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Abstract. Neutron noise analysis describes a set of techniques used in nuclear safeguards and
nuclear security to identify an unknown fissile material based on the temporal correlations of
the detected neutrons. The observations are often noisy due to the stochastic nature of the
underlying physical processes, which makes the resolution of this inverse problem complex.
Moreover, the uncertainty quantification of the estimation of the fissile material parameters has
not been studied thoroughly, though it is crucial for such an ill-posed inverse problem. On top of
this, the analytical direct model widely used to describe neutron correlations is based on strong
physical assumptions, which are never met in a real-world scenario. Overall, the knowledge of
the quality of the predictions is crucial for the decision makers.
This work addresses dual objectives. First of all, surrogate models specifically designed for
multiple correlated outputs are built to extend and improve the biased analytical model currently
used, while providing a reliable quantification of the errors associated with the predictions.
The surrogate models are based on multi-fidelity, multi-output Gaussian process regression.
Different approaches are investigated to build the surrogate models. Their performance are
evaluated with various metrics, and the coverage probabilities are estimated to guarantee the
reliability of the predictions and their uncertainty quantification.
Finally, the inverse problem is solved with a Bayesian approach which takes into account the
covariance of the measurements and the predictive means and covariances of the Gaussian
process surrogate model. Thus, the general methodology presented in this work accounts for
both sources of error, measurement noise and model bias. The resulting posterior distribution
more accurately reflects the inferred knowledge about the material properties. This method is
applied to a specific test case coming from a neutron multiplicity benchmark.
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1 INTRODUCTION

This work falls within the scope of nuclear safeguards and non-proliferation. The general
goal is to identify an unknown nuclear material based on passive, non-destructive measurements
of neutron correlations [1]. More specifically, due to the strong non-linearity of the direct model,
linking the material characteristics and the neutron correlation observations, the inverse problem
that is considered here is ill-posed in the sense of Hadamard. Hence, it is essential to quantify
the uncertainties in the resolution of the inverse problem and to provide credible regions to the
decision makers, instead of a single point estimate.

In this work, the inverse problem is solved by Bayesian inference with the help of a Gaus-
sian process surrogate model, to account for both the model error and the measurement error
[2]. For this specific application, the outputs are strongly correlated. Thus we would like to
build a multi-output surrogate model with improved mean predictions compared to the approx-
imated analytical model, and reliable covariance predictions.
Different methods such as the Linear Coregionalization Model [3] and Bayesian Polynomial
Chaos Expansion are investigated to build the surrogate models and their respective perfor-
mance and reliability are quantified.

2 NEUTRON CORRELATIONS

2.1 The direct model

In this paragraph, a brief description of neutron correlation measurements is provided and
the construction of the dataset used for the surrogate models training is detailed. Neutron noise
analysis is a non destructive method allowing to infer information from a nuclear material by
measuring neutron correlations. Indeed, in a fissile material, neutrons are created by different
nuclear reactions, and most notably by induced fissions. Each induced fission can yield up
to 10 neutrons. This neutron multiplicity affects the statistics of the counts in the neutron
detector. The quantities of interest in our neutron correlation measurements are the number
of multiple detections. A multiple detection refers to the simultaneous detection of multiple
neutrons, within a given time window of a few milliseconds. These quantities are linked to
the binomial moments of the detection statistics. Böhnel and Cifarelli [4, 5] showed that the
neutron multiplication of a fissile medium could be determined by the measures of the three
first moments of the detection statistics. This method is detailed in [6] and derived by Paszit in
[7].

The details of the theory behind neutron noise analysis are not provided in this work. For the
reader, the main aspects to keep in mind is that we are considering three distinct observations
for a single neutron correlation measurement.

• The average count rate R of neutrons in the detector.

• The second asymptotic Feynman moment Y∞.

• The third asymptotic Feynman moment X∞.

The second and third asymptotic Feynman moments describe the average number of double and
triple correlated detections. A distinction is made between accidental correlations, for which
the neutrons hit the detector at the same time by chance, and are independent from one another
(i.e. come from independent chains of fission), and correlated detections where the neutrons are
correlated in time due to fissions in the material.
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The direct model most commonly used to describe neutron correlations is the so-called point
model fp which is based on strong assumptions. It provides a link between some material
characteristics x and the observations y = (R, Y∞, X∞) = fp(x). However, this direct model
is strongly non-linear and inherently biased due to its underlying assumptions. That is why
we would like to improve it using a surrogate model based on supervised learning and more
specifically on Gaussian process regression. Let us first describe how the dataset used for
training the surrogate models is created.

2.2 Creation of the dataset

Our goal here is to create a dataset from which the surrogate model can learn the direct model.
This is done with the help of the Monte-Carlo neutronic code MCNP6 [8]. This code describes
the full neutronic transport problem. It cannot be used as a direct model in a Bayesian inverse
problem framework because of its prohibitive cost. A single run for a simple geometry can
take up to roughly twenty minutes. To create the dataset, 1125 simulations are performed with
MCNP6. The geometry of the problem is the following. We consider an unknown spherical
object containing a mix of 239Pu and 240Pu metallic. The sphere is surrounded by a material
containing a neutron absorber B4C, and a neutron moderator made of polyethylene which slows
down the neutron to the low energy range, where fissions occur. A cylindrical neutron detector
containing 3He with a polyethylene layer is placed at a given distance of the object. Finally, a
thick concrete layer surrounds the geometry. For each simulation, the distances, compositions
and even densities of the materials are changed randomly. Each time, neutron correlations
measurements are obtained and the inputs x of the direct model are evaluated. In the point
model, four inputs are considered :

• kp the prompt multiplication factor

• εF the ratio of the number of detections over induced fissions.

• S the source intensity in neutrons per second.

• xs the number of source neutrons obtained by spontaneous fissions over the total number
of source neutrons.

The point model is inherently biased because the full transport problem is summarized to four
parameters. Three more parameters are added to the dataset in order to provide more informa-
tion to the surrogate model.

• Φ the ratio of fast over thermal neutron flux.

• εA the ratio of the number of parasitic captures in the moderator over induced fissions.

• J the ratio of out-going over in-going neutron current at the outer layer of the geometry.

The dimension of the input vector x is 7 and the dimension of the output vector y is 3. The
dataset contains 1125 input-output pairs. In a preprocessing step, the dataset is transformed
with the Box-Cox transform [9] to improve the training of the surrogate model.
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3 INVERSE PROBLEM

3.1 Bayesian resolution

Our goal is to solve the inverse problem with Bayesian inference [10]. Given N independent
observations of D = 3 outputs y = (y(i))1≤i≤N with independent Gaussian noise on each
observation :

y(i) = fp(x) + ϵ(i) with ϵ(i) ∼ N (0,Cm) (1)

we would like to find the posterior distribution p(x|y). The 3 × 3 covariance matrix Cm of
the measurement error is assumed known. In fact, it can be estimated by a bootstrap method
once the observations are provided [11]. Then the posterior distribution can be obtained up to a
multiplicative constant:

p(x|y) ∝ p(x)L(y|x) (2)

where p(x) is the prior distribution which quantifies the information on the parameters prior to
the measurement, and L(y|x) is the likelihood given by :

L(y|x) ∝ exp

(
−1

2

N∑
i=1

(yi − fp(x))
TC−1

m (yi − fp(x))

)
(3)

The problem with this formulation is that the observations are assumed to follow the point
model. Only the uncertainties on the observations are taken into account in the inverse problem.
This is especially problematic for such an ill-posed inverse problem where a small error in the
direct model can lead to dramatic errors in the inverse problem resolution. Thus our objective
is dual in this work. We would like to build a surrogate model which should provide a better
description of the physical processes, and reliable covariance predictions, such that the model
error can be included in the likelihood during the resolution of the inverse problem.

3.2 Surrogate models and Bayesian inference

Let us assume from now on that we are provided with a surrogate model of the direct model,
which is able to provide a predictive mean fs(x) ∈ RD of the D = 3 outputs and quantify the
associated error η(x) at any given point x. Then the observations can be written as :

y = fs(x) + η(x) + ϵ (4)

where fs(x) =
(
fs(x), ..., fs(x)

)T
∈ RDN is the flattened vector of the surrogate model mean

predictions, η(x) = (η(x), ..., η(x))T ∈ RDN is the flattened vector of the model errors and the
measurement error is ϵ ∼ N (0,Cobs) where Cobs is a block diagonal matrix.

Cobs =


Cm 0 . . . 0

0
. . . . . . ...

... . . . . . . 0
0 . . . 0 Cm

 ∈ RDN×DN (5)

In this work, we consider Gaussian processes surrogate models. By definition, the multi-output
Gaussian process provides at any given point x a predictive mean fs(x) and a predictive covari-
ance Cs(x) such that the predictive distribution fs(x) is Gaussian.

fs(x) ∼ N
(
fs(x),Cs(x)

)
(6)
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With this specific framework, the model error η(x) in equation 4 follows a zero-mean Gaussian
distribution η(x) ∼ N (0,Cmod(x)).

Cmod(x) =

Cs(x) . . . Cs(x)
... . . . ...

Cs(x) . . . Cs(x)

 ∈ RDN×DN (7)

This model leads to a modified likelihood which accounts for both the model error and the noise
error.

L(y|x) = (2π)−DN/2|Ctot(x)|−1/2 exp

(
−1

2

(
y − fs(x)

)T
Ctot(x)

−1
(
y − fs(x)

))
(8)

where Ctot(x) = Cmod(x) +Cobs.
The posterior distribution can be sampled with the help of Monte-Carlo Markov Chain (MCMC)
methods. In section 5.2, a detailed discussion on these MCMC methods is presented.

4 GAUSSIAN PROCESSES SURROGATE MODELS

4.1 Introduction to Gaussian process regression

In this section we describe briefly the principle of Gaussian process regression for a single
scalar output[12]. A Gaussian process is a collection of random variables, such that any finite
subset follows a multivariate normal distribution. The distribution of a Gaussian process is
completely determined by its mean function m(·) and covariance function k(·, ·). If f is a
Gaussian process with mean function m and covariance function k, it is denoted :

f ∼ GP (m(x), k(x, x′)) (9)

The covariance function k defines the regularity of the functions sampled from the Gaussian
process. Different families of covariance functions exist and are used depending on the expected
shape of the function to be learnt. In this work, Matérn covariance kernels are used.

Let us consider a known set of input-output pairs (X, f). A nugget noise σ2 is added to
account for the noise in the training data. The predictive distribution for the new outputs f∗
associated with the inputs X∗ and given X and f is Gaussian and given by :

f∗|f ,X,X∗ ∼ N (µC , KC)

µC = K(X,X∗)
T (K(X,X) + σ2IN)

−1
f (10)

KC = K(X∗,X∗)−K(X,X∗)
T (K(X,X) + σ2IN)

−1
K(X,X∗)

This conditional distribution provides a way to predict the mean output from any given input
points X∗ as well as the covariance. The main interest of Gaussian process regression for our
application is its ability to quantify the uncertainty on the predictions.

In order to provide reasonable predictions for regression or classification problems, a Gaus-
sian process has to be trained. The training phase consists of optimizing the choice of the
hyperparameters in the covariance kernels based on the training data. The common practice
for optimizing the hyperparameters is to find the values that maximize the marginal likelihood
p(f |X). The log-marginal likelihood is optimized using common optimization algorithms. In
our case, the limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm for bound con-
straint (also known as L-BFGS-B) is used [13]. The optimization algorithm is restarted 10
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times with different initial values for the hyperparameters. The optimal set of hyperparameters
chosen is the one that provide the highest log-marginal likelihood of the 10 iterations. With
this approach, the risk of being stuck in a local optimum is reduced. Once the optimal set of
hyperparameters is found, predictions can be made using equations 10.

In this work however, we would like to build a surrogate model with D = 3 different outputs.
The first naive approach would be to build three independent surrogate models, one for each
output. However, this approach neglects the correlations between the outputs. For our particular
task, the outputs are strongly correlated especially the second and third Feynman moments Y∞
and X∞. More complex approaches are described in the next paragraphs.

4.2 Linear Model of Coregionalization

In order to build a multi-output covariance kernel, one possible method is to create indepen-
dent scalar Gaussian processes and mix them afterwards with a transition matrix chosen to be
definite positive [3]. With this approach, it is possible to correlate the output channels while
maintaining a positive definite covariance structure. A brief description of this method is pre-
sented hereafter. Let us consider Q independent zero-mean scalar Gaussian processes, which
will be referred to as the latent Gaussian processes:

uq ∼ GP (0, kq(x, x
′)) (11)

Now let us consider a real mixing matrix W ∈ MD,Q(R). For x ∈ RI , let fd be the output for
channel d built by the following relation :

fd(x) =

Q∑
q=1

wd,quq(x) (12)

Each output channel is a linear combination of independent Gaussian process. With this defi-
nition, for a collection of n inputs X = (X(k))k≤n, the flattened output vector follows a multi-
variate normal distribution.

f1(X
(1))

...
f1(X

(n))
...

fD(X
(1))

...
fD(X

(n))


∼ N

0,

Q∑
q=1

w1,qw1,qKq(X,X) . . . w1,qwD,qKq(X,X)
... . . . ...

wD,qw1,qKq(X,X) . . . wD,qwD,qKq(X,X)




where wd,q is the element of the matrix W on the d-th row and q-th column, and Kq(X,X) is
the covariance matrix of the inputs X = (X(k))k≤n obtained with the covariance kernel kq. It is
also possible to write the full covariance matrix using the Kronecker product ⊗:

KLMC(X,X) =

Q∑
q=1

WW T ⊗Kq(X,X) (13)
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Similarly, the covariance matrix between two collections of inputs X and X∗ is given by :

KLMC(X,X∗) =

Q∑
q=1

WW T ⊗Kq(X,X∗) (14)

With this method, it is possible to build a multi-output Gaussian process able to account for
correlations between the outputs. The training phase is similar to scalar GP, except that the
inversion of the covariance matrix KLMC(X,X) now has a complexity of O(D3n3) instead of
O(n3) for a training set (X, f) containing n samples. For low output dimension, and not too
large datasets, the exact GP training can be carried out but otherwise approximate methods such
as sparse variational Gaussian processes may be required [14].

4.3 Bayesian Polynomial Chaos Expansion

In this section, we will derive a new surrogate model based on a Bayesian framework of
the polynomial chaos expansion. Let us first introduce briefly the standard polynomial chaos
expansion.

4.3.1 Polynomial Chaos Expansion

Let X = (Xi)1≤i≤I be a random variable representing the uncertain input, and such that the
Xi are independent and have marginal probability distributions µi. Let (p(i)αi )αi∈N be a family
of polynomials orthogonal for the measure µi. Let us consider the output Y = f(X) where
f : RI 7→ R and E [f(X)2] < +∞.

Then the tensorized polynomials defined by pα(x) =
I∏

i=1

p
(i)
αi (xi) for x ∈ RI form a strongly

orthogonal family of multivariate polynomials [15]. The family or orthogonal polynomials is
a basis of the functional Hilbert space L2(µ) for the product measure µ defined by dµ(x) =
dµ1(x1)...dµI(xI), and f ∈ L2(µ). It is thus possible to expand the output Y on the polynomial
basis :

Y =
∑
α∈NI

yαpα(X) (15)

The strong orthogonal property simplifies the expression of the coefficients, which can be ob-
tained by orthogonal projection :

yα =
E [f(X)pα(X)]

E [pα(X)2]
(16)

For scalar inputs, the polynomial expansion is truncated to a given degree to build a surrogate
model.

In the case of multi-dimensional inputs, we are dealing with multi-indices α and the trunca-
tion is the selection of a subset of all the possible multi-indices. The first intuition that comes
to mind is to limit the development up to a certain degree of the multivariate polynomial αm

such that α ∈ Dαm = {α ∈ NI , |α| ≤ αm}, where |α| is the order of the multi-index defined by

|α| =
I∑

i=1

αi.

However, when the number of dimension increases, the number of retained multi-indices dra-
matically explodes. Indeed card(Dαm) =

(I+αm)!
I!αm]!

. As an illustration, for I = 7 and αm = 10,
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card(Dαm) = 19448. Hence, the number of multi-indices must be reduced. One of the most
common techniques is to consider that the most impactful polynomials are the univariate poly-
nomials of high degrees, and the multivariate of low degrees. This corresponds to the hyperbolic
truncation scheme [16]. This assumption is reflected by considering the subset Aαm,r defined
for r ∈ (0, 1] by :

Aαm,r =

α ∈ NI ,

(
I∑

i=1

αr
i

)1/r

≤ αm

 (17)

When r = 1, Aαm,1 = Dαm and for r < 1 the subset Aαm,r filters out the multivariate poly-
nomials of high degree, which reduces the number of coefficients to estimate. Based on this
subset, it is possible to build a surrogate model by truncating the expansion in equation 15 to
the subset Aαm,r:

Y ≃ Yαm,r =
∑

α∈Aαm,r

yαpα(X) (18)

4.3.2 Estimation of the coefficients

The coefficients can be estimated by regression or by Monte-Carlo. The first approach is
used in this work. Consider a given truncation Aαm,r, with P = Card(Aαm,r). A particular
order of the subset of multi-indices is chosen such that Aαm,r = (αp)1≤p≤P . The objective is
to find the coefficients which minimize the error between Yαm,r and the true output Y = f(X).
Let p = (pα)α∈Aαm,r . The coefficients ĉ = (ĉα)α∈Aαm,r verifying this are given by :

ĉ = argminc∈RP E
[(
cTp(X)− f(X)

)2]
(19)

The true mean is unknown but can be approximated assuming we have n independent samples
X = (X(k))1≤k≤n.

ĉ ≃ argminc∈RP

1

n

n∑
k=1

(
cTp(X(k))− f(X(k))

)2
(20)

This minimization problem can be solved directly in matrix form. Let us introduce the matrix
A ∈ MP,n(R) defined by Ak,j = pαj

(X(k)) for 1 ≤ j ≤ P and 1 ≤ k ≤ n, and the vector
f ∈ Rn defined by fk = f(X(k)) for 1 ≤ k ≤ n. Similarly to GP regression, the input-output
pairs (X, f) introduced in this section are the training dataset from which the coefficients are
inferred. The solution of the minimization problem yields the vector of coefficients ĉ which is
given by the product of the pseudo-inverse of A with the training outputs f :

ĉ = (ATA)−1AT f (21)

4.3.3 Bayesian extension

The polynomial chaos expansion method described so far allows to build a surrogate model
but does not provide a quantification of the error of the model, for any given input point. For
this reason, the Bayesian paradigm is applied to the PCE method. The coefficients of the poly-
nomial expansion are considered stochastic now. Our goal is to find the posterior distribution of
the coefficients c given the training dataset D = (X, f). In order to account for the noise in the
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data, a noise parameter σ2 is also added. For a given sample of coefficients c(0) = (cα)α∈Aαm,r ,
the prediction for input point x is a Gaussian distribution with mean

∑
α∈Aαm,r

cαpα(x) and vari-

ance σ2. The model is thus parametrized by ξ = (c, σ2), where c is the vector of coefficients
c = (cα)α∈Aαm,r . Let p(ξ|D) be the posterior distribution of the parameters given the dataset.
Once the posterior distribution is known, predictions can be obtained by marginalizing over the
parameters :

p(y|D, x) =

∫
p(y|ξ, x)p(ξ|D)dξ (22)

In practice, this integral is obtained by Monte-Carlo estimation. Assuming we have M inde-
pendent samples of the parameters (ξ(m))1≤m≤M such that ξ(m) ∼ p(ξ|D), then :

p(y|D, x) ≃ 1

M

M∑
m=1

p(y|ξ(m), x) (23)

However, the posterior distribution is difficult to sample in practice. The two main approaches
to sample the posterior distribution are variational inference and MCMC methods.

4.3.4 Connection to Gaussian Process Regression

The Bayesian Polynomial Chaos Expansion (BPCE) method described in the previous para-
graph is another way of building a surrogate model, while being able to quantify the uncertain-
ties on the predictions. When independent Gaussian priors are set on the coefficients, one can
view this method as an example of GP regression with an specific choice of covariance kernel.
This approach is similar to what was done in [17].

The BPCE model is described by f(x) =
∑

α∈Aαm,r

cαpα(x) + ε. Let us consider independent

Gaussian priors for the coefficients and the noise term. With the notations of section 4.3.1, for
1 ≤ p ≤ P and αp ∈ Aαm,r, the prior on the coefficients and the noise are cαp ∼ N (0, σ2

0) and
ε ∼ N (0, σ2

1). This model defines a prior in the functional space. For any collection of inputs
X = (X(k))1≤k≤n :

f(X) ∼ N (0, K(X,X)) (24)

where the covariance matrix is defined by :

(K(X,X))i,j = cov
(
f(X(i)), f(X(j))

)
= σ2

1δi,j + σ2
0

∑
α∈Aαm,r

pα(X
(i))pα(X

(j)) (25)

for 1 ≤ i, j ≤ n. The covariance matrix can be rewritten K(X,X) = σ2
1In + σ2

0HHT where
Hk,p = pαp(X

(k)) for 1 ≤ p ≤ P and 1 ≤ k ≤ n. Hence, the BPCE is analog to a Gaussian
process with zero mean and a non-stationary covariance function given by :

k(x, x′) = σ2
1δx,x′ + σ2

0

∑
α∈Aαm,r

pα(x)pα(x
′) (26)

So far, only the scalar output case was considered. In order to extend this method to mul-
tiple correlated outputs, one must define one PCE for each output channel and change the
scalar noise term ε to a multivariate noise random variable with zero-mean and covariance
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C = (cd,d′)1≤d,d′≤D ∈ MD,D(R).
The multi-output BPCE model is described by :

f(x) =

g1(x)
...

gD(x)

+ ε (27)

with ε ∼ N (0,C) and for the d-th output, gd(x) =
∑

α∈A(d)
αm,r

c
(d)
α p

(d)
α (x) with c

(d)
α ∼ N (0, σ2

0,d)

where p
(d)
α is the polynomial of multi-index α, A(d)

αm,r is the truncation for the d-th output, and
σ2
0,d is the variance of the prior on the coefficients. The coefficients of the covariance matrix

are hyperparameters of the covariance kernel associated to this multi-output BPCE model. The
covariance is now given by :

cov(f(X(i))d, f(X
(j))d′) = cd,d′ δi,j + δd,d′ σ

2
0,d

∑
α∈A(d)

αm,r

p(d)α (X(i))p(d)α (X(j)) (28)

The choice of the truncation A(d)
αm,r for each channel d was obtained with a cross validation

scheme using standard PCE. The hyperbolic truncation scheme described in equation 17 is used
for each channel, only the values of αm and r differ from one output to the other. The truncation
yielding the lowest Leave-One-Out (LOO) error ELOO is kept. The LOO error[16] is given by :

ELOO =
1

n

n∑
k=1

(
ĉTp(X(k))− f(X(k))

1− q(k)

)2

(29)

where q(k) is the k-th diagonal element of the matrix A(ATA)−1AT .
With this specific Gaussian process surrogate model, the hyperparameters of the kernel are
selected by maximizing the marginal likelihood as described in section 4.1.

4.4 Bias learning

Instead of learning directly the Feynman moments and the average count rate, it is possible
to learn the disparities between the point model and the simulated data. This idea is adapted
from [18] and [19] where the low-fidelity code is the deterministic point model fp and the
high-fidelity code is MCNP6 (or a real experiment):

y = fp(x) + fs(x) + ϵ (30)

This time, the Gaussian process fs models the bias of the point model. Since the training data
are not necessarily anymore in this case, the Box-Cox transform cannot be used. Instead, the
data is preprocessed using the Yeo-Johnson transform [20].

To account for systematic biases caused by the point model approximations, one could intro-
duce an hyperparameter ρ ∈ RD and define a Gaussian Process fs by weighting the contribution
of the point model predictions with ρ.

y = ρ⊙ fp(x) + fs(x) + ϵ (31)

where ⊙ is the element-wise Hadamard product. The training of the GP works similarly except
ρ is identified as an hyperparameter to be tuned by maximizing the marginal log-likelihood.
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However, the addition of ρ has not yielded any significant improvement in the performance of
the surrogate models and is thus not further investigated in the remainder of the paper and ρ is
fixed to ρ = (1, ..., 1)T .

4.5 Performance of the surrogate models

The different surrogate models compared here are the independent scalar GPs (IGP), the
Linear Model of coregionalization with 2 latent GPs (LMC2) and 3 latent GPs (LMC3), the
Bayesian Polynomial Chaos Expansion (BPCE), and a LMC model where the 3 latent processes
are BPCE. (LMC-BPCE). Each model is trained on the dataset, which is split equally into a
training set and a validation set. The Normalized Mean Absolute Error on the validation set
is displayed in Table 1 for each surrogate model. The best predictions are highlighted in bold.
One can see that the predictions of each surrogate model outperform the predictions of the

IGP LMC2 LMC3 BPCE LMC-BPCE
R 0.011 0.011 0.011 0.027 0.011
Y∞ 0.047 0.055 0.059 0.051 0.056
X∞ 0.168 0.245 0.302 0.330 0.342

Table 1: Normalized mean absolute error on the validation set

point model. Besides, the independent GPs seem to yield the best prediction, when looking at
each output individually. This would be expected as the same amount of information is used to
predict only one output instead of three. However the covariance predictions of this model are
expected to be biased.

The same table is shown in Table 2, except that bias learning is used this time. For almost all

IGP LMC2 LMC3 BPCE LMC-BPCE
R 0.0083 0.0081 0.0082 0.0150 0.0097
Y∞ 0.029 0.028 0.027 0.033 0.045
X∞ 0.155 0.073 0.084 0.140 0.242

Table 2: Normalized mean absolute error on the validation set - Bias learning

the outputs and models, including the information of the point model improves the prediction
performance. The best model here seems to be the LMC2 model, and the independent GPs
model.

Now let us look at the coverage probabilities of the surrogate models. The output of a
GP surrogate model at input point x follows a normal distribution with predictive mean fs(x)
and predictive covariance Cs(x). Let us consider the validation set Dval = (X∗, f∗) where
f∗ = (f

(k)
∗ )1≤k≤n∗ and X∗ = (X

(k)
∗ )1≤k≤n∗ are the validation outputs and inputs.

Let DM

(
f
(k)
∗ , fs(X

(k))
∗ )

)
be the Mahalanobis distance between predictions and validation out-

puts defined by :

DM

(
f (k)
∗ , fs(X

(k)
∗ )
)
=

√(
f
(k)
∗ − fs(X

(k)
∗ )
)T

Cs(X
(k)
∗ )−1

(
f
(k)
∗ − fs(X

(k)
∗ )
)

(32)
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Then the squared Mahalanobis distance between the predictions and validation outputs should
follow a χ2 distribution with D = 3 degrees of freedom.

DM

(
f (k)
∗ , fs(X

(k)
∗ )
)2 ∼ χ2

D (33)

Thus, one can evaluate the reliability of the covariance predictions by estimating the Maha-
lanobis distance on the validation set and comparing the empirical quantiles of the Mahalanobis
distance samples, to the actual quantiles of the χ2

D distribution. This defines a multi-dimensional
coverage probability. Our goal is to find the fraction of points that are in the credible region of
level α defined by :

Iα =
{
DM

(
f (k)
∗ , fs(X

(k)
∗ )
)2 ≤ qα | 1 ≤ i ≤ N∗

}
(34)

where qα is the quantile of level α of the chi-squared distribution with D degrees of freedom.
For a reliable surrogate model, the fraction of points in Iα is expected to be close to α.

card(Iα)
N∗

≃ α (35)

The coverage probabilities are estimated with this method for all the surrogate models and for
different values of the credibility levels α. The results are displayed in Figure 1. As expected,

Figure 1: Coverage probabilities of the surrogate models for different credibility levels

the covariance predictions for the independent GPs model are not reliable since the correlations
between the outputs are not considered. The predicted covariances for the BPCE model are
also not reliable. This may be caused by the δi,j in the expression of the covariance kernel in
equation 28, which may be too restrictive. However, the LMC models all yield better covariance
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predictions, especially with Matérn latent GPs, even though some slight discrepancies with the
theoretical quantiles are still observed.

Overall, of all the surrogate models explored, the LCM2 model seems to be the best choice
since it provides satisfying mean predictions and reliable covariance predictions. This model is
thus chosen to sample the posterior distribution in the inverse problem resolution.

5 APPLICATION

5.1 Description of the problem

This first example is taken from the set of experiments FUND-NCERC-PU-HE3-MULT-003
of the ICSBEP Handbook, experiment n°1 [21]. The experiment is a measurement of neutron
correlations on metallic plutonium sphere surrounded by a stainless steel cladding. The neutron
detector is a cylinder of 3He with a polyethylene moderator layer. Some simplifications were
made on the numerical model compared to the experiment. All nuclear data, including effective
cross sections and neutron multiplicities, are considered known. In some works, the uncertain-
ties in the nuclear data are propagated to the neutron transport simulations. This is technically
feasible with the methodology described in this paper but that would further complicate the
statistical models involved. For simplification purposes, the nuclear data are thus considered
known. Besides, in this work, the main source of uncertainty comes from the limited number of
neutron detections, and the model error. The impact of the nuclear data uncertainties is expected
to be negligible in comparison.

Overall, the simplified MCNP6 model built is close to the benchmark model and the experi-
ment. Some disparities arise due to the simplifications made. They can be linked to the removal
of the aluminum support plate for example. Our goal here is not necessarily to exactly retrieve
the benchmark results but rather to show the improvements brought by the method presented in
this paper with an application on a well-documented experiment.

5.2 MCMC sampling

The posterior distribution p(x|y) is sampled with Monte-Carlo Markov Chain methods based
on the likelihood in equation 8. For this particular problem, due to the non-linearity of the direct
model, the posterior distribution is very degenerate. In this work, a degenerate distribution is
a distribution whose support lies mainly in a manifold of dimension one or two, within the
parameter space of dimension I = 7. This definition of degeneracy is not rigorous. More
precisely, a degenerate distribution is rigorously defined as a distribution whose support has
zero Lebesgue measure. However the notion of degeneracy is considered in this work as a
practical limitation to MCMC methods and not as a formal mathematical definition. For that
reason, the method used is the Adaptive Metropolis algorithm described in [22]. The principle
is similar to Metropolis-Hastings, but the covariance of the proposal law is adapted during the
run to match the empirical covariance of the sampled Markov Chain. Let (x(m))m≤M be the
sampled Markov chain. At iteration m, the proposal distribution for the new candidate point x̂
is of the form x̂ ∼ N

(
x(m), C(m)

)
, where the covariance is modified at each step to match the

empirical covariance of the points of the chain:

C(m) = s Cov
(
x(0), ..., x(m−1)

)
(36)

Cov
(
x(0), ..., x(m−1)

)
=

1

m− 1

m−1∑
l=0

(
x(l) − x

) (
x(l) − x

)T
(37)
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with x = 1
m

m−1∑
l=0

x(l), where x(l) is the l-th element of the Markov chain created by the MCMC

algorithm. The scaling factor s is a fixed real value, which has to be tuned to reach the desired
acceptance rate.
The direct calculation of the empirical covariance is cumbersome when the chain becomes long.
A recursive formula is preferred to evaluate Ck.

C(m+1) =
s

m

(
mx(m) x(m)

T
− (m+ 1)x(m+1) x(m+1)

T
+ (x(m+1)) (x(m+1))T

)
+

m− 1

m
C(m) (38)

This recursive formula helps speed up the calculation of the covariance. In practice, it is advised
to add a small term in the form ϵII with ϵ > 0 and I the dimension of the input, in order to
guarantee the matrix stays definite positive. Indeed, numerical approximations can lead to a
singular covariance matrix, which can be problematic for the sampling of the candidate points.

The adaptation of the covariance matrix is not started directly from the beginning, but rather
after a certain number of accepted points n0 is reached in order to make sure the empirical
covariance is calculated on enough points. n0 is set at 5000 in our case. It is also possible to
dynamically change the scaling factor to reach a target acceptance rate for example one can
multiply the covariance by a factor rk defined as :

rk = exp (αcurrent − αtarget) (39)

where αtarget and αcurrent are respectively the target and current acceptance rates. This method is
implemented in the AM algorithm in our work.

To guarantee that the Markov chain distribution approaches the target distribution, the au-
tocorrelation of the chain is studied. For a given integer h, the autocorrelation of the Markov
chain (x(m))m≤M of length M is defined by the average correlation between x(m) and x(m+h).

AC(h) = Corr(x(m), x(m+h)) (40)

where Corr(x(m), x(m+h)) is the correlation between x(m) and x(m+h), and the average is done
over the whole chain, for m ≤ M − h. The decorrelation time τ is the number of iterations
required to completely decorrelate two points of the chain:

τ = min {h ≤ M |AC(h) = 0} (41)

It can be seen as the time taken by the chain to explore the whole target distribution. To guaran-
tee enough statistics when sampling the posterior distribution, the length K of the chain should
be much larger than the decorrelation time. This is why we need to evaluate the decorrelation
time. An example of autocorrelation curve is shown in Figure 2. The estimated decorrelation
time is τ̂ ≃ 1000 for the Adaptive Metropolis algorithm, compared to τ̂ ≃ 3000 for standard
Metropolis-Hastings, for a similar computing time. Adaptive Metropolis allows to divide the
number of iterations in MCMC by a factor 3. To guarantee enough statistics, the total number
of points sampled by MCMC is fixed to 5× 106 which is much larger than the estimated decor-
relation time τ̂ . To obtain the density of the posterior distribution, the Markov chain is thinned
by a factor τ̂ , such that the samples of the chain are independent. Finally, the density of the
posterior distribution can be estimated with a kernel density estimation.
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Figure 2: Autocorrelation of the Markov chain, with standard Metropolis-Hastings and with Adaptive Metropolis

5.3 Posterior distribution

First of all, to highlight the improvements brought up by the methodology presented in this
work, the posterior distribution is sampled using the likelihood in equation 3, which only uses
the point model as a direct model. This posterior distribution thus only includes the uncertainty
linked to the observation noise. It is displayed in Figure 3. To simplify the visualization, only

Figure 3: Posterior distribution sampling with the point model, based on equation 3

the 2D marginal distributions are shown here, for the three main parameters of interest. The
theoretical values of the parameters (kp, εF , S) as obtained by the numerical simulation with
MCNP6 are shown in red. One can see that the posterior distribution obtained here is thin,
yet it is biased as the true parameters are not lying on the distribution support. The posterior
distribution does not account for the inherent bias of the point model.

Now, let us sample the posterior distribution using the modified likelihood in equation 8,
which includes the model error and is based on the surrogate model LMC2, whose predictions
are more precise than the point model. The new posterior distribution obtained is shown in
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Figure 4: Posterior distribution sampling with the surrogate model, based on equation 8

Figure 4. As expected, this distribution is broader since it accounts for the model error. Besides,
the actual values of the parameter lie within the distribution support. The surrogate models
presented in this work were not designed to provide the best possible prediction performance,
but rather to provide reliable uncertainty predictions. The surrogate models could be improved
by increasing the size of the dataset and its dimension. Due to the non-scalability of exact GP
inference for large datasets, sparse approximations of GP regression could become necessary in
that case [23].

6 CONCLUSION

In this work, a general methodology for the uncertainty quantification in ill-posed inverse
problem is presented. Different surrogate models specifically suited for strongly correlated out-
puts were investigated. The posterior distribution sampled with MCMC methods, encompasses
both the model error and the noise of the observations. The study of the multi-dimensional
coverage probabilities of the surrogate models showed the reliability of the uncertainty quan-
tification scheme.

This work focuses on Gaussian process surrogate models, however other surrogate models
could be investigated. Bayesian neural networks have been considered as they provide more
flexibility in the regression task, but their main drawback resides in the reliability of the uncer-
tainty predictions. Heteroscedastic GP models are also investigated since the training data is
not actually homoscedastic in this work, and the GP surrogates presented here cannot account
for the input-dependent noise as of now. Finally, the models could be improved by increasing
the size and dimension of the dataset, to reduce the model error which is still significant in the
posterior distribution, and to improve the generalization of the models to other types of nuclear
materials.
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