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We present an analysis of enhanced wave
transmission through random media with mirror
symmetry about a reflecting barrier. The mathematical
model is the acoustic wave equation, and we consider
two setups, where the wave propagation is along a
preferred direction: in a randomly layered medium
and in a randomly perturbed waveguide. We use the
asymptotic stochastic theory of wave propagation in
random media to characterize the statistical moments
of the frequency-dependent random transmission
and reflection coefficients, which are scalar-valued
in layered media and matrix-valued in waveguides.
With these moments, we can quantify explicitly the
enhancement of the net mean transmitted intensity,
induced by wave interference near the barrier.

1. Introduction
Multiple scattering of waves travelling through
disordered media is a serious impediment for applications
like imaging and free space communications. This has
motivated the pursuit of strategies for wave transmission
enhancement and mitigation of scattering effects.

At propagation distances (depths) that do not exceed
a few scattering mean free paths, the wave field
retains some coherence. Mitigation strategies seek to
enhance this coherence by: filtering the incoherent wave
components, like in optical coherence tomography [1]
and in imaging in waveguides with rough boundary [2];
correcting wavefront distortion in adaptive optics [3]; or
using coherent interferometry [4,5].

2024 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

un
e 

20
24

 

https://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2024.0073&domain=pdf&date_stamp=2024-06-26
mailto:borcea@umich.edu
http://orcid.org/0000-0002-9547-3913
http://orcid.org/0000-0002-3518-4159


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20240073

..........................................................

Beyond a few scattering mean free paths, the wave field is incoherent and it is typically
described by the radiative transfer theory [6–8] or the diffusion theory [9]. These theories neglect
wave interference effects that cause phenomena like coherent backscattering enhancement,
a.k.a. weak localization [10,11] and Anderson localization [12]. Such interference effects can be
exploited for enhancing transmission through a strongly scattering medium. In [13], it was shown,
using random matrix theory, that in a disordered three-dimensional metallic body, some of the
eigenvalues of the transmission matrix are close to one. The eigenvectors for such eigenvalues
are known as open channels and their existence has been demonstrated in optics experiments in
[14]. If the transmission matrix can be measured, the open channels can be determined and used
for delivering waves deep inside disordered media [14–16] and improved focusing in space [17]
and in space–time [18]. However, these methods require accurate measurements of the complex
wavefield and spatial light modulators for wavefront shaping.

Recent developments show that interesting wave interference phenomena can also be induced
by mirror symmetry in chaotic cavities and in waveguides filled with disordered media. Large
conductance enhancement through a reflecting barrier has been demonstrated for arbitrary
incident fields in [19] for symmetric quantum dots and in [20,21] for symmetric chaotic cavities.
Experimental demonstration of broadband wave transmission enhancement through diffusive,
symmetric slabs with a barrier in the middle is given in [22,23] without using transmission
or reflection matrix measurements and without wavefront shaping. Symmetric media are also
encountered when studying waves propagating in a random half-space with Dirichlet boundary
condition. The method of images replaces this half-space problem with a full-space problem with
symmetric sources and media [24].

Our goal in this paper is to study mathematically wave transmission enhancement in
disordered systems with mirror symmetry about a barrier. The analysis can be carried out for
any type of linear waves. For simplicity, we consider acoustic waves that propagate along a
preferred direction in either a layered medium or a waveguide filled with a disordered medium.
We prove that in both cases, the mirror symmetry has a beneficial effect on the transmission. This
complements the experimental results in [22,23], carried out in diffusive slabs. Our quantitative
analysis shows that the transmission enhancement comes from constructive interference between
symmetric scattering processes. The enhancement is more striking when the obstruction at the
barrier is strong.

We model the disordered medium by random fluctuations of the coefficients of the wave
equation. These fluctuations are mirror symmetric with respect to a reflecting barrier. The
interaction of the waves with the barrier and the random medium is described by frequency-
dependent reflection and transmission coefficients, which are scalar-valued in the layered case
and matrix-valued in waveguides. We use the stochastic asymptotic theory of wave propagation
[25,26] to write the statistical moments of these coefficients and thus quantify explicitly the
net mean transmission intensity for various opacities of the barrier. We find that the mean
transmitted intensity in the presence of symmetric random media is greater than that through
the barrier alone. We also show that if the media on both sides of the barrier are statistically
independent, then the mean transmitted intensity is smaller than that through the barrier
alone.

We organize the analysis and results in two main sections: we begin in §2 with the case
of waves propagating at normal incidence through a randomly layered medium. This lets us
introduce the main ideas in a simple, one-dimensional setting, so we can analyse the enhanced
transmission in great detail. Then, we study in §3 transmission through random waveguides.
The statistical moments of the reflection and transmission matrices in random waveguides are
known, but their computation is much more complicated than in the one-dimensional case [26].
Thus, for waveguides, we consider a regime of weak scattering in the random medium, where
we can get an explicit approximation of the net transmitted intensity. The involved calculations
needed to derive the results in §2 and 3 are given in appendixes. We end with a summary
in §4.
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2. Enhanced transmission in randomly layered media
We give here the analysis of wave transmission in one-dimensional (layered) random media with
mirror symmetry. We begin in §2a with the setup and the wave decomposition in forward and
backward going modes. The analysis of the reflection and transmission of these modes at the
reflecting barrier is in §2b and in the random medium is in §2c. We gather the results in §2d to
quantify the transmission enhancement.

(a) Setup
One-dimensional wave propagation along the z-axis is described by the first-order system[(

ρ(z) 0
0 K−1(z)

)
∂t +

(
0 1
1 0

)
∂z

](
u(t, z)
p(t, z)

)
= 0, t ∈ R, z ∈ R, (2.1)

where p is the acoustic pressure and u is the velocity. The medium is modelled by the variable
density ρ and bulk modulus K, which determine the local wave speed c and impedance ζ ,

c(z) =
√

K(z)
ρ(z)

and ζ (z) =
√

K(z)ρ(z). (2.2)

The medium contains a thin barrier at z ∈ (−d/2, d/2), sandwiched between two randomly
perturbed, symmetric regions at d/2 ≤ |z| ≤ L. Assuming that the z-axis is horizontal, we call the
region z < −d/2 the left side of the barrier and the region z > d/2 the right side of the barrier. The
medium is modelled by

ρ(z) =
⎧⎨⎩ρ0 if |z| ≥ d/2,

ρ1 if |z| < d/2,
and

1
K(z)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
K0

if |z| > L,

1
K0

[1 + μ(|z|)] if |z| ∈
[

d
2

, L
]

,

1
K1

if |z| < d/2,

(2.3)

where ρj and Kj are positive constants, for j = 0, 1 and μ is a mean zero, mixing random process,
satisfying the uniform bound |μ| < 1, so that the bulk modulus is a positive function [25, ch.
6]. Note that only the bulk modulus has random fluctuations in our model. This simplifies the
presentation and unifies it with that in the next section, because (2.1) reduces to the standard
second-order wave equation for the pressure at |z| > d/2 and at |z| < d/2. Random fluctuations of
the density can be included, and the results are qualitatively the same [25, ch. 17].

The interaction of the waves with the medium depends on frequency, so we Fourier transform
with respect to time,

p̂(ω, z) =
∫
R

dt eiωtp(t, z) and û(ω, z) =
∫
R

dt eiωtu(t, z), (2.4)

and then decompose the wave field into right (forward) going and left (backward) going modes
[25, ch. 7]. The decomposition at |z| ≥ d/2 is

â(ω, z) = [ζ−1/2
0 p̂(ω, z) + ζ

1/2
0 û(ω, z)]e−iω(z/co) (2.5)

and
b̂(ω, z) = [−ζ

−1/2
0 p̂(ω, z) + ζ

1/2
0 û(ω, z)]eiω(z/co), (2.6)

where c0 = √
K0/ρ0 and ζ0 = √

K0ρ0. The decomposition at |z| < d/2 is similar, except that c0 and
ζ0 are replaced by c1 = √

K1/ρ1 and ζ1 = √
K1ρ1. Note that equations (2.4)–(2.6) give

p(t, z) = ζ
1/2
0
4π

∫
R

dω e−iωt [̂a(ω, z) eiω(z/co) − b̂(ω, z) e−iω(z/co)] (2.7)
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random section random section

Figure 1. Schematic of transmission and reflection in the randommediumwithmirror symmetry about the thin barrier located
at z ∈ (−d/2, d/2).

and

u(t, z) = ζ
−1/2
0
4π

∫
R

dω e−iωt [̂a(ω, z) eiω(z/co) + b̂(ω, z) e−iω(z/co)]. (2.8)

This is a decomposition in monochromatic waves propagating along the z-axis in the right
direction, with amplitude â, and the left direction, with amplitude b̂.

The wave excitation specifies â(ω, −L), and corresponds to a wave impinging on the
heterogeneous medium at z = −L. The goal is to quantify the wave emerging at z = L, with
amplitude â(ω, L) (figure 1). Since the medium is homogeneous at z > L, the wave is outgoing
there, i.e. b̂(ω, z) = b̂(ω, L) = 0 for z ≥ L.

(b) Model of the barrier
The mapping of the wave modes on the left of the barrier, at z = −d/2, to the modes on the right
of the barrier, at z = d/2, is given by the 2 × 2 frequency-dependent propagator matrix P1. The
expression of this matrix is derived in appendix A(a), by imposing the continuity of the pressure
and velocity at z = ±d/2. We state the result in the next lemma.

Lemma 2.1. We have⎛⎜⎝̂a
(
ω, d

2

)
b̂
(
ω, d

2

)
⎞⎟⎠= P1(ω)

⎛⎜⎝̂a
(
ω, −d

2

)
b̂
(
ω, −d

2

)
⎞⎟⎠ and P1(ω) =

⎛⎝α(ω) γ (ω)

γ (ω) α(ω)

⎞⎠ , (2.9)

where the bar denotes complex conjugate and

α(ω) =
[

cos
(

ωd
c1

)
+ i

2

(
ζ1

ζ0
+ ζ0

ζ1

)
sin

(
ωd
c1

)]
e−iωd/c0 (2.10)

and

γ (ω) = i
2

(
ζ0

ζ1
− ζ1

ζ0

)
sin

(
ωd
c1

)
. (2.11)

The scattering matrix S1 maps the wave mode amplitudes that impinge on the barrier to the
outgoing wave mode amplitudes⎛⎜⎝ â

(
ω, d

2

)
b̂
(
ω, −d

2

)
⎞⎟⎠= S1(ω)

⎛⎜⎝̂a
(
ω, −d

2

)
b̂
(
ω, d

2

)
⎞⎟⎠ . (2.12)

Its expression follows from equation (2.9),

S1(ω) =
(

T1(ω) R1(ω)
R1(ω) T1(ω),

)
and R1(ω) = −γ (ω)

α(ω)
, T1(ω) = 1

α(ω)
, (2.13)

where T1 and R1 are the transmission and reflection coefficients of the barrier.
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We introduce two asymptotic regimes that give an order one net effect of the barrier

1: The first regime is

ωd
cj

→ 0 for j = 0, 1 and
ζ0

ζ1
→ ∞ such that

ζ0

ζ1

ωd
2c1

→ q(ω), (2.14)

with finite q. The asymptotic limit of the transmission and reflection coefficients is

T1(ω) = i
i + q(ω)

and R1(ω) = q(ω)
i + q(ω)

. (2.15)

2: The second regime is

ωd
cj

→ 0 for j = 0, 1 and
ζ1

ζ0
→ ∞ such that

ζ1

ζ0

ωd
2c1

→ q(ω), (2.16)

and the transmission and reflection coefficients are

T1(ω) = i
i + q(ω)

and R1(ω) = − q(ω)
i + q(ω)

. (2.17)

These two regimes are similar. They both consider a thin barrier of width d that is much smaller
than the wavelength, so there are no trapped propagating modes at z ∈ (−d/2, d/2). They also
assume a high contrast ratio of the wave impedance inside and outside the barrier, while ensuring
that the coefficient q is O(1). This is needed to have an O(1) change of the transmission and
reflection coefficients of the barrier. Indeed, equations (2.15) and (2.17) show that if q were
negligible, then the barrier would have no effect because the transmission coefficient would be
approximately 1 and the reflection coefficient would be approximately 0. The opposite case would
be for a large q, where the barrier would be so strongly reflecting that no wave would go through.
Since the regimes (2.14) and (2.16) are similar, we consider henceforth the first one, defined by
equations (2.14)–(2.15).

(c) Reflection and transmission in the randommedium
The propagation of waves in randomly layered media is studied in detail in [25]. We gather the
relevant results from there and specialize them to the random medium with mirror symmetry in
the next lemma, proved in appendix A(b). This lemma gives the expression of the complex 2 × 2
scattering matrices of the left and right random sections. They map the amplitudes of the waves
impinging on the media to the amplitudes of the waves exiting the media and their entries are the
transmission and reflection coefficients.

Lemma 2.2. We have⎛⎝̂a
(
ω, −d

2

)
b̂(ω, −L)

⎞⎠= S−(ω)

⎛⎝ â(ω, −L)

b̂
(
ω, −d

2

)
⎞⎠ and

⎛⎝ â(ω, L)

b̂
(
ω, d

2

)
⎞⎠= S+(ω)

⎛⎝̂a
(
ω, d

2

)
b̂(ω, L)

⎞⎠ , (2.18)

where S− and S+ are the scattering matrices of the left and right random regions [−L, −d/2] and [d/2, L],
respectively

S−(ω) =
⎛⎝T−(ω) R̃−(ω)

R−(ω) T−(ω)

⎞⎠ and S+(ω) =
⎛⎝T+(ω) R̃+(ω)

R+(ω) T+(ω)

⎞⎠ . (2.19)

Due to the symmetry, the transmission and reflection coefficients in these matrices satisfy

T−(ω) = T+(ω), R−(ω) = R̃+(ω), R̃−(ω) = R+(ω). (2.20)

The moments of T+ are studied in [25, Section 7.1.5] and the moments of R+ and R̃+ are in [25,
Section 9.2.1], in the so-called strongly heterogeneous white-noise regime defined by the scaling
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relations

	c � λ � L, Var(μ) = O(1), (2.21)

where 	c is the correlation length of the random fluctuations μ of the medium and λ = 2πco/ω is
the wavelength. The first assumption in (2.21) says that the wavelength is long with respect to
the correlation length, so the waves cannot probe the finely layered medium efficiently. However,
the medium fluctuations are strong, with O(1) variance, and because the waves propagate over
many wavelengths, scattering in the random medium builds up to cause a significant effect at a
distance L. In particular, if we have Var(μ)	cL/λ2 = O(1), then the effect of the random medium
on the transmittivity is of order one.

For quantifying the net mean intensity transmitted through the medium, we only need the
expressions of the statistical moments of the square modulus of the transmission coefficient T+,

E[|T+(ω)|2n] = exp
(

− L
4Lloc(ω)

) ∫∞

0
e−Ls2/Lloc(ω) 2πs sinh(πs)

cosh2(πs)
φn(s) ds, (2.22)

for any positive integer n. Here, E is the expectation with respect to the law of the process μ, the
functions φn are defined by

φ1(s) = 1, φn(s) =
n−1∏
j=1

s2 + (j − (1/2))2

j2
, n ≥ 2, (2.23)

and Lloc is the localization length of the random medium, which depends on the frequency ω and
the statistics of μ

1
Lloc(ω)

= ω2

4c2
0

∫
R

E[μ(0)μ(z)] dz. (2.24)

Note that 1/Lloc is of the order of Var(μ)	c/λ
2. If the wave travels deep in the medium, i.e. if

L 	 Lloc, then the moment formula (2.22) simplifies to

E[|T+(ω)|2n] 
 π5/2

2[L/Lloc(ω)]3/2 φn(0) exp
[
− L

4Lloc(ω)

]
. (2.25)

It is shown in [25, Section 7.3] that the moment formulae (2.22) also hold in the asymptotic
regime defined by the scaling relations

	c ∼ λ � L, Var(μ) � 1. (2.26)

In this so-called weakly heterogeneous regime, the waves are sensitive to the finely layered
structure, because the wavelength is comparable to the correlation length. However, the
fluctuations are small and cumulative scattering in the random medium becomes significant only
at large distances L of propagation. In particular, the effect on the transmittivity is of order one
when Var(μ)	cL/λ2 = O(1). The moments of T+ in the weakly scattering regime are given by the
same equation (2.22), but the expression of the localization length is different than that in (2.21),

1
Lloc(ω)

= ω2

4c2
0

∫
R

E[μ(0)μ(z)] cos
(

2ωz
c0

)
dz.

(d) Transmission enhancement
We are interested in the transmission of the wave field through the medium, illustrated
schematically in figure 1. The result is stated in the next theorem, proved in appendix A(c). In
light of lemma 2.2, we simplify the notation in its statement using

T(ω) = T+(ω) = T−(ω) and R(ω) = R+(ω) = R̃−(ω). (2.27)
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Theorem 2.3. The transmission coefficient of the system is

T (ω) = T2(ω)T1(ω)[1 − R(ω)]−1[1 − (2R1(ω) − 1)R(ω)]−1, (2.28)

and the expression of the mean transmitted intensity is

E[|T (ω)|2] =
∞∑

k=0

τk(ω)E[|T(ω)|4(1 − |T(ω)|2)k], (2.29)

where the moments of T are given in equation (2.22) and

τk(ω) = 1
4
|1 − (2R1(ω) − 1)k+1|2. (2.30)

Note that the coefficients (2.30) satisfy τk ≤ 1, because according to equation (2.15),

|2R1(ω) − 1| =
∣∣∣∣q(ω) − i
q(ω) + i

∣∣∣∣= 1. (2.31)

This implies that the series in (2.29) is uniformly convergent and we have the bound

E[|T (ω)|2] ≤ E

⎡⎣|T(ω)|4
∞∑

k=0

(1 − |T(ω)|2)k

⎤⎦= E[|T(ω)|2]. (2.32)

Thus, no matter how weak or strong the barrier is, E[|T |2] cannot exceed the mean intensity
transmitted over half the distance, through one region of the random medium.

We analyse next the transmitted intensity in various scenarios. There are two extreme cases:

— The first extreme case is not interesting because it assumes no random fluctuations.
We have T = 1 and the transmitted intensity is deterministic and equal to the squared
modulus of the transmission coefficient of the barrier

|T (ω)|2 (2.29)= τ0(ω)
(2.30)= |1 − R1(ω)|2 (2.15)= |T1(ω)|2. (2.33)

— The second extreme case assumes no barrier, i.e. T1 = 1 and R1 = 0. Then, coefficients
(2.30) satisfy τk = 0 for odd k and τk = 1 for even k. The mean transmitted intensity is,
from (2.29),

E[|T (ω)|2] = E

⎡⎣|T(ω)|4
∞∑

k=0

(1 − |T(ω)|2)2k

⎤⎦= E

[
|T(ω)|2

2 − |T(ω)|2
]

. (2.34)

If in addition, the random sections are strongly scattering, i.e. L is larger than Lloc so the
approximation (2.25) holds, then we have

E[|T (ω)|2]
(2.34)=

∞∑
k=1

2−k
E[|T(ω)|2k]

(2.25)
 CE[|T(ω)|2], (2.35)

where

C =
∞∑

k=1

2−kφk(0) ≈ 0.59. (2.36)

The result (2.34) says that, as expected from the estimate (2.32), the mean transmitted intensity
through the symmetric random medium occupying the interval [−L, L] is less than the intensity
transmitted through the single region z ∈ [0, L]. However, the symmetry helps, because if the two
random regions were independent, the mean transmitted intensity would be (appendix A(d))

E[|T (ω)|2] =
∞∑

k=0

{E[|T(ω)|2(1 − |T(ω)|2)k]}2. (2.37)

This is smaller than (2.34), as illustrated in figure 2.
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Figure 2. Mean transmitted intensityE[|T |2] of the system as a function of the strength L/Lloc of the randomly scattering
medium in the absence of the barrier. (a) The black solid line is the result (2.34) for symmetric media and the red dashed line is
the result (2.37) for independent media. (b) Ratio of the mean transmission of independent media and the mean transmission
of symmetric media.

Physically, we can interpret the enhanced transmission due to symmetry as follows: it is known
that the distribution of the random transmittivity has a small component close to one, that actually
gives the value of the mean transmittivity [25, Section 7.1.6]. The medium configurations that
give transmittivity close to one are called open channels in the physics literature [13,27]. Efficient
transmission through two independent media of length L requires the lucky situation where both
media are open channels. For the symmetric case, this requires only one medium of length L to
be an open channel as the symmetric medium is then automatically an open channel.

Now we demonstrate the transmission enhancement in the presence of the barrier:

— First, we can see from equation (2.29) that if the random sections are weakly scattering, i.e.
L/Lloc � 1, then E[|R|2] = 1 − E[|T|2] � 1 and we can approximate the mean transmitted
intensity by

E[|T (ω)|2] = τ0(ω)E[|T(ω)|4] + τ1(ω)E[[|T(ω)|4|R(ω)|2] + o(E[|R(ω)|2])

= τ0(ω) + (τ1(ω) − 2τ0(ω))E[|R(ω)|2] + o(E[|R(ω)|2]).

Equation (2.30) gives

τ0(ω) = |1 − R1(ω)|2 (2.15)= |T1(ω)|2

and

τ1(ω) = 4|R1(ω)|2|1 − R1(ω)|2 = 4|T1(ω)|2(1 − |T1(ω)|2),

so to leading order in the reflection coefficient, we have

E[|T (ω)|2] ≈ |T1(ω)|2{1 + 2(1 − 2|T1(ω)|2)E[|R(ω)|2]}. (2.38)

This is larger than the transmission intensity of the barrier |T1(ω)|2, as long as the barrier
is reflecting enough i.e. for |T1(ω)| < 1/

√
2.

— If the random sections are more scattering, i.e. L � Lloc , then we must consider the series
in (2.29). We compare the result in figure 3 with the mean intensity calculated in the
absence of symmetry, i.e. for two independent random media to the left and right of the
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Figure 3. (a)Mean transmissionE[|T |2] of the systemas a function of the strength L/Lloc of the randomly scatteringmedium;
the black solid line corresponds to the symmetric media and the red dashed line corresponds to the independent media.
(b) the mean transmission E[|T|2] of one random section (dashed) and the transmission |T1|2 of the barrier (dot-dashed).
Here, |T1|2 = 0.4.

barrier. The expression of the latter is

E[|T (ω)|2] = |T1(ω)|2
∞∑

k,k′=0

Ck,k′ (ω)E[|T(ω)|2(1 − |T(ω)|2)k]

× E[|T(ω)|2(1 − |T(ω)|2)k′
], (2.39)

with

Ck,k′ (ω) =
∣∣∣∣∣∣

k+k′∑
j=max(k,k′)

j!R2j−k−k′

1 (ω)[1 − 2R1(ω)]k+k′−j

(k + k′ − j)!(j − k)!(j − k′)!

∣∣∣∣∣∣
2

.

Its derivation is given in appendix A(d).

Again, the transmission is enhanced by symmetry, and this is even more pronounced if the
barrier is more reflecting, as shown in figure 4. See also the next case.

— If the barrier is strongly reflecting, i.e. |T1| � 1, which is equivalent to having q 	 1, we
can use the identity

2R1(ω) − 1
(2.15)= q(ω) − i

q(ω) + i
= 1 − 2T1(ω),

in equation (2.30) to obtain

τk(ω) = (k + 1)2|T1(ω)|2 + o(|T1(ω)|2), k ≥ 0.

Substituting this into the expression (2.29) of the mean transmitted intensity, we have

E[|T (ω)|2] = |T1(ω)|2E

⎡⎣|T(ω)|4
∞∑

k=0

(k + 1)2(1 − |T(ω)|2)k

⎤⎦ . (2.40)

This expression can be simplified using the series
∑∞

k=0(1 + k)2xk = (1 + x)/(1 − x)3, ∀ x ∈
(0, 1), and we obtain that

E[|T (ω)|2] = |T1(ω)|2{2E[|T(ω)|−2] − 1} + o(|T1(ω)|2). (2.41)

By solving the Kolmogorov equation ∂LU = L−1
loc(2U − 1) satisfied by U(L) = E[|T|−2],

derived using the expression of the infinitesimal generator of |T|2 given in
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Figure 4. Same as in figure 3 but for a more reflecting barrier with |T1|2 = 0.1.

[25, Proposition 7.3], we get that

2E[|T(ω)|−2] − 1 = exp
[

2L
Lloc(ω)

]
. (2.42)

This result and equation (2.41) show that the transmission enhancement by the random
medium can be very large when the barrier is reflecting, as seen in figure 4.

3. Enhanced transmission in randomwaveguides
In this section, we study wave transmission in random waveguides. To simplify the analysis, we
consider two-dimensional waveguides filled with a random medium and with straight, sound
soft boundary, as described in §3a. However, the results extend qualitatively to waveguides
with random fluctuations of the boundary, because as shown in [28,29], these fluctuations can
be mapped mathematically to fluctuations of the coefficients of the wave equation.

The mathematical model is the scalar wave equation for the pressure field, with random wave
speed. The decomposition of the wave into modes is in §3b. The interaction of these modes with
the reflecting barrier is in §3c. The transmission and reflection of the modes through the random
sections is described in §3d. The transmission through the whole system is analysed in §3e. We
use the results in §3f to quantify the transmission enhancement induced by symmetry, in the case
of weak random scattering.

(a) Setup
Consider a waveguide occupying the domain Ω = (−X/2, X/2) × R and introduce the system of
coordinates x = (x, z), with x ∈ (−X/2, X/2) and z ∈ R. Assume, as illustrated in figure 5, that the
waveguide contains a thin reflecting barrier at |z| < d/2, lying between two random sections at
|z| ∈ (d/2, L), which are mirror symmetric with respect to z = 0.

The wave at frequency ω is modelled by the Fourier transform p̂ of the pressure, the solution
of the Helmholtz equation [

ω2

c2(x, z)
+ �

]
p̂(ω, x, z) = 0, (x, z) ∈ Ω , (3.1)

with Dirichlet boundary condition at the sound soft boundary x = ±X/2,

p̂
(

ω, ±X
2

, z
)

= 0, z ∈ R, (3.2)
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random section random section

Figure 5. Waveguide occupying the domainΩ = (−X/2, X/2) × R filled at |z| ∈ (d/2, L) with a random medium with
mirror symmetry about the thin barrier located at |z| < d/2.

and outgoing boundary condition at z → +∞. The medium that fills the waveguide is
heterogeneous, with wave speed c of the form

c−2(x, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c−2

0 if |z| > L,

c−2
1 if |z| < d

2
,

c−2
0 [1 + μ(x, |z|)] if

d
2

≤ |z| ≤ L.

(3.3)

Here, c0 and c1 are constants satisfying c1 < c0, and μ is a zero mean, mixing random process,
with the uniform bound |μ| < 1.

The excitation is defined by a right going wave impinging on the random medium at z = −L
and our goal is to quantify the transmitted wave at z = L.

(b) Mode decomposition outside the barrier
We are interested in the case of small standard deviation of the fluctuations μ of c−2, so we define
the wave decomposition at |z| > d/2 in the reference medium with wave speed c0.

The decomposition uses the spectrum of the self-adjoint, negative definite operator ∂2
x with

Dirichlet boundary conditions at x = ±X/2. The eigenvalues are given by −λj, where λj = (jπ/X)2

and the eigenfunctions are ϕj(x) = √
2/X sin(jπx/X), for j ≥ 1. These form an orthonormal basis of

L2(−X/2, X/2).
Let k(ω) = ω/c0 be the wavenumber and define the natural number

N(ω) =
⌊

k(ω)
X
π

⌋
, (3.4)

such that

λN(ω) ≤ k2(ω) < λN(ω)+1. (3.5)

Here �·� denotes the integer part. The wave decomposition is

p̂(ω, x, z) =
∞∑

j=1

ϕj(x)̂pj(ω, z), (3.6)

where p̂j are one dimensional, time-harmonic waves, called waveguide modes. The first N of them
are propagating waves, with wavenumbers

βj(ω) =
√

k2(ω) − λj, if j ≤ N(ω), (3.7)
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and the remaining ones are evanescent waves. These decay exponentially in |z| on the length scale
β−1

j , where

βj(ω) =
√

λj − k2(ω), if j > N(ω). (3.8)

Note that if k2 = λN , the wave p̂N does not propagate. The analysis of waveguides with such
standing modes is more involved than needed in this paper, so we assume that βN > 0.

The propagating waves can be decomposed further into right (forward) and left (backward)
going modes, using the following equations [25, ch. 20]

p̂j(ω, z) = 1√
βj(ω)

[̂aj(ω, z) eiβj(ω)z + b̂j(ω, z) e−iβj(ω)z] (3.9)

and

∂ẑpj(ω, z) = i
√

βj(ω)[̂aj(ω, z) eiβj(ω)z − b̂j(ω, z) e−iβj(ω)z]. (3.10)

The complex-valued amplitudes of these modes are gathered in the (column) vector fields

â(ω, z) = (̂aj(ω, z))N(ω)
j=1 and b̂(ω, z) = (̂bj(ω, z))N(ω)

j=1 , (3.11)

and they satisfy the coupled system of equations

∂z

(
â(ω, z)
b̂(ω, z)

)
=
(

H(ω, z) K(ω, z)
K(ω, z) H(ω, z)

)(
â(ω, z)
b̂(ω, z)

)
, (3.12)

derived in [25, ch. 20]. The derivation involves substituting (3.6), (3.9)–(3.10) into (3.1), using the
orthonormality of the eigenfunctions and also expressing the evanescent modes in terms of the
propagating ones [25, Section 20.2.3]. The matrices H, K ∈ C

N×N are given explicitly in [25, Section
20.2.4]. They depend on the mode wavenumbers (3.7-3.8) and the random process ν = (νj,l)j,l≥1,
with components

νj,l(|z|) =
∫X/2

−X/2
dx ϕj(x)ϕl(x)μ(x, |z|), j, l ≥ 1. (3.13)

In the absence of fluctuations, the matrices H and K would be zero i.e. the mode amplitudes
would be decoupled and constant. This is the case at |z| > L, where the wave speed equals the
constant co.

The system of ODEs (3.12) is complemented with the excitation â(ω, −L) that specifies
the incoming wave impinging on the random medium and the outgoing boundary condition
b̂(ω, L) = 0. Our goal is to characterize the transmitted mode amplitudes â(ω, L). This requires the
analysis of the transmission and reflection of the modes at the thin barrier, described next.

(c) Transmission and reflection at the barrier
The mode decomposition inside the barrier is similar to that in equations (3.6)–(3.10), except that
the wave speed c0 is replaced by c1. Since we assume that c1 < c0, we deduce from equation (3.4)
and its analogue inside the barrier that there are N1(ω) > N(ω) propagating modes at |z| < d/2.
The modes are uncoupled, with constant amplitudes, because the wave speed is constant inside
the barrier.

The x-profiles of the modes inside and outside the barrier are given by the same eigenfunctions
ϕj for all z ∈ R, so to analyse the wave reflection and transmission at the barrier, it is sufficient to
match {̂pj, ∂ẑpj}N

j=1 at z = ±d/2. For j ≥ N + 1, the modes impinging on the barrier are evanescent
and their amplitude is negligible for large enough L.

The next lemma describes the propagator of the barrier. Its proof follows from the continuity
of the first N modes, and it is similar to the proof of lemma 2.1 in appendix A(a).
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Lemma 3.1. We have⎛⎜⎝â
(
ω, d

2

)
b̂
(
ω, d

2

)
⎞⎟⎠= P1(ω)

⎛⎜⎝â
(
ω, −d

2

)
b̂
(
ω, −d

2

)
⎞⎟⎠ and P1(ω) =

⎛⎜⎝P(a)
1 (ω) P(b)

1 (ω)

P(b)
1 (ω) P(a)

1 (ω)

⎞⎟⎠ , (3.14)

where P1 is the 2N × 2N propagator matrix of the barrier, with diagonal blocks

P(a)
1 (ω) = diag(αj(ω))N(ω)

j=1 and P(b)
1 (ω) = diag(γj(ω))N(ω)

j=1 . (3.15)

The entries of these blocks are

αj(ω) = cos(β1,j(ω)d) + i
2

(
β1,j(ω)

βj(ω)
+ βj(ω)

β1,j(ω)

)
sin(β1,j(ω)d), (3.16)

γj(ω) = i
2

(
βj(ω)

β1,j(ω)
− β1,j(ω)

βj(ω)

)
sin(β1,j(ω)d) (3.17)

and β1,j(ω) =
√

ω2

c2
1

− λj, j = 1, . . . , N(ω), (3.18)

are the mode wavenumbers inside the barrier.

Remark 3.2. Although we focus attention on the case c1 < c0, one can also analyse the case
c1 > c0 and obtain qualitatively similar results. The difference in the calculations is that when
c1 > c0, there are fewer propagating modes inside the barrier than outside. The algebraic structure
of the propagator matrices remains as in lemma 3.1, but the expression of the entries (3.16)–(3.17)
involves the hyperbolic cosh and sinh for indexes j = N1 + 1, . . . , N, corresponding to the modes
that transition from propagating outside the barrier to evanescent inside the barrier. Since the
barrier is thin these entries remain O(1).

As we have done in §2b, we derive from the propagator P1 the scattering matrix S1 ∈ C
2N×2N

of the barrier. This relates the amplitudes of the modes impinging on the barrier to those leaving
the barrier, ⎛⎜⎝ â

(
ω, d

2

)
b̂
(
ω, −d

2

)
⎞⎟⎠= S1(ω)

⎛⎜⎝â
(
ω, −d

2

)
b̂
(
ω, d

2

)
⎞⎟⎠ , (3.19)

and has the block structure

S1(ω) =
(

T1(ω) R1(ω)
R1(ω) T1(ω)

)
, (3.20)

with diagonal N × N blocks

T1(ω) = diag(1/αj(ω))N(ω)
j=1 and R1(ω) = diag

(
−γj(ω)

αj(ω)

)N(ω)

j=1

, (3.21)

containing the mode-dependent transmission and reflection coefficients of the barrier.
Similar to the layered case, we are interested in the asymptotic regime

k(ω)d → 0,
c0

c1
→ ∞, such that

(
c0

c1

)2
k(ω)d = O(1). (3.22)

In this regime, we deduce from the expressions (3.16)–(3.17) of the coefficients that define the
propagator that

αj(ω) ≈ 1 + iqj(ω) and γj(ω) ≈ −iqj(ω), (3.23)

where

qj(ω) =
β2

1,j(ω)d

2βj(ω)
(3.22)= O(1), j = 1, . . . , N. (3.24)
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The asymptotic approximation of the transmission and reflection coefficients is

T1,j(ω)
(3.21)= 1

αj(ω)

(3.23)≈ 1
1 − iqj(ω)

(3.25)

and

R1,j(ω)
(3.21)= −γj(ω)

αj(ω)

(3.23)≈ iqj(ω)

1 − iqj(ω)
, j = 1, . . . , N(ω). (3.26)

Note that as in the layered case, the scaling relations (3.22) ensure that the barrier causes an
opposition to transmission but it is not impenetrable.

(d) Transmission and reflection in the random sections
We collect here the relevant results from [25, ch. 20] and [26] on wave propagation in random
waveguides. As stated at the beginning of §3b, we are interested in small random fluctuations
μ of c−2. These have a nontrivial effect at a long distance L of propagation with respect to the
correlation length 	c of the fluctuations and the wavelength λ. Thus, we consider the asymptotic
regime

	c ∼ λ ∼ X � L, Var(μ) � 1, (3.27)

where we deduce from equation (3.4) that the number N of propagative modes is of order
one. The scattering effect of the random medium on the transmittivity is of order one when
Var(μ)	cL/λ2 = O(1) and it is smaller than one when Var(μ)	cL � λ2. The latter defines what we
call the weak scattering regime and is of particular interest in this paper because it allows the
explicit quantification of the mean transmittivity of the waveguide (see §3f).

The propagator matrix P− for the left random section is the solution of

∂zP−(ω, z) =
(

H(ω, z) K(ω, z)
K(ω, z) H(ω, z)

)
P−(ω, z), z ∈

(
−L,

−d
2

)
(3.28)

and

P−
(

ω,
−d
2

)
= I2N (3.29)

where I2N denotes the 2N × 2N identity matrix. Given the algebraic form of the coupling matrix
in the right-hand side of (3.28), one can deduce that the propagator has the block structure [25,
Section 20.2.5]

P−(ω, z) =
⎛⎝P(a)

− (ω, z) P(b)
− (ω, z)

P(b)
− (ω, z) P(a)

− (ω, z)

⎞⎠ , (3.30)

with full blocks P(a)
− , P(b)

− ∈ C
N×N that capture mode coupling induced by scattering in the random

medium. We are interested in the propagator evaluated at z = −L, which defines the N × N
transmission and reflection matrices of the left random section. These matrices are the analogues
of the scalar-valued transmission and reflection coefficients in layered media, deduced from the
propagator as explained in appendix A(b). We have(

I
R−(ω)

)
= P−(ω, −L)

(
T−(ω)

0

)
, (3.31)

which can be understood from the waveguide analogue of figure 8 and(
0

T̃−(ω)

)
= P−(ω, −L)

(
R̃−(ω)

I

)
, (3.32)

which corresponds to the analogue of figure 9. Here, 0 and I are the N × N zero and identity
matrices, respectively.
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Similarly, the propagator P+ for the right random section is the solution of

∂zP+(ω, z) =
(

H(ω, z) K(ω, z)
K(ω, z) H(ω, z)

)
P+(ω, z), z ∈

(
d
2

, L
)

(3.33)

and

P+
(

ω,
d
2

)
= I2N , (3.34)

and its algebraic structure is like in equation (3.30), with N × N blocks P(a)
+ and P(b)

+ . This
propagator defines the N × N transmission and reflection matrices of the right random section
according to equations(

T+(ω)
0

)
= P+(ω, L)

(
I

R+(ω)

)
and

(
R̃+(ω)

I

)
= P+(ω, L)

(
0

T̃+(ω)

)
. (3.35)

These can be understood from the waveguide analogues of figures 6 and 7.
Note the symmetry of the definitions (3.28)–(3.29) and (3.33)–(3.34). Both propagators start as

the identity I2N at z = ±d/2 and define the transmission and reflection matrices at z = ±L. The
expression of the coupling matrices H and K given in [25, Section 20.2.4] and the symmetry of the
fluctuations about z = 0, give that

H(ω, z) = −H(ω, −z) and K(ω, z) = −K(ω, −z). (3.36)

This implies that

P−(ω, −L) = P+(ω, L), (3.37)

and solving equations (3.31)–(3.32) and (3.35), we get: the transmission matrices satisfy

T+(ω) = T̃−(ω) = P(a)
+ (ω, L) − P(b)

+ (ω, L)[P(a)
+ (ω, L)]−1P(b)

+ (ω, L)

and T̃+(ω) = T−(ω) = [P(a)
+ (ω, L)]−1,

⎫⎪⎬⎪⎭ (3.38)

and the reflection matrices satisfy

R+(ω) = R̃−(ω) = −[P(a)
+ (ω, L)]−1P(b)

+ (ω, L)

and R̃+(ω) = R−(ω) = P(b)
+ (ω, L)[P(a)

+ (ω, L)]−1.

⎫⎪⎬⎪⎭ (3.39)

In addition, we have the energy conservation relation [25, eqn (20.41)]

R�
+(ω)R+(ω) + T�

+(ω)T+(ω) = I, (3.40)

and the reciprocity relations [26, p. 1582]

RT
+(ω) ≈ R+(ω) and R̃T

+(ω) ≈ R̃+(ω). (3.41)

Here, the superscript T stands for transpose, the star � denotes the complex conjugate and
transpose and the approximation in (3.41) means that reciprocity holds in the asymptotic regime
(3.27).
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(e) Transmission through the system
The propagator matrix P for the waveguide is defined by the equation(

â(ω, L)
b̂(ω, L)

)
= P (ω)

(
â(ω, −L)
b̂(ω, −L)

)
. (3.42)

From the definitions (3.14), (3.28) and (3.33) of the propagators of the barrier and the random
sections, and the identity (3.37), we deduce that

P (ω) = P+(ω, L)P1(ω)[P+(ω, L)]−1. (3.43)

It is more convenient for the calculations to consider first the adjoint configuration with an
incoming left going wave impinging on the medium at z = L , stored in b̂(ω, L), and radiation
condition at z = −L, expressed as â(ω, L) = 0. This is described by the following equation:(

R̃(ω)
I

)
= P (ω)

(
0

T̃ (ω)

)
. (3.44)

We are interested in the transmission matrix T̃ . Its expression is given in the next theorem, proved
in appendix B(a).

Theorem 3.3. The N × N transmission matrix for the waveguide has the expression

T̃ (ω) ≈ T+(ω)[T−1
1 (ω) − R+(ω)T−1

1 (ω)R1(ω) − T−1
1 (ω)R1(ω)R+(ω)

− R+(ω)T−1
1 (ω)R+(ω)]−1TT

+(ω), (3.45)

where the approximation holds in the regime (3.27).

The transmissivity of the system is

Tr[T̃ �(ω)T̃ (ω)] =
N(ω)∑
j,l=1

|T̃jl(ω)|2, (3.46)

where ‘Tr’ denotes the trace. In the next section, we quantify the mean of (3.46) in the asymptotic
regime (3.27). Note that, by the invariance of the wave system (3.1–3.3) to the change of direction
z → −z, the transmission problem corresponding to an incoming right-going wave impinging on
the medium at z → −z and radiation condition at z = L is equivalent to the adjoint transmission
given above.

(f) Enhanced transmission
To quantify the effect of symmetry on the wave transmission through the waveguide, we derive
next the expression of the mean transmissivity. This requires the statistical moments of the
products of the entries of the transmission and reflection matrices T+ and R+. These moments
are characterized in the regime (3.27) in [26, Propositions 3.1, 4.2]. Their expression is very
complicated, so we do not repeat it here. However, the result simplifies in the case of weak
scattering in the random medium:

Theorem 3.4. When the random medium is weakly scattering, i.e. in the asymptotic regime (3.27) with
Var(μ)	cL � λ2, the mean transmissivity is approximated by

E

⎡⎣N(ω)∑
j,l=1

|T̃jl(ω)|2
⎤⎦≈ T(ω) =

N(ω)∑
l=1

⎡⎣|T1,l(ω)|2 +
N(ω)∑
m=1

Mlm(ω)Blm(ω)

⎤⎦ , (3.47)

where we introduced the positive coefficients

Mlm(ω) = E[|R+,lm(ω)|2]≈ k4(ω)L
2βl(ω)βm(ω)

∫∞

0
cos[(βj(ω) + βl(ω))z]E[νl,m(0)νl,m(z)] dz, (3.48)
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and the factors

Blm(ω) = |T1,l(ω) + T1,m(ω) − 2T1,l(ω)T1,m(ω)|2 − |T1,l(ω)|2 − |T1,m(ω)|2, (3.49)

depend only on the barrier.

The approximation in (3.48) is deduced from the second-order moments of R+ given in [26,
Proposition 3.1]. It holds in the weakly scattering regime and shows that the coefficients Mlm
are proportional to the power spectral density of the stationary process νl,m, for l, m = 1, . . . , N.
Moreover, these coefficients are of the order of Var(μ)	cL/λ2 � 1, by the definition of the weak
scattering regime.

The proof of this theorem is in appendix B(b). We conclude from its statement that if there is
no random medium, the transmissivity equals that of the barrier, denoted by

T0(ω) =
N(ω)∑
l=1

|T1,l(ω)|2. (3.50)

If the random medium is present, its effect on the mean transmissivity depends on the strength
of the barrier, which determines the sign of the factors (3.49). The moments Mlm are positive by
definition, so if the factors Blm are positive, we have transmission enhancement induced by the
symmetry of the random medium.

Let us write more explicitly equation (3.49),

Blm(ω) =4|T1,l(ω)|2|T1,m(ω)|2 − 4|T1,m(ω)|2Re[T1,l(ω)] − 4|T1,l(ω)|2Re[T1,m(ω)]

+ 2Re[T1,m(ω)T1,l(ω)],

and observe from equation (3.25) that Re(T1,l) = |T1,l|2. This gives that

Blm(ω) = −4|T1,l(ω)|2|T1,m(ω)|2 + 2Re[T1,m(ω)T1,l(ω)]

(3.25)= −2[1 − ql(ω)qm(ω)]

[1 + q2
l (ω)][1 + q2

m(ω)]
, l, m = 1, . . . , N(ω). (3.51)

Consequently, Blm < 0 if the barrier is weak i.e. the parameters {ql}N
l=1 are small, and the random

medium has a negative effect on the transmissitivity, because

T(ω) − T0(ω) < 0. (3.52)

However, if the barrier is strong enough to make the parameters {ql}N
l=1 larger than 1, the factors

(3.51) are positive and we have transmission enhancement

T(ω) − T0(ω) ≈
N(ω)∑
l=1

N(ω)∑
m=1

Mlm(ω)Blm(ω) > 0. (3.53)

The enhancement is due to the symmetry of the random medium about the strong barrier. Without
the symmetry, the mean transmissivity is reduced, as stated in the next proposition, proved in
appendix B(c).

Proposition 3.5. When the random medium is weakly scattering, i.e. in the asymptotic regime (3.27)
with Var(μ)	cL � λ2, and the random media in the left and right sections of the waveguide are statistically
independent, the mean transmissivity of the system is approximated by

E

⎡⎣N(ω)∑
j,l=1

|T̃jl(ω)|2
⎤⎦≈ T0(ω) − 2

N(ω)∑
l=1

N(ω)∑
m=1

Mlm(ω)|T1,l(ω)|2|T1,m(ω)|2, (3.54)

and is therefore smaller than the transmissivity T0(ω) of the barrier.
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4. Summary
We have introduced a detailed mathematical analysis of wave transmission enhancement in
random systems with symmetry about a reflecting barrier. The analysis is motivated by recent
experimental results reported in the physics literature, which observe such enhancement in
symmetric cavities and in diffusive slabs. We consider acoustic waves for simplicity, although
the methodology applies to any linear waves. The main result is the quantification of the mean
transmissivity of two random systems with a preferred direction of propagation: plane waves in
randomly layered media and waves in random waveguides. The first case is easier to analyse
and we consider both weak and strongly scattering random media. The waveguide setting is
significantly more complex, so we quantify the transmission enhancement only in the case of
weakly scattering random media. The result is expected to extend to stronger scattering regimes,
because the waveguide setting is somewhat close to that in diffusive slabs, where transmission
enhancement has been observed experimentally in [22,23]. However, the explicit analysis and
quantification of such enhancement is difficult, due to the very complicated expression of the
statistical moments of the transmission and reflection coefficients in random waveguides.

The analysis that is carried out in this paper shows that the transmission enhancement in both
layered media and in weakly scattering random waveguides is much more pronounced for large
opacity of the barrier.
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Appendix A. Derivation of the results for randomly layered media
In this appendix, we prove the results stated in §2. Since the frequency ω is fixed in the proofs, we
simplify the notation throughout the appendix, by dropping the argument ω of the propagator
and scattering matrices below.

(a) Proof of lemma 2.1
The statement of the lemma is derived from the continuity of the Fourier coefficients of the
pressure and velocity fields. The decomposition of these fields is given in equations (2.7)–(2.8)
outside the barrier and their analogues inside the barrier. The medium inside the barrier is
homogeneous, so it follows from equation (2.1) that the right and left going mode amplitudes
there, denoted by â1 and b̂1, satisfy

∂ẑa1(z) = ∂ẑb1(z) = 0, z ∈
(−d

2
,

d
2

)
. (A 1)

When imposing the continuity of the wave field at z = −d/2, we obtain that⎛⎜⎝̂a1

(
− d

2

)
e−iω(d/2c1)

b̂1

(
− d

2

)
eiω(d/2c1)

⎞⎟⎠=
⎛⎝r+ r−

r− r+

⎞⎠
⎛⎜⎝̂a
(
− d

2

)
e−iω(d/2c0)

b̂
(
− d

2

)
eiω(d/2c0)

⎞⎟⎠ , (A 2)
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where

r±=1
2

(√
ζ1

ζ0
−
√

ζ0

ζ1

)
. (A 3)

The continuity at z = d/2 gives⎛⎜⎝ â
(

d
2

)
eiω(d/2c0)

b̂
(

d
2

)
e−iω(d/2c0)

⎞⎟⎠=
⎛⎝ r+ −r−

−r− r+

⎞⎠
⎛⎜⎝ â1

(
d
2

)
eiω(d/2c1)

b̂1

(
d
2

)
e−iω(d/2c1)

⎞⎟⎠ , (A 4)

and from equation (A 1), we have

â1

(
d
2

)
= â1

(
−d

2

)
and b̂1

(
d
2

)
= b̂1

(
−d

2

)
. (A 5)

Combining these equations, we obtain⎛⎜⎝̂a
(

d
2

)
b̂
(

d
2

)
⎞⎟⎠= P1

⎛⎜⎝̂a
(
− d

2

)
b̂
(
− d

2

)
⎞⎟⎠ , (A 6)

where

P1 =
(

e−iω(d/2c0) 0
0 eiω(d/2c0)

)(
r+ −r−

−r− r+

)(
eiω(d/c1) 0

0 e−iω(d/c1)

)

×
(

r+ r−
r− r+

)(
e−iω(d/2c0) 0

0 eiω(d/2c0)

)
. (A 7)

Multiplying the matrices in (A 7), we get the algebraic form (2.9) of P1, with

α =
[

(r2
+ − r2

−) cos
(

ωd
c1

)
+ i(r2

+ + r2
−) sin

(
ωd
c1

)]
e−iωd/c0 (A 8)

and

γ = −2ir+r− sin
(

ωd
c1

)
. (A 9)

Finally, definition (A 3) gives

r2
+ − r2

− = 1 and r+r−=1
4

(
ζ1

ζ0
− ζ0

ζ1

)
, (A 10)

and the statement of lemma 2.1 follows. �

(b) Proof of lemma 2.2
Consider first the random section [d/2, L] and define the propagator P+ of the subsection [d/2, z]
by ⎛⎝̂a(z)

b̂(z)

⎞⎠= P+(z)

⎛⎜⎝̂a
(

d
2

)
b̂
(

d
2

)
⎞⎟⎠ and z ∈

(
d
2

, L
]

. (A 11)

It is shown in [25, ch. 7 and §4.4.3] that

P+(z) =
⎛⎝α+(z) γ+(z)

γ+(z) α+(z)

⎞⎠ , (A 12)

where α+ and γ+ satisfy the first-order system

d
dz

(
α+(z)
γ+(z)

)
= iω

2c0
μ(z)

(
1 −e−2iωz/c0

e2iωz/c0 −1

)(
α+(z)
γ+(z)

)
, (A 13)
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random section

Figure 6. Reflection and transmission coefficients R+ and T+ for the random section (d/2, L).

at z ∈ (d/2, L), and the initial conditions

α+
(

d
2

)
= 1 and γ+

(
d
2

)
= 0. (A 14)

This is illustrated schematically in figure 6 and at z = L, we have(
T+
0

)
= P+(L)

(
1

R+

)
, (A 15)

where T+ and R+ are the random transmission and reflection coefficients, defined by

T+= 1

α+(L)
and R+= − γ+(L)

α+(L)
. (A 16)

Since the matrix in equation (A 13) has trace zero, we have the conservation relation [25, Section
7.1.1]

det[P+(L)] = |α+(L)|2 − |γ+(L)|2 = 1, (A 17)

which in light of definitions (A 16) is equivalent to |R+|2 + |T+|2 = 1. Because of this relation, the
inverse of the propagator is

P−1
+ (L) =

(
α+(L) −γ+(L)

−γ+(L) α+(L)

)
, (A 18)

and from (A 15), we obtain that(
1

R+

)
=
(

α+(L) −γ+(L)
−γ+(L) α+(L)

)(
T+
0

)
. (A 19)

Reordering these equations and defining

T̃+=T+= 1

α+(L)
and R̃+= γ+(L)

α+(L)
, (A 20)

we obtain the adjoint problem, illustrated schematically in figure 7 ,(
R̃+
1

)
= P+(L)

(
0

T̃+(L)

)
. (A 21)

Now we can obtain from equation (A 11) evaluated at z = L and the definitions (A 16) and
(A 20) of the transmission and reflection coefficients that⎛⎝ â(L)

b̂
(

d
2

)
⎞⎠=

⎛⎝T+ R̃+

R+ T+

⎞⎠
︸ ︷︷ ︸

S+

⎛⎝̂a
(

d
2

)
b̂(L)

⎞⎠ , (A 22)

where S+ is the scattering matrix of the random section [d/2, L].
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random section

Figure 7. Adjoint reflection and transmission coefficients R̃+ and T̃+ for z ∈ (d/2, L).

random section

Figure 8. Reflection and transmission coefficients R− and T− for random section (−L,−d/2).

Similarly, the propagator matrix for the left random section satisfies

⎛⎝̂a(z)

b̂(z)

⎞⎠= P−(z)

⎛⎜⎝̂a
(
− d

2

)
b̂
(
− d

2

)
⎞⎟⎠ and z ∈

[
−L, −d

2

)
, (A 23)

where

P−(z) =
⎛⎝α−(z) γ−(z)

γ−(z) α−(z)

⎞⎠ , (A 24)

and α− and β− satisfy

d
dz

(
α−(z)
γ−(z)

)
= iω

2c0
μ(−z)

(
1 −e−2iωz/c0

e2iωz/c0 −1

)(
α−(z)
γ−(z)

)
, (A 25)

at z ∈ (−L, −d/2), and the initial conditions

α−
(

−d
2

)
= 1 and γ−

(
−d

2

)
= 0. (A 26)

Note that due to the symmetry of the random medium, (α−(−z), γ−(−z)) satisfies the same
equation and initial condition as (α+(z), γ+(z)). Therefore,

α−(−L) = α+(L) and γ−(−L) = γ+(L). (A 27)

The reflection and transmission through the left random section is illustrated schematically in
figures 8 and 9 and the transmission and reflection coefficients are defined by(

1
R−

)
= P−(−L)

(
T−
0

)
and

(
0

T̃−

)
= P−(−L)

(
R̃−
1

)
.
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random section

Figure 9. Adjoint reflection and transmission coefficients R̃− and T̃− for z ∈ (−L,−d/2).

These equations and the relation (A 27) give

T− = T̃− = 1
α−(−L)

= 1

α+(L)
(A.16)= T+,

R−= γ−(−L)
α−(−L)

= γ+(L)

α+(L)
(A.20)= R̃+

and R̃−= − γ−(−L)
α−(−L)

= − γ+(L)

α+(L)
(A.16)= R+,

as stated in the lemma. �

(c) Proof of theorem 2.3
Using the propagator matrices of the two random regions and the barrier, described in appendices
A(a)–(b), we have ⎛⎝̂a(L)

b̂(L)

⎞⎠= P+(L)P1P−(−L)

⎛⎝̂a(−L)

b̂(−L)

⎞⎠ , (A 28)

To calculate the scattering matrix, we need a basic lemma.

Lemma A.1. Consider a system consisting of two successive sectors: the left one with propagator matrix
Pl and the right one with propagator Pr,

Pl =
(

αl γl
γl αl

)
and Pr =

(
αr γr

γr αr

)
. (A 29)

The propagator matrix of the system is P = PrPl =
[

α γ
γ α

]
, where

α = αlαr + γlγr, γ = αlγr + γlαr. (A 30)

The scattering matrix is S =
[

T R̃
R T

]
, with entries

T = 1
α

= TlTr(1 − RrR̃l)
−1, (A 31)

R = −γ

α
= Rl + T2

l Rr(1 − RrR̃l)
−1 (A 32)

and R̃ = γ

α
= R̃r + T2

r R̃l(1 − RrR̃l)
−1. (A 33)

Here, Tj, Rj and R̃j are the transmission and reflection coefficients of the two sectors, with j ∈ {l, r}.

Proof. Equation (A 30) follows trivially from the multiplication of the matrices (A 29). The
expression of the transmission and reflection coefficients in terms of α and γ is as in equations
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(A 16) and (A 20). From definitions

Tj = 1
αj

, Rj = − γj

αj
and R̃j = γj

αj
, j ∈ {l, r}, (A 34)

we get that the transmission coefficient satisfies

T = 1
α

(A 30)= 1
αlαr

(
1 + γl

αl

γr

αr

)−1
(A 34)= TlTr(1 − RlR̃r)−1.

For the reflection coefficient, we have

R = −γ

α

(A 30)= − (αlγr + γlαr)
αlαr

(
1 + γl

αl

γr

αr

)−1
(A 34)=

[
|αl|2
αl

2 Rr + Rl

]
(1 − R̃lRr)−1

(A 17)=
[

(1 + |γl|2)

αl
2 Rr + Rl

]
(1 − R̃lRr)−1 (A 34)= (T2

l Rr − RlR̃lRr + Rl)(1 − R̃lRr)−1

= T2
l Rr(1 − R̃lRr)−1 + Rl.

The derivation of the expression of the adjoint reflection coefficient is similar

R̃ = γ

α

(A 30)= (αlγr + γlαr)
αlαr

(
1 + γl

αl

γr

αr

)−1
(A 34)=

[
R̃r + (1 + |γr|2)

αr
2 R̃l

]
(1 − R̃lRr)−1

(A 34)= (R̃r + T2
r R̃l − R̃rRrR̃l)(1 − R̃lRr)−1 = R̃r + T2

r R̃l(1 − R̃lRr)−1.

The proof of the lemma is complete. �

To derive the expression of the transmission coefficient stated in theorem 2.3, we apply
lemma A.1 twice. The first time, we use the propagators Pl = P−(−L) and Pr = P1 and obtain the
transmission and reflection coefficients

T−,1
(A 31)= T−T1(1 − R1R̃−)−1, (A 35)

R−,1
(A 32)= R− + T2

−R1(1 − R1R̃−)−1 (A 36)

and R̃−,1
(A 33)= R1 + T2

1R̃−(1 − R1R̃−)−1, (A 37)

with T− = T−(−L), R− = R−(−L) and R̃− = R̃−(−L). Here, we used that R1 = R̃1, according to
equation (2.13). The second time we apply lemma A.1, we use the propagators Pl = P−,b and
Pr = P+(L). The transmission coefficient is

T (A 31)= T−,1T+(1 − R+R̃−,1)−1

(A 35)= T−T1T+[1 − R1R̃− − R+R1(1 − R1R̃−) − R+T2
1R̃−]−1, (A 38)

with T+ = T+(L), R+ = R+(L), and R̃+ = R̃+(L). Now use the relations (2.27) in this equation to
obtain

T = T2T1[1 − 2RR1 + (R2
1 − T2

1)R2]−1, (A 39)

and deduce from equation (2.15) that

R2
1 − T2

1 = q2 + 1
(i + q)2 = 2R1 − 1. (A 40)

The result (2.28) follows (A 39) and the identity

(1 − R)[1 − (2R1 − 1)R] = 1 − 2RR1 + (2R1 − 1)R2.

We are interested in the mean transmitted intensity. To derive its expression, we recall from [25,
Section 7.1.1] that |R| < 1. Since R1 satisfies equation (2.31) and R1 satisfies equation (2.31), we can
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use the series expansions

(1 − R)−1 =
∞∑

k=0

Rk and [1 − (2R1 − 1)R]−1 =
∞∑

k=0

(2R1 − 1)kRk,

and rewrite equation (2.28) as

E[|T |2] = |T1|2
∞∑

k1,k2,k3,k4=0

(2R1 − 1)k2 (2R1 − 1)k4 E[|T|4Rk1+k2 R
k3+k4 ]. (A 41)

It is shown in [25, ch. 7 and 9] that

E[|T|2RjR
j′
] = 0, if j �= j′,

so only the terms with k1 + k2 = k3 + k4 contribute in (A 41). Moreover, since |R|2 = 1 − |T|2, we
obtain that

E[|T |2] = |T1|2
∞∑

k=0

k∑
k2,k4=0

(2R1 − 1)k2 (2R1 − 1)k4 E[|T|4(1 − |T|2)k]. (A 42)

Now, use the notation (2.30) and observe that

|T1|2
k∑

k2,k4=0

(2R1 − 1)k2 (2R1 − 1)k4 =
∣∣∣∣∣∣T1

k∑
k2=0

(2R1 − 1)k2

∣∣∣∣∣∣
2

=
∣∣∣∣ T1

2(1 − R1)
[1 − (2R1 − 1)k+1]

∣∣∣∣2 ,

where according to equation (2.15), we have∣∣∣∣ T1

2(1 − R1)

∣∣∣∣2 = 1
4

.

The result (2.29) follows, once we recall the definition (2.30) of τk.

(d) Transmission through two independent random sections
To derive the mean transmitted intensity in the absence of symmetry, we begin with the general
formula (A 38), where now the transmission and reflection coefficients in the two random sections
are statistically independent. Using equation (A 40) in (A 38) and writing the inverse of the curly
bracket as power series, we get

E
[|T |2]= |T1|2

∞∑
j,l=0

E

[
|T−|2|T+|2[R1(R++R̃−) + (1 − 2R1)R+R̃−

]j
× [

R1(R+ + R̃−) + (1 − 2R1)R+R̃−
]l]

.

Next, we expand the j and l powers using the binomial theorem and use the independence of
(T−, R̃−) and (T+, R̃+). Using also that E[|T+|2Rn+R+

m
] = 0 unless m = n, and the same for (T−, R̃−),

we get the result (2.39).

Appendix B. Derivation of the results for randomwaveguides
In this appendix, we prove the results stated in §3. The frequency ω is fixed, so we simplify
notation as in the previous appendix, by droping the ω argument.
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(a) Proof of theorem 3.3
We obtain from equations (3.38) to (3.39) that

P(a)
+ = T+(I − R+R+)−1 and P(b)

+ = −T+(I − R+R+)−1R+. (B 1)

Moreover, standard formulae for block matrix inversion give that

P−1
− (−L)

(3.37)= P−1
+ (L) =

⎛⎝ T−1
+ R+T−1

+

R+T−1
+ T−1

+

⎞⎠ . (B 2)

Then, using this result in (3.43) and recalling the block algebraic structure of P+ and P1, we get
that the propagator of the system has the form

P =
⎛⎝P (a) P (b)

P (b) P (a)

⎞⎠ . (B 3)

We are interested in the first block P (a), which according to definition (3.44) defines the
transmission matrix

T̃ = [P (a)]−1. (B 4)

The expression of this block follows by carrying out the multiplication in (3.43),

P (a) = T+(I − R+R+)−1(P(a)
1 − R+P(b)

1 + P(b)
1 R+ − R+P(a)

1 R+)(T+)−1.

But we also have from the relations (3.40)–(3.41) that

I − R+R+≈I − R�
+R+=T�

+T+,

which simplifies the factor

T+(I − R+R+)−1 ≈ T+(T�
+T+)−1 = (T�

+)−1. (B 5)

The statement of the theorem follows from (B 4) and the relations

P(a)
1 = T−1

1 and P(b)
1 = −P(b)

1 = −T−1
1 R1,

deduced from equations (3.15) and (3.25)–(3.26). �

(b) Proof of theorem 3.4
Weak scattering in the random medium means that the norm of the reflection matrix R+ is small.
Thus, we can use Neumann series to approximate the square bracket in (3.45) by

Q = [T−1
1 − R+T−1

1 R1 − T−1
1 R1R+−R+T−1

1 R+]−1

= [I − T1R+R1T−1
1 − R1R+−T1R+T−1

1 R+]−1T1

≈ T1 + T1R+R1 + R1R+T1, (B 6)

where in the second equality we used that R1 and T−1
1 commute, because they are diagonal. This

approximation is valid for weak scattering and neglects terms that contain a product involving
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two (or more) reflection matrices R+. Substituting (B 6) into (3.45), we get that

T̃ ≈ T+(T1 + T1R+R1 + R1R+T1)TT
+, (B 7)

and the mean transmittivity is, from (3.46),

E

⎡⎣ N∑
j,l=1

|T̃jl|2
⎤⎦≈ Tr{E[(I − R�+R+)(T1 + T1R+R1 + R1R+T1)�

× (I − R�
+R+)(T1 + T1R+R1 + R1R+T1)]}. (B 8)

Here, we used the energy conservation relation (3.40) and the commutation property of the trace

Tr[T+ATT
+] = Tr[TT

+T+A]
(3.40)= Tr[(I − RT

+R+)A], ∀ A ∈ C
N×N .

The approximation (B 8) is consistent with (B 6) because, if n �= n′, n, n′ ≥ 0, then

E

⎡⎣ n∏
k=1

R+,jklk

n′∏
k′=1

R+,j′k′ l
′
k′

⎤⎦= 0,

for any jk, lk, j′k′ , l′k′ ∈ {1, . . . , N}, as shown by the analysis of the statistical moments of the
transmission and reflection matrices of the random medium given in [26]. This is why we could
neglect the quadratic terms in (B 6). Only the terms that do not involve R+ or that involve two
reflection matrices, with one of them being complex-conjugated, contribute to the approximation
of (B 8). Thus, the mean transmissivity is approximated by

T = Tr{E[(I − R�+R+)T�
1T1 − T�

1R�
+R+T1 + R�

1R�
+T�

1T1R+R1

+ R�
1R�

+T�
1R1R+T1 + T�

1R�
+R�

1T1R+R1 + T�
1R�

+R�
1R1R+T1]}. (B 9)

The statement of the theorem follows from this equation once we write explicitly the trace and
use the expressions (3.25)–(3.26) of the entries of T1 and R1.

(c) Proof of proposition 3.5
The propagator matrix of the waveguide system with two independent random sections is

P = P+(L)P1P̌+(L), (B 10)

where P̌+ is an independent and identically distributed copy of P+. Given the algebraic structure
of the propagator P1 of the barrier given in (3.14), and of the random medium propagator P+
given in equations (3.30) and (3.37), we conclude from (B 10) that P is of the form (B 3). We are
interested in its first block P (a) which determines the transmission matrix T̃ , as in equation (B 4).

Using equation (B 1) and multiplying through in equation (B 10), we get that

P (a) = T+(I − R+R+)−1[(P(a)
1 − R+P(b)

1 )Ť+(I − Ř+Ř+)−1

− (P(b)
1 − R+P(a)

1 )Ť+(I − Ř+Ř+)−1Ř+],

where the first factor is approximated in (B 5). This gives

T̃ = (P (a))−1 ≈ [(P(a)
1 − R+P(b)

1 )Ť+(I − Ř+Ř+)−1

− (P(b)
1 − R+P(a)

1 )Ť+(I − Ř+Ř+)−1Ř+]−1TT
+, (B 11)

where the square bracket can be approximated with Neumann series for small reflection matrices.
Such series are also used to expand Tr(T̃ �T̃ ) up to second order in terms of the reflection matrices
of the random medium. The result stated in the proposition follows after we take the expectation
and use that (T+, R+) and (Ť+, Ř+) are independent.
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