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Sensitivity analysis of colored-noise-driven interacting particle systems
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We propose an efficient sensitivity analysis method for a wide class of colored-noise-driven interacting particle
systems (IPSs). Our method is based on unperturbed simulations and significantly extends the Malliavin weight
sampling method proposed by Szamel [Europhys. Lett. 117, 50010 (2017)] for evaluating sensitivities such as
linear response functions of IPSs driven by simple Ornstein-Uhlenbeck processes. We show that the sensitivity
index depends not only on two effective parameters that characterize the variance and correlation time of the
noise, but also on the noise spectrum. In the case of a single particle in a harmonic potential, we obtain
exact analytical formulas for two types of linear response functions. By applying our method to a system of
many particles interacting via a repulsive screened Coulomb potential, we compute the mobility and effective
temperature of the system. Our results show that the system dynamics depend, in a nontrivial way, on the noise
spectrum.
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I. INTRODUCTION

Sensitivity analysis methods were initially developed for
stochastic processes used in financial engineering, specifically
in dealing with price sensitivities of financial products often
referred to as “Greeks” (see, for instance, [1, Chapter 7]
and [2]). Over the last decade, applications of these methods
have emerged in the physics literature for nonequilibrium
systems. They address the sensitivities of complex, white,
and colored-noise-driven systems (e.g., active matter) with
respect to certain types of perturbations [3–5]. In this area,
a fundamental problem is to characterize the sensitivity of
complex systems to perturbations by an external force from
their steady state. Understanding the changes of a physical
system in response to an internal or external perturbation can
give crucial insights into the underlying physics, as evidenced
by [5–10]. Our goal is to show that it is possible to answer
these questions from unperturbed simulations even when the
system and the driving noise are complex. It should also
be pointed out that sensitivity indices, such as linear response
functions for equilibrium systems, can be obtained from the
fluctuation-dissipation relations (FDRs) and correlation func-
tions evolving with unperturbed dynamics [11,12]. We further
mention that techniques that allow one to calculate the sensi-
tivity indices with simulations of the unperturbed system have
been proposed [13–15] in a different context, that of Ising spin
systems (discrete in space or time).

A. Review of fundamental work

A considerable leap forward in this direction of research
has been made with the work of Warren and Allen [4]. They
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introduce a simple computational approach for responses to
infinitesimal changes in internal or external parameters in
stochastic Brownian dynamics simulations, which may be
in or out of equilibrium. The method is closely related to
the methods developed for the “Greeks,” particularly those
related to likelihood ratios and Malliavin calculus. Indeed, the
method does not require simulating the perturbed system, but
in addition to simulating the unperturbed system, it requires
following extra stochastic variables. The latter corresponds to
the derivatives of the probability density with respect to the
parameter of interest. Warren and Allen have coined the term
“Malliavin weight” for these variables. They consider a cluster
of N particles, each in Rd , xλ = (x1,λ, . . . , xN,λ) satisfying

ẋλ = D

kBT sp
eff

Fλ(xλ) +
√

2Dẇ, (1)

where ẇ is an n-dimensional Gaussian white noise (time
derivative of a n-dimensional Wiener process w), n = Nd ,
D > 0 is the diffusion coefficient (assumed to be the same
for all particles), kB is the Boltzmann constant, and T sp

eff is
the single-particle effective temperature. Here λ is a scalar
(real) parameter of interest for sensitivity analysis, and the
function Fλ = (F1,λ, . . . , FN,λ) specifies the external forces.
The Malliavin weight is the real-valued random process qλ

given by

∀t � 0, qλ(t ) =
√

D√
2kBT sp

eff

∫ t

0

∂Fλ

∂λ
[xλ(s)] · dw(s). (2)

The notation · is the inner product in Rn, and the equa-
tion should be understood as an Itô’s stochastic integral.
Warren and Allen have shown that for any test function � :
Rn → R:

∀t � 0,
d

dλ
〈�[xλ(t )]〉λ|λ=0 = 〈�[x0(t )]q0(t )〉. (3)
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They have applied their method to a nonequilibrium-driven
steady state formed by a cluster of particles in a two-
dimensional harmonic trap under shear. Here 〈· · · 〉λ denotes
averaging for the system prepared at t = 0 in the steady state
corresponding to the force F0 and then evolving for t > 0 un-
der the influence of the modified force Fλ. The notation 〈· · · 〉
is for the unperturbed steady state average 〈· · · 〉0. Equation (3)
shows that the estimation of the sensitivity index can be car-
ried out with trajectories of the unperturbed dynamics (1) at
λ = 0, only, together with the Malliavin weight (2) at λ = 0.
Warren and Allen’s technique has been employed in [5] to test
analytical predictions with new Green-Kubo-like expressions
for the diffusivity and mobility with unperturbed simulations.
It has also been used in [16] to complete an experimental
study on the effective temperature via the violation of FDRs
for a system of active Brownian particles (ABP) with inertia.
The authors have investigated theoretically and numerically
the linear response and effective temperature for a single par-
ticle. It should be noted that beyond the scope of sensitivity
analysis, significant applications of (3) have been proposed
for optimizing the steady state of a self-assembling colloid
[6]. This formula makes it possible to obtain an explicit
formula for gradients used in the optimization procedure,
thus avoiding errors in approximations such as with finite
differences [17].

Another success in this line of research is a nontrivial gen-
eralization of the Malliavin Weight Sampling (MWS) method
as proposed by Szamel [3]. He introduced a method for cal-
culating sensitivities of statistics for nonequilibrium systems
expressed as colored noise-driven systems. In particular, he
studied the evolution of a cluster of particles under the influ-
ence of self-propulsion represented by a colored noise. The
components of the particles are driven by independent, identi-
cally distributed stationary Gaussian noises with a correlation
time τp > 0. The driving process f (taking values in Rn,
n = Nd) is of the form

τpd f = − f dt + σdw, (4)

where w is a n-dimensional Wiener process and σ > 0 is
the noise strength. More precisely, σ =

√
2ξ0T sp

eff = ξ0
√

2D0

where ξ0 is the viscous friction coefficient and D0 = T sp
eff ξ

−1
0 .

The resulting state variable describing the cluster of particles
x (taking values in Rn) satisfies

ẋ = ξ−1
0 [F (x) + f ]. (5)

Since Szamel is interested in sensitivities (under steady state)
in response to drift perturbations, he replaces F by Fλ = F +
λF̂ for some function F̂ and he studies the derivative with
respect to λ at λ = 0 of some moments. With Fλ, the state
variable is denoted by x

τp

λ . The sensitivity of its statistics can
be computed using the following formula valid for any test
function � : Rn → R:

∀t � 0,
d

dλ

〈
�
[
x

τp

λ (t )
]〉

λ
|λ=0

= 〈
�
[
x

τp

0 (t )
][

q
τp

0 (t ) + p
τp

0 (t )
]〉 + τp

〈
�̇
[
x

τp

0 (t )
]
q

τp

0 (t )
〉
,

(6)

where the auxiliary variables p
τp

0 and q
τp

0 are called Malliavin
weights and satisfy

q
τp

0 (t ) = 1

ξ0σ

∫ t

0
F̂
[
x

τp

0 (s)
] · dw(s),

p
τp

0 (t ) = τp

ξ 2
0 σ

∫ t

0

[({
F
[
x

τp

0 (s)
]

+ f (s)
} · ∇x

)
F̂
[
x

τp

0 (s)
]] · dw(s).

Here �̇[xτp

0 (t )] means d{�[xτp

0 (t )]}/dt . When τp vanishes in
Szamel’s formula (6), the second term and p

τp

0 vanish as well,
leaving a term that is equivalent to Warren and Allen’s formula
(3). In addition to several examples given by Szamel that
we shall examine in this paper, noticeable applications of his
method have been given by Maggi et al. [18] in which they
focused on the dynamics of active particles self-propelled by
(4). This system falls within the framework of Szamel, where
for each 1 � i � N , Fi(x) = −∑

j ∇xiφ(‖xi − x j‖) and ‖xi −
x j‖ is the distance between two particles xi and x j . The re-
pulsive interaction potential between two particles is φ(r) =
βr−α , α, β > 0. All particles are in Rd with d = 2 or 3. Such
an active matter system driven out of thermal equilibrium is
a fundamental model for the physics of self-propelled par-
ticles (natural or artificial) and has been studied by many
authors [7–10].

B. Our contribution: Sensitivity analysis with general spectra

In Sec. III we propose new formulas for the sensitivity
indices of complex systems: complex systems such as in-
teracting particle systems (IPSs) modeled by an equation of
the form (5), where the driving noise (self-propulsion) f
is a stationary Gaussian noise with mean zero and with a
general spectrum. Our motivations for extending Szamel’s
sensitivity analysis [3] to noise with arbitrary spectra arise
from the following observations. (1) The Ornstein-Uhlenbeck
(OU) process (4) used in [3] has the same regularity whatever
the correlation time τp, which is the regularity of a standard
Wiener process. It is of interest to explore which quantities of
interest could be sensitive to the noise regularity. Smoother
processes are addressed in this paper. In particular, Matérn
processes [19] with regularity parameters larger than 1/2 are
addressed. Rougher processes can also be addressed by using
Markovian approximations of rough fractional processes by
sums of OU processes as in [20]. (2) The OU noise has a
spectrum with Lorentzian form and a correlation function with
an exponential form whatever the correlation time. It is of
interest to explore which quantities of interest could be sen-
sitive to the form of the noise spectrum or correlation function
(which is the inverse Fourier transform of the noise spectrum),
and not only the correlation time. One natural way to depart
from the exponential structure for the correlation function is
to consider the product between an exponential and a poly-
nomial (such as Matérn correlation functions) or between an
exponential and a periodic function (such as Kanai-Tajimi
correlation functions). (3) Experimentally it is possible to gen-
erate noise with arbitrary spectrum and regularity for example
with optical-tweezers-type techniques [21,22]. It should be
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pointed out that references on active systems whose driving
forces have nonexponential correlation functions are still very
few in numbers. However, it is worth mentioning that there
are natural physical systems (though far from active systems)
whose forces have a non-exponential correlation, for instance,
Kanai-Tajimi processes in earthquake dynamics [23], also
called harmonic noise as in [24,25], (Chapter 8), that can
simply be produced by the response of a white-noise-driven
linear oscillator. In addition, we obtain, in each of these cases,
formulas generalizing (6). Naturally, in the same spirit as the
works of Warren and Allen and Szamel, these formulas allow
for the evaluation of sensitivities such as time-dependent lin-
ear response functions for active particle systems propelled by
persistent (colored) noise from unperturbed simulations. To
compare results and to clarify the role of the noise spectrum,
we calibrate the parameters of the noise spectra to keep the
same amplitude (temperature) and correlation time for the
different types of noise. In doing so, we will be able to as-
certain whether these parameters are sufficient to determine
the sensitivity indices. Furthermore, our formulas agree with
Szamel’s formulas when the noise takes the form of a simple
OU process as in (4). In Sec. IV we consider a single particle
in a harmonic potential and obtain exact analytical formula for
two types of perturbations (linear response functions). Finally,
in Sec. V we apply our method to compute the mobility func-
tion and effective temperature of a system of many particles
interacting via a repulsive screened Coulomb potential. Our
study shows that the sensitivity indices also depend on the
noise spectrum, not only on the two effective parameters that
characterize the amplitude and correlation time of the noise.
Coupled with the general need to accurately capture the phys-
ical impacts of perturbations on IPSs driven by colored noise,
these findings demonstrate the usefulness and relevance of our
sensitivity analysis method.

II. NOISE STRUCTURES

In Sec. II A we give the general form of driving noise
for which we propose new representation formulas for the
sensitivity indices in Sec. III. In Sec. II B we provide a few
explicit examples of noise spectra that turn out to give dif-
ferent sensitivity indices despite having identical variance and
correlation time.

A. General formulation

We consider the system for the state variable x driven by
the noise f = Cy:

ẋ = ξ−1
0 [F (x) + Cy], (7)

ẏ = −Ay + Bẇ. (8)

This is the unperturbed dynamics. The perturbed dynamics are
obtained by replacing F with Fλ. Here

(i) The state variable x(.) takes values in Rn, the driving
noise process y(.) takes values in Rq, and the Wiener process
w(.) is p-dimensional, n, q, p � 1,

(ii) Fλ = F + λF̂ for λ ∈ R, where F, F̂ are functions
from Rn to Rn,

(iii) A, B,C are matrices: A ∈ Rq×q, B ∈ Rq×p, C ∈ Rn×q.
The matrices A, B, C and the function F̂ are assumed to

satisfy the following hypotheses:
(i) All eigenvalues of A have positive real parts (equiva-

lently, −A is a stable matrix).
(ii) The matrix BBT is nonsingular, or BBT is singular

but A, B, and C have the Brunowski form [26]: There exist
integers n′, q′ � 1, matrices Ak ∈ Rq′×q′

for k = 1, . . . , n′, a
matrix B̄ ∈ Rq′×p, and a matrix C̄ ∈ Rn×q′

, such that q = n′q′,

A =

⎛
⎜⎜⎜⎜⎝

Oq′ −Iq′ Oq′ . . . Oq′

Oq′ Oq′ −Iq′ · · · Oq′
...

...
...

. . .
...

Oq′ Oq′ Oq′ · · · −Iq′

A1 A2 A3 · · · An′

⎞
⎟⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎜⎝

Oq′×p

Oq′×p
...

Oq′×p

B̄

⎞
⎟⎟⎟⎟⎠,

C = (
C̄ On×q′ · · · On×q′

)
, (9)

and B̄B̄T ∈ Rq′×q′
is nonsingular (here Op×q denotes the null

matrix of size p × q, Op = Op×p, and Ip is the identity matrix
of size p).

(iii) F̂ ∈ Im(C), more exactly, there exists a function E
from Rn to Rq such that F̂ = CE when BBT is nonsingular,
or there exists a function Ē from Rn to Rq′

such that F̂ =
C̄Ē when A, B, C have the Brunowski form (9) and B̄B̄T is
nonsingular.

The first condition ensures the ergodicity of the driving
noise y. The second condition ensures that the stationary
distribution has a multivariate Gaussian density [with the
asymptotic variance matrix

∫∞
0 exp(−As)BBT exp[−AT s] ds],

and it is also used to get a simple enough representation
formula of the sensitivity index (a more general hypothesis
such as the Kalman rank condition that “the augmented matrix
(B AB A2B · · · Aq−1B) has rank q′′ could be considered but
it would lead to complicated formulas that go beyond the
scope of this paper). The third condition guarantees that the
derivative of Fλ with respect to λ belongs to the space explored
by the noise. This is an important property that allows us to get
an expression for a sensitivity index with respect to λ in terms
of an expectation that involves only the unperturbed trajectory
at λ = 0 and a Malliavin weight. The model above is versatile,
as it covers the case of one one-dimensional particle and the
case of many multidimensional particles, as we will see below.

In the next subsection, we present examples of colored
noise with general spectra that satisfy the above assumptions:
the Gaussian processes with n independent and identically dis-
tributed (i.i.d.) components with power spectral density (11)
are known as Kanai-Tajimi processes and belong to the first
case (BBT is nonsingular) while the Gaussian processes with n
i.i.d. components with power spectral density (14) are known
as Matérn processes and belong to the second case (BBT

is singular but A, B,C have the Brunowski form). The first
case corresponds to noise with the same regularity as Wiener
process (Brownian motion) and the second case corresponds
to noise with more regularity.

044119-3



GARNIER, IP, AND MERTZ PHYSICAL REVIEW E 110, 044119 (2024)

B. Particular colored-noise-structures and spectra

For a n-dimensional OU process f defined by (4), the
correlation function of each component is

cou(t ) = ξ0T sp
eff

τp
exp

(
−|t |

τp

)
,

and the corresponding power spectral density (PSD) is

ĉou(ω) �
∫ ∞

−∞
e−iωt cou(t )dt = 2ξ0T sp

eff

1 + ω2τ 2
p

. (10)

The OU process f defined by (4) belongs to the first case
described in Sec. II A (BBT is nonsingular) because (4) reads
as (8) with A = τ−1

p In, B = στ−1
p In, and C = In.

We want to consider more general situations in which f
is an n-dimensional process whose components are i.i.d. and
belong to a class of zero-mean stationary Gaussian processes
(SGP) with a PSD which we denote ĉ(ω). We want to compare
situations with the same effective temperature T sp

eff , which is
given in terms of the PSD by

2ξ0T sp
eff = ĉ(0) =

∫ ∞

−∞
c(t ) dt .

For white noise forces f = fwn, a comparable situation is

fwn =
√

2ξ0T sp
eff ẇ (where ẇ is an n-dimensional white noise)

so that ĉwn(ω) = 2ξ0T sp
eff , but here the correlation time is 0.

When dealing with persistent/colored noise with PSD ĉ(ω),
in addition to having the same T sp

eff , we want to compare
situations with the same correlation time τc. We propose to
define it as the root-mean-square (rms) width of the correla-
tion function through the relation

τ 2
c � − ĉ′′(0)

ĉ(0)
=

∫∞
−∞ t2c(t )dt∫∞
−∞ c(t )dt

.

For an n-dimensional OU process f defined by (4), this gives
τc = √

2τp. We want to check whether the form of the PSD
is important or whether the knowledge of T sp

eff and τc is suf-
ficient to characterize the dynamics and the sensitivity of a
system driven by such a colored noise. Although the results
on the sensitivity indices will be established for general noise
models, in the numerical applications, we will consider two
special forms of PSD that we describe now.

(1) First, we will consider a PSD of the form

ĉ(ω) � 1

2

r∑
k=1

σ 2
k

1 + (ω − ωk )2/�2
k

+ σ 2
k

1 + (ω + ωk )2/�2
k

.

(11)
Its corresponding correlation function is

c(t ) = 1

2

r∑
k=1

σ 2
k �ke−|t |�k cos(ωkt ).

When r = 1, we can consider parameters (σ1, ω1, �1)
satisfying

ĉ(0) = σ 2
1

1 + γ 2
1

= 2ξ0T sp
eff and − ĉ′′(0)

ĉ(0)
= p1σ

2
1 /�2

1

2ξ0T sp
eff

= τ 2
c ,

where p1 � 2(1 − 3γ 2
1 )/(1 + γ 2

1 )3 and γ1 � ω1/�1, so that
the effective temperature is T sp

eff and the correlation time is τc.
As an example, we will take

σ1 �
√

5

2

√
2ξ0T sp

eff , �1 � 2
√

2

5
τ−1

c , ω1 � �1/2, (12)

and we then have

ĉ(ω) = 2ξ0T sp
eff

(
1 + 5ω2τ 2

c /2
)

1 + 3ω2τ 2
c + 25ω4τ 4

c /4
. (13)

The noise with the spectral density (13) is generated
by {σ1y1(t ), t � 0} where ẏ1(t ) = −�1y1(t ) + ω1y2(t ) +
�1ẇ1(t ), ẏ2(t ) = −ω1y1(t ) − �1y2(t ) + �1ẇ2(t ) with its
steady state as initial condition at t = 0.

(2) Second, for ν > 0, we will consider a PSD of the
Matérn form [19], (Sec. 4.2.1)

ĉ(ω) � σ 2
ν

2π
1
2 �

(
ν + 1

2

)
(2ν)ν

�(ν)τ 2ν
ν

(
2ν

τ 2
ν

+ ω2

)−ν− 1
2

, (14)

where we recall the definition of the Gamma function �(z) �∫∞
0 tz−1e−t dt . Note that with the regularity parameter ν =

1/2 we recover the PSD of an OU process similar to
(10). When the regularity parameter ν is larger, we deal
with a smoother noise, whose trajectories can be differen-
tiable up to the order �ν�. We have ĉ(0) = σ 2

ν τν

√
2π�(ν +

1/2)/[
√

ν�(ν)], τ 2
c = τ 2

ν (2ν + 1)/(2ν). Therefore, we have
to take

τν � τc

√
2ν/(2ν + 1)

and σ 2
ν � ξ0T sp

eff

√
2ν + 1�(ν)/[�(ν + 1/2)

√
πτc],

so that the effective temperature is T sp
eff and the correlation time

is τc. As an example, we will take ν = 3/2, σ 2
ν = ξ0T sp

eff τ
−1
c ,

τν = τc

√
3/2, and we then have

ĉ(ω) = 2ξ0T sp
eff(

1 + ω2τ 2
c /4

)2 . (15)

The corresponding correlation function is

c(t ) = ξ0T sp
eff

τc
e− 2|t |

τc

(
2|t |
τc

+ 1

)
.

The noise with the spectral density (15) is generated

by {
√

2ξ0T sp
eff y1(t ), t � 0} where ẏ1(t ) = 2τ−1

c y2(t ), ẏ2(t ) =
−2τ−1

c [y1(t ) + 2y2(t )] + 2τ−1
c ẇ(t ) with its steady state as

initial condition at t = 0.
In Fig. 1 we plot the PSDs (10), (13), and (15) and the cor-
responding correlation functions. On the one hand, PSDs (13)
and (15) decrease faster to 0 than PSD (10), as |ω| → ∞, with
PSD (15) decreasing even faster than PSD (13). On the other
hand, the correlation function corresponding to (10) decreases
faster than its counterparts for (13) and (15) as t → ∞.
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FIG. 1. The solid, dashed, and dotted lines represent, respectively, the PSD (10) of a OU process, PSD1 (13) and PSD2 (15) in all panels.
Panels (a) and (b) represent the PSDs for ω ∈ [−15, 15] and for ω ∈ [0, 50] in loglog scale, respectively. Panels (c) and (d) represent the
corresponding correlation functions for t ∈ [0, 1] and for t ∈ [1, 10] in loglog scale, respectively [the inset in panel (c) plots the tails of the
correlation functions]. Here ξ0 = T sp

eff = 1 and τc = √
2.

The n-dimensional zero-mean SGPs with power spectral
density (11) and (14) have the same distribution as the random
processes f � Cy with y taking values in Rq and solving
(8), with A ∈ Rq×q, B ∈ Rq×p, C ∈ Rn×q, and w is a p-
dimensional Wiener process. In the particular cases of the
PSDs defined by (11) and (14), the matrices A, B,C have the
following forms.

(1) Case of PSD defined by (11):

A = ⊕r
k=1

(
�kIn −ωkIn

ωkIn �kIn

)
, B = ⊕r

k=1

(
�kIn On

On �kIn

)
,

C = (σ1In On · · · σrIn On), (16)

where p = q = rn.
(2) Case of PSD defined by (14) with ν = r − 1/2 for a

positive integer r:

A = �

⎛
⎜⎜⎜⎜⎝

On −In On . . . On

On On −In . . . On
...

. . .
. . .

. . .
...

On On On . . . −In

α0In α1In · · · · · · αr−1In

⎞
⎟⎟⎟⎟⎠, B = �

⎛
⎜⎜⎜⎜⎝

On

On
...

On

In

⎞
⎟⎟⎟⎟⎠,

C = σ (In On · · · On), (17)

where p = n, q = rn, αk �
(r

k

) = r!
k! (r−k)! ,

� = 2τ−1
ν

√
(2ν + 1)/(2ν) = 2τ−1

c and σ 2 = 2ξ0T sp
eff .

(18)

III. SENSITIVITY INDICES OF
COLORED-NOISE-DRIVEN SYSTEMS

We recall that 〈· · · 〉λ denotes averaging for the system
prepared at t = 0 in the steady state corresponding to the force
F (x) and then evolving for t > 0 under the influence of the
modified force Fλ(x).

A. The case where BBT is nonsingular

If (x, y) satisfies (7) and (8) with a nonsingular matrix BBT ,
and �(.) is a continuously differentiable function, then

d

dλ
〈�[x(t )]〉λ|λ=0 = 〈�[x(t )][p0,0(t ) + p1,0(t )]〉

+ 〈�̇[x(t )] p1,1(t )〉, (19)
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where the p j,k (t ) evolve according to the following equa-
tions of motion

ṗ0,0 = E (x) · AT (BBT )−1Bẇ,

ṗ1,0 = ∇E (x)ξ−1
0 [F (x) + Cy] · (BBT )−1Bẇ,

ṗ1,1 = E (x) · (BBT )−1Bẇ, (20)

with initial conditions p j,k (0) = 0 for each 0 � k � j � 1
(here ∇E (x) ∈ Rq×n for all x ∈ Rn). Here the notation · is
the inner product in Rq. The proof is shown in Appendix A 1.
This is the first generalization of Szamel’s formula.

B. The case where BBT is singular but A, B,C
have the Brunowski form

If (x, y) satisfies (7) and (8) where A, B,C have the
Brunowski form (9), and �(·) is a function continuously dif-
ferentiable at the order n′, then

d

dλ
〈�[x(t )]〉λ|λ=0 =

n′∑
k=0

〈
dk�[x(t )]

dt k

[
n′∑

j=k

(
j

k

)
p j,k (t )

]〉
.

(21)

For j, k ∈ N such that 0 � k � j � n′, the function p j,k (t )
evolves according to the following equation of motion:

ṗ j,k (t ) = d( j−k)Ē [x(t )]

dt ( j−k)
· (Aj+1)T (B̄B̄T )−1B̄ẇ(t ), (22)

with initial condition p j,k (0) = 0 and with An′+1 := Iq′ . Here
the notation · is the inner product in Rq′

, and
( j

k

)
is for j!

k!( j−k)! .
The proof is given in Appendix A 2. This is the second gener-
alization of Szamel’s formula.

Remark 1. Suppose we have matrices of the form �A and
�B, then the functions pj,k (t ) become

ṗ j,k (t ) = d( j−k)Ē [x(t )]

dt ( j−k)
· 1

� j
(Aj+1)T (B̄B̄T )−1B̄ẇ(t ),

for 0 � j � n′. (23)

Remark 2. The first formula (19) covers a noise structure
for Cy that is appropriate to describe the PSD (10) or (11),
for instance. In general, when BBT is nonsingular, then the
sample paths of Cy have the same regularity as the Brownian
paths. The second formula (21) covers a noise structure for
Cy that is appropriate to describe the PSD (14), for instance.
In general, when A, B,C have the Brunowski form and B̄B̄T is
nonsingular, then the sample paths of Cy are smooth. Indeed,
this is equivalent to considering a time-dependent Rq′

-valued
variable z(t ) that satisfies

z(n′ ) = −
n′−1∑
j=0

Aj+1z( j) + B̄ẇ,

where the notation (.)( j) represents the derivative at the order
j with respect to time and Cy = C̄z.

IV. EXPLICIT SENSITIVITY FORMULAS FOR
A PARTICLE IN A HARMONIC POTENTIAL

In this section, we consider examples in a similar config-
uration to that of Szamel in [3]. The correlation time is τc =√

2τp, and τp will take the same range of values given in [3].
We consider the case of a single one-dimensional particle in a
harmonic potential. The real-valued state variable x satisfies

ẋ = ξ−1
0 (−kx + f ), (24)

where k > 0 and f is a real-valued Gaussian process with PSD
(13) or (15). We recall that when f corresponds to (13), then
f = Cy and (x, y) satisfies (7) and (8) with F (x) = −kx and
parameters from (16) as follows: n = r = 1, p = q = 2,

A = �1

(
1 −1/2

1/2 1

)
, B = �1I2, C = (σ1 0),

with the value of (σ1, �1) is given in (12).
Similarly, when f corresponds to (15), (x, y) also satisfies

(7) and (8) with F (x) = −kx and parameters from (17) as
follows: n = 1, r = 2, p = 1, q = 2,

A = �

(
0 −1
1 2

)
, B = �

(
0
1

)
, C = (σ 0),

with the value of (σ, �) is given in (18).
We perturb the system in two different ways:
(I) By a constant force λ1, i.e., −kx is replaced by −kx +

λ1 in (24). We can write −kx + λ1 as F (x) + λ1F̂ (x) where
F̂ (x) = 1,

(II) By a force constant λ2, −kx is replaced by −kx + λ2x
in (24). We can write −kx + λ2x as F (x) + λ2F̂ (x) where
F̂ (x) = x.

Below we derive analytically explicit formulas of the sen-
sitivity indices for this example. The first goal is to show by
inspection of these explicit formulas that the sensitivity in-
dices depend on the form of the spectrum of the driving noise.
The second goal is to check that empirical averages of the
right-hand sides of (19) and (21) by Monte Carlo simulations
of the unperturbed dynamics give excellent estimates of the
sensitivity indices. For more complex examples (see the next
section), the sensitivity indices can be obtained only by Monte
Carlo estimation of (19) and (21).

Calculations show that the sensitivity of the first (second)
moment of x(t ) with respect to the second (first) perturba-
tion under the two types of noise (13) and (15) is zero, i.e.,

d
dλ2

〈x(t )〉λ2 = 0 at λ2 = 0 and d
dλ1

〈x(t )2〉λ1 = 0 at λ1 = 0. To
be precise, the calculations are done as follows: we calculate
explicitly the solution of the perturbed system and the quan-
tities of interest 〈x(t )〉λ2 and 〈x2(t )〉λ1 , then the differentiation
with respect to the perturbation parameter is straightforward.
Therefore, below, we focus on the sensitivity of the first
(second) moment of x(t ) with respect to the first (second)
perturbation. We have calculated the explicit formula for
the first sensitivity index d〈x(t )〉λ1/dλ1 at λ1 = 0 in two
different ways. The first relies on evaluating the weighted
averages that appear on the right-hand side (rhs) of (19) and
(21) and summing up. The second, for verification, consists
of evaluating the first moment of the perturbed dynamics,
then differentiating with respect to the perturbation param-
eters. The evaluation is done by taking the values of these
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FIG. 2. First sensitivity index in (25) and (26). The solid lines represent the analytical results. The shapes correspond to Monte Carlo
simulation results. Left: PSD (13). The blue, red, and black lines correspond to 〈x(t )p1

0,0(t )〉, 〈ẋ(t )p1
1,1(t )〉, and d

dλ1
〈x(t )〉λ1 at λ1 = 0,

respectively. Right: PSD (15). The blue, green, red, and black lines correspond to 〈x(t )p2
0,0(t )〉, 〈ẋ(t )p2

1,1(t )〉, 〈ẍ(t )p2
2,2(t )〉, and d

dλ1
〈x(t )〉λ1

at λ1 = 0, respectively.

parameters to 0. Both results agree perfectly of course (see
Figs. 2 and 3). We have also estimated the weighted aver-
ages with Monte Carlo simulations, and the results follow
our analytical predictions. Here, for the two types of noise
with PSD (13) and (15), the expression is simple: we get
d〈x(t )〉λ1/dλ1|λ1=0 = k−1(1 − e−kξ−1

0 t ). Nonetheless, the two
decompositions in terms of weighted averages are different.
For Eq. (19) that is related to PSD (13), the decomposition is
as follows:

d

dλ1
〈x(t )〉λ1 |λ1=0 = 〈

x(t )p1
0,0(t )

〉 + 〈
ẋ(t )p1

1,1(t )
〉
, (25)

where the Malliavin weights are p1
0,0(t ) = σ−1

1 w1(t ) +
σ−1

1 �−1
1 ω1w2(t ), and p1

1,1(t ) = σ−1
1 �−1

1 w1(t ). Note that
p1

1,0(t ) = 0. Then for Eq. (21) that is related to PSD (15) the

decomposition is as follows:

d

dλ1
〈x(t )〉λ1 |λ1=0 = 〈x(t )p2

00(t )〉 + 〈
ẋ(t )p2

11(t )
〉 + 〈

ẍ(t )p2
22(t )

〉
,

(26)

where the Malliavin weights are p2
0,0(t ) = σ−1α0w(t ),

p2
1,1(t ) = σ−1�−1α1w(t ), and p2

2,2(t ) = σ−1�−2w(t ). See Ap-
pendix A 3 for details on the weighted averages. Simi-
larly, we have also calculated the second sensitivity index
d〈x(t )2〉λ2/dλ2 at λ2 = 0 in two different ways. The counter-
part of (25) is

d

dλ2
〈x2(t )〉λ2 |λ2=0 = 〈

x2(t )p3
0,0(t )

〉 + 〈
x2(t )p3

1,0(t )
〉

+ 〈
ẋ2(t )p3

1,1(t )
〉
, (27)

FIG. 3. Second sensitivity index in (27) and (28). The solid lines represent the analytical results. The shapes correspond to Monte
Carlo simulation results. Left: PSD (13). The blue, green, red, and black lines correspond to 〈x2(t )p3

0,0(t )〉, 〈x2(t )p3
1,0(t )〉, 〈ẋ2(t )p3

1,1(t )〉, and
d

dλ2
〈x2(t )〉λ2 at λ2 = 0, respectively. Right: PSD (15). The blue, magenta, green, cyan, yellow, red, and black lines correspond to 〈x2(t )p4

0,0(t )〉,
〈x2(t )p4

1,0(t )〉, 〈ẋ2(t )p4
1,1(t )〉, 〈x2(t )p4

2,0(t )〉, 2〈ẋ2(t )p4
2,1(t )〉, 〈ẍ2(t )p4

2,2(t )〉, and d
dλ2

〈x2(t )〉λ2 at λ2 = 0, respectively.
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where

p3
0,0(t ) = σ−1

1

∫ t

0
x(s) dw1(s) + σ−1

1 �−1
1 ω1

∫ t

0
x(s) dw2(s),

p3
1,0(t ) = σ−1

1 �−1
1

∫ t

0
ẋ(s) dw1(s)

and p3
1,1(t ) = σ−1

1 �−1
1

∫ t

0
x(s) dw1(s).

The counterpart of (26) is

d

dλ2
〈x2(t )〉λ2 |λ2=0 = 〈

x2(t )p4
0,0(t )

〉 + 〈
x2(t )p4

1,0(t )
〉 + 〈

x2(t )p4
2,0(t )

〉 + 〈
ẋ2(t )p4

1,1(t )
〉 + 2

〈
ẋ2(t )p4

2,1(t )
〉 + 〈

ẍ2(t )p4
2,2(t )

〉
, (28)

where

p4
0,0(t ) = σ−1α0

∫ t

0
x(s) dw(s), p4

1,1(t ) = σ−1α1�
−1

∫ t

0
x(s) dw(s),

p4
2,2(t ) = σ−1�−2

∫ t

0
x(s) dw(s), p4

1,0(t ) = σ−1α1�
−1

∫ t

0
ẋ(s) dw(s),

p4
2,1(t ) = σ−1�−2

∫ t

0
ẋ(s) dw(s), and p4

2,0(t ) = σ−1�−2
∫ t

0
ẍ(s) dw(s).

In each case, both analytical results agree. We represent our analytical finding in Fig. 3 including Monte Carlo simulations. See
Appendix B 1 for further detail on the implementation of the Monte Carlo simulations. Among the two sensitivity indices above,
only the second depends on the correlation time. This is consistent with [3] for the case of a simple OU process. We also obtain
the long-time asymptotic. In all cases, for the first sensitivity index, we have

lim
t→∞

d〈x(t )〉λ1

dλ1

∣∣∣∣
λ1=0

= 1

k
.

In contrast, the long-time asymptotic of the second sensitivity index depends on the type of noise. For (13),

lim
t→∞

d〈x2(t )〉λ2

dλ2

∣∣∣∣
λ2=0

= σ 2
1

2k2ξ0

[2k(ξ0�1)−1 + 1][k(ξ0�1)−1 + 1]2 + (
ω
�1

)2

{
[(k(ξ0�1)−1 + 1]2 + (

ω
�1

)2}2 .

For (15),

lim
t→∞

d〈x2(t )〉λ2

dλ2

∣∣∣∣
λ2=0

= σ 2

4k2ξ0

k/(ξ0�) + 2

[k/(ξ0�) + 1]2
+ σ 2

4kξ 2
0 �

[k/(ξ0�) + 2]2 − 1

[k/(ξ0�) + 1]4
.

Such a difference in behavior can also be observed in the
steady state/long-time asymptotic variance of the response.
For (13),

lim
t→∞〈x2(t )〉 =

�1
(

k
ξ0

+ �1
)
σ 2

1

2kξ0
[(

k
ξ0

+ �1
)2 + ω2

1

] .
For (15),

lim
t→∞〈x2(t )〉 = σ 2

4kξ0

2 + kξ−1
0 �−1(

1 + kξ−1
0 �−1

)2 .

When τc → 0, in the first two equations above both rhs con-
verge towards T sp

eff k−2 and in the last two equations above
both rhs converge towards T sp

eff k−1. That is consistent with the

long-time asymptotic response of a thermal Brownian particle
in a harmonic potential.

V. SENSITIVITY ANALYSIS FOR AN INTERACTING
PARTICLE SYSTEM IN A SCREENED

COULOMB POTENTIAL

We consider N particles in three dimensions interacting
via a repulsive screened Coulomb potential, ∀r > 0, V (r) =
AV exp[−κ (r − σV )]/r. We consider a periodic domain which
is a cube of length L and we use the same parameters as in [3]:
N = 1372, AV = 475T sp

eff σV , and κσV = 24, at number density
Nσ 3

V /L3 = 0.51 (see Appendix B 2 for further details). The
state variable x = {xiα}1�i�N, 1�α�3 (stacked in one vector of
size n = 3N) is n = 4116 dimensional and satisfies the equa-
tion

ẋ = ξ−1
0 [F (x) + f ],
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FIG. 4. Mobility function, T sp
eff χ (t ), (solid) and mean-square displacement, MSD(t ), (dashed) as a function of time, for τp =

1(top left), 0.1(top right), 0.01(bottom left), 0.001(bottom right). Superposition of the results for OU (green), PSD1 (blue), PSD2 (red) with
spectra (10), (13), and (15), respectively.

where the unperturbed force for each particle 1 � i � N can
be expressed as

Fiα (x) = −∂xiα

⎛
⎝∑

j �=i

V (‖xi − x j‖)

⎞
⎠

= −
∑
j �=i

(xiα − x jα )
V ′(‖xi − x j‖)

‖xi − x j‖ , α = 1, 2, 3,

FIG. 5. T E
eff/T sp

eff , as a function of persistence time, τp. Superpo-
sition of the results for OU (red), PSD1 (green), PSD2 (blue) with
spectra (10), (13), and (15), respectively.

and the colored noise f is an n-dimensional zero-mean SGP
whose components all have PSD (13) or (15). The matrices
A, B,C in Eq. (8) will then be of the form (16) or (17). We
use the notation ‖u‖ =

√
u1

1 + u2
2 + u2

3. When f corresponds
to (13), then f = Cy and (x, y) satisfies Eqs. (7) and (8)
with matrices A, B,C given in (16) with n = 4116, r = 1,
p = q = 2rn = 8232, and the value of (σ1, �1) is given in
(12). Similarly, when f corresponds to (15), (x, y) also sat-
isfies Eqs. (7) and (8) with matrices A, B,C given in (17) with
n = 4116, r = 2, p = n = 4116, q = 8232, and the value of
(σ, �) is given in (18). Next, we evaluate the time-dependent
mobility of a single particle in the system of interacting par-
ticles driven by the n-dimensional noise f (self-propulsion)
following (13) and (15). Since explicit formulas are unavail-
able, we perform computations using our sensitivity formula
(19) and (20), (21)–(23), and unperturbed simulations. We
fix a particle 1 � i � N and a direction 1 � α � 3, and
we perturb the system at t = 0+ as follows: Fi(x) is re-
placed by Fi(x) + λeα where eα is the unit vector in the
direction α. Under the influence of the additional constant
force, the component α of the particle i moves according to
the mobility function χ (t ) as 〈xiα (t )〉λ = χ (t )λ + o(λ) and
thus d〈x(t )〉λ/dλ|λ=0 = χ (t ). Moreover, lim

t→∞ χ (t )/t = μ, the

mobility coefficient. In principle, to estimate χ (t ) we can
compute the sensitivity index above with unperturbed aver-
ages 〈xiα (t )p1

00;iα (t )〉 + 〈ẋiα (t )p1
11;iα (t )〉 or 〈xiα (t )p2

00;iα (t )〉 +
〈ẋiα (t )p2

11;iα (t )〉 + 〈ẍiα (t )p2
22;iα (t )〉 when the driving noise
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corresponds to (13) or (15), respectively. Here the corre-
sponding weight functions evolve according to the following
equations of motion:

(1) For (13),

p1
00;iα (t ) = σ−1

1 (wiα )1(t ) + σ−1
1 �−1

1 ω1(wiα )2(t ), and

p1
11;iα (t ) = σ−1

1 �−1
1 (wiα )1(t ).

(2) For (15),

p2
00;iα (t ) = σ−1α0wiα (t ),

p2
11;iα (t ) = σ−1�−1α1wiα (t ), and

p2
22;iα (t ) = σ−1�−2wiα (t ).

For both cases, since the particles are indistinguishable and
exhibit isotropic behavior, the mobility function χ (t ) does not
depend on (i, α). Then, as inspired by Szamel’s computing
strategy, we can use all the particles in all Cartesian directions
and average over the origins of time. The mobility function
χ (t ) can thus be estimated by

1

3NNo

N∑
i=1

3∑
α=1

No∑
o=1

ζ (i, α, o, t ), (29)

where in the case of (13),

ζ (i, α, o, t ) = 〈
xiα (t + to)

[
p1

00;iα (t + to) − p1
00;iα (to)

]〉
+ 〈

ẋiα (t + to)
[
p1

11;iα (t + to) − p1
11;iα (to)

]〉
and in the case of (15),

ζ (i, α, o, t ) = 〈
xiα (t + to)

(
p2

00;iα (t + to) − p2
00;iα (to)

)〉
+ 〈

ẋiα (t + to)
(
p2

11;iα (t + to) − p2
11;iα (t + to)

)〉
+ 〈

ẍiα (t + to)
(
p2

22;iα (t + to) − p2
22;iα (to)

)〉
.

Finally, in both cases we can compute an estimation of the
mean-square displacement (MSD) defined by

MSD(t )=〈‖x1(t )−x1(0)‖2〉= 1

N

N∑
i=1

〈‖xi(t )−xi(0)‖2〉, (30)

which grows as 6Dsdt , with Dsd being the self-diffusion coef-
ficient. The Einstein relation can be used to define the Einstein
effective temperature T E

eff = Dsd/μ [3]. It can then be esti-
mated by the ratio of MSD(t )/6 over χ (t ) for t large. For
four distinct persistence times, we plot, in Fig. 4, the mobility
function and mean-square displacement for the systems cor-
responding to the three noises that we consider. It is known
that the Einstein effective temperature can be different from
T sp

eff , except in the small correlation time limit. In Fig. 5, we
show that the ratio T E

eff/T sp
eff decreases when the correlation

time increases and that the decay also depends on the form of
the PSD. The value is, therefore, a complicated function of the
PSD and not only a function of the amplitude and correlation
time of the colored noise.

VI. CONCLUSION

In this paper, we have proposed a method of sensitivity
analysis for particle systems under colored noise. We have

obtained original formulas, generalizing those obtained by
Szamel, for the sensitivity indices of the IPS statistics men-
tioned above with respect to the perturbation of the drift
coefficient. The type of colored noise we considered falls
into a class of stationary Gaussian processes with zero mean
and whose spectra can be general. Both our analytical and
numerical calculations show that the sensitivity indices do not
depend only on the effective parameters: the amplitude and
correlation time of the noise. Instead, it is also dependent on
the structure of the spectrum. Moreover, the method that we
have developed can be applied beyond the quantities studied
in this paper. For example, it can be used to study the structure
of correlations in the particle system, as done in [18] (the case
of a simple OU). Furthermore, our method can prove effective
for gradient calculation in optimization procedures, as was
done in [6] (the case of white noise).

The code for this paper is available upon request.

ACKNOWLEDGMENTS

L.M. is thankful for support through NSFC Grant No.
12271364 and GRF Grant No. 11302823. We thank the two
anonymous referees for their feedback.

APPENDIX A: PROOFS AND DETAILS
OF WEIGHT FORMULAS

1. Derivation of our first main result

We extend the approach in [3] to compute the derivative of
〈�[x(t )]〉λ with respect to λ at λ = 0.

Step 1. We start by discretizing the equations of motion
(7) and (8), for fixed Nt , over time intervals of length �t =
t/Nt to obtain the following limit of integrals:

〈�[x(t )]〉λ = lim
Nt →∞

∫
�
(
xNt

) Nt∏
i=2

Pλ,iP1Pss,

where Pλ,i = Pλ(xi, yi|xi−1, yi−1), for i = 2, . . . , Nt , are
the transition densities of the perturbed system, P1 =
P(x1, y1|x0, y0) is the transition density of the unperturbed
system, and Pss = Pss(x0, y0) is the steady state distribution
for the unperturbed system. Here the transition densities, for
i = 2, . . . , Nt , are given by

Pλ(xi, yi|xi−1, yi−1) = δXλ,i g(yi, (Iq − �tA)yi−1,�tBBT ),

where Xλ,i = xi − xi−1 − �tξ−1
0 (Fλ(xi−1) + Cyi−1) and

g(y, μ,�) is the density of the multidimensional Gaussian
N (μ,�). We use the notation Iq for the identity matrix of
size q × q.

Step 2. To compute the derivative d
dλ

〈�(x(t ))〉λ, we in-
terchange the limit and integral on the rhs of the equation,
followed by applying the product rule to obtain the following:

d

dλ
〈�[x(t )]〉λ

∣∣∣∣
λ=0

= lim
Nt →∞

Nt∑
i=2

∫
�
(
xNt

)
P′

λ=0,i

×
⎛
⎝ Nt∏

j=2, j �=i

Pj

⎞
⎠P1Pss.
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Using the assumption that F̂ = CE and the chain rule, it can be shown that

P′
λ=0,i = E (xi−1) · ∇yi−1 (δXλ,i )g(yi, (Iq − �tA)yi−1,�tBBT ).

Step 3. By applying integration by parts and rearranging, we have the following:

d

dλ
〈�[x(t )]〉λ

∣∣∣∣
λ=0

= lim
Nt →∞

∫
�
(
xNt

) Nt∏
j=1

PjP
ss

{
−
[

(Iq − �tA)E
(
xNt −1

) · (�tBBT )−1[(yNt − (Iq − �tA)yNt −1
]]

+
Nt −1∑
i=1

[
[E (xi ) − E (xi−1)]

�t
· (�tBBT )−1[yi − (Iq − �tA)yi−1]�t

]

+
Nt −1∑
i=2

[
�tAE (xi−1) · (�tBBT )−1[yi − (Iq − �tA)yi−1]

]

+
[

E (x0) · (�tBBT )−1[y1 − (Iq − �tA)y0]

]}
.

Note that this equation generalizes Eq. (A.3) in [3].
Step 4. It can be shown that an equivalent identity to Eq. (A.4) in [3] can be derived from the steady-state property, which

results in the following:∫ [
�
(
xNt

)
E (x0) · (�tBBT )−1[y1 − (Iq − �tA)y0] · · ·

· · · − �
(
xNt

)
E
(
xNt −1

) · (�tBBT )−1[yNt − (Iq − �tA)yNt −1]
] Nt∏

j=1

PjP
ss

=
∫

�
(
xNt

) − �
(
xNt −1

)
�t

[
Nt −1∑
i=1

E (xi−1) · (BBT )−1[yi − (Iq − �tA)yi−1]

]
Nt∏
j=1

PjP
ss.

Step 5. The equation can now be written in the form of finite differences as follows:

d

dλ
〈�[x(t )]〉λ

∣∣∣
λ=0

= lim
Nt →∞

∫ {
�
(
xNt

)[ Nt∑
i=2

AE (xi−1) · (BBT )−1[yi − (Iq − �tA)yi−1]

]

+ �
(
xNt

)[ Nt −1∑
i=1

∇E (xi−1)
xi − xi−1

�t
· (BBT )−1[yi − (Iq − �tA)yi−1]

]

+ �
(
xNt

) − �
(
xNt −1

)
�t

[
Nt −1∑
i=1

E (xi−1) · (BBT )−1[yi − (Iq − �tA)yi−1]

]}
Nt∏
j=1

PjP
ss.

This corresponds to Eq. (A.5) in [3].
Step 6. Assuming that limits can be taken, we obtain (19) and (20).

2. Derivation of our second main result

Our proof is composed of several steps. Starting with the third step, we provide the proof in details for the case n′ = 2. We
give the main formula for the general case n′ � 1.

Step 1. We start the perturbation at xn′+1. Here the transition densities, for i = n′ + 1, . . . , Nt , are given by

Pλ(xi, yi|xi−1, yi−1) = δXλ,i

⎛
⎝n′−1∏

k=1

δYi,k

⎞
⎠ g

⎛
⎝yi,n′ , (Iq′ − �tAn′ )yi−1,n′ − �t

n′−1∑
k=1

Akyi−1,k,�t B̄B̄T

⎞
⎠,

where Xλ,i is defined as above and Yi,k = {yi,k − yi−1,k − �tyi−1,k+1} and g(y, μ,�) is the density of the multidimensional
Gaussian N (μ,�). We use the notation Iq′ for the identity matrix of size q′ × q′. The unperturbed transition densities for
i = 1, . . . , n′ are given by the same formula except that λ = 0. Below we use the short notation Pλ,i, and Pi for the perturbed and
unperturbed transition densities, respectively.
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Step 2. To compute the derivative d
dλ

〈�[x(t )]〉λ at λ = 0, we interchange the limit and integral on the rhs of the equation,
followed by applying the product rule to obtain the following:

d

dλ
〈�[x(t )]〉λ

∣∣∣∣
λ=0

= lim
Nt →∞

Nt∑
i=n′+1

∫
�
(
xNt

)
P′

λ=0,i

⎛
⎝ Nt∏

j=1, j �=i

Pj

⎞
⎠Pss.

We will use the short notation Xi for X0,i. Using the assumption that F̂ = C̄Ē and the chain rule, it can be shown that

P′
λ=0,i = Ē (xi−1) · ∇yi−1,1 (δXi )

⎛
⎝n′−1∏

k=1

δYi,k

⎞
⎠ g

⎛
⎝yi,n′ , (Iq′ − �tAn′ )yi−1,n′ − �t

n′−1∑
k=1

Akyi−1,k,�t B̄B̄T

⎞
⎠

︸ ︷︷ ︸
gi :=

.

Here we recall that both Ē (xi−1) and ∇yi−1,1 (δXλ,i ) take values in Rq′
. Below we use the notation

Ti �
∫

�
(
xNt

)
P′

λ=0,i

⎛
⎝ Nt∏

j=1, j �=i

Pj

⎞
⎠Pss. (A1)

a. Case n′ = 2 in detail

In this subsection we consider the case n′ = 2. In order to alleviate the notation, we denote ∇u(·) as (·)u. We reformulate Ti

using several integration by parts (IBPs). We use the notation

ζ = �
(
xNt

)⎛⎝ Nt∏
j=1

Pj

⎞
⎠Pss and Ēi = Ē (xi ),

and then Ti can be expressed as

Ti = 1

�t

∫
ζ Ēi−1([log(gi−1gi )]yi−1,2 − [log(gi−2gi−1)]yi−2,2 ) +

∫
ζ Ēi−1 [− log(gi )]yi−1,1 . (A2)

The transition from (A1) to (A2) is given in Lemma 3. Then calculations yield

[− log(gi )]yi−1,1 = AT
1 (B̄B̄T )−1θi,

[log(gi−1gi )]yi−1,2 = 1

�t

(
B̄B̄T

)−1
(θi − θi−1) − AT

2 (B̄B̄T )−1θi,

[ log(gi−1gi )]yi−1,2 − [log(gi−2gi−1)]yi−2,2 = 1

�t

(
B̄B̄T

)−1
(θi − 2θi−1 + θi−2) − AT

2 (B̄B̄T )−1(θi − θi−1),

where

θi � yi,2 − (Iq′ − �tA2)yi−1,2 + �tA1yi−1,1.

Therefore

Ti =
∫

ζ Ēi−1(B̄B̄T )−1

(
θi − 2θi−1 + θi−2

�t2

)
−
∫

ζ Ēi−1AT
2 (B̄B̄T )−1

(
θi − θi−1

�t

)
+
∫

ζ Ēi−1AT
1 (B̄B̄T )−1θi. (A3)

Collecting all the terms, we obtain

Nt∑
i=3

Ti = S3 + S2 + S1,

where

S1 =
Nt∑

i=3

∫
ζ Ēi−1AT

1 (B̄B̄T )−1θi,

S2 = −
Nt∑

i=3

∫
ζ Ēi−1AT

2 (B̄B̄T )−1

(
θi − θi−1

�t

)

=
Nt −1∑
i=2

∫
ζ

(
Ēi − Ēi−1

�t

)
AT

2 (B̄B̄T )−1θi + 1

�t

∫
ζ Ē1AT

2 (B̄B̄T )−1θ2 − 1

�t

∫
ζ ĒNt −1AT

2 (B̄B̄T )−1θNt ,
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and

S3 =
Nt∑

i=3

∫
ζ Ēi−1(B̄B̄T )−1

(
θi − 2θi−1 + θi−2

�t2

)

=
Nt −2∑
i=3

∫
ζ

(
Ēi+1 − 2Ēi + Ēi−1

�t2

)
(B̄B̄T )−1θi +

∫
ζ ĒNt −2(B̄B̄T )−1

(
θNt −1

�t2

)
+
∫

ζ ĒNt −1(B̄B̄T )−1

(
θNt

�t2

)

− 2

[∫
ζ Ē2(B̄B̄T )−1

(
θ2

�t2

)
+
∫

ζ ĒNt −1(B̄B̄T )−1

(
θNt −1

�t2

)]
+
∫

ζ Ē2(B̄B̄T )−1

(
θ1

�t2

)
+
∫

ζ Ē3(B̄B̄T )−1

(
θ2

�t2

)
.

Therefore, we have obtained

Nt∑
i=3

Ti =
Nt∑

i=3

∫
ζ Ēi−1AT

1 (B̄B̄T )−1θi +
Nt −1∑
i=2

∫
ζ

(
Ēi − Ēi−1

�t

)
AT

2 (B̄B̄T )−1θi

+
Nt −2∑
i=1

∫
ζ

(
Ēi+1 − 2Ēi + Ēi−1

�t2

)
(B̄B̄T )−1θi + B1 + B2, (A4)

with

B1 = 1

�t

∫
ζ Ē1AT

2 (B̄B̄T )−1θ2 − 1

�t

∫
ζ ĒNt −1AT

2 (B̄B̄T )−1θNt ,

B2 =
∫

ζ (ĒNt −2 − 2ĒNt −1)(B̄B̄T )−1

(
θNt −1

�t2

)
+
∫

ζ ĒNt −1(B̄B̄T )−1

(
θNt

�t2

)
−
∫

ζ (−2Ē1 + Ē0)(B̄B̄T )−1

(
θ1

�t2

)

−
∫

ζ Ē1(B̄B̄T )−1

(
θ2

�t2

)
.

The boundary terms B1 and B2 can be reformulated in the following way. First,

�tB1 = −
∫

�
(
xNt

)
ζ̂

(
Nt∑

k=3

Ēk−1AT
2 (B̄B̄T )−1θk

)
+
∫

�
(
xNt

)
ζ̂

(
Nt −1∑
k=2

Ēk−1AT
2 (B̄B̄T )−1θk

)

= −
∫

�
(
xNt −1

)
ζ̂

(
Nt −1∑
k=2

Ēk−1AT
2 (B̄B̄T )−1θk

)
+
∫

�
(
xNt

)
ζ̂

(
Nt −1∑
k=2

Ēk−1AT
2 (B̄B̄T )−1θk

)
.

Here we use the stationarity property and the notation

ζ̂ =
⎛
⎝ Nt∏

j=1

Pj

⎞
⎠Pss.

Therefore

B1 =
∫

ζ̂

(
�
(
xNt

) − �
(
xNt −1

)
�t

)
Nt −1∑
k=2

Ēk−1AT
2 (B̄B̄T )−1θk . (A5)

Next, we focus on B2. By adding and subtracting ĒNt and Ē2 in the second and fourth integrals in B2, we obtain

B2 =
∫

ζ
(
ĒNt −2 − 2ĒNt −1

)
(B̄B̄T )−1

(
θNt −1

�t2

)
+
∫

ζ
(
ĒNt −1 − ĒNt + ĒNt

)
(B̄B̄T )−1

(
θNt

�t2

)

−
∫

ζ (−2Ē1 + Ē0)(B̄B̄T )−1

(
θ1

�t2

)
−
∫

ζ (Ē1 − Ē2 + Ē2)(B̄B̄T )−1

(
θ2

�t2

)
.

Then we split into two parts B2 = B2,I + B2,II where

B2,I = −
∫

ζ
(
ĒNt −1 − ĒNt −2

)
(B̄B̄T )−1

(
θNt −1

�t2

)
−
∫

ζ
(
ĒNt − ĒNt −1

)
(B̄B̄T )−1

(
θNt

�t2

)

+
∫

ζ (Ē1 − Ē0)(B̄B̄T )−1

(
θ1

�t2

)
+
∫

ζ (Ē2 − Ē1)(B̄B̄T )−1

(
θ2

�t2

)
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and

B2,II = −
∫

ζ ĒNt −1(B̄B̄T )−1

(
θNt −1

�t2

)
+
∫

ζ ĒNt (B̄B̄T )−1

(
θNt

�t2

)
+
∫

ζ Ē1(B̄B̄T )−1

(
θ1

�t2

)
−
∫

ζ Ē2(B̄B̄T )−1

(
θ2

�t2

)
.

Next, we reformulate B2,I and B2,II . For convenience, we use the notation fk = (Ēk − Ēk−1)(B̄B̄T )−1θk�t−2. We recognize a
telescopic sum structure,

−B2,I =
∫

�
(
xNt

)
ζ̂

(
Nt −1∑
k=2

fk − fk−1

)
+
∫

�
(
xNt

)
ζ̂

(
Nt∑

k=3

fk − fk−1

)

=
∫

�
(
xNt

)
ζ̂

(
Nt −1∑
k=2

fk

)
−
∫

�
(
xNt

)
ζ̂

(
Nt −1∑
k=2

fk−1

)
+
∫

�
(
xNt

)
ζ̂

(
Nt∑

k=3

fk

)
−
∫

�
(
xNt

)
ζ̂

(
Nt∑

k=3

fk−1

)
.

We use the the stationarity property on the left and a simple change of summation in the right:

−B2,I =
∫

�
(
xNt −1

)
ζ̂

(
Nt −2∑
k=1

fk

)
−
∫

�
(
xNt

)
ζ̂

(
Nt −2∑
k=1

fk

)
+
∫

�
(
xNt −1

)
ζ̂

(
Nt −1∑
k=2

fk

)
−
∫

�
(
xNt

)
ζ̂

(
Nt −1∑
k=2

fk

)
.

Therefore we obtain

B2,I =
∫

ζ̂

(
�
(
xNt

) − �
(
xNt −1

)
�t

)[
Nt −2∑
k=1

(
Ēk − Ēk−1

�t

)
(B̄B̄T )−1θk

]
+
∫

ζ̂

(
�
(
xNt

) − �
(
xNt −1

)
�t

)[
Nt −1∑
k=2

(
Ēk − Ēk−1

�t

)
(B̄B̄T )−1θk

]
.

(A6)

Now we turn to the boundary term B2,II and we use the notation ek = Ēk (B̄B̄T )−1θk�t−2:

B2,II = −
∫

ζ

Nt −1∑
k=2

(ek − ek−1) +
∫

ζ

Nt∑
k=3

(ek − ek−1)

= −
∫

�
(
xNt

)
ζ̂

(
Nt −1∑
k=2

ek

)
+
∫

�
(
xNt

)
ζ̂

(
Nt −1∑
k=2

ek−1

)
+
∫

�
(
xNt

)
ζ̂

(
Nt∑

k=3

ek

)
−
∫

�
(
xNt

)
ζ̂

(
Nt∑

k=3

ek−1

)
.

We use the stationary property and elementary changes of summation to get

B2,II = −
∫

�
(
xNt −1

)
ζ̂

(
Nt −2∑
k=1

ek

)
+
∫

�
(
xNt

)
ζ̂

(
Nt −2∑
k=1

ek

)
+
∫

�
(
xNt −2

)
ζ̂

(
Nt −2∑
k=1

ek

)
−
∫

�
(
xNt −1

)
ζ̂

(
Nt −2∑
k=1

ek

)
.

Therefore,

B2,II =
∫

ζ̂

(
�
(
xNt

) − 2�
(
xNt −1

) + �
(
xNt −2

)
�t2

)(
Nt −2∑
k=1

Ēk (B̄B̄T )−1θk

)
. (A7)

Now we collect all our results for the boundary terms (A5)–(A7) and substitute them into the right-hand side of (A4) before
passing to the limit. We obtain

Nt∑
i=3

Ti =
Nt∑

i=3

∫
ζ̂�

(
xNt

)
Ēi−1AT

1 (B̄B̄T )−1θi +
Nt −1∑
i=2

∫
ζ̂�

(
xNt

)( Ēi − Ēi−1

�t

)
AT

2 (B̄B̄T )−1θi

+
Nt −2∑
i=1

∫
ζ̂�

(
xNt

)( Ēi+1 − 2Ēi + Ēi−1

�t2

)
(B̄B̄T )−1θi +

∫
ζ̂

(
�
(
xNt

) − �
(
xNt −1

)
�t

)
Nt −1∑
k=2

Ēk−1AT
2 (B̄B̄T )−1θk

+
∫

ζ̂

(
�
(
xNt

) − �
(
xNt −1

)
�t

)[
Nt −2∑
k=1

(
Ēk − Ēk−1

�t

)
(B̄B̄T )−1θk

]

+
∫

ζ̂

(
�
(
xNt

) − �
(
xNt −1

)
�t

)[
Nt −1∑
k=2

(
Ēk − Ēk−1

�t

)
(B̄B̄T )−1θk

]

+
∫

ζ̂

(
�
(
xNt

) − 2�
(
xNt −1

) + �
(
xNt −2

)
�t2

)(
Nt −2∑
k=1

Ēk (B̄B̄T )−1θk

)
. (A8)
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Again assuming we can take the limit as Nt → ∞, we obtain our second main result when n′ = 2,

d

dλ
〈�[(x(t )]〉λ

∣∣∣∣
λ=0

= 〈�[x(t )][p00(t ) + p10(t ) + p20(t )]〉 + 〈�̇[x(t )][p11(t ) + 2p21(t )]〉 + 〈�̈[(x(t )] p22(t )〉,

where

ṗ0,0(t ) = Ē [x(t )]AT
1 (B̄B̄T )−1Bẇ(t ), p1,0(t ) = d

dt
(Ē [x(t )])AT

2 (B̄B̄T )−1Bẇ(t ),

ṗ2,0(t ) = d2

dt2
(Ē [x(t )])(B̄B̄T )−1Bẇ(t ), ṗ1,1(t ) = Ē [x(t )]AT

2 (B̄B̄T )−1Bẇ(t ),

ṗ2,1(t ) = d

dt
(Ē [x(t )])(B̄B̄T )−1Bẇ(t ), and ṗ2,2(t ) = Ē [x(t )](B̄B̄T )−1Bẇ(t ).

b. Case n′ � 1 : Key steps

Now we turn to the general case n′ � 1.
Step 3. The counterpart of formula (A3) becomes

Nt∑
i=n′+1

Ti =
n′∑

k=0

(−1)k

(�t )k

⎛
⎝ Nt∑

i=n′+1

∫
Ē (xi−1)AT

k+1(B̄B̄T )−1(Dkθ )i�
(
xNt

)
ζ̂

⎞
⎠.

︸ ︷︷ ︸
Sk :=

(A9)

The finite difference at the order k � 0 is defined as follows: (D0θ )i = θi and (Dkθ )i = (Dk−1θ )i − (Dk−1θ )i−1 for k � 1. We
recall that the matrices Ak for 1 � k � n′ are defined in (9) and An′+1 = Iq′ .

Next we use a summation by part formula shown in Lemma 4 to reformulate each of the Sk , that is swapping the finite
difference on θ to a finite difference on Ē and obtaining boundary terms.

Step 4. Below, we use the notation hi,k = AT
k (B̄B̄T )−1θi. In the rhs of (A9), we consider each of the n′ + 1 sums individually.

For k = 0, we can rewrite the sum as

S0 =
Nt∑

i=n′+1

∫
ζ̂�

(
xNt

)
Ēi−1hi,1,

and for k � 1, we apply Lemma 4 (summation by part below) to obtain Sk = M0 + B0 where

M0 =
Nt∑

i=n′+1

∫
ζ̂�

(
xNt

)(DkĒi−1

(�t )k

)
hi−k,k+1,

B0 = 1

(�t )k

k∑
j1=1

(−1)k+ j1

∫
ζ (Dj1−1Ēi−1)(Dk− j1 hi− j1+1,k+1)

∣∣∣∣Nt

n′
.

Then, we use the stationarity property to transform B0 into

B0 = 1

(�t )k

k∑
j1=1

(−1)k+ j1

Nt −1∑
i=n′

∫
ζ̂ (D1�Nt )(Dj1−1Ēi−1)(Dk− j1 hi− j1+1,k+1).

Step 5. We decompose B0 = M1,1 + M1,2 + B1 by separating the sum into two parts (k − j1 = 0 and k − j1 �= 0):

M1,1 =
k∑

j1=1,
j1=k

Nt −1∑
i=n′

∫
ζ̂

(
D1�Nt

(�t )1

)(
Dk−1Ēi−1

(�t )k−1

)
hi−k+1,k+1,

M1,2 =
k∑

j1=1,
j1 �=k

Nt −1∑
i=n′

∫
ζ̂

(
D1�Nt

(�t )1

)(
Dk−1Ēi−1

(�t )k−1

)
hi−k+1,k+1,

B1 = 1

(�t )k

k−1∑
j1=1

k− j1∑
j2=1

(−1)k+ j1+ j2

∫
ζ̂ (D1�Nt )(Dj1− j2−2Ēi−1)(Dk− j1− j2 hi− j1− j2+2,k+1)

∣∣∣∣Nt −1

n′−1

.
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Notice that

M1,1 + M1,2 =
k∑

j1=1

Nt −1∑
i=n′

∫
ζ̂

(
D1�Nt

(�t )1

)(
Dk−1Ēi−1

(�t )k−1

)
hi−k+1,k+1.

Step 6. We repeat the steps above to the boundary term (B1) and the subsequent boundary terms that appear at each iteration.
The result obtained after repeating these a total of k − 1 times is

k−1∑
m=1

(
k

m

) Nt −m∑
i=n′−(m−1)

∫
ζ̂

(
Dm�Nt

(�t )k

)(
Dk−mĒi−1

(�t )k

)
hi−k+m,k+1

+
1∑

j1=1

2− j1∑
j2=1

...

k−Jm−1∑
jk=1

(−1)k+Jm

∫
ζ̂ (Dk−1�Nt )(DJk−kĒi−1)(Dk−Jk hi−Jk+k,k+1)

∣∣∣∣Nt −(l−1)

n′−(l−1)

.

Here, Jk = j1 + j2 + · · · + jk .
Step 7. By applying the stationarity property to the boundary term, collecting terms, and rearranging, we arrive at the desired

result:

Nt∑
i=n′+1

Ti =
n′∑

k=0

k∑
m=0

(
k

m

) Nt −k∑
i=n′+1−k

∫
ζ̂

(
Dm�Nt

(�t )m

)(
Dk−mĒi−1+(k−m)

(�t )k−m

)
AT

k+1(B̄B̄T )−1θi. (A10)

Step 8. Taking limits as Nt → ∞ and rearranging further, we then have the formula (21) and (22).

c. Technical lemmata

Lemma 3. Ti defined by (A1) satisfies (A2).
Proof. We start from (A1) with n′ = 2,

Ti =
∫

�
(
xNt

)
P′

λ=0,i

⎛
⎝ Nt∏

j=1, j �=i

Pj

⎞
⎠Pss

=
∫

�
(
xNt

)
Ēi−1 · (δXi

)
yi−1,1

(
δYi−1,1δYi,1 gi

)⎛⎝ Nt∏
j=1, j /∈{i−1,i}

Pj

⎞
⎠δXi−1 gi−1Pss.

An integration by part gives Ti = −Ti,1 − Ti,2 − Ti,3 where

Ti,1 =
∫

�
(
xNt

)
Ēi−1 · (δYi−1,1

)
yi−1,1

⎛
⎝ Nt∏

j=1, j �=i−1

Pj

⎞
⎠δXi−1 gi−1Pss,

Ti,2 =
∫

�
(
xNt

)
Ēi−1 · (δYi,1

)
yi−1,1

δXi gi

⎛
⎝ Nt∏

j=1, j �=i

Pj

⎞
⎠Pss,

Ti,3 =
∫

�
(
xNt

)
Ēi−1 · (gi )yi−1,1

δYi,1δXi

⎛
⎝ Nt∏

j=1, j �=i

Pj

⎞
⎠Pss.

Using (δYi−1,1 )yi−1,1 = −(�t )−1(δYi−1,1 )yi−2,2 , we reformulate Ti,1 as follows

Ti,1 = − 1

�t

∫
�
(
xNt

)
Ēi−1 · (δYi−1,1

)
yi−2,2

⎛
⎝ Nt∏

j=1, j �=i−1

Pj

⎞
⎠δXi−1 gi−1Pss

= 1

�t

∫
ζ Ēi−1 · (log[gi−2gi−1)]yi−2,2

(by integration by parts),

where we reuse the notation

ζ = �
(
xNt

)⎛⎝ Nt∏
j=1

Pj

⎞
⎠Pss.
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Next, using (δYi,1 )yi−1,1 = (�t )−1(δYi−1,1 )yi−1,2 , we reformulate Ti,2 as follows:

Ti,2 = 1

�t

∫
�
(
xNt

)
Ēi−1 · (δYi,1

)
yi−1,2

⎛
⎝ Nt∏

j=1, j �=i

Pj

⎞
⎠δXi giP

ss

= − 1

�t

∫
ζ Ēi−1 · [log(gi−1gi )]yi−1,2

(by integration by parts).

Finally, we reformulate Ti,3 as follows:

Ti,3 =
∫

ζ Ēi−1 · [log(gi )]yi−1,1
.

We can collect the results above to obtain (A2). �
Lemma 4. Summation by parts formula for 1 � k � n:

N∑
i=n+1

φi−1Dkψi = (−1)k
N∑

i=n+1

Dkφi−1ψi−k +
k∑

j=1

(−1) j−1(Dj−1φi−1Dk− jψi− j+1)

∣∣∣∣N
n

.

Proof. We have that

N∑
i=n+1

φi−1Dkψi = −
(

N∑
i=n+1

φi−1Dk−1ψi−1 −
N∑

i=n+1

φi−2Dk−1ψi−1

)
+
(

N∑
i=n+1

φi−1Dk−1ψi −
N∑

i=n+1

φi−2Dk−1ψi−1

)

= −
N∑

i=n+1

D1φi−1Dk−1ψi−1 + (φi−1Dk−1ψi )

∣∣∣∣N
n

.

By inductively applying the above identity to
∑N

i=n+1 Dlφi−1Dk−lψi−l , it can be shown that the following holds for l = 1, ..., k:

N∑
i=n+1

φi−1Dkψi = (−1)l
N∑

i=n+1

Dlφi−1Dk−lψi−l +
l∑

j=1

(−1) j−1(D j−1φi−1Dk− jψi− j+1)

∣∣∣∣N
n

.

In particular, the case l = k holds and concludes the proof. �

3. Details of weight formulas

Calculations yield the following formulas. In the rest of this section, let α = k/ξ0 + � and β = k/ξ0 − �. Furthermore, when
the average, 〈· · · 〉, appears without the dependence on t , we implicitly mean to take the average with respect to the steady state.

a. Weight formulas associated with (25)

〈x(t )p1
0,0(t )〉 = 1 − e− k

ξ0
t

k
− eσ

ξ0
c(t ), and 〈ẋ(t )p1

1,1(t )〉 = eσ

ξ0
c(t ),

where

c(t ) = e−�t [β cos(ωt ) + ω sin(ωt )] − βe− k
ξ0

t

β2 + ω2
.

b. Weight formulas associated with (26)

〈
x2(t )p2

0,0(t )
〉 = σ 2

ξ 2
0

e−2�t

(
cos(2ωt )A1 + sin(2ωt )B1 + C1

2β(β2 + ω2)2

)
+ 2σ

ξ0
e−αt

(
cos(ωt )D1 + sin(ωt )E1

β2 + ω2

)
+ σ

k
(e−2k/ξ0t − 1)a1,1,

〈
x2(t )p2

1,0(t )
〉 = σ 2

ξ 2
0

e−2�t

(
cos(2ωt )A2 + sin(2ωt )B2 + C2

2
(

k
ξ0

− �
)[(

k
ξ0

− �
)2 + ω2

]2

)
+ 2σ

ξ0
e−(k/ξ0+�)t

(
cos(ωt )D2 + sin(ωt )E2(

k
ξ0

− �
)2 + ω2

)
+ σ

k
(e−2k/ξ0t − 1)a1,2,
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and

〈ẋ2(t )p2
1,1(t )〉 = −2kσ 2

ξ 3
0

e−2�t

(
cos(2ωt )A3 + sin(2ωt )B3 + C3

2
(

k
ξ0

− �
)[(

k
ξ0

− �
)2 + ω2

]2

)
+ −4kσ

ξ 2
0

e−(k/ξ0+�)t

(
cos(ωt )D3 + sin(ωt )E3(

k
ξ0

− �
)2 + ω2

)

+ −2σ

ξ0
(e−2k/ξ0t − 1)a1,3 + σ

ξ0
e−2�t

(
cos2(ωt )F + cos(ωt ) sin(ωt )G + sin2(ωt )H

α2 + ω2

)
+ e−(k/ξ0+�)t [cos(ωt )a1,3 + sin(ωt )a2,3] − a1,3,

where we use the following constant:

Ai = c1,iβ
3 − c2,iβω2 − (2b2,i )β

2ω,

Bi = c1,iβ
2ω + c2,iβ

2ω + (2b2,i )β
3,

Ci = c2,iβ(β2 + ω2) + (2b2,i )ω(β2 + ω2),

Di = a1,iβ − a2,iω,

Ei = a1,iω + a2,iβ,

F = (b1,3a + b2,3ω),

G = (b1,3ω + 2b2,3a + b3,3ω),

H = (b2,3ω + b3,3a),

and

c1,i = 4�2〈y1F1,i〉 + 4ω�〈y2F1,i〉 + 4ω�〈y1F2,i〉 − 4�2〈y2F2,i〉
−4(�2 + ω2)

,

c2,i = −(〈y1F1,i〉 + 〈y2F2,i〉),

b1,i = 2(2�2 + ω2)〈y1F1,i〉 + 2ω�〈y2F1,i〉 + 2ω�〈y1F2,i〉 + 2ω2〈y2F2,i〉
−4(�2 + ω2)

,

b2,i = −2ω�〈y1F1,i〉 + 2�2〈y2F1,i〉 + 2�2〈y1F2,i〉 + 2ω�〈y2F2,i〉
−4(�2 + ω2)

,

b3,i = ω22〈y1F1,i〉 + −2�ω(〈y2F1,i〉 + 〈y1F2,i〉) + (2�2 + ω2)2〈y2F2,i〉
−4(�2 + ω2)

,

a1,i = −α(�〈xF1,i〉 − b1,i ) + ω(�〈xF2,i〉 − b2,i )

α2 + ω2
,

a2,i = ω(�〈xF1,i〉 − b1,i ) − α(�〈xF2,i〉 − b2,i )

α2 + ω2
,

with F1,1 = ex, F2,1 = eω�−1x, F1,2 = e�−1ẋ, F2,2 = 0, F1,3 = e�−1x, F2,3 = 0.

c. Weight formulas associated with (27)

〈
x(t )p3

00(t )
〉 = eγα0

(
1 − e−k/ξ0t

k
− �

te−�t

k − �ξ0
− (k − 2�ξ0)

e−�t − e−k/ξ0t

(k − �ξ0)2

)
,

〈
ẋ(t )p3

11(t )
〉 = eγα1

(
�

te−�t

k − �ξ0
− �ξ0

e−�t − e−k/ξ0t

(k − �ξ0)2

)
,

and

〈
ẍ(t )p3

22(t )
〉 = eγ

(
− �

te−�t

k − �ξ0
+ k

e−�t − e−k/ξ0t

(k − �ξ0)2

)
.
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d. Weight formulas associated with (28)

〈
x2(t )p4

0,0(t )
〉 = A1(t2e−2�t ) + B1(te−2�t ) + C1(te−�t ) + D1(te−αt ) + E1(e−2�t − e−2k/ξ0t ) + F1(e−�t − e−2k/ξ0t )

+ G1(e−αt − e−2k/ξ0t ) + γ

k
b1,1(1 − e−2k/ξ0t ),

〈
x2(t )p4

1,0(t )
〉 = A2(t2e−2�t ) + B2(te−2�t ) + C2(te−�t ) + D2(te−αt ) + E2(e−2�t − e−2k/ξ0t )

+ F2(e−�t − e−2k/ξ0t ) + G2(e−αt − e−2k/ξ0t ) + γ

k
b1,2(1 − e−2k/ξ0t ),

〈
x2(t )p4

1,0(t )
〉 = A3(t2e−2�t ) + B3(te−2�t ) + C3(te−�t ) + D3(te−αt ) + E3(e−2�t − e−2k/ξ0t )

+ F3(e−�t − e−2k/ξ0t ) + G3(e−αt − e−2k/ξ0t ) + γ

k
b1,3(1 − e−2k/ξ0t ),

〈
ẋ2(t )p4

1,1(t )
〉 = (−2k

ξ0
A4 + 2γ

ξ0
I4

)
(t2e−2�t ) +

(−2k

ξ0
B4 + 2γ

ξ0
J4

)
(te−2�t ) + −2k

ξ0
C4(te−�t ) +

(−2k

ξ0
D4 + 2γ

ξ0
L4

)
(te−αt )

+ −2k

ξ0
E4(e−2�t − e−2k/ξ0t ) + −2k

ξ0
F4(e−�t − e−2k/ξ0t ) + −2k

ξ0
G4(e−αt − e−2k/ξ0t ) + 2γ

ξ0
b1,4(e−2k/ξ0t )

+ 2γ

ξ0
K4(e−2�t ) + 2γ

ξ0
M4(e−αt ),

〈
ẋ2(t )p4

2,1(t )
〉 = (−2k

ξ0
A5 + 2γ

ξ0
I5

)
(t2e−2�t ) +

(−2k

ξ0
B5 + 2γ

ξ0
J5

)
(te−2�t ) + −2k

ξ0
C5(te−�t )

+
(−2k

ξ0
D5 + 2γ

ξ0
L5

)
(te−αt ) + −2k

ξ0
E5(e−2�t − e−2k/ξ0t ) + −2k

ξ0
F5(e−�t − e−2k/ξ0t )

+ −2k

ξ0
G5(e−αt − e−2k/ξ0t ) + 2γ

ξ0
b1,5(e−2k/ξ0t ) + 2γ

ξ0
K5(e−2�t ) + 2γ

ξ0
M5(e−αt ),

and〈
ẍ2(t )p4

2,2(t )
〉 = (

4k2

ξ 2
0

A6 − 6kσ

ξ 2
0

I6 + 2σ 2

ξ 2
0

N6 − 2σ

ξ0
I6

)
(t2e−2�t ) +

(
4k2

ξ 2
0

B6 − 6kσ

ξ 2
0

J6 + 2σ 2

ξ 2
0

O6 + 2σ

ξ0
R6

)
(te−2�t )

+ 4k2

ξ 2
0

C6(te−�t ) +
(

4k2

ξ 2
0

D6 − 6kσ

ξ 2
0

L6 − 2σ

ξ0
L6

)
(te−αt ) + 4k2

ξ 2
0

E6(e−2�t − e−2k/ξ0t ) + 4k2

ξ 2
0

F6(e−�t − e−2k/ξ0t )

+ 4k2

ξ 2
0

G6(e−αt − e−2k/ξ0t ) + 4k2

ξ 2
0

γ

k
b1,i(1 − e−2k/ξ0t ) +

(
− 6kσ

ξ 2
0

K6 − 2σ

ξ0

1

2
K6

)
(e−2�t )

+
(

− 6kσ

ξ 2
0

M6 + 2σ

ξ0
U6

)
(e−αt ) +

(
− 6kσ

ξ 2
0

b1,6 + 2σ 2

ξ 2
0

P6 + 2σ

ξ0
b2,6

)
,

where we use the following constants:

Ai = σ

ξ0
Ai(−1/β2),

Bi = σ

ξ0
Ai[1/β3 − 2/(�β2)],

Ci = σ

ξ0
Ai(1/β3),

Di =
[

σ

ξ0
Ai(−2/β3) + 2γ /ξ0�(b1,i + b2,i )/β

]
,

Ei = σ

ξ0
Ai[−1/(2β4) + 1/(�β3)],
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Fi = σ

ξ0
Ai[−1/(2β4) + 2/(�β3)],

Gi =
{

σ

ξ0
Ai[2/β4 − 4/(�β3)] + 2γ /ξ0[−�(b1,i + b2,i )/β

2 + b1,iβ]

}
,

Ii = −Ai(�
2/β ),

Ji = Ai(�
2/β2 − 2�/β ),

Ki = 2Ai�/β
2,

Li = [−Ai�
2/β2 + �(b1,i + b2,i )],

Mi = (2Ai�/β
2 + b1,i ),

Ni = −(〈y1Fi〉 + 〈y2Fi〉)�2,

Oi = −(2〈y1Fi〉 + 〈y2Fi〉)�,

Pi = (〈y1Fi〉 + 1
2 〈y2Fi〉

)
,

Ri = Ai(−�2/β2 + �/β ),

Ui = (Ai�/β
2 + b2,i ),

Ai = γ /ξ0〈y1Fi〉,
b1,i = 1/α2[−(α + �)γ /ξ0(〈y1Fi〉 + (1/2)〈y2Fi〉) − �2〈xFi〉],
b2,i = 1/α2(�γ /ξ0(〈y1Fi〉 + (1/2)〈y2Fi〉) − (k/ξ0)�〈xFi〉),

and F1 = ex, F2 = 2e
�

ẋ, F3 = e
�2 ẍ, F4 = 2e

�
x, F5 = e

�2 ẋ, F6 = e
�2 x.

APPENDIX B: FURTHER DETAILS ON MONTE
CARLO SIMULATIONS

1. The harmonic case

We provide details on the implementation of the Monte
Carlo (MC) method in calculating the sensitivity indices. For
pedagogical purposes, we consider (25) where the underlying
unperturbed dynamics is ẋ = ξ−1

0 (−kx + σy1), ẏ1 = −�1y1 +
�1
2 y2 + �1ẇ1, ẏ2 = − �1

2 y1 − �1y2 + �1ẇ2. Other cases follow
the same method. The time discretization and the MC esti-
mation work as follows: Let T > 0. Let NT be the number
of time steps and h = T/NT be the time step. We discretize
the time interval [0, T ] with {ih, 0 � i � NT }. Let N be the
number of MC samples. Consider two independent sequences
of i.i.d. standard Gaussian variables {�W n

1,i, �W n
2,i 1 � i �

NT , 1 � n � N}. For each 1 � n � N , the discretization of
the unperturbed dynamics and the corresponding Malliavin
weights lead to the following sequences for 0 � i � NT − 1:

xh,n
i+1 = xh,n

i + hξ−1
0

( − kxh,n
i + σ1yh,n

1,i

)
,

yh,n
1,i+1 = yh,n

1,i − h�1
(
yh,n

1,i − yh,n
2,i /2

) +
√
h�W n

1,i,

yh,n
2,i+1 = yh,n

2,i − h�1
(
yh,n

1,i /2 + yh,n
2,i

) +
√
h�W n

2,i,

p1,h,n
00,i+1 = p1,h,n

00,i + σ−1
1

√
h
(
�W n

1,i + �W n
2,i/2

)
,

p1,h,n
11,i+1 = p1,h,n

11,i + σ−1
1 �−1

1

√
h�W n

1,i.

Here for each n, p1,h,n
00,0 = p1,h,n

11,0 = 0 and (xh,n
0 , yh,n

1,0 , yh,n
2,0 ) is

distributed according to the steady state of the unperturbed
process (x, y1, y2). The latter is Gaussian, its mean and vari-
ance covariance can be easily identified as a fixed point

solution for the differential equations governing the time-
dependent mean and variance covariance. Then we can build
the MC estimator IN,i for d〈x(ih)〉λ1/dλ1 at λ1 = 0, for any
1 � i � NT , with

IN,i = 1

N

N∑
n=1

xh,n
i p1,h,n

00,i + ξ−1
0

( − kxh,n
i + σ1yh,n

1,i

)
p1,h,n

11,i .

In our simulations, we use N = 106 and h = 10−3 with T =
10. It is worth mentioning that in our setting the stationary
measure of (x, y1, y2) is known. However, as pointed out in
[27], the detailed balance (equilibrium system) does not hold
for systems with persistence time, which is the case here.

2. The screened Coulomb case

We discuss the practical aspects of the simulation of the
particle system when the interaction force is given by the re-
pulsive screened Coulomb potential V (r) = AV exp[−κ (r −
σV )]/r, and we use the same parameters as in [3]: N = 1372,
AV = 475T sp

eff σV , κσV = 24. We take σV = 1 without loss of
generality. We consider a periodic domain which is a cube of
length L = (1372/0.51)1/3 so that we keep N = 1372 parti-
cles with a concentration N/L3 = 0.51 and the system admits
a stationary state. The initial condition is a realization of the
steady state. We obtain it in the following way: we simulate
the system from an arbitrary condition over a sufficiently long
period of time (the burn-in phase) to reach the steady state.
We follow an important statistic of the system, MSD(t )/t ,
where MSD(t ) is defined in Eq. (30). When this statistic
stabilizes around a constant value, we consider that the steady
state is reached. The MC method and the discretization of the
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dynamics and the Malliavin weights are very similar to what
was presented in the previous section. It will be noted that due
to the stiffness of the potential we have used an adaptive time

step, this is very useful in the burn-in phase until the system
reaches its steady state. We can also see that the time step
becomes constant from this point onwards.
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