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Abstract. Waveform inversion is concerned with estimating a heterogeneous medium, modeled by
variable coefficients of wave equations, using sources that emit probing signals and receivers
that record the generated waves. It is an old and intensively studied inverse problem with
a wide range of applications, but the existing inversion methodologies are still far from
satisfactory. The typical mathematical formulation is a nonlinear least squares data fit
optimization and the difficulty stems from the nonconvexity of the objective function that
displays numerous local minima at which local optimization approaches stagnate. This
pathological behavior has at least three unavoidable causes: (1) The mapping from the
unknown coefficients to the wave field is nonlinear and complicated. (2) The sources and
receivers typically lie on a single side of the medium, so only backscattered waves are
measured. (3) The probing signals are band limited and with high frequency content.
There is a lot of activity in the computational science and engineering communities that
seeks to mitigate the difficulty of estimating the medium by data fitting. In this paper we
present a different point of view, based on reduced order models (ROMs) of two operators
that control the wave propagation. The ROMs are called data driven because they are
computed directly from the measurements, without any knowledge of the wave field inside
the inaccessible medium. This computation is noniterative and uses standard numerical
linear algebra methods. The resulting ROMs capture features of the physics of wave
propagation in a complementary way and have surprisingly good approximation properties
that facilitate waveform inversion.
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1. Introduction to Waveform Inversion. Paper Motivation and Outline. The
estimation of a heterogeneous medium from the time history of the wave field recorded
at a few accessible locations is important in medical diagnostics via ultrasound, non-
destructive evaluation of aging concrete in bridges and buildings, testing of aircraft
fuselage, radar imaging, underwater acoustics, seismology, geophysical exploration,
and so on. It is an inverse problem for a wave equation or a system of such equations
(acoustic, electromagnetic, or elastic), where the heterogeneous medium is modeled
by unknown variable coefficients. The goal is to determine these coefficients from
measurements of the wave field, the solution of the wave equation, with forcing that
is typically, but not always, controlled by the user.

To keep the presentation simple, we consider acoustic waves in a medium with
constant mass density and unknown variable wave speed c(\bfitx ), a piecewise smooth,
nonnegative, and bounded function. The wave field is modeled by the acoustic pres-
sure p(t,\bfitx ), the solution of the wave equation

(1.1)
\bigl[ 
\partial 2
t  - c2(\bfitx )\Delta 

\bigr] 
p(t,\bfitx ) = S(t,\bfitx ), t \in \BbbR , \bfitx \in \Omega \subset \BbbR d,
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in dimension d = 2 or 3, with forcing S(t,\bfitx ) and homogeneous initial condition
p(t,\bfitx ) = 0 at t \ll 0, i.e., at negative time, outside the temporal support of S(t,\bfitx ).
We assume a bounded and simply connected domain \Omega with smooth enough perfectly
reflecting boundary \partial \Omega . This may be a real boundary of a closed cavity, but in
general it is a fictitious boundary introduced for the convenience of the analysis and
computations. Note that the waves propagate at finite speed, so if we place \partial \Omega far
enough from the spatial support of S(t,\bfitx ), there are no boundary effects over the
finite duration of the data gathering experiment and we can choose any homogeneous
boundary conditions.

The forcing in (1.1) is commonly controlled by the user and is modeled as a point
source at \bfitx s \in \Omega that emits a probing signal f(t),

(1.2) S(t,\bfitx ) = f(t)\delta \bfitx s
(\bfitx ),

where \delta \bfitx s
(\bfitx ) is the Dirac delta at \bfitx s. Typically, there are ms such sources, which

probe the medium one at a time, so to keep track of the generated wave, the solution
of (1.1) with right-hand side (1.2), we denote it by p(s)(t,\bfitx ). The inverse problem
is as follows: Determine c(\bfitx ) from the measurements at receiver locations \bfity r for
r = 1, . . . ,mr, organized in the mr \times ms time-dependent matrix \bfscrM (t) with entries

(1.3) \scrM r,s(t) = p(s)(t,\bfity r), s = 1, . . . ,ms, r = 1, . . . ,mr, t \in (tmin, tmax).

The duration and frequency content of the probing signal matter and are appli-
cation specific. The generic model of the emitted signal is f(t) = B\varphi (Bt) cos(\omega ot),
where B\varphi (Bt) is an envelope function supported at t \in [ - 1/B, 1/B] with Fourier
transform \widehat \varphi (\omega /B) that is large at angular frequency \omega satisfying | \omega | \leq O(B). Thus,
B is called the bandwidth. The modulation by the cosine shifts the frequency content
of f(t) to the intervals | \omega \pm \omega o| \leq O(B) according to the formula

(1.4) \widehat f(\omega ) = \int 
\BbbR 
dt f(t)ei\omega t =

1

2

\biggl[ \widehat \varphi \biggl( 
\omega  - \omega o

B

\biggr) 
+ \widehat \varphi \biggl( 

\omega + \omega o

B

\biggr) \biggr] 
,

so \omega o is called the central frequency. Basic resolution studies suggest that signals with
short O(1/B) support and with high frequency content produce sharper estimates of
the medium [27, 11]. This explains the wide use of pulses with modulation frequency
\omega o \gg B, but there are exceptions. In long-range imaging with radar [30], pulses are
not used because sources have limited instantaneous power of emission and, due to
geometrical spreading, the waves that reach the receivers are weaker than ambient
noise. Chirped signals (long signals whose frequency increases with time) are used
instead, because they allow an increase in the delivered net power and better signal-
to-noise ratios. The inversion methodology with pulses or chirps is the same, due to
the simple ``pulse compression"" data processing f( - t) \star t p

(s)(t,\bfity r), where f( - t) is the
time-reversed emitted signal and  \star t denotes time convolution [30]. Mathematically,
by linearity of the wave equation, this processing is equivalent to working with the
wave generated by the signal F (t) = f( - t)  \star t f(t), which turns out to have much
shorter duration than the chirp, i.e., it is a pulse [45].

We refer the interested reader to the mathematical literature on the uniqueness
and stability of the inverse problem (see [8, 61, 50] and others). Many of these studies
are for different types of data, like the Dirichlet to Neumann map, which are not
available in the applications that we have in mind. Furthermore, uniqueness cannot
be expected to hold in the strict sense, even in the best circumstances, because the
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Wave speed c in (m/s) Log of \scrO FWI

Fig. 1.1 Illustration of a two-parameter search for the true piecewise constant model c(\bfitx ) (left plot)
in a closed rectangular cavity. The sources and receivers are colocated and shown as black
\times . The probing signal contains frequencies in the interval [2, 10]Hz. The search parameters
are the depth of the top left corner of the slanted fast layer (interface position), which varies
over the range indicated by the black arrows, and the ratio of the wave speed inside and
above the layer (contrast). The FWI objective function (1.5) is shown in the right plot.
The true parameters are indicated by \bigcirc .

measurements are band limited: Variations of c(\bfitx ) on scales that are much smaller
than the central wavelength cannot be determined. This issue is addressed in practice
by a proper choice of the space \scrW in which the search speed w(\bfitx ) lies and by adding
a regularization penalty to the optimization.

The generic formulation of the inverse problem is a nonlinear least squares data
fit optimization: minw\in \scrW \scrO FWI(w) + regularization, with

(1.5) \scrO FWI(w) =

mr\sum 
r=1

ms\sum 
s=1

\int tmax

tmin

dt | \scrM r,s(t) - p(s)(t,\bfity r;w)| 2.

Here \bfscrM (t) is the data matrix (1.3), w(\bfitx ) \mapsto \rightarrow p(s)(t,\bfity r;w) is called the forward map,
and p(s)(t,\bfitx ;w) denotes the solution of the wave equation with wave speed w(\bfitx ). To
avoid complicated notation, we omit the true wave speed from the list of arguments
of the wave field and measurements. Thus, p(s)(t,\bfitx ) is the pressure field for the true
speed c(\bfitx ) and p(s)(t,\bfitx ;w) is the pressure field for the search speed w(\bfitx ).

The optimization formulation defined by (1.5) has been coined by the acronym
FWI (full waveform inversion) in the geophysics community [65]. The FWI formula-
tion applies to an arbitrary data acquisition geometry, but the result of the inversion
is strongly influenced by it. For example, it is easier to work with sources and receivers
placed all around \Omega , so that both the waves transmitted through the medium and
those that are backscattered can be measured. Unfortunately, the options for placing
the sources and receivers are usually limited to one side of \Omega , so only the backscat-
tered waves can be measured. It is well known that the FWI objective function (1.5)
for such measurements exhibits numerous local minima at search speeds w(\bfitx ) that
bear no relation to c(\bfitx ) [65]. See Figure 1.1 for an illustration. Any iterative local
optimization method [44] applied to such an objective function will likely fail to obtain
a good approximation of c(\bfitx ).

The pathological behavior of the FWI objective function seen in Figure 1.1 is
called ``cycle-skipping"" and arises when the timing between the measured waves and
those predicted by the forward model differs by more than half the cycle of oscillation.
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The main causes are the complicated nonlinear forward mapping and the lack of low
frequencies in the probing signal. Waves are backscattered by the rough part of c(\bfitx ),
the ``reflectivity,"" which corresponds to the jump discontinuities at the slanted layer
in Figure 1.1. Reflections at these discontinuities and at the top boundary, located
just above the sources/receivers, cause multiple arrivals (echoes) in the recorded data.
When moving the layer up and down, the errors in the arrival times of these echoes
exceed half a cycle, repeatedly, so we get the multiple horizontal stripes (highs and
lows) in Figure 1.1. The smooth part of c(\bfitx ), the ``kinematics,"" determines the travel
time of the transmitted waves and is another cause of cycle-skipping in Figure 1.1.
The curved stripes in the figure appear because when misestimating c(\bfitx ) inside the
layer, we get wrong arrival times for the waves that penetrate there, scatter at the
bottom of the layer, and then reach the receivers.

Cycle-skipping can sometimes be mitigated by adding prior information on c(\bfitx )
or by starting with a good initial guess. For the latter, the following observation
is useful: It is easier to determine the kinematics from very low frequency data,
because we can have larger errors for travel times that remain within the long cycle
of oscillation [25, 65]. High frequencies are better for estimating the reflectivity if the
kinematics is known and the multiple scattering effects are not too strong [62, 11].
This has motivated studies like [26, 22, 25] that obtain progressively better estimates
of c(\bfitx ), starting from the lower frequencies. Unfortunately, low enough frequencies
are rarely available and a reasonable initial guess does not guarantee success. Indeed,
Figure 1.1 shows that cycle-skipping may occur even near the true c(\bfitx ).

The outstanding question is: How can we improve the objective function (1.5) so
that numerically feasible local optimization methods can give good estimates of c(\bfitx ),
irrespective of the starting point? One approach is to get rid of the L2([tmin, tmax])
metric and replace it with a better one, such as the Wasserstein metric from optimal
transport theory [35, 67]. The convexity of the data misfit function in this metric
has been shown for a few simple models in [36, 58] and it holds for the example in
Figure 1.1. However, later in this paper we will present another example in which
convexity does not hold. Another approach, known as ``modeling operator extension""
[49] or ``extended FWI"" [64, 66], introduces in a systematic way additional degrees of
freedom in the optimization and then drives the results toward a physically meaningful
result. An explicit analysis of such a method, which minimizes the data misfit over
both c(\bfitx ) and f(t) in a very simple setting, can be found in [63]. There are various
other ideas that have been tried, including machine learning [29, 31]. Nevertheless,
the state of the field remains far from satisfactory and theoretical guarantees that any
particular method will work even in simple settings are rare.

Our goal in this paper is to show that tools from reduced order modeling can
be used to improve the waveform inversion methodology. Model order reduction is a
popular topic in computational science, concerned mostly with reducing the compu-
tational complexity of a given dynamical system (the model) for purposes like design
and control [2, 60, 9]. The idea is to obtain a low-dimensional, computationally in-
expensive reduced order model (ROM) that approximates the response of the true
model over a range of input parameters. In waveform inversion the model is defined
by the wave equation, which we know, and the wave speed c(\bfitx ), which is unknown.
Thus, we are interested in data driven ROMs that are computed directly from the
measurements of the wave field, without knowing the wave speed model.

Data driven reduced order modeling is a rapidly growing field that combines ideas
from optimization, numerical analysis, and projection based reduced order modeling.
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?

Fig. 1.2 Illustration of three data acquisition setups: With an active array (left), where the sources
and receivers are colocated; with a towed-streamer (middle); with a passive array of re-
ceivers (blue triangles) and uncontrolled random sources (yellow) dispersed throughout the
medium (right).

Much of it is concerned with using a sparse set of ``snapshots"" of solutions of a time-
dependent partial differential equation (PDE) to either learn the equation [23, 24]
or approximate the time evolution of its solution [48, 47, 54, 55]. Both goals are of
interest in waveform inversion, but none of these methods can be used because they
assume knowledge of the snapshots at all points in \Omega .

The data driven ROMs used in this paper look like standard (reduced basis)
projection ROMs [48, 23], because they are Galerkin projections of two operators
related to  - c2(\bfitx )\Delta on the space spanned by the snapshots \{ p(s)(tj ,\bfitx ),\bfitx \in \Omega \} ms

s=1 at
time instants tj for j = 0, . . . , n - 1. However, there are fundamental differences:

1. The snapshots and therefore the approximation space are unknown. The
ROMs can, however, be computed directly from the measurements \bfscrM (t).

2. The ROMs are matrices with structure designed to capture, at the algebraic
level, the causal physics of wave propagation. They also have superior ap-
proximation properties that prove useful in inversion.

The starting point of our ROM construction is the mapping of the measurements
\bfscrM (t) defined in (1.3) to a new data matrix \bfitD (t), whose components evaluated on
the time grid \{ tj\} j\geq 0 can be expressed as inner products of snapshots. The entries of
the ``mass"" and ``stiffness"" matrices in the Galerkin approximations are determined by
the same inner products, so they, and the ROMs, can be computed from \bfscrM (t). The
mapping \bfscrM (t) \mapsto \rightarrow \bfitD (t) can be carried out without any knowledge of c(\bfitx ), but it does
require having colocated sources and receivers: \bfity s = \bfitx s for s = 1, . . . ,ms = mr = m.
We assume henceforth such a setup (see the left plot in Figure 1.2 for an illustration)
and refer to the collection of sources/receivers as an ``active array,"" which measures
the ``array response matrix"" \bfscrM (t) defined in (1.3). This is an m \times m symmetric
matrix, due to source-receiver reciprocity.

Note that the active array setup is common in radar imaging and phased array
ultrasonics, but it is not feasible in other fields, like geophysics. Nevertheless, there
are data acquisition setups used in such fields in which it is possible to obtain a good
approximation of the matrix \bfscrM (t) used by our construction. An example is the syn-
thetic aperture, towed hydrophone streamer data acquisition used in marine seismic
surveys (middle plot in Figure 1.2), where\bfscrM (t) is approximated using source-receiver
reciprocity and interpolation, as explained in [20]. Another example, discussed later
in the paper, considers opportunistic data acquisition setups with ``passive arrays"" of
receivers, where the wave excitation comes from uncontrolled noise sources [42] (see
the illustration in the right plot of Figure 1.2).

The presentation of our inversion methodology is organized in three sections.
Section 2 gives the data driven computation of two ROMs: The first ROM is for

the ``wave propagator operator,"" thus named because it propagates the wave field from
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the instants tj - 1 and tj to the next instant tj+1 for j \geq 1. It was first introduced in
[32], where the resulting ROM was interpreted as a three-point spatial finite difference
scheme on a special grid called ``optimal."" Such grids have been used in the past for
obtaining superconvergent approximations of Neumann to Dirichlet maps [34, 4] and
for solving various inverse problems [13, 14, 12]. However, the optimal grids are
understood only in one dimension, which is why the results in [32] are limited to
estimating the reflectivity of layered media. The extension of the propagator ROM
to higher dimensions and its analysis that establishes the connection to Galerkin
projections is given in [18], although the ROM had been used before in [16, 17, 33] for
the purpose of imaging with waves, i.e., localizing the support of the reflectivity of a
medium with known kinematics. The second ROM is for the operator  - c2(\bfitx )\Delta and
was introduced recently in [20]. We explain how the two ROMs are related, discuss
their approximation properties, and compare them with the time domain reduced
basis ROMs in the computational literature.

Section 3 is concerned with the use of the ROMs for waveform inversion. Roughly
speaking, this involves the chain of maps \bfscrM (t) \mapsto \rightarrow \bfitD (t) \mapsto \rightarrow ROM \mapsto \rightarrow estimate of c(\bfitx ),
where the first two maps are those discussed in the previous section and the last
map is computed using iterative optimization. We describe two distinct ideas for
estimating c(\bfitx ): The first is to use a ROM estimate of the wave field inside \Omega ,
called the ``estimated internal wave."" This field depends on both the search and the
true speeds, can be computed from the measurements, and can be used to linearize
approximately the map c(\bfitx ) \mapsto \rightarrow \bfitD (t) [21]. Here we introduce a better use of the
estimated internal wave, based on the observation that this wave fits the data, by
construction, but unlike the true internal wave, it does not solve the wave equation.
Thus, we estimate c(\bfitx ) by minimizing the residual in the wave equation. The second
idea was introduced recently in [20] and minimizes the ROM misfit instead of the data
misfit.

Section 4 gives the generalization of the inversion methodology to the opportunis-
tic data acquisition setup with random sources.

We end with a few concluding remarks and open questions in section 5.

2. The Data Driven ROMs. The description of the computation of the ROMs
involves four main steps: The first step, described in section 2.1, is the data mapping
\bfscrM (t) \mapsto \rightarrow \bfitD (t). The second step, described in section 2.2, defines the wave snapshots
and the propagator operator that governs their evolution. The third step, given
in section 2.3, introduces two Galerkin approximation schemes: one for the time
stepping of the snapshots and one for the wave equation. The approximations are
in an unknown space, but the Galerkin coefficients satisfy equations that are data
driven. The fourth step, given in section 2.4, uses these equations to obtain our two
ROMs. In section 2.5 we give a brief comparison of these ROMs to the standard
(reduced basis) projection models found in the computational science literature. We
end in section 2.6 with a brief discussion of regularization of the ROM computation.

2.1. Data Transformation. We will use functional calculus for a symmetrized
wave operator. To define it, we must specify the boundary conditions. Any homoge-
neous boundary conditions that ensure a trivial kernel of the operator will do, so to
fix ideas we consider henceforth the Dirichlet boundary conditions p(s)(t,\bfitx ) = 0 at
\bfitx \in \partial \Omega . We assume that c(\bfitx ) equals the known constant \=c near the array, i.e., within
the distance traveled by the waves during the short duration of the probing pulse f(t).
This assumption holds in most inversion setups and it simplifies the presentation. It
is possible to extend the results to cases where it does not hold, but there are no
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significant insights provided by such an extension.
The operator  - c2(\bfitx )\Delta with homogeneous Dirichlet boundary conditions is posi-

tive definite and self-adjoint with respect to the inner product weighted by c - 2(\bfitx ). We
prefer to work with the L2(\Omega ) inner product, so we use the similarity transformation

(2.1) p(s)(t,\bfitx ) \mapsto \rightarrow P (s)(t,\bfitx ) =
c

c(\bfitx )
p(s)(t,\bfitx ), t \in \BbbR , \bfitx \in \Omega ,

which acts as the identity at the points in the array

(2.2) P (s)(t,\bfitx r) = p(s)(t,\bfitx r) = \scrM r,s(t), s, r = 1, . . . ,m.

The wave operator \partial 2
t  - c2(\bfitx )\Delta is transformed by (2.1) to \partial 2

t +\scrA , where the operator
\scrA =  - c(\bfitx )\Delta [c(\bfitx )\cdot ] is positive definite and self-adjoint, with compact resolvent. Its
spectrum [53, section 5.3] consists of a sequence of positive eigenvalues \{ \theta j\} j\geq 1 and the
eigenfunctions \{ yj(\bfitx )\} j\geq 1 form an orthonormal basis of L2(\Omega ). Functional calculus
on \scrA is defined as usual: If \Phi : \BbbC \mapsto \rightarrow \BbbC is a continuous function, then \Phi (\scrA ) is the
self-adjoint operator with the same eigenfunctions as \scrA and eigenvalues \{ \Phi (\theta j)\} j\geq 1.

Our data mapping is stated in the next lemma. Its purpose is twofold: First, it
gives a Duhamel-type principle, which maps the forcing in the wave equation to an
initial condition. Second, it leads to an inner product expression of the entries of the
data matrix, which is used in the computation of the ROMs.

Lemma 1. Define the new data matrix \bfitD (t) by the mapping

(2.3) \bfscrM (t) \mapsto \rightarrow \bfitD (t) = \bfscrM f (t) +\bfscrM f ( - t), with \bfscrM f (t) =  - f \prime ( - t)  \star t \bfscrM (t),

for t > 0. Its entries have the inner product expression

Dr,s(t) =

\int 
\Omega 

d\bfitx u
(r)
0 (\bfitx )u(s)(t,\bfitx ), with u(s)(t,\bfitx ) = cos

\bigl( 
t
\surd 
\scrA 
\bigr) 
u
(s)
0 (\bfitx ),(2.4)

for r, s = 1, . . . ,m. Here u(s)(t,\bfitx ) is the solution of the homogeneous wave equation

(\partial 2
t +\scrA )u(s)(t,\bfitx ) = 0, t > 0, \bfitx \in \Omega ,(2.5)

with initial state u(s)(0,\bfitx ) = u
(s)
0 (\bfitx ) =

\bigm| \bigm| \bigm| \widehat f\bigl( \surd \scrA 
\bigr) \bigm| \bigm| \bigm| \delta \bfitx s

(\bfitx ) and \partial tu
(s)(0,\bfitx ) = 0.

Proof. The proof is given in [18, Appendix A], but we include it here, with more
detailed explanation, for the convenience of the reader. Due to the convolution by
f \prime ( - t) in (2.3), the (r, s) entries of \bfscrM f (t) are \scrM f

r,s(t) = P (s),f (t,\bfitx r), where

P (s),f (t,\bfitx ) =  - f \prime ( - t)  \star t P
(s)(t,\bfitx ) = F (t)  \star t H(t) cos

\bigl( 
t
\surd 
\scrA 
\bigr) 
\delta \bfitx s(\bfitx )(2.6)

solves the wave equation with forcing F \prime (t)\delta \bfitx s
(\bfitx ). Here, F (t) = f( - t)  \star t f(t), H(t)

is the Heaviside step function, and the second term in the convolution is the time
derivative of the causal Green's function of \partial 2

t +\scrA . Functional calculus gives

(2.7) cos
\bigl( 
t
\surd 
\scrA 
\bigr) 
\delta \bfitx s

(\bfitx ) =

\int \infty 

0

d\theta cos(t
\surd 
\theta )\rho (\theta ,\bfitx ,\bfitx s),

where \rho (\theta ,\bfitx ,\bfitx s) =
\sum 

j\geq 1 \delta (\theta  - \theta j)yj(\bfitx s)yj(\bfitx ) is the discrete spectral measure density
associated with \scrA .
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Substituting (2.7) into (2.6) and writing the convolution via the Fourier transform,

(2.8) P (s),f (t,\bfitx ) =

\int \infty 

0

d\theta 

\Biggl[ 
1

2
cos(t

\surd 
\theta ) \widehat F (

\surd 
\theta ) +

\int 
\BbbR 

d\omega 

2\pi 

i\omega \widehat F (\omega )

(\theta  - \omega 2)
e - i\omega t

\Biggr] 
\rho (\theta ,\bfitx ,\bfitx s).

The new (r, s) data entries in (2.3) are Dr,s(t) = P (s),f (t,\bfitx r) + P (s),f ( - t,\bfitx r). The
motivation for adding the negative t term is that the even wave

P (s),f
e (t,\bfitx ) = P (s),f (t,\bfitx ) + P (s),f ( - t,\bfitx ) =

\int \infty 

0

d\theta cos(t
\surd 
\theta ) \widehat F (

\surd 
\theta )\rho (\theta ,\bfitx ,\bfitx s)

= cos
\bigl( 
t
\surd 
\scrA 
\bigr) \widehat F \bigl( \surd 

\scrA 
\bigr) 
\delta \bfitx s

(\bfitx ), t > 0, \bfitx \in \Omega ,(2.9)

has a simpler expression than (2.8), because\int 
\BbbR 

d\omega 

2\pi 

\omega \widehat F (\omega )

(\theta  - \omega 2)

\bigl( 
e - i\omega t + ei\omega t

\bigr) 
=

\int 
\BbbR 

d\omega 

\pi 

\omega | \widehat f(\omega )| 2
(\theta  - \omega 2)

cos(\omega t) = 0.

Moreover, (2.9) solves the homogeneous wave equation (2.5) with initial condition

P (s),f
e (0,\bfitx ) = \widehat F \bigl( \surd 

\scrA 
\bigr) 
\delta \bfitx s

(\bfitx ), \partial tP
(s),f
e (0,\bfitx ) = 0.

It remains to connect (2.9) to the wave defined in (2.4). To do so, we take the square

root of \widehat F (\omega ) = | \widehat f(\omega )| 2 and use the fact that functions of \scrA commute. We find that

P (s),f
e (t,\bfitx ) =

\bigm| \bigm| \bigm| \widehat f\bigl( \surd \scrA 
\bigr) \bigm| \bigm| \bigm| cos \bigl( t\surd \scrA 

\bigr) \bigm| \bigm| \bigm| \widehat f\bigl( \surd \scrA 
\bigr) \bigm| \bigm| \bigm| \delta \bfitx s

(\bfitx ) =
\bigm| \bigm| \bigm| \widehat f\bigl( \surd \scrA 

\bigr) \bigm| \bigm| \bigm| u(s)(t,\bfitx )(2.10)

for t > 0 and \bfitx \in \Omega . The statement of the lemma follows after substituting (2.10)
into the expression of Dr,s(t) and using the fact that \scrA is self-adjoint:

Dr,s(t) = P (s),f
e (t,\bfitx r) =

\int 
\Omega 

d\bfitx \delta \bfitx r (\bfitx )
\bigm| \bigm| \bigm| \widehat f\bigl( \surd \scrA 

\bigr) \bigm| \bigm| \bigm| u(s)(t,\bfitx )(2.11)

=

\int 
\Omega 

d\bfitx 
\bigm| \bigm| \bigm| \widehat f\bigl( \surd \scrA 

\bigr) \bigm| \bigm| \bigm| \delta \bfitx r
(\bfitx )u(s)(t,\bfitx ) =

\int 
\Omega 

d\bfitx u
(r)
0 (\bfitx )u(s)(t,\bfitx ).(2.12)

Note that the transformation (2.3) can be carried out without any knowledge of
the medium if the measurements start at tmin =  - tF (or earlier), where ( - tF , tF )
is the support of F (t). If the measurements start later, at tmin >  - tF , we need
the assumption that c(\bfitx ) = \=c near the array to compute the missing measure-
ments in the interval ( - tF , tmin). Near means within the distance \=c(tmin + tF ) of
the sources/receivers.

2.2. The Snapshots and the Propagator. To define the ROMs, we will use the
snapshots of the wave (2.4) on a time grid with step \tau . The choice of \tau matters, as
explained in [19, section 6 and Appendix A] and in [21, 20]. For our purpose, it suffices
to say that it should be \tau \sim 2\pi /\omega o, where \sim means equal, up to a finite constant. A
larger \tau does not sample the wave field according to the Nyquist criterion and gives
poor approximation properties of the ROM. A smaller \tau leads to poor conditioning
of the mass matrix defined below and requires regularization. We comment briefly on
regularization in section 2.6. More details are given in [20, Appendix E].

Let us gather the snapshots for all the m sources in the row vector fields,

(2.13) \bfitu j(\bfitx ) =
\Bigl( 
u(1)(j\tau ,\bfitx ), . . . , u(m)(j\tau ,\bfitx )

\Bigr) 
, j \geq 0, \bfitx \in \Omega ,
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called henceforth the ``vector snapshots."" According to (2.4), they are given by

(2.14) \bfitu j(\bfitx ) = cos
\bigl( 
j\tau 

\surd 
\scrA 
\bigr) 
\bfitu 0(\bfitx ), j \geq 0, \bfitx \in \Omega ,

and thanks to the trigonometric identity cos[(j+1)\alpha ]+cos[| j - 1| \alpha ] = 2 cos(\alpha ) cos(j\alpha )
\forall \alpha \in \BbbR , they satisfy the exact time stepping scheme

(2.15) \bfitu j+1(\bfitx ) = 2\scrP \bfitu j(\bfitx ) - \bfitu | j - 1| (\bfitx ), \scrP = cos
\bigl( 
\tau 
\surd 
\scrA 
\bigr) 
,

for j \geq 0 and \bfitx \in \Omega , driven by the propagator operator \scrP .
The ROMs will be computed from the m\times m data matrices \bfitD j = \bfitD (j\tau ), defined

as in (2.3) and evaluated at the time instants tj = j\tau for j = 0, . . . , 2n - 1. According
to Lemma 1, these have the integral expression

(2.16) \bfitD j =

\int 
\Omega 

d\bfitx \bfitu T
0 (\bfitx )\bfitu j(\bfitx ) =

\int 
\Omega 

d\bfitx \bfitu T
0 (\bfitx ) cos

\bigl( 
j\tau 

\surd 
\scrA 
\bigr) 
\bfitu 0(\bfitx ),

with kernel given by the Chebyshev polynomial Tj of the first kind of the propagator

operator: cos(j\tau 
\surd 
\scrA ) = cos(j arccos\scrP ) = Tj(\scrP ).

2.3. Data Driven Galerkin Approximations. We consider two Galerkin approx-
imations of wave propagation in the finite-dimensional subspace U of L2(\Omega ) generated
by the nm snapshots (for all m sources and n time instants):

(2.17) U = range
\Bigl\{ 
(u(s)(j\tau ,\bfitx ))\bfitx \in \Omega , j = 0, . . . , n - 1, s = 1, . . . ,m

\Bigr\} 
.

We assume that dim(U ) = nm. This holds in general if \tau \sim 2\pi /\omega o and the separation
between the sources is \sim 2\pi \=c/\omega o. If the dimension of U is smaller than nm, then the
ROM construction requires regularization (section 2.6 and [20, Appendix E]).

Let us denote by \bfitU (\bfitx ) =
\bigl( 
\bfitu 0(\bfitx ), . . . ,\bfitu n - 1(\bfitx )

\bigr) 
the nm-dimensional row vector

field that contains all the snapshots. The first Galerkin approximation is for the time
stepping equation (2.15). It approximates the vector snapshots (2.13) by

(2.18) \bfitu Gal
j (\bfitx ) = \bfitU (\bfitx )\bfitg j , j \geq 0, \bfitx \in \Omega ,

using the Galerkin coefficient matrices \bfitg j \in \BbbR nm\times m defined so that the residual is
orthogonal to the space U . To write this explicitly, we use an orthonormal basis of
U , stored in the nm-dimensional row vector field

(2.19) \bfitV (\bfitx ) =
\bigl( 
\bfitv 0(\bfitx ), . . . ,\bfitv n - 1(\bfitx )

\bigr) 
, \bfitx \in \Omega , with

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )\bfitV (\bfitx ) = \bfitI nm.

Here \bfitI nm is the nm\times nm identity matrix. As we did for \bfitU (\bfitx ), we organize the entries
of \bfitV (\bfitx ) in the m-dimensional row vectors \bfitv j(\bfitx ) associated with the instants j\tau for
j = 0, . . . , n - 1. This makes sense because our basis has the ``causal"" property

(2.20) (\bfitv j(\bfitx ))\bfitx \in \Omega \in range \{ (\bfitu j\prime (\bfitx ))\bfitx \in \Omega , j
\prime = 0, . . . , j\} for j = 0, . . . , n - 1.

It is obtained by the Gram--Schmidt orthogonalization of the components of \bfitU (\bfitx ),

(2.21) \bfitU (\bfitx ) = \bfitV (\bfitx )\bfitR , \bfitx \in \Omega ,

where \bfitR is an invertible nm\times nm matrix with block upper triangular structure.
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The orthogonality of the residual to U can now be written as

(2.22)

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )
\bigl[ 
\bfitU (\bfitx )\bfitg j+1 +\bfitU (\bfitx )\bfitg | j - 1|  - 2\scrP \bfitU (\bfitx )\bfitg j

\bigr] 
= 0 \forall j \geq 0,

and solving for \bfitV (\bfitx ) from (2.21) we get the following time stepping scheme for the
Galerkin coefficients:

(2.23) \bfitR  - T
\bigl[ 
\bfitM (\bfitg j+1 + \bfitg | j - 1| ) - 2\bfitS \bfitg j

\bigr] 
= 0, j \geq 0.

Here \bfitR  - T denotes the transpose of \bfitR  - 1 and \bfitM and \bfitS are the nm \times nm ``mass""
(Gramian) and ``stiffness"" matrices

(2.24) \bfitM =

\int 
\Omega 

d\bfitx \bfitU T (\bfitx )\bfitU (\bfitx ), \bfitS =

\int 
\Omega 

d\bfitx \bfitU T (\bfitx )\scrP \bfitU (\bfitx ).

The second Galerkin approximation is for the wave equation (2.5). To distinguish
it from the first, we use the tilde in the notation of the approximate wave field,

(2.25) \widetilde \bfitu Gal(t,\bfitx ) = \bfitU (\bfitx )\widetilde \bfitg (t), t \geq 0, \bfitx \in \Omega ,

where the Galerkin coefficients \widetilde \bfitg (t) are nm\times m time dependent matrices. These are
defined so that when substituting (2.25) into the wave equation (2.5), the residual is
orthogonal to the space U , i.e.,

(2.26)

\int 
\Omega 

d\bfitx \bfitV T (\bfitx ) [\bfitU (\bfitx )\widetilde \bfitg \prime \prime (t) +\scrA \bfitU (\bfitx )\widetilde \bfitg (t)] = 0, t \geq 0,

where \widetilde \bfitg \prime \prime (t) denotes the second derivative of \widetilde \bfitg (t). Using (2.21) again, we obtain the
semidiscretized wave equation in the Galerkin framework

(2.27) \bfitR  - T
\Bigl[ 
\bfitM \widetilde \bfitg \prime \prime (t) + \widetilde \bfitS \widetilde \bfitg (t)\Bigr] = 0, t \geq 0,

where the mass matrix \bfitM is the same as in (2.24), but the stiffness matrix is

(2.28) \widetilde \bfitS =

\int 
\Omega 

d\bfitx \bfitU T (\bfitx )\scrA \bfitU (\bfitx ).

The Galerkin approximations described above are standard, except for the mul-
tiplication by \bfitR  - T of (2.23) and (2.27). Since \bfitR is nonsingular,1 this multiplication
does not change the solution of these equations. We only use it to obtain a good
algebraic structure of our ROMs, as explained in the next section. The question is,
how can we use these Galerkin approximations when we do not know the snapshots
in \bfitU (\bfitx )? The next two theorems show that, in fact, (2.23) and (2.27) are array data
driven.

Theorem 1. Let \bfite j denote the nm\times m column blocks of the identity matrix, i.e.,
\bfitI nm =

\bigl( 
\bfite 0, \bfite 1, . . . , \bfite n - 1

\bigr) 
. The Galerkin coefficients in approximation (2.18) satisfy

(2.29) \bfitg j = \bfite j , j = 0, . . . , n - 1.

1Recall that here we assume linearly independent snapshots, i.e., dim(U ) = nm. Otherwise, we
use regularization to obtain an invertible approximation of \bfitR , as explained in section 2.6.
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The m \times m blocks of the mass and stiffness matrices defined in (2.24) are given by
the first 2n - 1 data matrices (2.16) as follows:

\bfitM i,j =

\int 
\Omega 

d\bfitx \bfitu T
i (\bfitx )\bfitu j(\bfitx ) =

1

2

\bigl( 
\bfitD i+j +\bfitD | i - j| 

\bigr) 
,(2.30)

\bfitS i,j =

\int 
\Omega 

d\bfitx \bfitu T
i (\bfitx )\scrP \bfitu j(\bfitx )=

1

4

\bigl( 
\bfitD i+j+1+\bfitD | i - j+1| +\bfitD | i+j - 1| +\bfitD | i - j - 1| 

\bigr) 
(2.31)

for i, j = 0, . . . , n  - 1. The orthonormal basis \bfitV (\bfitx ) cannot be computed without
knowing \bfitU (\bfitx ), but the block upper triangular matrix \bfitR in its definition (2.21) is data
driven. It is the block Cholesky factor of the mass matrix: \bfitR T\bfitR = \bfitM .

Note that there is an ambiguity in the definition of the block Cholesky factoriza-
tion. The difference between various factorization algorithms is in the computation
of the diagonal blocks of \bfitR , which involves taking the square root of a symmetric,
positive definite m \times m matrix. Any algorithm will do, as long as it is used consis-
tently throughout the inversion procedure. We use [16, Algorithm 5.2], which takes
the square root using the spectral decomposition.

Proof of Theorem 1. Equation (2.29) seems natural, because the first n snapshots
define the approximation space. However, for the result to hold, we also need that
these snapshots exactly satisfy the time stepping equation, which is indeed the case.
The proof of (2.29) is as follows: Since dim(U ) = nm, the matrices \bfitR and \bfitM are
nonsingular. The definition of \bfitU (\bfitx ) and (2.15) give that, if (2.29) holds, then the
residual is

\bfitU (\bfitx )(\bfitg j+1 + \bfitg | j - 1| ) - 2\scrP \bfitU (\bfitx )\bfitg j = \bfitU (\bfitx )(\bfite j+1 + \bfite | j - 1| ) - 2\scrP \bfitU (\bfitx )\bfite j

= \bfitu j+1(\bfitx ) + \bfitu | j - 1| (\bfitx ) - 2\scrP \bfitu j(\bfitx ) = 0

for j = 0, . . . , n  - 1. Obviously, this residual satisfies (2.22), which is equivalent to
(2.23). But (2.23) with initial conditions \bfitg 0 = \bfite 0 and \bfitg  - 1 = \bfitg 1 has a unique solution,
since \bfitR  - T\bfitM is invertible, so the Galerkin coefficients must satisfy (2.29). Note that
we use these initial conditions to ensure that the Galerkin approximation is exact at
t = 0 and that it is even in time.

To prove (2.30), we use the expression (2.14) of the snapshots in the definition of
the (i, j) block of \bfitM ,

\bfitM i,j =

\int 
\Omega 

d\bfitx 
\Bigl\{ 
cos

\bigl( 
i\tau 
\surd 
\scrA 
\bigr) 
\bfitu 0(\bfitx )

\Bigr\} T

cos
\bigl( 
j\tau 

\surd 
\scrA 
\bigr) 
\bfitu 0(\bfitx )

=

\int 
\Omega 

d\bfitx \bfitu T
0 (\bfitx ) cos

\bigl( 
i\tau 
\surd 
\scrA 
\bigr) 
cos

\bigl( 
j\tau 

\surd 
\scrA 
\bigr) 
\bfitu 0(\bfitx )

=

\int 
\Omega 

d\bfitx \bfitu T
0 (\bfitx )

1

2

\Bigl\{ 
cos

\bigl[ 
(i+ j)\tau 

\surd 
\scrA 
\bigr] 
+ cos

\bigl[ 
| i - j| \tau 

\surd 
\scrA 
\bigr] \Bigr\} 

\bfitu 0(\bfitx ),

where the second equality holds because \scrA is self-adjoint and the last equality is by
the trigonometric identity: 2 cos(i\alpha ) cos(j\alpha ) = cos

\bigl[ 
(i+ j)\alpha 

\bigr] 
+ cos

\bigl[ 
| i - j| \alpha 

\bigr] 
\forall \alpha \in \BbbR .

The result (2.30) follows from (2.16).
The calculation of \bfitS is similar, because the time stepping scheme gives

\scrP \bfitu j(\bfitx ) =
1

2

\bigl[ 
\bfitu j+1(\bfitx ) + \bfitu | j - 1| (\bfitx )

\bigr] 
, j \geq 0, \bfitx \in \Omega .
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Substituting this into the definition of \bfitS i,j and using the calculation above, we get
(2.31). Finally, we deduce from the Gram--Schmidt orthogonalization (2.21) and the
definition (2.24) of the mass matrix that

(2.32) \bfitM =

\int 
\Omega 

d\bfitx \bfitU T (\bfitx )\bfitU (\bfitx ) = \bfitR T

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )\bfitV (\bfitx )\bfitR = \bfitR T\bfitR .

The second Galerkin approximation is on the same space U , using the same basis
in \bfitV (\bfitx ) and the same mass matrix \bfitM . The next theorem describes the other terms
in the semidiscrete wave equation (2.27).

Theorem 2. The time dependent Galerkin coefficients in the approximation (2.25)
satisfy the initial conditions

(2.33) \widetilde \bfitg (0) = \bfite 0, \widetilde \bfitg \prime (0) = 0.

The m\times m blocks of the stiffness matrix \widetilde \bfitS are given by

(2.34) \widetilde \bfitS i,j =

\int 
\Omega 

d\bfitx \bfitu T
i (\bfitx )\scrA \bfitu j(\bfitx ) =  - 1

2

\Bigl[ 
\"\bfitD i+j + \"\bfitD | i - j| 

\Bigr] 
, i, j = 0, . . . , n - 1,

where \"\bfitD j denotes the second derivative of \bfitD (t) evaluated at t = j\tau .

Proof. Equation (2.33) ensures that the Galerkin approximation (2.25) satisfies
exactly the initial conditions

(2.35) \widetilde \bfitu Gal(0,\bfitx ) = \bfitU (\bfitx )\bfite 0 = \bfitu 0(\bfitx ), \partial t\widetilde \bfitu Gal(0,\bfitx ) = \bfitU (\bfitx )\widetilde \bfitg \prime (0) = 0, \bfitx \in \Omega .

The expression (2.34) of the stiffness matrix follows from the wave equation

\partial 2
t\bfitu (t = j\tau ,\bfitx ) =  - \scrA \bfitu j(\bfitx ) \forall j \geq 0, \bfitx \in \Omega ,

and the definition of \bfitD (t) given in Lemma 1.

2.4. The Data Driven ROMs. We are now ready to define our two ROMs from
the data driven Galerkin equations (2.23) and (2.27).

2.4.1. The ROM Propagator. This ROM is derived from (2.23) and defines a
discrete time dynamical system, with state at time instant tj = j\tau given by the jth
ROM snapshot, which is the nm\times m matrix

(2.36) \bfitu ROM

j =

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )\bfitu Gal
j (\bfitx ) =

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )\bfitU (\bfitx )\bfitg j = \bfitR \bfitg j , j \geq 0.

The second equality in this equation is by definition (2.18), and the third is due to
the Gram--Schmidt equation (2.21). The ROM snapshots are data driven: The first
n of them are just the nm\times m block columns of \bfitR due to (2.29),

(2.37) \bfitu ROM

j = \bfitR \bfite j , j = 0, . . . , n - 1.

The others are obtained by time stepping in (2.23) for j \geq n - 1.

Remark 2.1. The first ROM snapshot has nonzero entries only in the first m\times m
block. This is the algebraic way of capturing that \bfitu (t = 0,\bfitx ) is supported near the
array. As j increases, the row blocks of \bfitu ROM

j fill in sequentially, thus capturing the
progressive advancement of the wave away from the array. This physical interpretation
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is easier to visualize in the one-dimensional case, where we can transform the space
coordinate to time using the travel time map x \mapsto \rightarrow 

\int x

0
dx\prime /c(x\prime ). We work in higher

dimensions, where such a travel time transformation cannot be done. Nevertheless,
the interpretation remains formally true, in the sense that we can associate to each
instant j\tau a maximum ``depth coordinate"" reached by the wave, while the dependence
on the other spatial coordinates is found in the m\times m blocks of (2.36).

The time stepping scheme for the ROM snapshots is obtained from (2.23) and
(2.32) and the definition (2.36),

(2.38) \bfitu ROM

j+1 = 2\scrP ROM\bfitu ROM

j  - \bfitu ROM

| j - 1| , j \geq 0.

It is controlled by the ROM propagator \scrP ROM, the symmetric nm\times nm matrix defined
as the Galerkin projection of the propagator operator (2.15),

(2.39) \scrP ROM =

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )\scrP \bfitV (\bfitx ).

This ROM propagator is data driven thanks to (2.21) and definition (2.24),

(2.40) \scrP ROM = \bfitR  - T

\int 
\Omega 

d\bfitx \bfitU T (\bfitx )\scrP \bfitU (\bfitx )\bfitR  - 1 = \bfitR  - T\bfitS \bfitR  - 1.

2.4.2. The ROM of the Wave Operator. The ROM derived from the Galerkin
approximation (2.25) describes the evolution of the nm\times m valued ROM wave

(2.41) \widetilde \bfitu ROM(t) =

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )\widetilde \bfitu Gal(t,\bfitx ) =

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )\bfitU (\bfitx )\widetilde \bfitg (t) = \bfitR \widetilde \bfitg (t),
where again we used (2.21). This wave satisfies the initial conditions

(2.42) \widetilde \bfitu ROM(0) = \bfitR \bfite 0,
d

dt
\widetilde \bfitu ROM(0) = 0,

thanks to (2.33), and it evolves according to the system of ordinary differential equa-
tions (ODEs)

(2.43)
d2

dt2
\widetilde \bfitu ROM(t) +\scrA ROM\widetilde \bfitu ROM(t) = 0, t \geq 0.

The wave operator \partial 2
t +\scrA is now replaced by the operator d2

dt2 +\scrA ROM, where

(2.44) \scrA ROM =

\int 
\Omega 

d\bfitx \bfitV T (\bfitx )\scrA \bfitV (\bfitx )

is the Galerkin projection of \scrA , a symmetric nm \times nm matrix. Again, this can be
computed from the data thanks to the Gram--Schmidt formula (2.21),

(2.45) \scrA ROM = \bfitR  - T

\int 
\Omega 

d\bfitx \bfitU T (\bfitx )\scrA \bfitU (\bfitx )\bfitR  - 1 = \bfitR  - T \widetilde \bfitS \bfitR  - 1.

Here we used definition (2.28) of \widetilde \bfitS , which can be obtained from the measurements
as stated in Theorem 2.
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2.5. Comparison of the ROMs. How do our ROMs compare with the time do-
main reduced basis ROMs found in the computational science literature [9, 48, 55],
which also use snapshots to define the projection space?

The philosophy behind the reduced basis ROMs stems from principal compo-
nent analysis in multivariate statistics [51] and the Karhunen--Lo\`eve decomposition
in stochastic processes modeling [52, 57]. They explore a dynamical system (the wave
equation for us) from knowledge of snapshots of the solution. These snapshots are
usually discretized in space and the idea is to extract from them a set of uncorrelated
vectors, the so-called proper orthogonal decomposition (POD) modes. This can be
done via singular value decomposition and the reduced basis is given by the modes
corresponding to the significant singular values.

The POD reduced basis ROMs are not useful for waveform inversion, because
they require more data than what we can measure at the array. We are also not
interested in compressing information. We want to learn how the waves propagate,
using the two array data driven ROMs, and then figure out how to estimate the wave
speed c(\bfitx ) from them. For the latter task, the algebraic structure of the ROM is
very important. It is easier to compute a ROM that approximates the forward map.
In particular, in our Galerkin approximations we could have used any basis of U
and we would have obtained a good ROM for approximating this map. But for the
inverse problem it is important to use the basis \bfitV (\bfitx ), which gives the causal algebraic
structure of the ROMs. It is not difficult to see from Theorems 1 and 2 and (2.20)
that if we restrict the data to the time instants j = 0, . . . , 2J  - 1, with J < n, then
the ROMs will be sensitive to the parts of the medium reached by the wave field up
to time J\tau . Thus, we can use the ROMs to estimate c(\bfitx ) in a ``layer peeling"" fashion,
first near the array and then deeper inside the medium, by increasing J gradually.
This helps the inversion significantly.

Can we say more about the algebraic structures of the ROMs? We can deduce
from the ROM time stepping scheme (2.38) evaluated at j = 0, . . . , n  - 1 and from
(2.37) that the ROM propagator \scrP ROM is a block tridiagonal matrix. A proof of this
fact is found in [18, Appendix C]. The second ROM matrix \scrA ROM does not have the
same sparse structure, although its entries decay away from the main diagonal, as
proved in [20, Appendix D].

The ROM propagator described in section 2.4.1 has surprisingly good approxi-
mation properties, meaning that even though it is defined via projection on the space
spanned by the first n vector snapshots, it fits the data \bfitD j for j up to 2n - 1. This is
proved in [18, Appendix B]. We give here a reformulation of this result, in a slightly
weaker form, that is easier to explain and is used in the next section.

Theorem 3. The propagator ROM snapshots satisfy, for j = 0, . . . , n - 1,

\bfitD j =

\int 
\Omega 

d\bfitx \bfitu T
0 (\bfitx )\bfitu j(\bfitx ) = (\bfitu ROM

0 )T\bfitu ROM

j ,(2.46)

\bfitD j+n - 1 =

\int 
\Omega 

d\bfitx [2\bfitu n - 1(\bfitx ) - \bfitu 0(\bfitx )]
T\bfitu j(\bfitx ) = [2\bfitu ROM

n - 1  - \bfitu ROM

0 ]T\bfitu ROM

j .(2.47)

Proof. The first equality in (2.46) comes from (2.16). The second equality is
because by the definition of \bfitU (\bfitx ), the Gram--Schmidt equation (2.21), and the ex-
pression (2.37) of the first n ROM snapshots, we get

(2.48) \bfitu j(\bfitx ) = \bfitU (\bfitx )\bfite j = \bfitV (\bfitx )\bfitR \bfite j = \bfitV (\bfitx )\bfitu ROM

j , \bfitx \in \Omega , j = 0, . . . , n - 1,
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and therefore

\bfitD j =

\int 
\Omega 

d\bfitx 
\bigl[ 
\bfitV (\bfitx )\bfitu ROM

0

\bigr] T
\bfitV (\bfitx )\bfitu ROM

j

(2.19)
= (\bfitu ROM

0 )T\bfitu ROM

j .(2.49)

To prove (2.47), we recall the calculation of the mass matrix given in Theorem 1.
Setting i = n - 1 and j = 0, . . . , n - 1 in (2.30), we get

(2.50) \bfitD j+n - 1 = 2

\int 
\Omega 

d\bfitx \bfitu T
n - 1(\bfitx )\bfitu j(\bfitx ) - \bfitD n - 1 - j ,

and the result follows from (2.48) and (2.46).

The wave operator ROM described in section 2.4.2 does not fit the data exactly,
it only approximates it. This is because the Galerkin wave approximation (2.25) from
which it is derived is exact only at t = 0, as stated in (2.35), but not at t = j\tau for
1 \leq j \leq n  - 1. To get an exact fit we would have to include the snapshots of the
second time derivative of the wave field in the definition of the approximation space.
Nevertheless, we will see in the next section that \scrA ROM is useful for estimating c(\bfitx ),
in spite of the inexact data fit.

2.6. Regularization of the ROM Computation. The ideal case of noiseless data
and linearly independent snapshots that define the approximation space in (2.17)
guarantees a positive definite mass matrix \bfitM whose square root \bfitR can be inverted.
In the presence of noise and/or too small time steps \tau and sensor distance separation,
the mass matrix \bfitM will likely be ill-conditioned, singular, or indefinite. Therefore,
regularization is needed to construct the ROMs.

Our approach to regularization is based on spectral projection: Let \{ \lambda j\} nmj=1 be the
eigenvalues of \bfitM , in decreasing order, and \{ \bfity j\} nmj=1 the corresponding eigenvectors.
Let \epsilon be a positive threshold and r be the smallest natural number such that \lambda j < \epsilon 
for rm < j \leq nm. Define the projected mass matrix

(2.51) \Lambda \epsilon = (\bfitY \epsilon )T\bfitM \bfitY \epsilon \in \BbbR rm\times rm, \bfitY \epsilon = (\bfity 1, . . . ,\bfity rm) \in \BbbR nm\times rm.

This matrix is obviously diagonal. The threshold \epsilon should be small, while ensuring a
reasonable condition number \lambda 1/\epsilon of \Lambda 

\epsilon .
Note that \Lambda \epsilon cannot be our regularized mass matrix, because it does not have the

correct block Hankel+Toeplitz structure, which captures the causal wave propagation.
To determine the orthogonal transformation that restores this structure, we recall that
the ROM propagator must be block tridiagonal. Thus, instead of (2.40), we compute

(2.52) \Pi \epsilon = (\Lambda \epsilon ) - 1/2(\bfitY \epsilon )T\bfitS \bfitY \epsilon (\Lambda \epsilon ) - 1/2 \in \BbbR rm\times rm

and then use the block Lanczos algorithm [46] to generate the orthogonal matrix
\bfitQ \epsilon \in \BbbR rm\times rm that gives the block tridiagonal regularized ROM propagator matrix
\scrP \epsilon ,ROM = (\bfitQ \epsilon )T\Pi \epsilon \bfitQ \epsilon \in \BbbR rm\times rm. The regularized mass matrix and its square root are
then defined by

(2.53) \bfitM \epsilon = (\bfitQ \epsilon )T\Lambda \epsilon \bfitQ \epsilon = (\bfitR \epsilon )T\bfitR \epsilon \in \BbbR rm\times rm.

The regularized wave operator ROM follows similarly [20, Appendix E].
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3. Waveform Inversion. We give two ideas for estimating c(\bfitx ) from our ROMs.
The first, described in section 3.2, uses an estimate of the wave field at points inside
the medium. This estimate is based on the ROM snapshots of the propagator ROM
and is given in section 3.1. The second idea, described in section 3.3, formulates the
inversion as a minimization of the wave operator ROM misfit. We summarize the two
approaches in section 3.4 and compare them briefly. A more detailed comparison can
be found in the numerical simulations in section 3.5.

3.1. The Estimated Internal Wave. The chain of mappings from the wave speed
c(\bfitx ) to the propagator ROM is

(3.1) c(\bfitx ) \mapsto \rightarrow 
\bigl\{ 
\bfitD j , j = 0, . . . , 2n - 1

\bigr\} 
\mapsto \rightarrow 

\bigl\{ 
\scrP ROM, \bfitu ROM

j , j \geq 0
\bigr\} 
.

Both maps in this chain are nonlinear, although we have explained that the second
map, from the data to the ROM, can be computed with linear algebra tools. The
nonlinear steps in the ROM computation are the Cholesky factorization of the mass
matrix \bfitM , which depends linearly on the data, and the inverse of its Cholesky square
root \bfitR . Inverting the chain of mappings (3.1) to estimate c(\bfitx ) seems as hard as
inverting the first map, which is what data fitting does, so how can we use the ROM?

We describe here and in the next section an approach that is inspired by ``hybrid
inverse problems"" like photo-acoustic tomography, transient elastography, etc. In
these multiphysics imaging modalities, the propagation of a primary wave inside the
inaccessible domain, a.k.a. the ``internal wave,"" is monitored with high time and space
resolution by a second type of wave. The point is that knowledge of the internal wave
considerably simplifies the inversion for the unknown coefficients of the governing PDE
[59, 5, 3]. Hybrid approaches are mostly limited to medical applications, because they
involve delicate and accurate user-controlled apparatus for transmitting several types
of waves and measuring all around the body of interest. We propose to use the ROM
for estimating the internal waves, without any additional measurements.

The main idea for the estimation comes from (2.48), which relates the data driven
ROM snapshots \bfitu ROM

j , which are matrices, to the true vector snapshots \bfitu j(\bfitx ) defined
by (2.13), which are \bfitx dependent fields, for \bfitx \in \Omega . This relationship involves the
orthonormal basis \bfitV (\bfitx ), which cannot be computed, but has properties that are
useful for inversion. So far, these properties are only partially understood: It is
proved in [19, Appendix A] using explicit calculations in a layered medium and in a
waveguide that \bfitV (\bfitx ) is insensitive to the reflectivity (rough part of c(\bfitx )) but depends
on the kinematics (smooth part of c(\bfitx )). Extensive numerical simulations carried out
in [16, 33, 19, 20] suggest that this property extends to more general settings as well.

In many, but not all applications, the kinematics is only mildly perturbed, so these
results originally motivated our definition of the estimated internal wave snapshots,

(3.2) \bfitu est
j (\bfitx ;w) = \bfitV (\bfitx ;w)\bfitu ROM

j = \bfitV (\bfitx ;w)\bfitR \bfite j , j = 0, . . . , n - 1, \bfitx \in \Omega ,

where \bfitV (\bfitx ;w) is the orthonormal basis computed for the search wave speed w(\bfitx ).
Why is this better than the linearization of the forward mapping used by any iterative
inversion algorithm? That would approximate the internal wave snapshots by
(3.3)

\bfitu j(\bfitx ;w) = cos
\bigl[ 
j\tau 

\sqrt{} 
\scrA (w)

\bigr] 
\bfitu 0(\bfitx ) = \bfitV (\bfitx ;w)\bfitR (w)\bfite j , j = 0, . . . , n - 1, \bfitx \in \Omega ,

where \scrA (w) =  - w(x)\Delta 
\bigl[ 
w(x) \cdot 

\bigr] 
and \bfitR (w) is the Cholesky square root of the mass

matrix computed from the simulated data at wave speed w(\bfitx ). The advantage of
(3.2) over (3.3) is that it is consistent with the measurements, as stated next.
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Fig. 3.1 Illustration of the internal waves at \bfitx indicated with red \times in two media containing a
ring-shaped inclusion (top plots). The active array is linear and placed at the top of the
plots, with sensors indicated by green triangles. The wave speed is shown in the colorbar
in units of m/s. The axes are cross-range (measured along the array) and range (mea-
sured orthogonal to the array) in units of the central wavelength. The bottom plots show
the internal waves as functions of the sensor index s (abscissa) and time in units of \tau 
(ordinate). From left to right: u(s)(j\tau ,\bfitx ;w = \=c) calculated with the constant wave speed
\=c = 1km/s; the true wave u(s)(j\tau ,\bfitx ) in the first medium; the estimated u(s),est(j\tau ,\bfitx ;w = \=c)
in the first medium; the true wave u(s)(j\tau ,\bfitx ) in the second medium; and the estimated
u(s),est(j\tau ,\bfitx ;w = \=c) in the second medium.

Corollary 1. The estimated internal wave snapshots (3.2) fit the data

\bfitD j =

\int 
\Omega 

d\bfitx \bfitu 0(\bfitx )
T\bfitu j(\bfitx ) =

\int 
\Omega 

d\bfitx \bfitu est
0 (\bfitx )T\bfitu est

j (\bfitx ),

\bfitD j+n - 1 =

\int 
\Omega 

d\bfitx [2\bfitu n - 1(\bfitx ) - \bfitu 0(\bfitx )]
T\bfitu j(\bfitx ) =

\int 
\Omega 

d\bfitx [2\bfitu est
n - 1(\bfitx ) - \bfitu est

0 (\bfitx )]T\bfitu est
j (\bfitx )

for j = 0, . . . , n - 1, whereas \bfitu j(\bfitx ;w) defined in (3.3) do not.

Proof. The proof follows easily from that of Theorem 3, because (2.49) holds if we
replace \bfitV (\bfitx ) by any orthonormal basis, like \bfitV (\bfitx ;w). The data fit is ensured by the
ROM snapshots \bfitu ROM

j = \bfitR \bfite j for j = 0, . . . , n - 1, irrespective of the basis. Obviously,
if we replace \bfitR by \bfitR (w), we no longer fit the data, so the snapshots (3.3) are not
consistent with the measurements.

To illustrate this result, we display in Figure 3.1 the internal waves at a point
\bfitx inside two media with a fast ring-shaped inclusion with wave speed 3km/s, in
a background of wave speed \=c = 1km/s. The difference between the media is the
thickness of the ring: In the first medium the ring is thin, so the kinematics is only
slightly perturbed. In the second medium the ring is thick, so the perturbation of
the kinematics is more significant. The true internal waves are in the second and
fourth bottom plots. They display three types of arrivals: (1) The direct arrival
(the hyperbola denoted by a) of the wave that travels from the array to \bfitx , through
the inclusion. (2) The echoes that have bounced between the inclusion and the top

D
ow

nl
oa

de
d 

08
/0

8/
24

 to
 1

29
.1

04
.7

8.
16

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

WAVEFORM INVERSION 519

boundary, like those denoted by b and c in the plot. (3) The echoes from the side
boundaries of the domain \Omega . The bottom left plot shows the wave (3.3) calculated
with w \equiv \=c. It is quite different from the true waves, as it contains only the direct
arrival and the echoes from the side boundaries. The third and fifth bottom plots
show our estimate (3.2) of the internal wave in the two media for the same w \equiv \=c.
They are quite similar to the true waves and contain all the arrivals. This is because
the information about these arrivals is in \bfitR , which is responsible for the data fit
stated in Corollary 1. The purpose of \bfitV (\bfitx ;w) in (3.2) is to map these arrivals from
the algebraic (ROM) space to the physical space. Because we do not use the right
kinematics and this significantly affects \bfitV (\bfitx ;w = \=c) in the case of the thick ring, we
can see that the arrivals are delayed in the bottom fifth plot compared to the true
internal wave in the bottom fourth plot.

3.2. Inversion with the Estimated Internal Wave. It is well known that the
forward map, which relates c(\bfitx ) to the wave measured at the array, is given by
the Lippmann--Schwinger integral equation. Due to the transformations described in
section 2.1, this equation has the following form derived in [21, Proposition 4.1]:

(3.4) Dr,s(t) - Dr,s(t;w) =

\int t

0

dt\prime 
\int 
\Omega 

d\bfitx 
[c2(\bfitx ) - w2(\bfitx )]

c(\bfitx )w(\bfitx )
u(s)(t\prime ,\bfitx )\partial t\prime u

(r)(t\prime ,\bfitx ;w),

where we recall that in our notation convention we add w to the arguments of the
fields computed with the search speed w(\bfitx ) and suppress c(\bfitx ) in the arguments of
the fields corresponding to the true speed.

Equation (3.4) shows that the mapping c(\bfitx ) \mapsto \rightarrow \bfitD (t) is nonlinear not only because
of the way c(\bfitx ) enters the first factor of the integrand, but also because the internal
wave u(s)(t\prime ,\bfitx ) depends on c(\bfitx ) in a very complicated way. The first inversion ap-
proach introduced in [21] is to replace this wave by the estimate (3.2). The iterative
optimization based on the resulting mapping works better than that of FWI, as long
as the kinematics is not too perturbed [21, section 5]. Otherwise, the iteration can
get stuck, like that of FWI.

Since the improvement brought about by the estimated internal wave in data
fitting is marginal, is there a better way to use it? The new idea that we now describe
takes the following point of view: Corollary 1 states that the estimated internal wave
is consistent with the measurements by construction, so why should we seek to fit the
data at all? The estimate (3.2) is not guaranteed to be an approximate solution of
the wave equation. If that were the case, then w(\bfitx ) would be close to the solution
c(\bfitx ) of the inverse problem.2

How can we enforce \bfitu est
j (\bfitx ;w) to be close to the solution cos

\bigl[ 
j\tau 

\sqrt{} 
\scrA (w)

\bigr] 
\bfitu 0(\bfitx ) of

the wave equation for j = 0, . . . , n - 1? First, we note that \bfitu 0(\bfitx ) is known because it
depends on the medium near the array, where the wave speed equals the given constant
\=c. Second, we obtain from definitions (3.2) and (3.3) that the quadratic misfit between
the estimated internal wave \bfitu est

j (\bfitx ;w) and the solution cos
\bigl[ 
j\tau 

\sqrt{} 
\scrA (w)

\bigr] 
\bfitu 0(\bfitx ) is\int 

\Omega 

d\bfitx 

n - 1\sum 
j=0

\bigm\| \bigm\| \bfitu est
j (\bfitx ;w) - cos

\bigl[ 
j\tau 

\sqrt{} 
\scrA (w)

\bigr] 
\bfitu 0(\bfitx )

\bigm\| \bigm\| 2
F
=

\int 
\Omega 

d\bfitx 
\bigm\| \bigm\| \bfitV (\bfitx , w)

\bigl[ 
\bfitR  - \bfitR (w)

\bigr] \bigm\| \bigm\| 2
F

= \| \bfitR  - \bfitR (w)\| 2F,(3.5)

2This is assuming that c(\bfitx ) can be determined uniquely for the given measurement setup and
the inversion is stable due to proper regularization and parametrization of the search speed.
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because
\int 
\Omega 
d\bfitx \bfitV T (\bfitx , w)\bfitV (\bfitx , w) = \bfitI nm for any w. Thus, we can just minimize the

misfit of the Cholesky square roots of the data driven mass matrices.
We consider a modification of this objective function, given by

(3.6) \scrO (w) = \| \bfitR (w) - 1\bfitR  - \bfitI nm\| 2F.

This is motivated by the following observation: Variations in the medium that are
closer to the array give much stronger echoes than those that are further away. The
information about the latter is encoded in the smaller entries of \bfitM and, consequently,
the smaller singular values of \bfitR . To balance these contributions, we emphasize the
weaker events by taking the inverse of \bfitR (w) in (3.6). Here we ignore that \bfitR (w) may
be ill-conditioned, but this can be addressed by regularization as explained in section
2.6 and in [20, Appendix E].

3.3. Inversion with the ROM Wave Operator. The second objective function
for ROM based waveform inversion was introduced recently in [20]. It measures the
wave operator ROM misfit

(3.7) \widetilde \scrO (w) = \| \scrA ROM  - \scrA ROM(w)\| 2F,

where \scrA ROM is obtained from the data by (2.45) using the matrices \bfitR and \widetilde \bfitS built in
Theorems 1--2. The matrix \scrA ROM(w) is obtained from the synthetic data simulated
with the wave speed w(\bfitx ).

Note that in (3.7) we do not penalize the data misfit and, as explained in section
2.5, the ROM wave \widetilde \bfitu ROM(t) does not reproduce the measurements exactly. Thus,
unlike the approach described in the previous section, based on the estimated internal
wave, we cannot expect an automatic data fit here. Nevertheless, the data are fit
approximately, because the ROM comes from a Galerkin approximation of the wave
equation. Our motivation for using the objective function (3.7) is threefold:

1. The operator \scrA depends in a simple way on the unknown c(\bfitx ), unlike the
propagator \scrP . Indeed, fitting \bfscrP ROM is not a good idea, as illustrated in sec-
tion 3.5.

2. The projection basis \bfitV (\bfitx ) depends on c(\bfitx ), which makes the analysis of
(3.7) very complicated. However, the existing theoretical results and numer-
ous numerical simulations suggest that the change of this basis with c(\bfitx ) is
slower than that of \scrA . In other words, we expect that \scrA ROM is approximately
quadratic in the wave speed c(\bfitx ). This is not the case for the data matrices
used in the FWI objective function.

3. Numerical evidence [20, 16] suggests that the m components of the \bfitv j(\bfitx )
block of \bfitV (\bfitx ) are localized around the maximum depth reached by the wave
field at time j\tau . Thus, definition (2.44) suggests that the entries in \scrA ROM

depend mostly on local averages of c(\bfitx ), as is usual in standard Galerkin
approximation schemes.

3.4. The Inversion Algorithms. Pros and Cons. Here we give the pseudo-
algorithms that summarize the steps in our two inversion approaches, and then we
compare them. Both algorithms require a parametrization of the search velocity space,

(3.8) w(\bfitx ) = \=c+

N\sum 
j=1

\eta j\phi j(\bfitx ), \bfiteta = (\eta 1, . . . , \eta N ) \in \BbbR N ,

using some user-defined basis functions \{ \phi j(\bfitx )\} Nj=1 for \bfitx \in \Omega .
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Algorithm 3.1 Inversion with the internal wave.

Input: Data matrices \{ \bfitD j\} 2n - 1
j=0 calculated from the measurements as in Lemma 1

and the reference speed \=c.

1. Compute \bfitM with block entries given in (2.31). If \bfitM is indefinite or singular, use
regularization as described in section 2.6.

2. Compute the block Cholesky square root \bfitR of \bfitM or its regularized version.

3. Starting with the initial vector \bfiteta = \bfiteta (0) = 0 in (3.8), proceed as follows:
\bullet For update index j \geq 1, calculate w(\bfitx ) as in (3.8), with \bfiteta = \bfiteta (j - 1).

\bullet Calculate \bfitR (w) following the same procedure for calculating \bfitR .

\bullet Compute \bfiteta (j) as a Gauss--Newton update for minimizing the objective func-
tion (3.6) with the user's choice of the regularization penalty on \bfiteta .

\bullet Go to the next iteration or stop when the convergence criterion is met.

Output: The estimate of the wave speed given by (3.8) with \bfiteta calculated at step 3.

Algorithm 3.2 Inversion with the wave operator ROM.

Input: Data matrices \{ \bfitD j\} 2n - 1
j=0 calculated from the measurements as in Lemma 1

and the reference speed \=c.

1. Compute \{ \"\bfitD j\} 2n - 2
j=0 using, for example, the Fourier transform.

2. Compute \bfitM with the block entries given in (2.31) and \widetilde \bfitS with the block entries
(2.34). If needed, regularized matrices can be computed (see [20, Appendix E]).

3. Compute the block Cholesky square root of \bfitM or its regularized version and the
wave operator ROM \scrA ROM using the right-hand side in (2.45).

4. Starting with the initial vector \bfiteta = \bfiteta (0) = 0 in (3.8), proceed as follows:
\bullet For update index j \geq 1, calculate w(\bfitx ) as in (3.8), with \bfiteta = \bfiteta (j - 1).

\bullet Calculate \scrA ROM(w) following the same procedure for calculating \scrA ROM.

\bullet Compute \bfiteta (j) as a Gauss--Newton update for minimizing the objective func-
tion (3.7) with the user's choice of the regularization penalty on \bfiteta .

\bullet Go to the next iteration or stop when the convergence criterion is met.

Output: The estimate of the wave speed given by (3.8) with \bfiteta calculated at step 4.

When we compare the two approaches, we note that Algorithm 3.1 is easier to
use, as it involves only the mass matrix and its block Cholesky square root. Moreover,
if the objective function (3.6) is small, then the data are fit implicitly by Corollary 1.
Algorithm 3.2 is slightly more expensive computationally, because it requires the
computation of the second derivatives of the data matrices and the wave operator
ROM. Moreover, the data are not fit as well as in the first approach. Nevertheless,
the numerical results show that both approaches give comparable estimates of the
wave speed. In fact, in a few numerical experiments (see Figure 3.4), we see a slightly
better result with Algorithm 3.2.

3.5. Numerical Results and Comparison of the Inversion Approaches. We
refer to Appendix A for the details of our numerical simulations. Here we compare
the inversion approaches by visualizing the objective functions in a two-dimensional
search space (section 3.5.1) and by showing the inversion results for three well-known

D
ow

nl
oa

de
d 

08
/0

8/
24

 to
 1

29
.1

04
.7

8.
16

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

522 L. BORCEA, J. GARNIER, A. V. MAMONOV, AND J. ZIMMERLING

(a) log\scrO (w) (b) log \widetilde \scrO (w) (c) \scrP ROM misfit (d) Wasserstein

Fig. 3.2 Display of the log of the objective functions for the setup in Figure 1.1. The axes are the
same as in the right plot there. The true model is indicated by \bigcirc .

(a) log\scrO FWI(w) (b) Wasserstein

(c) log\scrO (w) (d) log \widetilde \scrO (w)

Fig. 3.3 Left plot: Illustration of the search speed (3.9) for 9 choices of \alpha and \beta . Right plots: Log
of objective functions parametrized by \beta (abscissa) and \alpha (ordinate). The true model is
indicated by \bigcirc .

challenging media (section 3.5.2). We discuss in section 3.5.3 the computational cost
and compare it to that of FWI.

3.5.1. Visualization of the Objective Functions. One way to compare the var-
ious inversion approaches is to visualize their objective functions using a two-dimen-
sional search space. We begin in Figure 3.2 with the objective functions for the setup
in Figure 1.1, where the multiple minima of the FWI objective function were clearly
visible. We note that both ROM objective functions (3.6) (plot (a)) and (3.7) (plot
(b)) have a single minimum at the correct location. In plot (c) we display the log of
the propagator ROM misfit \| \scrP ROM - \scrP ROM(w)\| 2F to show that it is not a good choice for
the inversion. This is not surprising, because the sought-after c(\bfitx ) appears in a very
complicated way in the expression of the propagator operator defined in (2.15). The
plot (d) shows that if, instead of quantifying the data misfit in the L2([tmin, tmax])
norm as in FWI, we use the Wasserstein metric, computed as described in [35], we end
up with a better objective function, with a single minimum at the correct location.

To show the advantage of using the ROM based objective functions, next we
consider a challenging example, coined as the ``Camembert"" model in the geophysics
community [43]. It consists of a piecewise constant c(\bfitx ), modeling a disk-shaped
fast inclusion embedded in a homogeneous medium with wave speed \=c = 3km/s (left
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plot in Figure 3.4). The name is coined because FWI, starting from the initial guess
w(\bfitx ) = \=c, can only recover well the top of the inclusion and the estimate cFWI(\bfitx )
of c(\bfitx ) ``melts away"" from there, as would Camembert cheese. The details of the
inversion are in the next section and Appendix A. Here, we display in Figure 3.3 the
objective functions in a two-dimensional search space with wave speed

(3.9) w(\bfitx ;\alpha , \beta ) = \=c+ \beta \{ (1 - \alpha ) [cFWI(\bfitx ) - \=c] + \alpha [c(\bfitx ) - \=c]\} 

parametrized by \alpha \in [ - 0.2, 1.2] and \beta \in [0.8, 1.2]. Note how \alpha interpolates between
the FWI estimate and the true wave speed. The parameter \beta is used to vary the
contrast. Figure 3.3 shows that the objective functions based on data fitting (plots
(a) and (b)) have two minima. The ROM objective functions (plots (c) and (d)) have
a single minimum at the true speed, i.e., \alpha = 1 and \beta = 1.

3.5.2. Inversion Results. We present results for three known challenging me-
dia. All are in two dimensions for a linear array of colocated sources and receivers.
Carrying out the inversion in three dimensions involves no conceptual change, but,
naturally, the computational cost is higher. This is discussed in section 3.5.3 and [20].

The minimization of the objective functions is carried out with the Gauss--Newton
method, in an N -dimensional search space \scrW with w(\bfitx ) of the form (3.8), spanned by

N Gaussian basis functions \phi l(\bfitx ) =
1

2\pi \sigma \bot \sigma 
exp

\bigl[ 
 - (x\bot  - x\bot 

l )2

2(\sigma \bot )2
 - (x - xl)

2

2\sigma 2

\bigr] 
with peaks at the

points \bfitx l = (x\bot 
l , xl) on a uniform grid discretizing the inversion domain \Omega inv \subset \Omega .

Here, x\bot 
l denotes the cross-range coordinate (along the array) and xl is the range

coordinate, in the direction orthogonal to the array. The standard deviations of the
Gaussian functions in these directions are \sigma \bot and \sigma .

We do not discuss noise effects on the inversion, but these have been addressed in
[20, 21]. Even in the absence of noise, diffraction limits the resolution of the inversion
to about half the central wavelength. In our simulations we overparametrize \scrW , so
we add the Tikhonov regularization penalty \mu \| \bfiteta \| 22 to the objective functions, with \mu 
chosen adaptively during the iteration, as explained in [20, Appendix D].

The inversion is carried out in a layered peeling fashion by time windowing the
data, as explained in section 2.5. If we use Nt windows, then each one is of the form
tmin \leq t \leq tq,max, where tq,max = tmin + q

Nt
[tmax  - tmin] and q = 1, . . . , Nt. The

updates of the wave speed for the qth window are computed up to the maximum
depth sensed by the waves at t \leq tq,max. This depth can be estimated in practice
using some conservative upper bound on c(\bfitx ). In our experience, the results are not
very sensitive to this depth. The parameters for the results below are in Appendix A.

The first results are for the Camembert model. We show in Figure 3.4 the es-
timated wave speed after 60 Gauss--Newton iterations, although the FWI approach
stagnated after 30 iterations. The initial guess is the constant speed \=c = 3km/s.
Clearly, both ROM based methods give a good estimate of the fast inclusion, while
FWI does not.

The second set of results is for the model displayed in the top left plot of Figure 3.5.
It was proposed in [10] as a challenge problem for imaging behind a salt body in the
earth (the top fast structure in the figure, with wave speed 4.5km/s). The initial guess
is shown in the top right plot. The inversion results displayed in the bottom plots are
obtained after 35 Gauss--Newton iterations. They show that the ROM based methods
perform similarly and image well. The FWI approach determines the top features of
the salt body, but then it gets stuck in a local minimum after 26 iterations.

The third (and last) results are for a realization of a smooth random medium
(with Gaussian statistics and Gaussian covariance function), where the wave speed
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Fig. 3.4 Inversion results. From left to right: True velocity c(\bfitx ); velocity estimated by FWI objective
(1.5), by ROM objective (3.6), and by ROM objective (3.7). The sources/receivers are
shown with green \times .

Fig. 3.5 Top row, left to right: True c(\bfitx ) and initial guess. Bottom row, left to right: Velocity
estimated by FWI objective (1.5), by ROM objective (3.6), and by ROM objective (3.7).
Sources/receivers are shown with yellow \times . The plots use the same colorbar.

fluctuates about the reference value \=c = 1.5km/s. The true medium is shown in the
left plot and the reconstructed one is in the right plot of Figure 3.6. It is obtained
after 135 Gauss--Newton iterations for the operator ROM misfit (3.7) with Tikhonov
regularization. The initial guess is the constant speed \=c = 1.5km/s. We assess the
quality of the reconstruction in two ways: First, we compute the correlation coefficient
of the two images in Figure 3.6 in the domain [0.75km, 6km] \times [0.5km, 5.25km] with
the MATLAB command ``corr2."" A perfect reconstruction would give a correlation
coefficient equal to 1. The correlation coefficient for our reconstruction is 0.613. This
may seem low, but we should remember that it is impossible to find the true medium
due to physical constraints on the resolution limit. The second and better way to
compare is to use a time-reversal experiment [37, 38]. A time-reversal experiment
consists of two steps. In the first step, waves transmitted by a controlled source
and scattered by an unknown, complex medium are recorded by an array of sensors
used as receivers. In the second step, the array of sensors used as sources transmits
the time-reversed recorded signals. One observes a refocusing of the wave at the
original source location due to the time reversibility of the wave equation. Moreover,
time-reversal refocusing is sensitive to any relevant change in the medium between
the two steps [1, 6]. This means that changes in the medium that affect the wave
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True c(\bfitx ) Estimated c(\bfitx )

Fig. 3.6 Inversion result using the operator ROM. The sources/receivers are shown with black \times .
The abscissa and ordinate are the cross-range and range in km and the wave speed values
are in the colorbar, in m/s.

Fig. 3.7 Time-reversal focusing in the true medium (left), the estimated medium (middle), and the
reference homogeneous medium (right) at a point labeled by a circle. The abscissa and
ordinate are the cross-range and range in km.

scattering process have a strong impact on the refocusing. A time-reversal experiment
can be used, therefore, to check whether or not an estimation of a wave speed by an
imaging method is correct. Here, we solve the wave equation with a point source at
location (3km, 4.5km) in the true medium and register the wave field at the array
for t \in [0, 5.8s]. We time reverse these waves and send them back (computationally)
into three media: the true one, the estimated one, and the reference (homogeneous)
medium. The back-propagated wave refocuses at the original source location in the
true medium (left plot in Figure 3.7). The more different the backpropagation medium
is from the true one, the worse the refocusing is. Indeed, refocusing is poor in the
reference medium (right plot in Figure 3.7), but it is much improved in the estimated
medium (middle plot in Figure 3.7). This demonstrates that the estimated wave speed
is similar to the one perceived by the waves in the true medium.

3.5.3. Computational Cost. Since both our inversion approaches use a Gauss--
Newton iteration to minimize the objective functions (3.6) or (3.7), we compare their
computational cost to that of the Gauss--Newton method for minimizing the FWI
objective function (1.5). The same parametrization (3.8) of the search velocity is
assumed for all the approaches.

If the number m of sensors and the number 2n - 1 of time steps is not too large,
then the cost of each Gauss--Newton iteration is dominated by the computation of
the Jacobian of the objective function. For the FWI objective function, there is an
efficient way to compute the Jacobian using the so-called adjoint formula [65, 62].
The analogues of such a formula for the objective functions (3.6) and (3.7) have not
been derived, yet. Thus, our calculation of the Jacobian using finite differences is the
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bottleneck of the computations. Aside from the Jacobian, the main computational
burden of our approaches is due to the block Cholesky factorization of the mass
matrix, which involves O

\bigl( 
(nm)3

\bigr) 
operations.

If nm \gg 1, as happens in three-dimensional simulations, the dominant compu-
tational cost is in solving the normal equations for the Gauss--Newton updates. This
can be handled using iterative methods, such as conjugate gradient. To manage the
extra computational burden of our method, one can compute the objective functions
(3.6) and (3.7) from data gathered by subarrays and then sum them in the optimiza-
tion. This idea has been used successfully for a different problem in [15]. In addition,
one can exploit the algebraic structure of the wave operator ROM to define a new
objective function that quantifies the misfit of a few block diagonals of \scrA ROM [20].

4. Passive Data Acquisition. So far, we have assumed knowledge of the array
response matrix \bfscrM (t), gathered by colocated sources and receivers, which we then
transformed to the new data matrix \bfitD (t), as stated in Lemma 1. In this section we
consider uncontrolled, ambient noise sources that emit stationary random signals and
show how the cross-correlations of the generated waves measured at a passive array of
receivers can give the matrix \bfitD (t) directly. This opens the door to new applications
in which the use of controlled active sources is neither possible nor desired.

The fact that the cross-correlations of the signals measured by a passive array can
give the same information as an active array is not new [56], and it has been exploited
for many problems in imaging and free space communications [40, 41, 42, 39]. The
mathematical statement is that the cross-correlations of the signals are related to
the symmetrized Green's function of the wave equation. This relationship holds for
different situations, in open media with radiation conditions and in bounded cavities.
To stay consistent with the rest of the paper, we address here the case of a bounded
cavity with homogeneous Dirichlet boundary conditions.

For a well-posed mathematical formulation of the problem with random noise
sources, we need to introduce some dissipation. Thus, we consider the solution p(t,\bfitx )
of the damped wave equation (T - 1

a +\partial t)
2p - c2(\bfitx )\Delta p = s(t,\bfitx ) in dimension d \in \{ 2, 3\} ,

where the forcing term s(t,\bfitx ) is a zero-mean, stationary-in-time random process. As
in section 2.1, we apply the similarity transformation (2.1) from p(t,\bfitx ) to P (t,\bfitx ),
which acts as the identity at the points in the receiver array. This transforms the
wave operator to (T - 1

a + \partial t)
2 +\scrA . The source term becomes S(t,\bfitx ) = s(t,\bfitx )\=c/c(\bfitx ),

and we model its autocorrelation by

(4.1) \langle S(t1,\bfity 1)S(t2,\bfity 2)\rangle = F (t1  - t2)K(\bfity 1)\delta (\bfity 1  - \bfity 2),

where \langle \cdot \rangle denotes a statistical average. In this equation, the function K(\bfity ) charac-
terizes the spatial support of the noise sources, which is assumed to be contained in
\Omega . The sources are delta-correlated in space, hence the Dirac delta in (4.1), and the
covariance in time depends only on the time offset t1 - t2 because of stationarity. The
function F (t) decays to 0 at infinity, is even, and belongs to L1 (which gives it ergodic

properties). The Fourier transform \widehat F (\omega ) of F (t) is the power spectral density of the
noise sources, which is nonnegative by Bochner's theorem.

For any \bfity \in \Omega , the Green's function (t,\bfitx ) \mapsto \rightarrow G(t,\bfitx ,\bfity ) is the solution of

(4.2) (T - 1
a + \partial t)

2G+\scrA G = \delta (t)\delta (\bfitx  - \bfity ), t \in \BbbR , \bfitx \in \Omega ,

with the initial condition G(t,\bfitx ,\bfity ) = 0 for all t < 0 and the boundary condition
G(t,\bfitx ,\bfity ) = 0 for \bfitx \in \partial \Omega . It can be written explicitly in terms of the eigenvalues
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\{ \theta j\} j\geq 1 and orthonormal eigenfunctions \{ yj(\bfitx )\} j\geq 1 of \scrA , as follows:

(4.3) G(t,\bfitx ,\bfity ) = H(t) exp( - t/Ta)

\infty \sum 
j=1

\theta 
 - 1

2
j sin(

\sqrt{} 
\theta jt)yj(\bfitx )yj(\bfity ),

where we recall that H(t) is the Heaviside step function.
The empirical cross-correlation of the waves recorded at \bfitx r and \bfitx r\prime is defined by

(4.4) CT (\tau ,\bfitx r,\bfitx r\prime ) =
1

T

\int T

0

dt P (t,\bfitx r)P (t+ \tau ,\bfitx r\prime ),

and the statistical cross-correlation C(1)(\tau ,\bfitx r,\bfitx r\prime ) =
\bigl\langle 
CT (\tau ,\bfitx r,\bfitx r\prime )

\bigr\rangle 
is independent

of T by stationarity of the noise sources. The statistical stability of (4.4) follows from

the ergodicity of the noise sources [42] and CT (\tau ,\bfitx r,\bfitx r\prime )
T\rightarrow +\infty  - \rightarrow C(1)(\tau ,\bfitx r,\bfitx r\prime ), in

probability. The relationship between the statistical cross-correlation and the Green's
function can be obtained by using the normal mode expansion (4.3). The next propo-
sition, stated for an idealized situation for simplicity, shows that the \tau -derivative of
the cross-correlation is a smoothed and symmetrized version of the Green's function.

Proposition 1. Consider an inhomogeneous cavity with homogeneous dissipa-
tion quantified by 1/Ta. Suppose that the source distribution extends over the whole
cavity, i.e., K(\bfity ) = 1\Omega (\bfity ) in (4.1). Then, for any r, r\prime = 1, . . . ,m, we have

\partial \tau C
(1)(\tau ,\bfitx r,\bfitx r\prime ) =  - Ta

4
F (\tau )  \star \tau 

\bigl[ 
sgn(\tau )G(| \tau | ,\bfitx r,\bfitx r\prime )

\bigr] 
,(4.5)

where G is the Green's function (4.3) and sgn(t) = H(t) - H( - t) is the sign function.

The proof can be found in [42, section 2.5]. Note that C(1) is an even function in
\tau , and therefore its \tau -derivative is an odd function.

We can now give the relationship between the cross-correlation matrix and the
data matrix \bfitD (t) exploited in the ROM procedure.

Theorem 4. We have, for any r, r\prime = 1, . . . ,m, that

1

Ta
\partial 2
\tau C

(1)(\tau ,\bfitx r,\bfitx r\prime )
Ta\rightarrow +\infty  - \rightarrow  - 1

4
Dr,r\prime (\tau ),(4.6)

where \bfitD (t) is the matrix defined in Lemma 1 with a signal f(t) whose Fourier trans-

form satisfies | \widehat f(\omega )| = \widehat F 1
2 (\omega ).

Proof. From Proposition 1 we obtain

1

Ta
\partial 2
\tau C

(1)(\tau ,\bfitx r,\bfitx r\prime )
Ta\rightarrow +\infty  - \rightarrow  - 1

4

\infty \sum 
j=1

\int 
\BbbR 
dt F (\tau  - t) cos

\bigl( \sqrt{} 
\theta jt

\bigr) 
yj(\bfitx r)yj(\bfitx r\prime ),

where\int 
\BbbR 
dt F (\tau  - t) cos(

\sqrt{} 
\theta jt) =

\int 
\BbbR 
d\omega \widehat F (\omega )ei\omega \tau 

\int 
\BbbR 

dt

2\pi 
cos(

\sqrt{} 
\theta jt)e

i\omega t = \widehat F (
\sqrt{} 

\theta j) cos(
\sqrt{} 
\theta j\tau ).

We obtain the desired result after deducing from (2.9) and (2.11) that

Dr,r\prime (\tau ) =

\infty \sum 
j=1

\widehat F (
\sqrt{} 
\theta j) cos(

\sqrt{} 
\theta j\tau )yj(\bfitx r)yj(\bfitx r\prime ).
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Theorem 4 says that we can approximate \bfitD (t) for weak attenuation, i.e., \tau \ll Ta.
It shows that our ROM procedure is natural in the passive framework, since the cross-
correlation of the noise signals recorded by an array of receivers gives the data matrix
\bfitD (t) corresponding to a virtual active array directly. The virtual sources and receivers
are naturally colocated and the signals are even, because the cross-correlations are
even, thus circumventing the transformation in Lemma 1.

Remark 4.1. Here we considered a cavity \Omega with uniformly distributed noise
sources in \Omega . In this idealized case, no hypothesis regarding the geometry of the
cavity is needed to obtain the result in Proposition 1. However, this result also holds
when the noise source distribution is nonhomogeneous or spatially limited, provided
the cavity possesses some ergodic properties and the attenuation time Ta is larger than
the critical time necessary to reach ergodicity [7, 28].

5. Concluding Remarks and Open Questions. Our goal in this paper was to
show how computationally efficient tools from numerical linear algebra and reduced
order modeling can be used to improve the existing inverse scattering methodology.
We presented in a unified way two projection-type ROMs that capture wave propaga-
tion in complementary ways and have the following important properties for solving
waveform inversion problems: (1) They can be computed from measurements of the
waves that are available in most application setups. These include data acquisitions
with controlled sources that emit probing pulses and unconventional ones with uncon-
trolled noise sources. (2) The mapping from the data to the ROMs is nonlinear and
yet the ROM computation can be carried out with known linear algebra algorithms,
in a noniterative fashion. (3) This computation can be done such that the causal
physics of wave propagation is captured by a special algebraic structure of the ROM
matrices. This is essential for the success of the inversion.

We described two ideas for using the ROMs for inversion that are quite a departure
from the data fitting approaches found in the literature. The inversion results based
on the ROMs are promising, but the methodology is young and there are many open
questions. Here are a few examples:

1. The dependence of the projection basis \bfitV (\bfitx ) on c(\bfitx ) is understood only in
a few media [19, Appendix A]. This basis also depends on the choice of \tau and the
separation between the sensors in the array. A deeper understanding of \bfitV (\bfitx ) would
lead to a more rigorous foundation of waveform inversion based on \scrA ROM and of ROM
based imaging methods like [19, 33, 16].

2. How can one extend the ROM methodology to setups where the sources are
still controlled by the user, but are placed in different locations than those of the
receivers? The gathered data matrices are no longer symmetric in such cases and a
different projection methodology of the Petrov--Galerkin type should be used. It is
not difficult to find ROMs that do a good job in terms of approximating the forward
map in such settings. However, it is not yet known how to find ROMs that are useful
for inversion.

3. The proposed ROM construction relies on having a self-adjoint wave operator,
which is no longer the case if there is attenuation. If the attenuation coefficient
Ta is constant and known, as assumed in section 4, then it is possible to remove
attenuation effects by multiplying the measurements with exp(t/Ta). This is feasible
if the attenuation is weak. The case of variable attenuation requires a fundamental
rethinking of the methodology, as does the case of dispersive media.

4. The ROM based inversion methodology extends to media with variable mass
density, to anisotropic media, and to electromagnetic waves. Inversion with elastic
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waves remains largely unexplored. The main difficulty in that case is due to the
multiple wave modes that propagate at different wave speeds.

We hope that this paper will motivate the applied and computational mathematics
community to explore this new way of solving inverse wave scattering problems.

Appendix A. Setup for the Numerical Simulations. All the simulations per-
formed are in a two-dimensional rectangular domain with sound soft boundary. The
data are computed with a time-domain solver for the wave equation (1.1) with a five
point stencil discretization of the Laplacian on a uniform grid and a three point finite
difference scheme for the second time derivative. The spatial mesh size is 20m for
Figure 3.4, 18.75m for Figure 3.5, and 25m for Figure 3.6 and the time grid step is
\Delta t = \tau /20.

The data matrices are computed using definition (2.3). To compute the second
derivative data matrices, we extend the finely sampled data evenly in discrete time
to get \bfitD e,j , with \bfitD j = \bfitD e,\pm j , for j = 0, 1, . . . , N . Then, we take the discrete
Fourier transform of (\bfitD e,j)

N
j= - N and differentiate in the Fourier domain after using a

sharp cutoff low-pass filter intended to stabilize the calculation. The cutoff frequency
is at (\omega o + 4B)/(2\pi ). We take the inverse Fourier transform to obtain \"\bfitD e,j at j =

 - N, . . . , N . Finally, we subsample\bfitD e,j and \"\bfitD e,j to get\bfitD j = \bfitD e,20j and \"\bfitD j = \"\bfitD e,20j

for j = 0, 1, . . . , 2n - 1.
All the simulations use the probing signal f(t) = B exp( - B2t2/2) cos(\omega ot), with

\omega o/(2\pi ) = 6Hz and B/(2\pi ) = 4Hz. The array of m colocated sensors (sources and
receivers) with aperture a is near the top boundary, at a depth equal to the central
wavelength. The parameters for the experiments in Figures 3.4--3.6 are in Table A.1.

Table A.1 Numerical parameters for the experiments in Figures 3.4--3.6.

Fig. \Omega (km) \Omega inv (m) \=c (km/s) \lambda o (m) m a (m) \tau (s) n Nt N \sigma \bot (m) \sigma (m)
3.4 [0, 2]\times [95, 1905]\times 3 300 10 1400 0.0435 16 6 400 55.5 69.4

[0, 2.5] [119, 2381]
3.5 [0, 6]\times [105, 5895]\times 1.5 150 40 5550 0.0333 49 6 3025 61.2 53.6

[0, 5.25] [92, 5158]
3.6 [0, 6.5]\times [114, 6386]\times 1.5 150 40 4500 0.05 86 9 3025 66.6 63.4

[0, 6.5] [300, 6392]
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