,(2.9)

and it takes the form of the time-dependent flow

\bfitvarphi (t,\bfitx ) = e - t\scrL \bfitvarphi 0(\bfitx ).(2.10)

The time stepping equation follows easily from (2.10): Let tj = j\Delta t be a uniform time
grid, with j \in \BbbN and \Delta t \lesssim 1/(2\nu ), so that the Nyquist sampling criterion for the signal s is
satisfied. Define the wave snapshots on this grid by

\bfitvarphi j(\bfitx ) =\bfitvarphi (tj ,\bfitx ), j \geq 0.(2.11)

These satisfy the time stepping iteration

\bfitvarphi j+1(\bfitx ) =\scrP \bfitvarphi j(\bfitx ), j \geq 0, \bfitx \in \Omega ,(2.12)

driven by the wave propagator operator

\scrP = e - \Delta t\scrL .(2.13)

This unitary operator contains all the information about the medium and the ROM approxi-
mates it by the matrix \bfscrP \mathrm{R}\mathrm{O}\mathrm{M}, called the ``ROM propagator.""

3We show later that, since e - t\scrL is unitary, the ROM construction is invariant with respect to \tau .
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 857

2.2. Galerkin approximation of the snapshots. We are interested in the Galerkin projec-
tion of the time stepping equation (2.12) on the space \scrS \mathrm{G}\mathrm{A}\mathrm{L} spanned by the first nt snapshots,
gathered in the matrix valued field

\bfPhi (\bfitx ) =
\bigl( 
\bfitvarphi 0(\bfitx ), . . . ,\bfitvarphi nt - 1(\bfitx )

\bigr) 
,(2.14)

with m rows and ntn\scrE columns. The ROM is defined using the following assumption.

Assumption 1. The columns of \bfPhi (\bfitx ) are linearly independent vector fields.

Remark 2.1. Assumption 1 holds in general, i.e., its converse is unlikely to occur. Indeed,
suppose that the columns of \bfPhi were linearly dependent. Then, there exists a linear combi-
nation \bfPhi \bfitgamma of these columns that is vanishing in \Omega , where the coefficients are stored in the
column vector \bfitgamma = (\gamma j,\bfitepsilon )j=0,...,nt - 1,\bfitepsilon \in \scrE of size ntn\scrE . Equivalently, it is possible to build the
source

\bfitf (\bfitgamma )(t,\bfitx ) =

nt\sum 
j=1

\sum 
\bfitepsilon \in \scrE 

\gamma j,\bfitepsilon \bfitf \bfitepsilon (t - tj  - \tau ,\bfitx ),

supported in space on the sensor locations and in time in ( - (nt  - 1)\Delta t - \tau  - ts,0) such that
the resulting wave vector field vanishes in \Omega at time 0, and hence at any positive time. It is
very unlikely that a null controllability problem can be solved by ``chance"" that way.

We will see later that the Gramian matrix of the snapshots stored in \bfPhi plays a key
role in the data driven computation of the ROM. Assumption 1 implies that the Gramian is
nonsingular. This is sufficient for the theory in this section. However, to get a stable ROM
computation, the Gramian must also be well-conditioned. In our experience, this occurs for
arrays with sensor separation of about half the wavelength, calculated at frequency \nu , in
the reference medium near the sensors, and with time sampling step \Delta t \lesssim 1/(2\nu ). If the
Gramian is ill-conditioned or even singular (i.e., Assumption 1 does not hold), then the ROM
construction requires regularization. We discuss this in section 4.

The Galerkin approximation of the snapshots is

\bfitvarphi \mathrm{G}\mathrm{A}\mathrm{L}

j (\bfitx ) =\bfPhi (\bfitx )\bfitg j \in \scrS \mathrm{G}\mathrm{A}\mathrm{L}, j \geq 0, \bfitx \in \Omega ,(2.15)

where \bfitg j \in \BbbR ntn\scrE \times n\scrE are the matrices of Galerkin coefficients, calculated so that, when sub-
stituting (2.15) into (2.12), we get a residual that is orthogonal to the approximation space.
We write this orthogonality relation using a particular orthonormal basis of \scrS \mathrm{G}\mathrm{A}\mathrm{L}, given by
the Gram--Schmidt orthogonalization procedure, summarized in the equation

\bfPhi (\bfitx ) =\bfitV (\bfitx )\bfitR ,

\int 
\Omega 
d\bfitx \bfitV T (\bfitx )\bfitV (\bfitx ) = \bfitI ntn\scrE ,(2.16)

where \bfitI q denotes the q \times q identity matrix, for any q \in \BbbN . The Gram--Schmidt procedure is
good for our context, because it gives a causal basis. That is to say, if we write \bfitV , similar to
(2.14),

\bfitV (\bfitx ) = (\bfitv 0(\bfitx ), . . . ,\bfitv nt - 1(\bfitx )) ,(2.17)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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858 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

we have

\bfitv j(\bfitx )\in span \{ \bfitvarphi l(\bfitx ),0\leq l\leq j\} , j = 0, . . . , nt  - 1,(2.18)

with \int 
\Omega 
d\bfitx \bfitv Tj (\bfitx )\bfitv l(\bfitx ) = \delta j,l\bfitI n\scrE .(2.19)

The causality (2.18) is reflected in (2.16) by the block upper triangular algebraic structure of
the matrix \bfitR \in \BbbR ntn\scrE \times ntn\scrE with n\scrE \times n\scrE blocks.

The equation for the Galerkin coefficients is\int 
\Omega 
d\bfitx \bfitV T (\bfitx )[\bfPhi (\bfitx )\bfitg j+1  - \scrP \bfPhi (\bfitx )\bfitg j ] = \bfzero , j \geq 0,(2.20)

or, equivalently,

\bfitR  - T\BbbM \bfitg j+1 =\bfitR 
 - T\BbbS \bfitg j , j \geq 0,(2.21)

with \bfitR  - T the transpose of the inverse of \bfitR . Here we solved for \bfitV in (2.16) and introduced
the Gramian, a.k.a. the ``mass"" matrix

\BbbM =

\int 
\Omega 
d\bfitx \bfPhi T (\bfitx )\bfPhi (\bfitx )\in \BbbR ntn\scrE \times ntn\scrE ,(2.22)

and the ``stiffness"" matrix

\BbbS =

\int 
\Omega 
d\bfitx \bfPhi T (\bfitx )\scrP \bfPhi (\bfitx )\in \BbbR ntn\scrE \times ntn\scrE .(2.23)

There are a few important observations for the Galerkin version (2.21) of the time stepping
equation:

1. The matrices \bfitR and \BbbM are invertible due to Assumption 1, so all the Galerkin coeffi-
cients \bfitg j are uniquely defined by (2.21), in terms of \bfitg 0. We choose

\bfitg 0 = \bfiti 0,(2.24)

where \{ \bfiti j\} nt - 1
j=0 denote the ntn\scrE \times n\scrE ``column blocks"" of the identity matrix \bfitI ntn\scrE =

(\bfiti 0, . . . , \bfiti nt - 1). The choice (2.24) ensures that the Galerkin approximation (2.15) sat-
isfies exactly the initial condition.

2. The first nt matrices of Galerkin coefficients are trivial, meaning that

\bfitg j = \bfiti j , 0\leq j \leq nt  - 1,(2.25)

and therefore,

\bfitI ntn\scrE =
\bigl( 
\bfitg 0, . . . ,\bfitg nt - 1

\bigr) 
= (\bfiti 0, . . . , \bfiti nt - 1) .(2.26)
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 859

3. The block upper triangular matrix \bfitR in the Gram--Schmidt orthogonalization is the
block Cholesky square root of the mass matrix

\BbbM =\bfitR T\bfitR .(2.27)

Note that (2.25) is equivalent to saying that the Galerkin approximation (2.15) is exact not
only at t= t0, but also at t= tj , for j = 1, . . . , nt  - 1. This follows from the definition of the
approximation space \scrS \mathrm{G}\mathrm{A}\mathrm{L} and the fact that (2.12) implies

\bfitvarphi j+1(\bfitx ) - \scrP \bfitvarphi j(\bfitx ) =\bfPhi (\bfitx )\bfiti j+1  - \scrP \bfPhi (\bfitx )\bfiti j = \bfzero , 0\leq j \leq nt  - 2.(2.28)

Equation (2.27) is derived from the definition (2.22) of the mass matrix and the Gram--Schmidt
equation (2.16),

\BbbM =

\int 
\Omega 
d\bfitx [\bfitV (\bfitx )\bfitR ]T \bfitV (\bfitx )\bfitR =\bfitR T

\int 
\Omega 
d\bfitx \bfitV T (\bfitx )\bfitV (\bfitx )\bfitR =\bfitR T\bfitR .(2.29)

2.3. Galerkin projection ROM. Equation (2.21) is the algebraic, a.k.a. ROM, equivalent
of (2.12). The ROM snapshots are the ntn\scrE \times n\scrE matrices defined by

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j =\bfitR \bfitg j , j \geq 0,(2.30)

and due to the block Cholesky factorization (2.27), they satisfy the time stepping equation

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j+1 =\bfscrP \mathrm{R}\mathrm{O}\mathrm{M}\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j , j \geq 0,(2.31)

driven by the ROM propagator matrix

\bfscrP \mathrm{R}\mathrm{O}\mathrm{M} =\bfitR  - T\BbbS \bfitR  - 1.(2.32)

This is a projection ROM: According to (2.15)--(2.16), the ROM snapshots are the projection
of the Galerkin approximation of the snapshots of the wave field,

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j =\bfitR \bfitg j =

\int 
\Omega 
d\bfitx \bfitV T (\bfitx )\bfPhi (\bfitx )\bfitg j =

\int 
\Omega 
d\bfitx \bfitV T (\bfitx )\bfitvarphi \mathrm{G}\mathrm{A}\mathrm{L}

j (\bfitx ), j \geq 0,(2.33)

and from (2.23) we get

\bfscrP \mathrm{R}\mathrm{O}\mathrm{M} =

\int 
\Omega 
d\bfitx \bfitR  - T [\bfitV (\bfitx )\bfitR ]T\scrP [\bfitV (\bfitx )\bfitR ]\bfitR  - 1 =

\int 
\Omega 
d\bfitx \bfitV T (\bfitx )\scrP \bfitV (\bfitx ).(2.34)

2.4. Data driven ROM. From the ROM definition above, it appears that its computation
requires the matrix \bfPhi of snapshots. The next theorem states that the ROM is data driven.
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860 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

Theorem 2.2. The ROM can be computed directly from the array response matrix (2.3)
that defines the ``data matrices""

\bfitD j =\bfitA (tj) +\bfitA 
T ( - tj), j \geq 0.(2.35)

The data matrices satisfy

\bfitD j =

\int 
\Omega 
d\bfitx \bfitvarphi T

0 (\bfitx )\bfitvarphi j(\bfitx )(2.36)

= (\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 )T\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j , j = 0, . . . , nt  - 1,(2.37)

where the second equality means that the ROM interpolates the measurements on the uniform
time grid. The ROM is computed from \{ \bfitD j\} nt

j=0 and its propagator matrix (2.32) has an
unreduced, upper Hessenberg block structure.

Proof. The proof of (2.36) follows, basically, from energy conservation. Recall definition
(2.7) of \bfitvarphi and define the matrix

\bfitQ (t; tj) =

\int 
\Omega 
d\bfitx \bfitpsi T (t+ \tau ,\bfitx )\bfitpsi (t+ tj + \tau ,\bfitx ).(2.38)

The trace of \bfitQ (\cdot ; t0 = 0) is the total energy of the system at time t + \tau for all excitations.
According to (2.7), we have

\bfitQ (0; tj) =

\int 
\Omega 
d\bfitx \bfitvarphi T

0 (\bfitx )\bfitvarphi j(\bfitx ).(2.39)

The time derivative of (2.38) is

\partial t\bfitQ (t; tj) =

\int 
\Omega 
d\bfitx 
\bigl[ 
\partial t\bfitpsi 

T (t+ \tau )\bfitpsi (t+ tj + \tau ,\bfitx ) +\bfitpsi T (t+ \tau )\partial t\bfitpsi (t+ tj + \tau ,\bfitx )
\bigr] 

(2.1)
=

\int 
\Omega 
d\bfitx 
\Bigl\{ 
[ - \scrL \bfitpsi (t+ \tau ,\bfitx ) + \bfitf (t+ \tau ,\bfitx )]T \bfitpsi (t+ tj + \tau ,\bfitx )

+\bfitpsi T (t+ \tau ,\bfitx ) [ - \scrL \bfitpsi (t+ tj + \tau ,\bfitx ) + \bfitf (t+ tj + \tau ,\bfitx )]
\Bigr\} 

=

\int 
\Omega 
d\bfitx 
\bigl\{ 
\bfitf T (t+ \tau ,\bfitx )\bfitpsi (t+ tj + \tau ,\bfitx ) +\bfitpsi T (t+ \tau ,\bfitx )\bfitf (t+ tj + \tau ,\bfitx )

\bigr\} 
,(2.40)

where we used that \scrL is skew-adjoint. Integrating in t and evaluating at t= 0 we get

\bfitQ (0; tj)=

\int 0

 - \infty 
dt

\int 
\Omega 
d\bfitx 
\bigl\{ 
\bfitf T (t+ \tau ,\bfitx )\bfitpsi (t+ tj + \tau ,\bfitx ) +\bfitpsi T (t+ \tau ,\bfitx )\bfitf (t+ tj + \tau ,\bfitx )

\bigr\} 
=

\int \infty 

 - \tau 

\int 
\Omega 
\bfitf T ( - t\prime ,\bfitx )\bfitpsi (tj  - t\prime ,\bfitx )d\bfitx dt\prime 

+

\int \infty 

 - \tau  - tj

\int 
\Omega 
\bfitpsi T ( - tj  - t\prime \prime ,\bfitx )\bfitf ( - t\prime \prime ,\bfitx )d\bfitx dt\prime \prime ,(2.41)

where we made the change of variables t+ \tau =  - t\prime and t+ tj + \tau =  - t\prime \prime . Since the source is
supported in time in the interval ( - ts, ts) and \tau \geq ts, we observe from definition (2.3) that
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 861

the right-hand side in (2.41) equals the matrix \bfitD j =\bfitA (tj) +\bfitA 
T ( - tj) defined in (2.35). The

proof of (2.36) follows from (2.39).
Next, we show that the mass matrix is data driven. Writing its definition (2.22) block by

block we get, for 0\leq j \leq l\leq nt  - 1, that

\BbbM j,l =

\int 
\Omega 
d\bfitx \bfitvarphi T

j (\bfitx )\bfitvarphi l(\bfitx )

(2.10)
=

\int 
\Omega 
d\bfitx 
\bigl[ 
e - tj\scrL \bfitvarphi 0(\bfitx )

\bigr] T
e - tl\scrL \bfitvarphi 0(\bfitx )

=

\int 
\Omega 
d\bfitx \bfitvarphi T

0 (\bfitx )e
 - (tl - tj)\scrL \bfitvarphi 0(\bfitx )

(2.10)
=

\int 
\Omega 
d\bfitx \bfitvarphi T

0 (\bfitx )\bfitvarphi l - j(\bfitx )

(2.36)
= \bfitD l - j .(2.42)

Here we used that e - t\scrL is a unitary semigroup, since \scrL is skew-adjoint. It is obvious from the
definition (2.22) that \BbbM is symmetric, so the blocks below the diagonal are

\BbbM j,l = (\BbbM l,j)
T , 0\leq l < j \leq nt  - 1.(2.43)

The stiffness matrix is also data driven: Starting from definition (2.23), we get

\BbbS j,l =
\int 
\Omega 
d\bfitx \bfitvarphi T

j (\bfitx )\scrP \bfitvarphi l(\bfitx )

(2.12)
=

\int 
\Omega 
d\bfitx \bfitvarphi T

j (\bfitx )\bfitvarphi l+1(\bfitx )

=\bfitD l+1 - j(2.44)

for 0\leq j \leq l\leq nt - 1. Unlike the mass matrix, \BbbS is not symmetric. However, we can calculate
its remaining blocks, indexed by 0\leq l < j  - 1, with j = 2, . . . , nt  - 1, as follows:

\BbbS j,l =
\int 
\Omega 
d\bfitx \bfitvarphi T

j (\bfitx )\scrP \bfitvarphi l(\bfitx )

=

\int 
\Omega 
d\bfitx [\scrP T\bfitvarphi j(\bfitx )]

T\bfitvarphi l(\bfitx )

=

\int 
\Omega 
d\bfitx \bfitvarphi T

j - 1(\bfitx )\bfitvarphi l(\bfitx )

=

\biggl[ \int 
\Omega 
d\bfitx \bfitvarphi T

l (\bfitx )\bfitvarphi j - 1(\bfitx )

\biggr] T
=\bfitD T

j - 1 - l.(2.45)

To prove the data interpolation relations (2.37), we deduce from (2.25) and (2.30) that

\bfitR =
\bigl( 
\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 , . . . ,\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

nt - 1

\bigr) 
.(2.46)
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862 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

Since \bfitR is the block Cholesky square root of \BbbM , we have

\bfitD j
(2.42)
= \BbbM 0,j = \bfiti 

T
0 \BbbM \bfiti j = \bfiti T0\bfitR T\bfitR \bfiti j = (\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 )T\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j(2.47)

for j = 0, . . . , nt  - 1, as stated in (2.37).
It remains to prove the algebraic structure of the propagator ROM. We use (2.46) and the

iteration (2.31). If we denote the n\scrE \times n\scrE , no-zero blocks of \bfitR by \bfitR j,l, for 0\leq j \leq l\leq nt  - 1,
we get from (2.31) evaluated at j = 0 that the first column of blocks of \bfscrP \mathrm{R}\mathrm{O}\mathrm{M} satisfies

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

1 =

\left(       
\bfitR 0,1

\bfitR 1,1

\bfzero 
...
\bfzero 

\right)       =\bfscrP \mathrm{R}\mathrm{O}\mathrm{M}\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 =

\left(       
\scrP \mathrm{R}\mathrm{O}\mathrm{M}

0,0

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

1,0

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

2,0
...

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

nt - 1,0

\right)       \bfitR 0,0.

Assumption 1 ensures that \BbbM and therefore \bfitR are invertible, which makes all the diagonal
blocks of \bfitR invertible. Thus, we have

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

l,0 \bfitR 0,0 = \bfzero ; \scrP \mathrm{R}\mathrm{O}\mathrm{M}

l,0 = \bfzero , 2\leq l\leq nt - 1,

and

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

1,0 \bfitR 0,0 =\bfitR 1,1 ; \scrP \mathrm{R}\mathrm{O}\mathrm{M}

1,0 \not = \bfzero .

Now proceed inductively for j \geq 1, under the hypothesis that for j = 0, . . . , J , with J \leq nt - 2,
we have \scrP \mathrm{R}\mathrm{O}\mathrm{M}

j+1,j \not = \bfzero and

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

l,j = \bfzero , j + 2\leq l\leq nt - 1.(2.48)

Then, (2.31) evaluated at j = J gives

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

J+1 =

\left(            

\bfitR 0,J+1

\bfitR 1,J+1

...
\bfitR J+1,J+1

\bfzero 
...
\bfzero 

\right)            
=

\left(        
\scrP \mathrm{R}\mathrm{O}\mathrm{M}

0,J

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

1,J

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

2,J
...

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

nt - 1,J

\right)        \bfitR J,J +

J - 1\sum 
l=0

\left(               

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

0,l

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

1,l

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

2,l
...

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

l+1,l

\bfzero 
...
\bfzero 

\right)               
\bfitR l,J .

Equating the entries in the lth rows, with l > J + 1, and using that \bfitR J,J is invertible, we
deduce that the induction hypothesis equation (2.48) extends to J , as well. We also have that

\scrP \mathrm{R}\mathrm{O}\mathrm{M}

J+1,J\bfitR J,J =\bfitR J+1,J+1 ; \scrP \mathrm{R}\mathrm{O}\mathrm{M}

J+1,J \not = \bfzero .
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 863

The induction argument terminates at j = nt  - 2 and proves that \bfscrP \mathrm{R}\mathrm{O}\mathrm{M} has unreduced block
upper Hessenberg structure.

Remark 2.3. Definition (2.35) shows that if there is reciprocity in the response of the
medium, i.e., if \bfitA is symmetric, then the data matrices \bfitD j are symmetric and we can drop
the transpose in (2.45). We show in section 3 that reciprocity holds in the case of acoustic
waves.

Remark 2.4. The second term in definition (2.35) contributes only at the very early time
instants tj \leq 2ts, due to causality. Indeed, at later instants, satisfying tj > 2ts, we have
\bfitpsi T ( - tj  - t,\bfitx ) = \bfzero in the integral, because  - tj  - t\in ( - tj  - ts, - tj + ts) does not intersect the
time interval ( - ts,\infty ) where the wave is supported.

2.5. Properties of the ROM. The calculations above reveal two important aspects of the
ROM that account for the action of the unitary semigroup e - t\scrL generated by \scrL :

1. The mass matrix \BbbM is symmetric, with block Toeplitz structure. Its main diagonal
contains the initial data matrix \bfitD 0, which is symmetric by (2.36) evaluated at j = 0. The
other diagonals contain the data matrices \bfitD j for j = 1, . . . , nt  - 1, respectively. The stiffness
matrix \BbbS is also block Toeplitz, but its diagonals are shifted. The initial data blocks\bfitD 0 appear
in the first subdiagonal, the main diagonal contains the data matrix \bfitD 1, and the remaining
upper diagonals have the blocks \bfitD j for j = 2, . . . , nt.

2. The ROM propagator \bfscrP \mathrm{R}\mathrm{O}\mathrm{M} preserves the unitary structure of the true wave propagator
operator \scrP = exp( - \Delta t\scrL ). To see this, let us write the iteration (2.12) backward in time, using
that \scrP is unitary,

\bfitvarphi j(\bfitx ) =\scrP T\bfitvarphi j+1(\bfitx ), j \geq 0.(2.49)

The Galerkin approximation of this equation, in the same space used before, has the snapshots

\bfitvarphi \mathrm{G}\mathrm{A}\mathrm{L}, - 
j (\bfitx ) =\bfPhi (\bfitx )\bfitg  - j , j \geq 0,(2.50)

where the superscript `` - "" reminds us that the stepping is backward in time and the coefficient
matrices \bfitg  - j satisfy, similar to (2.20),\int 

\Omega 
d\bfitx \bfitV T (\bfitx )[\bfPhi (\bfitx )\bfitg  - j  - \scrP T\bfPhi (\bfitx )\bfitg  - j+1] =\bfitR \bfitg 

 - 
j  - (\bfscrP \mathrm{R}\mathrm{O}\mathrm{M})T\bfitR \bfitg  - j+1 = \bfzero , j \geq 0.(2.51)

Here we used the Gram--Schmidt equation (2.16) and the identity\int 
\Omega 
d\bfitx \bfitV T (\bfitx )\scrP T\bfitV (\bfitx ) =

\biggl[ \int 
\Omega 
d\bfitx \bfitV T (\bfitx )\scrP \bfitV (\bfitx )

\biggr] T
(2.34)
= (\bfscrP \mathrm{R}\mathrm{O}\mathrm{M})T .(2.52)

The ROM snapshots for the backward iteration are

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}, - 
j =\bfitR \bfitg  - j , j \geq 0,(2.53)

and they evolve according to the transpose of the ROM propagator matrix
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864 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}, - 
j = (\bfscrP \mathrm{R}\mathrm{O}\mathrm{M})T\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}, - 

j+1 , j \geq 0.(2.54)

This is the (ROM) algebraic form of (2.49).
Note that the ROM snapshots for the forward and backward iterations coincide at the

first time instants because the same reasoning that leads to (2.25) applies to the Galerkin
approximation (2.50). We get

\bfitg  - j = \bfitg j = \bfiti j ; \bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j =\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}, - 
j , j = 0, . . . , nt  - 1,(2.55)

so the ROM propagator behaves as a unitary matrix for the first nt snapshots. More explicitly,
if we substitute (2.31) into (2.54) and use (2.55), we get

\Bigl[ 
\bfitI ntn\scrE  - \bfscrP \mathrm{R}\mathrm{O}\mathrm{M}T\bfscrP \mathrm{R}\mathrm{O}\mathrm{M}

\Bigr] 
\left(       
\bfitR 0,0 \bfitR 0,1 \bfitR 0,2 . . . \bfitR 0,nt - 2

\bfzero \bfitR 1,1 \bfitR 1,2 . . . \bfitR 1,nt - 2

...
\bfzero \bfzero . . . \bfzero \bfitR nt - 2,nt - 2

\bfzero \bfzero . . . \bfzero \bfzero 

\right)       = \bfzero \in \BbbR ntn\scrE \times (nt - 1)n\scrE .

Because the diagonal blocks of \bfitR are invertible, we deduce from this equation that the first
nt  - 1 columns of (\bfscrP \mathrm{R}\mathrm{O}\mathrm{M})T\bfscrP \mathrm{R}\mathrm{O}\mathrm{M} equal those of the identity matrix.

3. Acoustic waves. In this section we specialize the ROM to acoustic waves, governed by
the first order hyperbolic system

\partial t\bfitu \bfitepsilon (t,\bfitx ) + \rho  - 1(\bfitx )\nabla p\bfitepsilon (t,\bfitx ) =
s(t)\surd 
\zeta o
\bfitF \bfitepsilon (\bfitx ),(3.1)

\partial tp\bfitepsilon (t,\bfitx ) +K(\bfitx )\nabla \cdot \bfitu \bfitepsilon (t,\bfitx ) = 0,(3.2)

satisfied at \bfitx \in \Omega and t \in \BbbR , by the acoustic pressure p\bfitepsilon and velocity \bfitu \bfitepsilon , indexed by \bfitepsilon =
(\epsilon 1, \epsilon 2) \in \BbbN 2 (see Figure 3.1). Here the medium is modeled by the variable and unknown
density \rho and bulk modulus K, which determine the wave speed

Figure 3.1. Illustration of the acoustic setup for inverse scattering with polarized excitations \bfitF \bfitepsilon (\bfitx ). The
inversion domain is shown in darker blue and is surrounded by a homogeneous reference medium. The sensors
are placed above this domain and generate waves with d different polarizations (here d= 2).
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 865

c(\bfitx ) =

\sqrt{} 
K(\bfitx )

\rho (\bfitx )
(3.3)

and the wave impedance

\zeta (\bfitx ) =
\sqrt{} 

K(\bfitx )\rho (\bfitx ).(3.4)

The reference values of the coefficients are the constants \rho o,Ko, co, and \zeta o, respectively. These
model the homogeneous medium near the sensors in the array.

3.1. Derivation of the first order system (2.1). The theory in the previous section was
done for arbitrary forcing. For its application to acoustics, we assume a separable force
function, which is typical in phased array data acquisitions. Thus, the right-hand side in (3.1)
consists of the pulsed signal s, supported at t\in ( - ts, ts), and

\bfitF \bfitepsilon (\bfitx )\approx \delta (\bfitx  - \bfitx \epsilon 1)\bfite \epsilon 2 ,(3.5)

where \bfitx \epsilon 1 is the location of the \epsilon 1th sensor and \bfite 1, . . . ,\bfite d is the canonical orthonormal basis
in \BbbR d. The approximation means that \bfitF \bfitepsilon is an \bfitL 2(\Omega ) function normalized by\int 

\Omega 
d\bfitx \bfitF \bfitepsilon (\bfitx ) = \bfite \epsilon 2 ,(3.6)

and supported in a ball centered at \bfitx \epsilon 1 , with small radius with respect to the wavelength.
The scaling of the force by \zeta o

 - 1/2 in (3.1) is to simplify the formulas below. We model the
boundary of the domain as sound soft,

p\bfitepsilon (t,\bfitx ) = 0, t\in \BbbR , \bfitx \in \partial \Omega ,(3.7)

and suppose that the medium is quiescent prior to the excitation,

p\bfitepsilon (t,\bfitx ) = 0, \bfitu \bfitepsilon (t,\bfitx ) = \bfzero , t\ll 0, \bfitx \in \Omega .(3.8)

The hyperbolic system (3.1)--(3.2) can be put in the desired form (2.1) by defining the
following m= d+ 1 dimensional wave field:

\bfitpsi \bfitepsilon (t,\bfitx ) =
\surd 
co

\Biggl( \sqrt{} 
\rho (\bfitx )\bfitu \epsilon (t,\bfitx )
1\surd 
K(\bfitx )

p\epsilon (t,\bfitx )

\Biggr) 
.(3.9)

We obtain (2.1) with the skew-adjoint operator

\scrL =

\left(   0 1\surd 
\rho (\bfitx )

grad
\Bigl[ 
c(\bfitx )

\sqrt{} 
\rho (\bfitx )\cdot 

\Bigr] 
c(\bfitx )

\sqrt{} 
\rho (\bfitx ) div

\biggl[ 
1\surd 
\rho (\bfitx )

\cdot 
\biggr] 

0

\right)   (3.10)

and the force

\bfitf \bfitepsilon (t,\bfitx ) = s(t)

\biggl( 
\bfitF \bfitepsilon (\bfitx )

0

\biggr) 
.(3.11)
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866 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

3.2. The data. The variable coefficients in \scrL , written in terms of the wave speed c and
density \rho , are the unknowns, to be determined from the measured array response matrix \bfitA .
The entries (2.3) of this matrix are

\bfitA \bfitepsilon \prime ,\bfitepsilon (t)
(3.11)
=

\int ts

 - ts

dt\prime 
\int 
\Omega 
d\bfitx s( - t\prime )

\biggl( 
\bfitF \bfitepsilon \prime (\bfitx )

0

\biggr) T

\bfitpsi \bfitepsilon (t - t\prime ,\bfitx )

(3.9)
=

\int ts

 - ts

dt\prime 
\int 
\Omega 
d\bfitx 

\surd 
co
\sqrt{} 

\rho (\bfitx )s( - t\prime )\bfitF T
\bfitepsilon \prime (\bfitx )\bfitu \bfitepsilon (t - t\prime ,\bfitx ),

\approx 
\int ts

 - ts

dt\prime 
\sqrt{} 

\zeta o\bfite 
T
\epsilon \prime 2
s( - t\prime )\bfitu \bfitepsilon (t - t\prime ,\bfitx \epsilon \prime 1),(3.12)

where the approximation is due to (3.5) and the assumption \rho (\bfitx \epsilon \prime 1) = \rho o. Thus, the array
measures the velocity at the sensor locations. These measurements can be related to mea-
surements of the pressure using the divergence theorem,\int ts

 - ts

dt\prime 
\int 
\Omega 
d\bfitx s( - t\prime ) div [\bfitF \bfitepsilon \prime (\bfitx )]p\bfitepsilon (t - t\prime ,\bfitx )

=

\int ts

 - ts

dt\prime s( - t\prime )

\int 
\Omega 
d\bfitx div [\bfitF \bfitepsilon \prime (\bfitx )p\bfitepsilon (t - t\prime ,\bfitx )]

 - 
\int ts

 - ts

dt\prime 
\int 
\Omega 
d\bfitx [\bfitF \bfitepsilon \prime (\bfitx )]

T s( - t\prime )\nabla p\bfitepsilon (t - t\prime ,\bfitx )

(3.1)
=  - 

\int ts

 - ts

dt\prime 
\int 
\Omega 
d\bfitx [\bfitF \bfitepsilon \prime (\bfitx )]

T s( - t\prime )

\biggl[ 
s(t - t\prime )\rho o\surd 

\zeta o
\bfitF \bfitepsilon (\bfitx ) - \rho (\bfitx )\partial t\bfitu \bfitepsilon (t - t\prime ,\bfitx )

\biggr] 
=

\rho o\surd 
\zeta o

\biggl[ 
d

dt
\bfitA \bfitepsilon \prime ,\bfitepsilon (t) - 

\int ts

 - ts

dt\prime s( - t\prime )s(t - t\prime )

\int 
\Omega 
d\bfitx [\bfitF \bfitepsilon \prime (\bfitx )]

T \bfitF \bfitepsilon (\bfitx )

\biggr] 
.(3.13)

Here we used the boundary condition (3.7) and that \rho = \rho o at the array. Note that the last
term in the right-hand side of this equation vanishes when \epsilon \prime 1 \not = \epsilon 1, because the two forces
have disjoint support. Note also that given our model (2.5) of the force, the derivative of the
array response matrix gives approximately the components of the gradient of pressure at the
array \int ts

 - ts

dt\prime 
\int 
\Omega 
d\bfitx s( - t\prime ) div [\bfitF \bfitepsilon \prime (\bfitx )]p\bfitepsilon (t - t\prime ,\bfitx )

(3.5)
\approx 
\int 
\Omega 
d\bfitx \partial x\epsilon \prime 

2
\delta (\bfitx  - \bfitx \epsilon \prime 1)

\int ts

 - ts

dt\prime s( - t\prime )p\bfitepsilon (t - t\prime ,\bfitx )

= - 
\int ts

 - ts

dt\prime s( - t\prime )\partial x\epsilon \prime 
2
p\bfitepsilon (t - t\prime ,\bfitx \epsilon \prime 1).(3.14)

Suppose that the array is planar and that we measure the components of the velocity in the
normal direction to the array. The calculation above says that this is basically the same as
measuring the normal derivative of the pressure at the array. This is not enough information
for solving the inverse problem, so we need to measure the velocity in the plane of the array,
as well.
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 867

We end this section with the proof of reciprocity (symmetry of \bfitA ), mentioned in Re-
mark 2.3. Equation (3.13) shows that \bfitA is symmetric if the pressure field satisfies\int 

\Omega 
d\bfitx div [\bfitF \bfitepsilon \prime (\bfitx )]p\bfitepsilon (t,\bfitx ) =

\int 
\Omega 
d\bfitx div [\bfitF \bfitepsilon (\bfitx )]p\bfitepsilon \prime (t,\bfitx ) \forall \bfitepsilon ,\bfitepsilon \prime \in \scrE .(3.15)

Equations (3.1)--(3.2) give that p\bfitepsilon satisfies the second order wave equation

\partial 2
t p\bfitepsilon (t,\bfitx ) - K(\bfitx ) div

\bigl[ 
\rho  - 1(\bfitx )\nabla p\bfitepsilon (t,\bfitx )

\bigr] 
= - co

d

dt
s(t) div [\bfitF \bfitepsilon (\bfitx )](3.16)

with homogeneous Dirichlet boundary condition at \partial \Omega . If we let G be the Green's function
for the wave operator in this equation, we get that

p\bfitepsilon (t,\bfitx ) = co
d

dt
s(t)  \star t

\int 
\Omega 
d\bfity G(t,\bfitx ,\bfity ) div [\bfitF \bfitepsilon (\bfity )],(3.17)

where  \star t denotes convolution in time. It is known that G satisfies the reciprocity relation
G(t,\bfitx ,\bfity ) =G(t,\bfity ,\bfitx ) (see, for example, [24]). Therefore, (3.17) implies that (3.15) holds.

4. Multiparametric inversion. If we knew the wave field inside the domain \Omega , it would be
easy to estimate c and \rho . This is precisely the point of hybrid (multiphysics) imaging modal-
ities [2] that use one kind of wave to probe the medium and then measure the propagation
of another wave. Hybrid methods require complex equipment and controlled measurement
settings that cannot be implemented in general environments. Here we use the ROM to map
the measurements at the array to a good approximation of the vectorial wave field inside \Omega .

The basic idea for obtaining such a map comes from the Gram--Schmidt equation (2.16),
which factorizes the unknown snapshots contained in \bfPhi in the data driven ROM snapshots,
the block columns of \bfitR , and the uncomputable orthonormal basis in \bfitV . We know from
Theorem 2.2 that the ROM snapshots satisfy the exact data fitting relation (2.37), just like
the true snapshots. This means that all the information registered at the array is contained
in the ROM snapshots. The uncomputable basis \bfitV plays no role in the data fitting. Indeed,
(2.16), (2.34), and (2.46) give

\bfitD j =

\int 
\Omega 
d\bfitx \bfitvarphi T

0 (\bfitx )\bfitvarphi j(\bfitx ) =

\int 
\Omega 
d\bfitx [\bfitV (\bfitx )\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 ]T \bfitV (\bfitx )\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j

= (\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 )T
\int 
\Omega 
d\bfitx \bfitV T (\bfitx )\bfitV (\bfitx )\underbrace{}  \underbrace{}  

\bfitI ntn\scrE 

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j = (\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 )T\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j , j = 0, . . . , nt  - 1,(4.1)

and the same result holds when replacing \bfitV with any orthonormal basis. That is to say, if we
define

\widetilde \bfitvarphi j(\bfitx ;\widetilde c, \widetilde \rho ) =\bfitV (\bfitx ;\widetilde c, \widetilde \rho )\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j , j = 0, . . . , nt  - 1,(4.2)

with \bfitV (\cdot ;\widetilde c, \widetilde \rho ) the orthonormal basis computed via the Gram--Schmidt procedure in the
medium with search wave speed \widetilde c and density \widetilde \rho , we get, similar to (4.1), the exact data
fit

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

1/
25

 to
 1

29
.1

04
.7

8.
16

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



868 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

\int 
\Omega 
d\bfitx \widetilde \bfitvarphi T

0 (\bfitx ;\widetilde c, \widetilde \rho )\widetilde \bfitvarphi j(\bfitx ;\widetilde c, \widetilde \rho ) = (\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 )T
\int 
\Omega 
d\bfitx \widetilde \bfitV T

(\bfitx ;\widetilde c, \widetilde \rho )\bfitV (\bfitx ;\widetilde c, \widetilde \rho )\underbrace{}  \underbrace{}  
\bfitI ntn\scrE 

\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j

= (\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

0 )T\bfitvarphi \mathrm{R}\mathrm{O}\mathrm{M}

j =\bfitD j , j = 0, . . . , nt  - 1.(4.3)

The basis \bfitV maps the information registered at the array and contained in the ROM
snapshots, from the algebraic (ROM) space to the physical space, at \bfitx \in \Omega . Its computation
requires knowing the medium. Thus, we define our approximation of the internal wave by
(4.2), where the uncomputable \bfitV is replaced by the basis in our best guess of the medium,
modeled by \widetilde c and \widetilde \rho . While this internal wave is consistent with the data, as shown above, it
is not a solution of the hyperbolic system of equations. Assuming that the inverse problem
is uniquely solvable [6], this would be the case only when \widetilde c and \widetilde \rho are equal to the true wave
speed and density.

Therefore, our inversion approach seeks to minimize the discrepancy \scrO (\widetilde c, \widetilde \rho ) between the
estimated internal waves (4.2) and the solution of the wave equation, whose first nt snapshots
are gathered in \bfitV (\cdot ;\widetilde c, \widetilde \rho )\bfitR (\widetilde c, \widetilde \rho ), similar to (2.16). The objective function is

\scrO (\widetilde c, \widetilde \rho ) = nt - 1\sum 
j=0

\int 
\Omega 
d\bfitx \| \widetilde \bfitvarphi j(\bfitx ;\widetilde c, \widetilde \rho ) - \bfitvarphi j(\bfitx ;\widetilde c, \widetilde \rho )\| 2F

=

\int 
\Omega 
d\bfitx \| \bfitV (\bfitx ;\widetilde c, \widetilde \rho )\bfitR  - \bfitV (\bfitx ;\widetilde c, \widetilde \rho )\bfitR (\widetilde c, \widetilde \rho )\| 2F

= \| \bfitR  - \bfitR (\widetilde c, \widetilde \rho )\| 2F ,(4.4)

where \| \cdot \| F is the Frobenius norm, \bfitR without an argument is the data driven matrix con-
taining the ROM snapshots, and \bfitR (\widetilde c, \widetilde \rho ) is the block Cholesky square root of the mass matrix
computed in the guess medium with wave speed \widetilde c and density \widetilde \rho . The contribution of \bfitV (\cdot ;\widetilde c, \widetilde \rho )
cancels out in (4.4) by the definition of the Frobenius norm and orthonormality. Thus, we are
left with minimizing the misfit of the block Cholesky square root of the mass matrix.

Instead of working with (4.4), we minimize the objective function

\scrO \mathrm{R}\mathrm{O}\mathrm{M}(\widetilde c, \widetilde \rho ) = \| \bfitR (\widetilde c, \widetilde \rho )\bfitR  - 1  - \bfitI ntn\scrE \| 2F .(4.5)

This works better because by taking the inverse of\bfitR we balance the contribution of the strong
and weak echoes registered in the data \{ \bfitD j\} nt - 1

j=0 .

4.1. The inversion algorithm. To formulate the algorithm, we need to specify the search
space where \widetilde c and \widetilde \rho lie. We parameterize \widetilde c and \widetilde \rho as

\widetilde c(\bfitx ;\bfiteta ) = co +

N\sum 
l=1

\eta l\beta l(\bfitx ), \widetilde \rho (\bfitx ;\bfiteta ) = \rho o +

N\sum 
l=1

\eta l+N\beta l(\bfitx ),(4.6)

where we recall that co and \rho o are the known reference coefficients. Note that in (4.6) we
use the same basis functions \{ \beta j\} Nj=1 for \widetilde c and \widetilde \rho , because we expect that the variations of
the wave speed and density are related, since they model the same heterogeneous medium.
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 869

However, the inversion algorithm is not tied to using the same basis and the same number of
parameters. One could use independent parameterizations for the two unknowns.

The objective function (4.5), for the parameterization (4.6), depends on the vector

\bfiteta = (\eta 1, . . . , \eta N , \eta N+1, . . . , \eta 2N )T ,

so we simplify the notation as

\scrO \mathrm{R}\mathrm{O}\mathrm{M}(\bfiteta ) =\scrO \mathrm{R}\mathrm{O}\mathrm{M}(\widetilde c(\cdot ;\bfiteta ), \widetilde \rho (\cdot ;\bfiteta )), \bfitR (\bfiteta ) =\bfitR (\widetilde c(\cdot ;\bfiteta ), \widetilde \rho (\cdot ;\bfiteta )).(4.7)

The causality of the ROM, ensured by the Gram--Schmidt orthogonalization (2.16) and
reflected in the causal (block upper triangular) structure of \bfitR , can be used to estimate the
medium in a layer stripping fashion: Denote by [\bfitR ]k the upper left submatrix of \bfitR , containing
the first k blocks. This is defined by the early time data \bfitD j , j = 0, . . . , k - 1, for k < nt, which
contain information about the medium sampled by the waves up to time tk - 1. Consequently,
we can feed the data gradually, for increasing values of k, and estimate the medium in layers,
by minimizing the subobjective functions

\scrO \mathrm{R}\mathrm{O}\mathrm{M}

k (\bfiteta ) =
\bigm\| \bigm\| [\bfitR (\bfiteta )]k([\bfitR ]k)

 - 1  - \bfitI kn\scrE 

\bigm\| \bigm\| 2
F
.(4.8)

As is the case with any inversion algorithm, the objective function must be complemented
by a regularization penalty term. Any such regularization would work. We use the simplest,
Tikhonov type penalty,

\scrO \mathrm{R}\mathrm{E}\mathrm{G}(\bfiteta ) = \| \bfiteta \| 22.(4.9)

The minimization of the objective function (4.8) complemented by the regularization penalty
can be carried out with any gradient based method. We choose the Gauss--Newton method.

Algorithm 1. (ROM based inversion).
Input: The data driven \bfitR ; the number \ell of layers for layer stripping and the number q of
iterations per layer; integer layer indices \{ kl\} \ell l=1, such that

1\leq k1 \leq k2 \leq \cdot \cdot \cdot \leq k\ell = nt.

Starting with the initial vector \bfiteta (0) = \bfzero , proceed:
For l= 1,2, . . . , \ell , and j = 1, . . . , q, set the update index

i= (l - 1)q+ j.

Compute \bfiteta (i) as a Gauss--Newton update for minimizing the functional

\scrR \mathrm{R}\mathrm{O}\mathrm{M}

i (\bfiteta ) =\scrO \mathrm{R}\mathrm{O}\mathrm{M}

kl
(\bfiteta ) + \mu i\scrO \mathrm{R}\mathrm{E}\mathrm{G}(\bfiteta ),(4.10)

linearized about \bfiteta (i - 1). The penalty weight \mu i > 0 is chosen adaptively at each iteration, based
on the decay of the singular values of the Jacobian of \scrR \mathrm{R}\mathrm{O}\mathrm{M}

i (\bfiteta (i - 1)). See [12] for the detailed
description of the penalty weight computation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/0

1/
25

 to
 1

29
.1

04
.7

8.
16

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



870 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

Output: The velocity and density estimates computed from equations (4.6), with the coeffi-
cients in \bfiteta (\ell q).

4.2. Regularization of the ROM computation. So far we supposed that Assumption 1
holds, and thus the mass matrix \BbbM is symmetric and positive definite. In reality this may not
be true, especially for noisy data, so \BbbM must be regularized before we can compute its block
Cholesky square root.

It is easy to symmetrize the data driven mass matrix \BbbM by taking (\BbbM + \BbbM T )/2. This
symmetrization is, in fact, the maximal likelihood estimator of a symmetric matrix given a
noisy observation with additive Gaussian independent noise. We assume henceforth that \BbbM is
symmetric so it remains to map it to a positive definite matrix. This must be done carefully,
in order to preserve the causality of the ROM, which is essential for a successful inversion.
Here is one way to do it: Let

\BbbM =\bfitZ \bfLambda \bfitZ T(4.11)

be the eigendecomposition of \BbbM , where \bfitZ is the orthogonal matrix of eigenvectors and \bfLambda =
diag(\lambda 1, . . . , \lambda ntn\scrE ) is the diagonal matrix of eigenvalues, sorted in descending order. We wish
to filter out the smallest eigenvalues and the associated eigenvectors. Since the mass matrix
has a block structure with n\scrE \times n\scrE blocks, we choose a number r such that 1 \leq r < nt and
keep the rn\scrE largest eigenvalues of \BbbM . The corresponding leading orthonormal eigenvectors
are the columns of

\bfitZ (r) = [Zjk]1\leq j\leq ntn\scrE ,1\leq k\leq rn\scrE \in \BbbR ntn\scrE \times rn\scrE (4.12)

and the projected mass matrix is

\bfLambda (r) = (\bfitZ (r))T\BbbM \bfitZ (r) = diag (\lambda 1, . . . , \lambda rn\scrE ).(4.13)

The stiffness matrix \BbbS can also be projected,

\BbbS (r) = (\bfitZ (r))T\BbbS \bfitZ (r) \in \BbbR rn\scrE \times rn\scrE ,(4.14)

and the analogue of the ROM propagator defined in (2.32) is

\BbbP (r) = (\bfLambda (r)) - 1/2\BbbS (r)(\bfLambda (r)) - 1/2 \in \BbbR rn\scrE \times rn\scrE .(4.15)

For a proper choice of r we have a well-conditioned projected mass matrix (4.13), at the
cost of losing the block Toeplitz structure in (2.42)--(2.43) and the block upper Hessenberg
structure of the ROM propagator. These structures reflect the causality of the ROM. To
regain them, we use an additional orthogonal transformation, given by the block Arnoldi
algorithm [35] applied to the matrix \BbbP (r), with starting block

(\bfLambda (r)) - 1/2(\bfitZ (r))T \bfiti 
(r)
0 \in \BbbR rn\scrE \times n\scrE ,(4.16)

where \bfiti 
(r)
0 \in \BbbR rn\scrE \times n\scrE contains the first n\scrE columns of the rn\scrE \times rn\scrE identity matrix. We give

the algorithm in Appendix B. It produces an orthogonal matrix\bfitQ (r) such that (\bfitQ (r))T\BbbP (r)\bfitQ (r)
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 871

is block upper Hessenberg. Moreover, \bfitQ (r) enables the computation of the block Cholesky
square root

(\bfitQ (r))T\bfLambda (r)\bfitQ (r) = (\bfPi (r))T\BbbM \bfPi (r) = (\bfitR (r))T\bfitR (r), \bfPi (r) =\bfitZ (r)\bfitQ (r).(4.17)

In inversion, we also need to compute the block Cholesky square root of the mass matrix
\BbbM (\bfiteta ) for the current search velocity and density parameterized as in (4.6). We make this
calculation compatible with the regularization process (4.11)--(4.17), by using the same \bfPi (r)

defined in (4.17) to get

(\bfPi (r))T\BbbM (\bfiteta )\bfPi (r) =\bfitR (r)(\bfiteta )T\bfitR (r)(\bfiteta ).(4.18)

The inversion Algorithm 1 works exactly the same, except that \bfitR and \bfitR (\bfiteta ) are replaced by
\bfitR (r) and \bfitR (r)(\bfiteta ) defined above.

4.3. Numerical results. In this section we compare the performance of Algorithm 1 to
conventional multiparameter full waveform inversion (MFWI). To make the comparison as
close as possible, our implementation of MFWI uses the same data matrices as Algorithm 1,
but instead of (4.10), it minimizes the objective function

\scrR \mathrm{F}\mathrm{W}\mathrm{I}

i (\bfiteta ) =\scrO \mathrm{F}\mathrm{W}\mathrm{I}

kl
(\bfiteta ) + \mu i\scrO \mathrm{R}\mathrm{E}\mathrm{G}(\bfiteta ), \scrO \mathrm{F}\mathrm{W}\mathrm{I}

kl
(\bfiteta ) =

kl\sum 
j=0

\| Triu (\bfitD j  - \bfitD j(\bfiteta ))\| 2F ,(4.19)

where \bfitD j(\bfiteta ) are the data matrices computed in the medium with search speed \widetilde c and density\widetilde \rho , parameterized by \bfiteta as in (4.6). Since the noiseless matrices \bfitD j are symmetric, we use the
operation Triu to zero out the entries below the main diagonal.

We refer to Appendix A for the details of the numerical simulations, the model of noise
added to the data, and the choice of the regularization parameter r. The remainder of the
section is dedicated to presenting numerical results. In all the simulations we start the opti-
mization with \bfiteta = \bfzero . The number of iterations for the MFWI and ROM algorithms is chosen
to be the same, so that for both of them, the last updates are of the order of 10 - 2\| c0\| \infty and
10 - 2\| \rho 0\| \infty of the sup norm \| \cdot \| \infty of the wave speed and density, respectively.

From various numerical experiments, we observed that the time step \Delta t, the aperture
size, and the number of sensors affect the quality of the inversion. The effect of \Delta t and the
sensor separation on the approximation of the internal wave was already investigated in the
scalar acoustic case in [13], and it is similar here. Roughly, the results say that the optimal
choice is for \Delta t \lesssim 1/(2\nu ) and sensor separation of the order of half the wavelength. Here,
we make the additional observation that the estimation of the density benefits from having a
large aperture. The choices made in the experiments below follow these observations.

4.4. Disjoint inclusions. The objective of the first numerical experiment is to assess the
amount of cross-talk between the two acoustic parameters. The medium has two disjoint
rectangular inclusions, one with a contrast in c and the other one with a contrast in \rho in a
homogeneous background with co = 1km/s and \rho o = 1g/cm3. The inclusion contrasts are 1.5
for both c and \rho . The domain is \Omega = [0,3km]\times [0,2km]. The array has ns = 35 sensors at
depth of 1 km, chosen to minimize the effect of the boundary on this experiment. The data
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c (km/s) ρ (g/cm3)

Figure 4.1. Two disjoint inclusions. Top row: true velocity and density; middle row: ROM based estimates;
bottom row: MFWI estimates. Source locations are yellow crosses. Axes are in km. The colorbar shows the
contrast i.e., ratios of c and \rho with the reference values co and \rho o of the medium near the array.

are noiseless. The optimization search space has dimension 2N = 2(30 \times 20) = 1200 with
velocity and density parameterized as in (4.6).

We display in Figure 4.1 the model and the estimates obtained with MFWI and our ROM
algorithm. For both approaches we take 15 iterations. Given the simplicity of the model, we
do not use layer stripping in this experiment i.e., \ell = 1, k1 = nt, and q= 15 in Algorithm 1.

We observe that the results of the ROM based inversion are better than those of MFWI.
Both the shape and contrasts of the inclusions are recovered well. The cross-talk from c to \rho 
is minimal. The cross-talk from \rho to c is more visible, but small. MFWI does a worse job in
recovering the inclusions and minimizing the cross-talk. In particular, the cross-talk from \rho 
to c is almost as strong as the recovered c inclusion.
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c (km/s) ρ (g/cm3)

Figure 4.2. Two-coefficient Marmousi model. Top row: true velocity and density; middle row: ROM based
estimates; bottom row: MFWI estimates. Source locations are yellow crosses. Axes are in km. The colorbar
shows the contrast.

4.5. Marmousi model. The objective of this experiment is to assess how the ROM in-
version mitigates cycle skipping, which is the main cause of the spurious local minima of
the conventional (MWFI) objective function. We consider a section of the two-coefficient
Marmousi model [31] in the domain \Omega = [0,6km]\times [0,3.75km]. An array of ns = 30 sensors
is placed at the depth of 150m. No noise is added to the data. The inversion is carried
out in six layers, i.e., \ell = 6 in Algorithm 1. The optimization search space has dimension
2N = 2(50\times 40) = 4000, with velocity and density parameterized as in (4.6).

The results of the second numerical experiment are shown in Figure 4.2. We display
both MFWI and ROM based estimates obtained after 50 iterations. We took 8 iterations for
the first five layers and 10 iterations in the last layer. As expected, MFWI gets stuck in a
local minimum and the result has multiple artifacts in the estimated velocity and a mostly
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874 BORCEA, GARNIER, MAMONOV, AND ZIMMERLING

nonsensical density estimate. In contrast, the ROM based estimates of c and \rho capture the
true medium, except for some artifacts in the density close to the (reflective) sides of the
domain.

4.6. Models with cracks. In the third experiment we test the effect of noise on the
inversion. See Appendix A for the noise model, with standard deviation quantified by the
dimensionless parameter b.

We consider two models with crack like features, embedded into smooth backgrounds.
Both models occupy the domain \Omega = [0,2.5km]\times [0,1.2km] with variable background velocity
ranging from 1km/s to 1.5km/s and background density in the 1  - 1.2g/cm3 range. The
velocity inside the cracks is 2km/s while the density is 1.5g/cm3. The difference between the
two models is that the crack features of c and \rho are interchanged.

We invert for both the background and the cracks, i.e., only the reference values co and
\rho o of the medium near the array are assumed known. The array of ns = 25 sensors is placed
at the depth of 100m. The inversion is carried out with both noiseless and noisy data, with
noise level b = 10 - 2 and b = 3 \cdot 10 - 2 for the first and the second model, respectively. The
optimization search space has dimension 2N = 2(30\times 20) = 1200, with velocity and density
parameterized as in (4.6). For both models we perform 40 iterations of MFWI and the ROM
based inversion. We do not display MFWI results with noise, because they are not so different
from the noiseless ones (MFWI is known to be robust with respect to additive Gaussian noise).
The results of the ROM based inversion with noisy data are shown after 30 iterations. A single
layer (\ell = 1) is used in all the cases.

The results for the first model are in Figure 4.3. The bottom branch of the crack feature
in c is difficult to recover, because most of the energy is reflected back to the array by the top
branch. MFWI gives a worse recovery of this branch and also introduces an artifact in the
density estimate. The ROM based estimate from noisy data is qualitatively similar to that of
MFWI, which implies that the information about the deeper part of the model is masked by
the noise and is discarded during the regularization process.

The results of the experiments for the second model with cracks are shown in Figure 4.4.
This model is easier to recover due to the fork-like crack being in the density part of the model
rather than in the velocity part. Thus, we observe that the cracks are estimated well by the
ROM based inversion both with noisy and noiseless data. MFWI gives a worse estimate of
the density crack even from the noiseless data.

5. Summary. We introduced a data driven reduced order model (ROM) for a general first
order hyperbolic system of equations that governs the evolution of all linear types of waves
(acoustic, electromagnetic, and elastic) in a lossless medium occupying some domain \Omega . We
derived an exact time stepping scheme for the hyperbolic system, on a uniform time grid. This
scheme maps the wave field snapshots from one instant to the next, using a unitary operator
called the wave propagator. The ROM is defined as an orthogonal, Galerkin projection of
the time stepping scheme on the space spanned by the wave snapshots. We are interested
in a ROM that can be used to solve inverse wave scattering problems, where the snapshots
are unknown almost everywhere in \Omega . The ROM is called data driven, because it can be
computed from inverse scattering data, i.e., measurements of the snapshots at a few sensor
locations which probe the medium in \Omega with short signals (pulses) and record the generated,
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 875

c (km/s) ρ (g/cm3)

Figure 4.3. First crack model. Top row: true velocity and density; second row: ROM based estimates from
noiseless data; third row: ROM based estimates from noisy data with b= 10 - 2; bottom row: MFWI estimates
from noiseless data. Source locations are yellow crosses. Axes are in km. The colorbar shows the contrast.

backscattered waves. The mapping between these measurements and the ROM is nonlinear,
but we show that it can be computed using efficient techniques from numerical linear algebra.

The definition of the ROM respects the causality of wave propagation: The matrix of
ROM snapshots is block upper triangular and the ROM propagator, the Galerkin projection
of the propagator operator, is a block upper Hessenberg matrix. The size of the blocks of these
matrices is given by the number of wave excitations. The block algebraic structure reflects the
causal dependence on the data: The top left k blocks are determined by the measurements
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c (km/s) ρ (g/cm3)

Figure 4.4. Second crack model. Top row: true velocity and density; second row: ROM based estimates
from noiseless data; third row: ROM based estimates from noisy data with b = 3 \cdot 10 - 2; bottom row: MFWI
estimates from noiseless data. Source locations are yellow crosses. Axes are in km. The colorbar shows the
contrast.

up to the kth time instant. This is essential not only because the ROM captures correctly the
physics of wave propagation, but also because we can use it to solve the inverse problem in a
layer peeling fashion.

While the definition of the ROM is general, we specialize its application to inverse scatter-
ing with acoustic waves. The wave field consists of the acoustic pressure and velocity and the
medium in \Omega is modeled by the unknown and variable wave speed c and density \rho . We use the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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REDUCED ORDER MODELING FOR INVERSE SCATTERING 877

ROM to approximate the mapping from the data to the vectorial wave field at inaccessible
points in \Omega , a.k.a. the internal wave. This wave is computed for the best guess of c and \rho , and
it fits the data by design. However, it is not a solution of the hyperbolic system of equations
unless the guess of the medium is right. This motivates the formulation of the inverse problem
as a minimization of the discrepancy between the approximated wave field and the solution
of the hyperbolic system of equations. Carefully designed numerical simulations show that
this formulation consistently outperforms the minimization of the nonlinear least squares data
misfit objective function, used by the existing inverse scattering methodology.

The ROM construction and inversion methodology is specialized to the time domain for-
mulation of wave propagation. There are ROMs for frequency domain formulations, with
array measurements of time harmonic waves at multiple frequencies. Examples of such ROMs
are in [10] for parabolic equations and in [11] for waves in lossy one-dimensional media. The
construction of these ROMs is different and they do not enjoy the useful causality properties
of the ROMs built in the time domain. The frequency domain formulation is important for
dealing with dispersive and lossy media, which motivates future work.

Appendix A. Setup for the numerical simulations. The numerical simulations are carried
out in a two-dimensional (d = 2) rectangular domain \Omega with sound soft boundary condition
(3.7). We use n\scrE = 2ns excitations \bfitF \bfitepsilon (\bfitx ) of the form (3.5) with sources located at \bfitx \epsilon 1 ,
\epsilon 1 = 1, . . . , ns, and with two polarizations \epsilon 2 \in \{ 1,2\} at each location. The probing pulse is

s(t) = 1[ - ts,ts](t)
d

dt

\biggl( 
cos(2\pi \nu t) exp

\biggl[ 
 - (2\pi B)2t2

2

\biggr] \biggr) 
(A.1)

with central frequency \nu = 6Hz and bandwidth B = 4Hz. Here 1[ - ts,ts](t) is the indicator
function of the interval [ - ts, ts], where ts = 1.5/(\nu +B) = 150ms. The noiseless data (2.12)
are generated by solving numerically (2.9) using an exponential integrator4 based on [1] with a
time step \tau f defined below. The operator (3.10) is discretized using a finite difference scheme
with two-point first order discretization of all the partial derivatives. The initial state (2.8) is
calculated using a backward Euler scheme with the same time step \tau f as in the exponential
integrator. The data are sampled at intervals \Delta t = 1/[2.3(\nu +B)] = 43.5ms. The numerical
time integration step is \tau f =\Delta t/10.

It remains to describe the noise model. Consider the noise signal \frakN (t) \in \BbbR n\scrE \times n\scrE with
t\in [ - ts, t\mathrm{m}\mathrm{a}\mathrm{x}+ts] discretized on a uniform time grid with step \tau f , where t\mathrm{m}\mathrm{a}\mathrm{x} = (nt - 1)\Delta t. The
entries of \frakN (t) are identically distributed, Gaussian, with mean zero and standard deviation
chosen so that \biggl( \int t\mathrm{m}\mathrm{a}\mathrm{x}

0
dt\| \frakN (t)\| 2F

\biggr) 1/2

= b

\biggl( \int t\mathrm{m}\mathrm{a}\mathrm{x}

0
dt
\bigm\| \bigm\| \bigm\| \widetilde \bfitA (t)

\bigm\| \bigm\| \bigm\| 2
F

\biggr) 1/2

,(A.2)

for a user defined noise level b, where

\widetilde \bfitA \bfitepsilon \prime ,\bfitepsilon (t) =

\int 
\Omega 
d\bfitx 

\biggl( 
\bfitF \bfitepsilon \prime (\bfitx )

0

\biggr) T

\bfitpsi \bfitepsilon (t,\bfitx )
(3.9)
\approx 
\sqrt{} 

\zeta o\bfite 
T
\epsilon \prime 2
\bfitu \bfitepsilon (t,\bfitx \epsilon \prime 1).(A.3)

4The derivation of the ROM uses that the wave field is a time-dependent flow, as stated in (2.10). This is
why we used a forward solver that preserves this property.
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The noisy data \bfitD \frakN 
j are

\bfitD \frakN 
j =\bfitD j +

\int ts

 - ts

dt\frakN (tj  - t)s( - t), j = 0, . . . , nt  - 1,(A.4)

where the integrals in (A.2) and (A.4) are computed numerically using the trapezoidal rule
on the same grid on which \frakN (t) is defined.

The regularization parameter r can be determined with a trial-and-error approach: One
can start with a large r and then see how the results improve or deteriorate if we decrease
it. This is sufficient in the examples addressed in this paper. A more systematic approach
can be based on estimating the noise level from the deviation of the data from the reciprocity
relation. We refer to Appendix F in [12] for a description of such an approach.

Appendix B. The block Arnoldi iteration. The following algorithm computes the or-
thogonal transformation that puts the regularized ROM propagator in the causal, block upper
Hessenberg form. We write it for a generic matrix \bfitX with m\times m blocks.

Algorithm 2. (block Arnoldi iteration).
Input: The matrix \bfitX \in \BbbR mn\times mn and the starting block \bfity \in \BbbR mn\times m.
Compute \bfitq 0 = \bfity (\bfity 

T\bfity ) - 1/2 \in \BbbR mn\times m;
For k= 1, . . . , n - 1:
- Set \bfitw =\bfitX \bfitq k - 1 \in \BbbR mn\times m;
- Orthogonalize \bfitw =\bfitw  - [\bfitq 0, . . . ,\bfitq k - 1]

\bigl( 
[\bfitq 0, . . . ,\bfitq k - 1]

T\bfitw 
\bigr) 
;

- Normalize \bfitq k =\bfitw (\bfitw T\bfitw ) - 1/2 \in \BbbR mn\times m.
Output: Orthogonal matrix \bfitQ = [\bfitq 0, . . . ,\bfitq n - 1] \in \BbbR mn\times mn such that \bfitQ T\bfitX \bfitQ \in \BbbR mn\times mn is
block upper Hessenberg.

To obtain (\bfitw T\bfitw ) - 1/2, we use the unique, symmetric positive definite matrix square root
computed via the spectral decomposition of the Grammian \bfitw T\bfitw .
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