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ABSTRACT
A theory for the characterization of the fourth-ordermoment of elec-
tromagnetic wave beams is presented in the case when the source is
partially coherent. A Gaussian–Schell model is used for the partially
coherent random source. The white-noise paraxial regime is consid-
ered, which holds when the wavelength is much smaller than the
correlation radius of the source, the beam radius of the source, and
the correlation length of the medium, which are themselves much
smaller than the propagation distance. The complex wave ampli-
tude field can then be described by the Itô-Schrödinger equation.
This equation gives closed evolution equations for the wave field
moments at all orders and here the fourth-order moment equa-
tions are considered. The general fourth-order moment equations
are solved explicitly in the scintillation regime (when the correlation
radius of the source is of the same order as the correlation radius of
themedium, but the beam radius ismuch larger) and the result gives
a characterization of the intensity covariance function. The form of
the intensity covariance function derives from the solution of the
transport equation for the Wigner distribution associated with the
second-order wave moment. The fourth-order moment results for
polarized waves are used in an application for imaging of partially
coherent sources.
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1. Introduction

We consider beam wave propagation in complex media in the situation when we model
both the source and the medium as being random. Modeling with a random or complex
medium in the context of wave propagation is natural inmany situations. In the early foun-
dational work [1,2] and also in Refs. [3,4], a main motivation was propagation through
the turbulent atmosphere, but there are many other important applications as well. In
cases where one considers propagation through the fluctuating ocean, the earth’s crust
or through biological tissue, it is also natural and convenient in many cases to model in
terms of a random medium [4–6]. In these cases, the medium may be too complex to
describe pointwise, but one can hope to be able to describe or model the statistics of the
medium fluctuations. The challenge is then to capture the complicated coupling between

CONTACT Knut Sølna ksolna@math.uci.edu

© 2023 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17455030.2022.2096272&domain=pdf&date_stamp=2023-10-20
mailto:ksolna@math.uci.edu


WAVES IN RANDOM AND COMPLEX MEDIA 1347

the medium fluctuations and the wave field and to understand how a particular model for
the randommedium statistics affects the statistics of the wave field which becomes a ran-
dom field due to random scattering. In this paper, we consider the case of beam waves or
paraxial waves in a high-frequency long-rangepropagation scenario, when thewavelength
ismuch smaller than the correlation radius of the source, the beam radius of the source and
the correlation length of the medium, which are themselves much smaller than the propa-
gation distance. In this case, we can approximate the wave field in terms of the solution of
the Itô-Schrödinger equation. This equation was analyzed in Ref. [7] and derived from the
Helmholtz equation in Ref. [8]. Despite the long history of the theory of waves in random
media, a rigorous and explicit description of the fourth-order moment was only obtained
in Ref. [9] in the scintillation regime (when the correlation radius of the source is of the
same order as the correlation radius of the medium, but the beam radius is much larger).
Here we generalize this fourth-order moment theory to the case of polarized waves. This
is a deep and quite surprising result in the theory of waves in randommedia. It states that
even though the polarized wave has only partially lost its coherence due to scattering, it
behaves from the point of view of the fourth-order moment as if it was a Gaussian field. In
some sense, this quasi-Gaussian property explains some of the success or robustness of the
theory ofwaves in randommedia since the second-order characterization, which in general
is relatively easy to obtain, also explains the behavior of fourth-order wave functionals.

Understanding beam propagation through complex media is important because of
applications in connection with free-space optical communications, remote sensing and
optical imaging. The second-ordermoments of light beams are analyzed via aWigner func-
tion approach in Refs. [10,11] in order to understand beam resilience to turbulence for
certain source beams. Themain focus in this paper is on a theory for fourth-ordermoments
which also play an important role in the analysis of applications in imaging and commu-
nication. In recent years, there has for instance been a lot of interest in speckle imaging
approaches exploiting the speckle memory effect [12,13]. In speckle imaging, one exploits
the statistical structure of the speckle and that the speckle patternmay change slowly with
illumination in order to carry out imaging through complex media. The speckle pattern
corresponds to the structure of the intensity fluctuations, and with the intensity being a
quadratic wave field quantity, one then needs to understand fourth-order wave moments
to analyze the stability (variance) of the speckle. In Ref. [14], a speckle imaging technique
was set forth in a multifrequency context based on an effective spectral decomposition
approachwithpromisingexperimental results. Theanalysis of this case then requires results
on multifrequency fourth-order wave moments [15]. While the approach in Ref. [14] uses a
learneddictionary for computational decompositionofwave intensity, an interesting imag-
ing approach is presented in Ref. [16] where a set of diffractive layers is learned by a deep
learning approach for source imaging through a complex section, thus giving an all-optical
image reconstruction method.

An important aspect of our modeling in this paper is that we also consider the source
as being random. Modeling with a random source may be motivated by the complexity
of the source as when one considers emission from a star. A second motivation for under-
standing and analyzing beamwave propagation from a random source is that such sources
have been promoted as being desirable for scintillation reduction when beaming through
a complex medium, see Refs. [17–22] and references therein. Scintillation here refers to
the situation that the transmitted beam intensity fluctuates rapidly due to scattering over
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the propagation path. One intuition is that by using a complex source, one gets a better
mixing over wave ray paths and a scintillation reduction. Our objective here is to develop
an analytic framework where in particular such questions can be analyzed. We consider
the Gaussian–Schell model for the source when the source coherence statistics is defined
in terms of Gaussian envelopes. This gives rather simple and convenient forms for the
wave statistics, but the theory can easily be modified to more general forms for the source
statistics. The situation with a partially coherent source, but a homogeneous medium was
considered in Ref. [23], while we here consider the case when also the medium is random.
Note that we focus on the fourth-order moments, while in Ref. [24] moments of all orders
were considered under some simplifying assumptions. The assumption that allows us to
get explicit expressions for the fourth-order moments is to assume the scintillation regime,
when the correlation radius of the source is of the same order as the correlation radius of
themedium, but the beam radius is much larger. Fluctuations of scalar wave intensity were
considered in Refs. [25,26] for a beam type propagationwhen the randommedium fluctua-
tions are Gaussian, while we assume Gaussianity for the source, but not for the medium. In
Ref. [27], a characterization of intensity fluctuation and how it depends on the regularity of
deterministic initial data are presented. Here we consider the case with random initial data
with smooth Gaussian statistics.

We remark that there are a number of approaches to model high-order moments of
the wave field that are based on perturbative approaches. Indeed, the derivation of such
approximations is based on the premise that the waves are only perturbed or affected by
the scattering to lower order [3,28,29]. In this paper, we describe an analytic framework that
gives a rigorous scaling limit identification of the fourth-order moment in the saturated
regime when the incoherent or scattered part of the wave field is as large as or larger than
the coherent component. In fact this description also captures the situationwhen thewave
is fully incoherent and the coherentpart of thewaveenergy is essentially fully scattered. The
range of validity of this description is discussed in Appendix 3.

We describe next a main result in the paper. We consider the situation when the time-
harmonic electric field in the source plane z = 0 corresponds to a partially coherent beam
and has the form

E⃗(z = 0, x) =
2∑

j=1

fj(x)êj, (1)

where ê1 and ê2 are two orthogonal unit vectors in the transverse plane, z is the beam
propagation direction and x is the lateral spatial coordinates. The functions f1, f2 are zero-
mean Gaussian processes with covariance
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2

)
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2

)]
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)
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(2)

where the polarization degree χ ∈ [−1, 1], ro is the beam radius of the source, ρo is the
correlation radius of the source and we have ρ1 ≤ ρo. We refer to Ref. [30] for further back-
ground on modeling with polarized waves. Consider first the second-order field moment
in the form of the mutual coherence function in the white-noise paraxial regime (with the
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wavelength smaller than the correlation radii of themediumand the beamwhich aremore-
over on the scale of the beam radius, which in turn is smaller than the propagation distance,
see Appendix 1). As discussed in Section 2, themutual coherence function of thewave field
is in this regime given by

µ2,jl(z, r,q) = E
[
uj
(
z, r + q

2

)
ul
(
z, r − q

2

)]
=
{
A2j Hρo(z, r,q) if j = l,
AjAlχHρ1(z, r,q) if j ̸= l,

(3)

where the fundamental second-order lateral scattering function is defined by

Hρo(z, r,q) = r2o
4π

∫

R2
exp

(
iζ · r − r2o|ζ |2

4
− |ζ z/ko − q|2

4ρ2
o

)

× exp
(
k2o
4

∫ z

0
C
(

ζ z′

ko
− q

)
− C(0)dz′

)
dζ , (4)

with ko the central wavenumber and C the covariance function of themedium fluctuations
when integrated in the z-dimension (see Equation (18)). The intensity is defined by

I(z, r) =
2∑

j=1

|uj(z, r)|2, (5)

and the mean intensity is then

E [I(z, r)] = (A21 + A22)Hρo(z, r, 0). (6)

Consider next the fourth-order field moment in form of the covariance of the intensity. As
discussed in Section 3, in the scintillation regime where the wavelength is smaller than the
correlation radii of the medium and the beam, which are smaller than the beam radius,
which is smaller than the propagation distance, the intensity covariance has the form

Cov
(
I
(
z, r + q

2

)
, I
(
z, r − q

2

))
=
(
A41 + A42

)
|Hρo(z, r,q)|2 + 2A21A

2
2χ

2|Hρ1(z, r,q)|2. (7)

This representation proves the quasi-Gaussian property that the fourth-order moment
(intensity covariance) derives from the second-order moment (themutual coherence func-
tion) as is the case in general for Gaussian random fields. From this description we can
identify the intensity decoherence scale and spreading scale andwediscuss this explicitly in
the strongly scattering case in Section 4. Figure 1 shows the forms of themean intensity and
intensity covariance in this regime and reflects an enhanced spreading and decorrelation
due to the random medium. Note that more generally the quasi-Gaussian property pro-
vides the basis for analysis of a number ofwave propagation challenges andwediscuss one
such application in Section 4. We remark also that fourth-order moments of the wave fields
that are more general than the intensity covariance can be obtained via Proposition A.1 in
Appendix 4 and that the quasi-Gaussian property holds for such general moments.

The outline of the paper is as follows. In Section 2, we describe modeling of the par-
tially coherent source in the polarized case and we present the Itô-Schrödinger equation
describing wave propagation in the white-noise paraxial regime. In Section 3, we present
the fourth-order moment result for the polarized waves. The main result that allows us to
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Figure 1. The mean intensity (left) and the intensity covariance (right) when the source is such that
ρo = 10λo, ro = 100λo (withλo thewavelength), A1 = A2 = A0 andχ = 0.We compare the profiles of
the source (dotted lines) and the profiles of the beam after propagation distance z = zo/2 in the homo-
geneous medium (dashed lines) and in the random medium with scattering strength γ̄2 = 5 10−7λ−1

o
(solid lines). Here zo = koρoro is the Rayleigh length of the partially coherent source and γ̄2 is defined
by Equation (30) and is a measure of the strength of the random fluctuations in the medium.

do this is that the Itô-Schrödinger equations for the polarization modes are dynamically
uncoupled, however, statistically coupled. In Section 4, we discuss an application of the
theory that we have developed to source imaging (using the intensity covariance function
instead of the mutual coherence function as in Ref. [31]). The details of the derivation and
also a discussion of the second-order moment or mutual coherence function can be found
in the appendices.

2. Electromagnetic waves in the white-noise paraxial regime

We consider propagation of a partially coherent electromagnetic beam waves through a
three-dimensional randommedium.Maxwell’s equations for the three-dimensional electric
field E⃗ and the three-dimensional magnetic field strength H⃗ are in the time-harmonic case
(with frequency ωo):

∇ × E⃗ = −iωoµ(z, x)H⃗, (8)

∇ · (ϵ(z, x)E⃗) = ρ(z, x), (9)

∇ × H⃗ = J⃗(s)(z, x) + iωoϵ(z, x)E⃗, (10)

∇ · (µ(z, x)H⃗) = 0. (11)

The term J⃗(s) is a current source term, ϵ is the dielectric permittivity of themedium, andµ is
the magnetic permeability of the medium. Note that the equation of continuity of charge
iωoρ + ∇ · J⃗(s) = 0 is automatically satisfied.

We assume that

• The medium is randomly heterogeneous:

ϵ(z, x) = ϵo [1 + mϵ(z, x)] , (12)

µ(z, x) = µo
[
1 + mµ(z, x)

]
. (13)



WAVES IN RANDOM AND COMPLEX MEDIA 1351

The randomprocessesmϵ(z, x) andmµ(z, x) are bounded, stationary, and zero-mean
and they satisfy ergodic (mixing) conditions in z.

• We consider a partially coherent source f⃗(x), which is a field with Gaussian statis-
tics and mean zero that is localized in the plane z = 0. We address the case of a
Gauss–Schellmodel for the source. The source is then J⃗(s)(z, x) = 2µ−1/2

o ϵ
1/2
0 f⃗(x)δ(z),

where f3 = 0 and f1, f2 are zero-mean Gaussian processes with covariance
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AjAlχ exp
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4ρ2
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(14)

All parameters are real and positive, with χ ∈ [−1, 1]. The parameters have to satisfy
several constraints to ensure that we deal with a well-defined covariance function:

ρo ≤ ro, χ2ρ−2
o + (1 − χ2)r−2

o ≤ ρ−2
1 ≤ ρ−2

o .

Here ro is the radius of the beam and ρo is the correlation radius. The special case ρo =
ro,χ = 0 corresponds to a coherent source with components fj(x) = fo,j exp(−|x|2/(2r2o))
where fo,j, j = 1, 2 are two independent complex-valued zero-mean Gaussian random vari-
ables with variance A2j . In the general case with ρo<ro, the field is partially coherent and
the field components have the form of correlated speckle patterns with speckle spots with
typical radius ρo and with an overall intensity envelope that is exp(−|r|2/r2o).

In the white-noise paraxial regime (which holds when the wavelength is much smaller
than the correlation radiusof the source, the correlation radiusof themediumand thebeam
radius,which are themselvesmuch smaller than thepropagationdistance), the electric field
modulo a range-dependent phase (see Appendix 1) has the form

E⃗(z, x) =
2∑

j=1

uj(z, x)êj, (15)

where ê1 and ê2 are theunit vectors in the transverseplanepointing in the x and y directions
and the complex amplitude fields uj are the solution of the following statistically coupled
Itô-Schrödinger equations [8,32,33]:

duj(z, x) = i
2ko

)xuj(z, x)dz + iko
2
uj(z, x) ◦ dB(z, x), j = 1, 2, (16)

with the initial condition in the plane z = 0:

uj(z = 0, x) = fj(x).

Here the random process B(z, x) is a real-valued Brownian field with a covariance that
derives from two-point statistics in the model for the medium fluctuations in (12–13)

E[B(z, x)B(z′, x′)] = min{z, z′}C(x − x′), (17)

where

C(x) =
∫

R
E[(mϵ + mµ)(x′ + x, z′ + z)(mϵ + mµ)(x′, z′)] dz. (18)
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Note therefore that the evolution equations for the lateral components of the electromag-
netic field are driven by the same Brownian field.We remark that C(0) can be interpreted as
the product of the variance of the fluctuations of the randommedium times its longitudinal
correlation radius:

C(0) = σ 2ℓz

for σ the standard deviation of the medium fluctuations: σ 2 = E[(mϵ + mµ)2(x′, z′)].
The derivation of (16) from the random three-dimensional scalar wave equation is pre-

sented in Ref. [8]. Its derivation for the Maxwell’s equations (8–11) is presented in Refs.
[32,33]. In Equation (16), the symbol ° stands for the Stratonovich stochastic integral [8].
The first- and second-order moments of the wave field solution of (16) have been studied
in Refs. [8,32] and recover results derived in Ref. [4]. In view of the centered partial coher-
ent source, we find that the first-order moment of the wave field is zero. The governing
equations for the higher order moments can be identified via Itô calculus for Hilbert space
valued processes. We find in particular that the second-order moment of the wave field
(mutual coherence function) defined by

µ2,jl(z, r,q) = E
[
uj
(
z, r + q

2

)
ul
(
z, r − q

2

)]
(19)

satisfies [34]

∂µ2,jl

∂z
= i

ko
∇r · ∇qµ2,jl +

k2o
4
U2 (q) µ2,jl , (20)

with the potential U2(q) = C(q) − C(0) and the initial condition determined by (14). As
shown in Appendix 2, it then follows that the mutual coherence function is given by

µ2,jl(z, r,q) =
{
A2j Hρo(z, r,q) if j = l,
AjAlχHρ1(z, r,q) if j ̸= l,

(21)

whereHρo(z, r,q) is defined by (4).
We next show how our main quantity of interest – the intensity covariance – can be

expressed in terms of the mutual coherence function.

3. The intensity covariance for polarized waves

The intensity is defined by (5) and by (3), and its mean is given by (6). The second-order
moment of the intensity is

E [I (z, x1) I (z, x2)] =
2∑

j,l=1

µ4,jl(z, x1, x2, x1, x2), (22)

where the µ4,jl ’s are defined by

µ4,jl(z, x1, x2, y1, y2) = E
[
uj(z, x1)uj(z, y1)ul(z, x2)ul(z, y2)

]
.
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These moments satisfy Equation (A19) and have the initial conditions:

µ4,jj(z = 0, x1, x2, y1, y2)

= A4j exp
(

− |x1 + y1|2

4r2o
− |x1 − y1|2

4ρ2
o

− |x2 + y2|2

4r2o
− |x2 − y2|2

4ρ2
o

)

+ A4j exp
(

− |x1 + y2|2

4r2o
− |x1 − y2|2

4ρ2
o

− |x2 + y1|2

4r2o
− |x2 − y1|2

4ρ2
o

)
(23)

for j = 1, 2 and

µ4,jl(z = 0, x1, x2, y1, y2)

= A2j A
2
l exp

(
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4ρ2
o
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o

)

+ A2j A
2
l χ

2 exp

(
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4ρ2
1

− |x2 + y1|2

4r2o
− |x2 − y1|2

4ρ2
1

)

(24)

for j ̸= l.
Consequently, as shown in Appendix 4, in the scintillation regime (which holds in the

white-noise paraxial regime when additionally the correlation radius of the source is of the
same order as the correlation radius of the medium, but the beam radius is much larger),
the second-order moment of the intensity has the form

E
[
I
(
z, r + q

2

)
I
(
z, r − q

2

)]
=
(
A41 + A42

) [
Iρo(2r, 0) + Jρo(2r,q)

]

+ 2A21A
2
2
[
Iρo(2r, 0) + χ2Jρ1(2r,q)

]
, (25)

where Iρo and Jρo are defined by (A39) and (A40). This can also be written as

E
[
I
(
z, r + q

2

)
I
(
z, r − q

2

)]
=
(
A41 + A42

) [
Hρo(z, r, 0)2 + |Hρo(z, r,q)|2

]

+ 2A21A
2
2
[
Hρo(z, r, 0)2 + χ2|Hρ1(z, r,q)|2

]
(26)

or equivalently (7). This shows that the field satisfies the Gaussian rule for the fourth-order
moment in the scintillation regime:

E
[
I
(
z, r + q

2
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I
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z, r − q
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=
2∑

j,l=1

E
[
uj
(
z, r + q

2

)
uj
(
z, r + q

2

)]
E
[
ul
(
z, r − q

2
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ul
(
z, r − q

2
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+
2∑

j,l=1

E
[
uj
(
z, r + q

2

)
ul
(
z, r − q

2

)]
E
[
ul
(
z, r − q

2

)
uj
(
z, r + q

2

)]
. (27)

The quasi-Gaussianity property and intensity covariance expression that we have just iden-
tified are useful in various applications. For instance in applications to imaging based on
wave field coherence, the signal-to-noise ratio will in general depend on fourth-order wave



1354 J. GARNIER AND K. SØLNA

field moments [35,36]. These moments can then be related to the mutual coherence func-
tion for thewave field via the theory presented in this paper.We discuss next an application
to the inverse source problem for partially coherent beam sources in complex media using
information that can be extracted from the mean intensity covariance.

4. Estimation of partially coherent electromagnetic sources

We consider the problem of characterizing a partially coherent source. The goal is to deter-
mine the parameters of a Gauss–Schell source from themeasurements of the intensity after
apropagationdistance z. Note thatherewebase theestimateonmeasurementsof intensity
only while in for instance in Ref. [31], the estimate is based on coherence of the measure-
ments of the field itself. In Ref. [37], the authors use a cross phase in the source for stable
transmission of the coherence pattern in the source field. This then allows for transmis-
sion of information. In order to relate the field coherence to coherence in the intensity,
the authors use a Gaussian approximation for the field. It follows from the analysis in our
paper that such an approximations is valid in the scintillation regime.We remark that in the
case with activemultifrequency imaging, one can obtain partial phase information from an
appropriate illumination strategy and use of a polarization identity [38]. Here we consider
passive single-frequency intensity based imaging and no phase information is available.

In the source estimation context considered here, we assume the scintillation regime,
moreover, we use the strongly scattering approximation studied in Appendix 3 (which
holds when k2oC(0)z ≫ 1 and C is smooth). We then find

E [I(z, r)] = (A21 + A22)
r2o

R2(z; ρo)
exp

(
− |r|2

R2(z; ρo)

)
, (28)

where the beam radius is

R2(z; ρo) = r2o

(
1 + γ̄2z3

3r2o
+ z2

k2or2oρ2
o

)
, (29)

with

γ̄2 = −1
4
)xC(0) (30)

being a parameter that governs the strength of random lateral scattering. In the expres-
sion (29), the original beam radius is ro, and the third term in the right-hand side gives
the spreading due to diffractionO(z) in the homogeneous medium case. The second term
gives the anomalous spreadingO(z3/2) due to random scattering.

The covariance intensity function is

Cov
(
I
(
z, r + q

2

)
, I
(
z, r − q

2

))
=
(
A41 + A42

) r4o
R(z; ρo)4

exp
(

− 2|r|2

R2(z; ρo)
− |q|2

2ρ2(z; ρo)

)

+ 2A21A
2
2χ

2 r4o
R(z; ρ1)4

exp
(

− 2|r|2

R2(z; ρ1)
− |q|2

2ρ2(z; ρ1)

)
,

(31)

where the correlation radius of the beam is

ρ2(z; ρo) = ρ2
o

1 + γ̄2z3/(3r2o) + z2/(k2oρ
2
or

2
o)

1 + k2oρ2
o γ̄2z

(
1 + γ̄2z3/(12r2o) + z2/(3k2oρ2

or2o)
) . (32)
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Figure 2. The correlation radius ρ(z) (left) and beam radius R(z) (right) when the source is such that
ρo = 10λo, ro = 100λo (with λo the wavelength), A1 = A2 = A0 and χ = 0 as in Figure 1. We compare
the functions in the homogeneous medium and in the random medium with scattering strength γ̄2 =
5 10−7λ−1

o . Here, zo = koroρo is the Rayleigh length of the partially coherent source and γ̄2 is defined
by Equation (30).

In the homogeneousmedium case, we have ρ(z; ρo)/R(z; ρo) = ρo/ro and the lateral corre-
lation radius increases with the propagation distance while in the random case ρ(z; ρo) =
O(z−1/2) and the lateral correlation radius decreases with the propagation distance due
to random scattering. The correlation radius ρ(z; ρo) and beam radius R(z, ρo) are plotted
in Figure 2. Note that the beam exhibits an anomalous spreading in the random medium,
moreover, that the correlation radius is decreasing with depth rather than increasing as
in the homogeneous medium. Note also that ρ ≈ λo for deep probing with z ≈ 1/γ̄2 and
that the paraxial approximation is not valid beyond this ‘paraxial propagation distance’
(also called transport mean free path in the physics literature [39], that is to say, the typical
distance after which the direction of light gets lost).

The structure of the intensity covariance in lateral and range coordinates can be used
for imaging of the partially coherent source. Here we consider measurements at one range
z only. Note that the expressions in (28) and (31) are computed based on averaging with
respect to the statistics of both the source and of the medium. We assume that these
means can be identified with a high signal-to-noise ratio. This is the case if both the par-
tially coherent source and themedium fluctuate in time andwe average themeasurements
over a time interval that is long compared to the turnover times of the medium and
of the source. In cases when the averaging is not efficient or the medium is stationary
(time-independent), it may be necessary with some form of filtering to enhance statistical
stability [40].

In the statistically stable case with long time averaging at the detector, the observation
of the mean intensity and the intensity covariance function make it possible to extract the
beam radii R(z; ρo), R(z; ρ1), correlation radii ρ(z; ρo), ρ(z; ρ1) and the intensity amplitude
(A21 + A22)r

2
o . Ifρo ̸= ρ1, thenwe can also extract (A41 + A42)r

4
o and 2A

2
1A

2
2χ

2r4o . Ifρo = ρ1, then
we can only extract the sum (A41 + A42 + 2A21A

2
2χ

2)r4o .
Given the values of z and γ̄2, we can then estimate the beam radius ro of the source, the

correlation radii ρo and ρ1, and the total intensity A21 + A22. If ρo ̸= ρ1 we can also extract the
polarization degree χ and the ellipticity e2 = (A22 − A21)

2/(A21 + A22)
2. Indeed, if we intro-

duce the three following quantities that can be extracted from data Y1 = (a21 + a22) and
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Y2 = a41 + a42, Y3 = 2a21a
2
2χ

2 with aj = Ajro, we have

e2 =
(a21 − a22)

2

(a21 + a22)
2

= 2
Y2
Y21

− 1, χ2 = Y3
Y21 − Y2

. (33)

Then, with an estimate of ro we can identify A1 and A2.
The estimation is possible and reliable provided the propagation distance is not too

large, i.e. z should not bemuch larger thanmax((r2o/γ̄2)
1/3, 1/(γ̄2k2oρ

2
o)), because the statis-

tics of the beam (beam radius and correlation radius) then becomes essentially indepen-
dent of the initial values ro and ρo as shown in Appendix 3.

5. Conclusions

We have considered time-harmonic electromagnetic wave propagation from partially
coherent sources in random media. In many applications of waves, it is of interest to eval-
uate the fourth-order moment of the wave field. Here we present a theory that allows us
to describe suchmoments andwe focus on the specific fourth-ordermoments correspond-
ing to the intensity covariance.We present here such a description for polarizedwaves. The
results follow from the Itô-Schrödinger equation for the wave field valid in the white-noise
paraxial regime. An important aspect of these Itô-Schrödinger equations is that the equa-
tions describing the evolutions of the transversely polarizedmodes are driven by the same
Brownianmotion, however, such that they are dynamically uncoupled. The explicit expres-
sions for the fourth-order moments are derived in a subsequent scaling regime that we
denote the scintillation regime. An important aspect of the fourth-order moment analysis
is the proof of the quasi-Gaussian property which means that the fourth-order moments
can be obtained from the second-order moments as if the field had Gaussian statistics.
We note that this property holds true even if the wave field is partially coherent. We also
describe an application to the inverse source problem using information extracted from
the observed intensity covariance.Wemoreover give explicit expressions for the decorrela-
tion and spreading scales deriving from themutual coherence function for probing through
strong clutter, and these scales characterize the statistical structure of thewave field in view
of the quasi-Gaussian property (up to fourth order).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding
JG was supported by the Agence Nationale pour la Recherche under Grant No. ANR-19-CE46-0007
(project ICCI), and Air Force Office of Scientific Research under grant FA9550-22-1-0176. KS was sup-
ported by the Air Force Office of Scientific Research under grant (FA9550-22-1-0176) and the National
Science Foundation under grant (DMS-2010046).

References
[1] Tatarskii VI. Waves propagation in a turbulent medium. New York: McGraw-Hill; 1961.
[2] Tatarskii VI. The effects of turbulent atmosphere on wave propagation. U.S. Department of

Commerce, TT-68-50464. Springfield; 1971.



WAVES IN RANDOM AND COMPLEX MEDIA 1357

[3] Andrews LC, Philipps RL. Laser beam propagation through random media. Bellingham: SPIE
Press; 2005.

[4] Ishimaru A. Wave propagation and scattering in randommedia. Piscataway: IEEE Press; 1997.
[5] Fouque J-P, Garnier J, Papanicolaou G, et al. Wave propagation and time reversal in randomly

layered media. New York: Springer; 2007.
[6] Korotkova O. Theoretical statistical optics. Singapore: World Scientific; 2022.
[7] Dawson D, Papanicolaou G. A random wave process. Appl Math Optim. 1984;12(1):

97–114.
[8] Garnier J, Sølna K. Coupled paraxial wave equations in randommedia in the white-noise regime.

Ann Appl Probab. 2009;19(1):318–346.
[9] Garnier J, Sølna K. Fourth-moment analysis for beam propagation in the white-noise paraxial

regime. Arch Ration Mech Anal. 2016;220(1):37–81.
[10] Wang J, Wang H, Zhu S, et al. Second-order moments of a twisted Gaussian Schell-model beam

in anisotropic turbulence. J Opt Soc Am A. 2018;35(7):1173–1179.
[11] Zhu S, Cai Y, Korotkova O. Propagation factor of a stochastic electromagnetic Gaussian Schell-

model beam. Opt Express. 2010;18(12):12587–12598.
[12] Garnier J, Sølna K. Non-invasive imaging through random media. SIAM J Appl Math.

2018;78(6):3296–3315.
[13] Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time

with scattered incoherent light. Nat Photonics. 2012;6(8):549–553.
[14] Li X, Greenberg JA, GehmME. Single-shotmultispectral imaging through a thin scatterer. Optica.

2019;6(7):864–871.
[15] Garnier J, Sølna K. Speckle memory effect in the frequency domain and stability in time-reversal

experiments, arXiv.2201.05558.
[16] Luo Y, Zhao Y, Li J, et al. Computational imaging without a computer: seeing through random

diffusers at the speed of light. eLight. 2022;2(1):4.
[17] Avramov-Zamurovic S, Nelson C, Malek-Madanib R, et al. Polarization-induced reduction in scin-

tillation of optical beams propagating in simulated turbulent atmospheric channels. Waves
Random Complex Media. 2014;24(4):452–462.

[18] Avramov-Zamurovic S, Nelson C, Guth S, et al. Flatness parameter influence on scintillation
reduction for multi-Gaussian Schell-model beams propagating in turbulent air. Appl Opt.
2016;55(13):3442–3446.

[19] Gbur G. Partially coherent beam propagation in atmospheric turbulence. J Opt Soc Am A.
2014;31(9):2038–2045.

[20] Korotkova O, Gbur G. Applications of optical coherence theory. Prog Opt. 2020;65:43–104.
[21] Voelz D, Fitzhenry K. Pseudo-partially coherent beam for free-space laser communication. Proc

SPIE. 2004;5550:218–224.
[22] Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: A review.

Prog Electromagn Res. 2015;150:123–143.
[23] Garnier J, Gouédard C, Videau L. Propagation of a partially coherent beam under the interaction

of small and large scales. Opt Commun. 2000;176(4–6):281–297.
[24] Fouque J-P, Papanicolaou G, Samuelides Y. Forward and Markov approximation: the strong-

intensity-fluctuations regime revisited. Waves RandomMedia. 1998;8(3):303–314.
[25] Gu Y, Komorowski T. Gaussian fluctuations from random Schrödinger equation. Commun Part

Differ Equ. 2021;46(2):201–232.
[26] Komorowski T, Ryzhik L. Fluctuations of solutions to Wigner equation with an Orn-

stein–Uhlenbeck potential. Discrete Contin Dyn Syst Ser B. 2012;17(3):871–914.
[27] Bal G, Pinaud O. Dynamics of wave scintillation in random media. Commun Partial Differ Equ.

2010;35(7):1176–1235.
[28] Baker G. Gaussian beam weak scintillation: low-order turbulence effects and applicability of the

Rytov method. J Opt Soc Am A. 2006;23(2):395–417.
[29] Charnotskii M. Extended Huygens–Fresnel principle and optical waves propagation in turbu-

lence: discussion. J Opt Soc Am A. 2015;32(7):1357–1365.
[30] Born M, Wolf E. Principles of optics. Cambridge: Cambridge University Press; 1999.



1358 J. GARNIER AND K. SØLNA

[31] Beckus A, Tamasan A, Dogariu A, et al. On the inverse problem of source reconstruction from
coherence measurements. J Opt Soc Am A. 2018;35(6):959–968.

[32] Garnier J, Sølna K. Paraxial coupling of electromagnetic waves in random media. SIAM J Multi-
scale Model Simul. 2009;7(4):1928–1955.

[33] Garnier J, Sølna K. White-noise paraxial approximation for a general random hyperbolic system.
SIAM J Multiscale Model Simul. 2015;13(3):1022–1060.

[34] Garnier J, Sølna K. Scintillation in the white-noise paraxial regime. Commun Part Differ Equ.
2014;39(4):626–650.

[35] Borcea L, Garnier J, Papanicolaou G, et al. Enhanced statistical stability in coherent interferomet-
ric imaging. Inverse Probl. 2011;27(8):085004.

[36] Garnier J, Papanicolaou G. Passive imaging with ambient noise. Cambridge: Cambridge Univer-
sity Press; 2016.

[37] Liu Y, Chen Y, Wang F, et al. Robust far-field imaging by spatial coherence engineering. Opto-
electron adv. 2021;4(12):210027. doi:10.29026/oea.2021.210027.

[38] Moscoso M, Novikov A, Papanicolaou G, et al. Synthetic aperture imaging with intensity-only
measurements. IEEE Trans Comput Imaging. 2020;6:87–94.

[39] van Rossum MCW, Nieuwenhuizen TM. Multiple scattering of classical waves: microscopy,
mesoscopy, and diffusion. Rev Mod Phys. 1999;71(1):313–371.

[40] Borcea L, PapanicolaouG, TsogkaC. Time anddirection of arrival detection and filtering for imag-
ing in strongly scattering randommedia. Waves Random Complex Media. 2017;27(4):664–689.

[41] Øksendal B. Stochastic differential equations, an introductionwith applications. Berlin: Springer;
2007.

[42] Garnier J, Sølna K. Scaling limits for wave pulse transmission and reflection operators. Wave
Motion. 2009;46(2):122–143.

[43] Garnier J, Sølna K. Focusing waves through a randomly scattering medium in the white-noise
paraxial regime. SIAM J Appl Math. 2017;77(2):500–519.

Appendix 1. The scintillation regime for the electromagnetic waves
We discuss here the white-noise paraxial scaling regime that leads to the Itô-Schrödinger equation
in (16). We refer to Ref. [32] for the full derivation. The electromagnetic wave equations have the form
(8–11) with the dielectric permittivity ϵ and the magnetic permeability µ of the medium modeled
by (12–13). We denote E⃗ = (Ej)j=1,2,3 and H⃗ = (Hj)j=1,2,3. The four-dimensional vector (E1,H2, E2,H1)

then satisfies a closed system as shown in Ref. [32]. Let co = µ
−1/2
o ϵ

−1/2
o and ζo = µ

1/2
o ϵ

−1/2
o be the

homogeneous propagation speed and impedance, then we introduce the decomposition

E1(z, x) = ζ
1/2
o

(
a1(z, x)ei(ωz/co) + b1(z, x)e−i(ωz/co)

)
,

H2(z, x) = ζ
−(1/2)
o

(
a1(z, x)ei(ωz/co) − b1(z, x)e−i(ωz/co)

)
,

E2(z, x) = ζ
1/2
o

(
a2(z, x)ei(ωz/co) + b2(z, x)e−i(ωz/co)

)
,

H1(z, x) = ζ
−(1/2)
o

(
−a2(z, x)ei(ωz/co) + b2(z, x)e−i(ωz/co)

)
.

Here, aj , bj , j = 1, 2 are coefficients of locally forward and backward (in z) propagating planewaves. In
the case of a homogeneousmediumwithmϵ ≡ 0,mµ ≡ 0, this gives an exact decomposition into for-
ward and backward plane waves with constant coefficients, while with randommedium fluctuations
the coefficients aj and bj satisfy coupled equations.

Let σ be the standard deviation of the fluctuations of the medium. Moreover, assume that the
random fluctuations in the index of refraction are isotropic and denote by ℓc the correlation length
of the fluctuations, λo the carrier wavelength (equal to 2π/ko, ko = ωo/co), L the typical propagation
distance,ρo the correlation radiusof the source, and ro the radiusof the initial transversebeam-source.
In this framework, the variance C(0) of the Brownian field in the Itô-Schrödinger equation (16) is of
order σ 2ℓc and the transverse scale of variation of the covariance function C(x) in (18) is of order ℓc.

https://doi.org/10.29026/oea.2021.210027
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We next discuss the scintillation regime in more detail. First, we consider the primary scaling
(white-noise paraxial regime) that leads to the Itô-Schrödinger equation (16), when the propagation
distance ismuch larger than the correlation length of themedium, the correlation radius of the source
and the beam radius, which are themselvesmuch larger than thewavelength,moreover, themedium
fluctuations are small. Explicitly, we assume the primary scaling when

ρo

ℓc
∼ 1,

ro
ℓc

∼ 1,
L
ℓc

∼ α−1,
λo

ℓc
∼ α, σ 2 ∼ α3,

where α is a small dimensionless parameter. We introduce dimensionless coordinates by

x = ℓcx′, z = Lz′, ko = k′
o

ℓcα
,

mε(Lz′, ℓcx′) = α3/2m′
ε

(
z′, x′) , mµ(Lz′, ℓcx′) = α3/2m′

µ

(
z′, x′) .

We look for the behavior of the coefficient uj(z′, x′) = aj(z′L, x′ℓc) for long propagation distances of
the order of α−1. We obtain a Schrödinger-type equation inwhich the potential fluctuates in z′ on the
scale α and is of amplitude α−1/2. This diffusion approximation scaling gives the Brownian field and
themodel (16). As follows fromour analysis in Ref. [32], the backward propagatingwave components
bj , j = 1, 2, are small compared to the forward propagating wave components aj , j = 1, 2, in this
forward beam propagation regime. We remark also that the local propagation speed is

c = 1√
µ′ϵ′ = co

[

1 − α3/2m
′
µ + m′

ϵ

2
+ O(α3)

]

,

and the local impedance

ζ =
√

µ′/ϵ′ = ζo

[

1 + α3/2m
′
µ − m′

ϵ

2
+ O(α3)

]

.

In view of (18), it then follows that the effective Brownian field is determined by the fluctuations of
the local propagation speed, but not by the fluctuations of the local impedance.

In Appendix 4, we address the subsequent scaling regime in which the correlation length of the
medium ℓc and the correlation radius ρo of the source are much smaller than the beam radius ro of
the source; moreover, the medium fluctuations are weak and the beam propagates deep into the
medium. We then get the modified scaling picture

ρo

ℓc
∼ 1,

ro
ℓc

∼ ε−1,
L
ℓc

∼ α−1ε−1,
λo

ℓc
∼ α, σ 2 ∼ α3ε, (A1)

and we assume α ≪ ε ≪ 1. This means that the paraxial white-noise limit α → 0 is taken first, and
we find

2iko duε
j + )xuε

j dz + k2ou
ε
j ◦ dBε(z, x) = 0,

where the Brownian field Bε has covariance Cε . Then the limit ε → 0 is applied, corresponding to the
scintillation regime. In the scintillation regime (A1), the effective strength k2oC

ε(0)L of the Brownian
field is of order one since σ 2ℓcL/λ2o ∼ 1. We also have that Lλo/r2o is of order ε. That is, the typical
propagation distance is smaller than the Rayleigh length associated to a coherent beam with radius
ro. Here the Rayleigh length corresponds to the distance when the transverse radius of a coherent
beam with radius ro has roughly doubled by diffraction in the homogeneous medium case and it is
given by r2o/λo. The typical propagation distance is, however, of the sameorder as the Rayleigh length
associated to a partially coherent beamwith beam radius ro and correlation radius ρo, which is given
by roρo/λo [23]. The scintillation regime is, therefore, a regime where diffractive and random effects
are both effective and their combination results in non-trivial effects. In this regime we are also able
to derive explicit expressions for the fourth-order moment, see Appendix 4.
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Appendix 2. Themean polarized-Wigner transform for a partially coherent
beam
We discuss here the Wigner transform which is convenient in order to describe second-order field
moments. Let j, l ∈ {1, 2}. The mean Wigner transform is defined by

Wm(z, r, ξ) :=
∫

R2
exp (−iξ · q) E

[
uj
(
z, r + q

2

)
ul
(
z, r − q

2

)]
dq. (A2)

In view of Equation (20), it satisfies the closed system

∂Wm

∂z
+ 1

ko
ξ · ∇rWm = k2o

4(2π)2

∫

R2
Ĉ(k)

[
Wm(ξ − k) − Wm(ξ)

]
dk, (A3)

starting fromWm(z = 0, r, ξ) = Wm0(r, ξ), which is the mean Wigner transform of the source (fj , fl):

Wm0(r, ξ) :=
∫

R2
exp (−iξ · q) E

[
fj
(
r + q

2

)
f l
(
r − q

2

)]
dq.

The transport equation (A3) can be solved and we find

Wm(z, r, ξ) = 1
(2π)2

∫∫

R2×R2
exp

(
iζ ·

(
r − ξ

z
ko

)
− iξ · q

)
Ŵm0 (ζ ,q)

× exp
(
k2o
4

∫ z

0
C
(
q + ζ

z′

ko

)
− C(0)dz′

)
dζ dq, (A4)

where Ŵm0 is defined in terms of the source (fj , fl) as

Ŵm0(ζ ,q) =
∫

R2
exp (−iζ · r) E

[
fj
(
r + q

2

)
f l
(
r − q

2

)]
dr. (A5)

ThemeanWigner transformgives an equation for themutual coherence function andwenext discuss
this in a situation with strong scattering

Appendix 3. Themutual coherence function in the strongly scattering regime
We consider a Gauss–Schell model for the source, which is a field with Gaussian statistics, mean zero,
and covariance function (14). By taking the inverse Fourier transform of the mean Wigner transform,
we find that the covariance function of the transmitted field has the form (3). We discuss next this
mutual coherence function in more detail and to find explicit expressions we assume in the rest of
this section that scattering is strong and smooth, in the sense that

k2oC(0)z ≫ 1, (A6)

C(x) = C(0) − γ̄2|x|2 + o(|x|2). (A7)

From (16) written in Itô form [41], it follows that the scatteringmean free path ℓmfp (that is the typical
propagation distance over which a coherent wave becomes incoherent) is

ℓ−1
mfp = k2oC(0)

8
= k2oσ

2ℓz

8
. (A8)

Thus, in the regime (A6), the propagation distance is large compared to the scatteringmean free path.
Note moreover that γ̄2 can be interpreted as

γ̄2 = σ 2ℓz

ℓ2⊥
, (A9)

where σ 2 is the variance of medium fluctuations as above, ℓz is the longitudinal correlation length of
themedium (such thatC(0) = σ 2ℓz), and ℓ⊥ is its transverse correlation radius of themediumdefined
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by

ℓ−2
⊥ = −)C(0)

4C(0)
. (A10)

If themedium is isotropic (as assumed inAppendix 1), for instance such thatE[(mϵ + mµ)(x′ + z, x′ +
z)(mϵ + mµ)(x′, z′)] = σ 2 exp(−|x|2/ℓ2c − z2/ℓ2c), then we have ℓz =

√
πℓc and ℓ⊥ = ℓc.

If (A6–A7) hold, then the mean intensity is given by (28). This is found via a Gaussian calculation
after inserting (A6) in (4). In this expression we can identify the original beam radius r2o , the spreading
due to diffraction z2/(k2oρ

2
o), and the spreading due to random scattering γ̄2z3/3 . The covariance

function of the field (or mutual coherence function) is given by

E
[
uj
(
z, r + q

2

)
uj
(
z, r − q

2

)]
= A2j

r2o
R(z; ρo)2

exp
(

− |r|2

R2(z; ρo)
− |q|2

4ρ2(z; ρo)
+ iθ(z; ρo)r · q

)
,

(A11)

where the correlation radius of the beam, ρ(z; ρo), is given by (32), the beam radius, R(z; ρo), by (29)
and

θ(z; ρo) = z/(koρ2
o) + (koγ̄2z2/2)

r2o + (γ̄2z3/3) + z2/(k2oρ2
o)

. (A12)

If the source is coherent ρo = ro, then we recover the classical result obtained in Ref. [42], while
if the medium is homogeneous and the source is partially coherent ρo<ro, then we recover the
result obtained in Ref. [23]. Note that if the medium is homogeneous then 1/

√
θ(z; ρo) ≪ ρ(z; ρo) ≤

R(z; ρo), as z → ∞, while in the random case ρ(z; ρo) ≪ 1/
√

θ(z; ρo) ≪ R(z; ρo), as z → ∞. In fact
in both cases we have 1/

√
θ ∼

√
λoz, up to a constant. Thus, the coherent phase modulation is slow

relative to the field decorrelation scale for deep probing in the randommedium.
For large propagation distance so that the spreading due to the randommedium dominates, z ≫

max((r2o/γ̄2)
1/3, 1/(γ̄2k2oρ

2
o)), we have

R(z; ρo) ∼ Atr(z) :=

√
γ̄2z3

3
, (A13)

ρ(z; ρo) ∼ ρtr(z) :=
1

ko
√

γ̄2z
, (A14)

θ(z; ρo) ∼ 3ko
2z

. (A15)

Note that these parameters are independent of the parameters ro and ρo of the partially coherent
source, so that information about the source is ‘forgotten’ in the case of deep probing. We refer to
the parameters Atr, ρtr as the time reversal aperture and resolution, respectively. We note that we
have the Rayleigh resolution relation

ρtr(L) = λoL
Atr(L)

, (A16)

where ρtr corresponds to the refocusing resolution one obtains when a point source emits a wave
which is captured on a time reversal mirror at distance L and reemitted (after time reversal) toward
the source. Then it will refocus at the original source location with a resolution of the order of the
lateral correlation range ρtr(L) essentially independently of the actual physical aperture [43]. This can
be understood in that the propagator of the transmitted wave decorrelates (laterally) on this scale
and the refocused wave is essentially the convolution of the propagator with itself.

We remark that the field correlation radius ρ(z; ρo) is important in determining statistical stability.
If we average a field quantity over an aperture, then the signal-to-noise ratiowill in general dependon
the ratio of the aperture to the field correlation radius. We remark finally that we have ρtr ≈ λo when
z ≈ 1/γ̄2, whichmeans that the paraxial approximation is not valid beyond this paraxial propagation
distance (also called transport mean free path [39]).
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Appendix 4. The intensity covariance function
In this appendix, we derive the expression for the intensity covariance function in the scintillation
regime. We start by introducing

µ4,j1 l1 j2 l2(z, x1, x2, y1, y2) = E
[
uj1(z, x1)ul1(z, y1)uj2(z, x2)ul2(z, y2)

]
. (A17)

We are interested in the second-order moment of the intensity:

E [I(z, x1)I(z, x2)] =
2∑

j1,j2=1

µ4,j1 j1 j2 j2(z, x1, x2, x1, x2). (A18)

We find using Equation (16) that the general fourth-order moment µ4,j1 l1 j2 l2 satisfies the equation

∂µ4,j1 l1 j2 l2

∂z
= i

2ko

(
)x1 + )x2 − )y1 − )y2

)
µ4,j1 l1 j2 l2 + k2o

4
U4
(
x1, x2, y1, y2

)
µ4,j1 l1 j2 l2 , (A19)

with the generalized potential

U4
(
x1, x2, y1, y2

)
= C(x1 − y1) + C(x2 − y2) + C(x1 − y2) + C(x2 − y1)

− C(x1 − x2) − C(y1 − y2) − 2C(0), (A20)

and the initial condition:

µ4,j1 l1 j2 l2(z = 0, x1, x2, y1, y2) = E
[
fj1(x1)fl1(y1)fj2(x2)fl2(y2)

]
.

Using the Gaussian property of the source, the initial condition for the fourth-order moment is

µ4,j1 l1 j2 l2(z = 0, x1, x2, y1, y2)

= E
[
fj1(x1)fl1(y1)

]
E
[
fj2(x2)fl2(y2)

]
+ E

[
fj1(x1)fl2(y2)

]
E
[
fj2(x2)fl1(y1)

]
, (A21)

where the covariance function of the source is given by (2).
We parameterize the four points x1, x2, y1, y2 in (A17) in the special way:

x1 = r1 + r2 + q1 + q2
2

, y1 = r1 + r2 − q1 − q2
2

, (A22)

x2 = r1 − r2 + q1 − q2
2

, y2 = r1 − r2 − q1 + q2
2

. (A23)

In particular, r1/2 is the barycenter of the four points x1, x2, y1, y2:

r1 = x1 + x2 + y1 + y2
2

, q1 = x1 + x2 − y1 − y2
2

,

r2 = x1 − x2 + y1 − y2
2

, q2 = x1 − x2 − y1 + y2
2

.

We denote by µ the fourth-order moment in these new variables (without writing the dependence
on j1, j2, l1, l2):

µ(z,q1,q2, r1, r2) = µ4,j1 l1 j2 l2(z, x1, x2, y1, y2), (A24)
with x1, x2, y1, y2 given by (A22–A23) in terms of q1,q2, r1, r2.

In the variables (q1,q2, r1, r2), the function µ satisfies the system:

∂µ

∂z
= i

ko

(
∇r1 · ∇q1 + ∇r2 · ∇q2

)
µ + k2o

4
U(q1,q2, r1, r2)µ, (A25)

with the generalized potential

U(q1,q2, r1, r2) = C(q2 + q1) + C(q2 − q1) + C(r2 + q1) + C(r2 − q1)

− C(q2 + r2) − C(q2 − r2) − 2C(0). (A26)

Note in particular that the generalized potential does not depend on the barycenter r1, and this
comes from the fact that themedium is statistically homogeneous. The Fourier transform (inq1,q2, r1,
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and r2) of the fourth-order moment is defined by

µ̂(z, ξ1, ξ2, ζ 1, ζ 2) =
∫∫

R2×R2
µ(z,q1,q2, r1, r2)

× exp
(
−iq1 · ξ1 − iq2 · ξ2 − ir1 · ζ 1 − ir2 · ζ 2

)
dq1 dq2 dr1 dr2. (A27)

It satisfies

∂µ̂

∂z
+ i

ko

(
ξ1 · ζ 1 + ξ2 · ζ 2

)
µ̂ = k2o

4(2π)2

∫

R2
Ĉ(k)

[
µ̂(ξ1 − k, ξ2 − k, ζ 1, ζ 2)

+ µ̂(ξ1 + k, ξ2 − k, ζ 1, ζ 2) − 2µ̂(ξ1, ξ2, ζ 1, ζ 2)

+ µ̂(ξ1 + k, ξ2, ζ 1, ζ 2 − k) + µ̂(ξ1 − k, ξ2, ζ 1, ζ 2 − k)

−µ̂(ξ1, ξ2 − k, ζ 1, ζ 2 − k) − µ̂(ξ1, ξ2 + k, ζ 1, ζ 2 − k)
]
dk. (A28)

If j1 = j2 = l2 = l2 ≡ j ∈ {1, 2}, then the initial condition is

µ̂(z = 0, ξ1, ξ2, ζ 1, ζ 2) = (2π)4A4j φ
1
ρo

(ξ1)φ
1
ρo

(ξ2)φ
1
ro(ζ 1)φ

1
ro(ζ 2)

+ (2π)4A4j φ
1
ρo

(ξ1)φ
1
ρo

(ζ 2)φ
1
ro(ζ 1)φ

1
ro(ξ2), (A29)

with

φ1
ρ(ξ) = ρ2

2π
exp

(
−ρ2|ξ |2

2

)
. (A30)

Similar Gaussian expressions hold for the initial condition in the other cases for (j1, j2, l1, l2), we only
address the case j1 = j2 = l2 = l2 ≡ j in the following.

We cannot solve the problem for the fourth-order moment µ explicitly and consider next a sec-
ondary scaling limit where we can identify an explicit solution. We consider the scintillation regime,
discussed inmore detail in Appendix 1, where the correlation radius of the source is of the same order
as the correlation radius of the medium, but the beam radius of the source is much larger:

ρo → ρo, C(x) → εC(x), ro → ro
ε
, z → z

ε
. (A31)

We introduce the rescaled function

µ̃ε(z, ξ1, ξ2, ζ 1, ζ 2) = µ
( z

ε
, ξ1, ξ2, ζ 1, ζ 2

)
exp

(
i
z
koε

(ξ1 · ζ 1 + ξ2 · ζ 2)

)
. (A32)

Then the limit ε → 0 is applied, corresponding to the scintillation regime.
In the scintillation regime, the rescaled function µ̃ε satisfies the equation with fast phases

∂µ̃ε

∂z
= k2o

4(2π)2

∫

R2
Ĉ(k)

[
−2µ̃ε(ξ1, ξ2, ζ 1, ζ 2)

+ µ̃ε(ξ1 − k, ξ2 − k, ζ 1, ζ 2)e
icoz/(εωo)k·(ζ 2+ζ 1)

+ µ̃ε(ξ1 − k, ξ2, ζ 1, ζ 2 − k)eicoz/(εωo)k·(ξ2+ζ 1)

+ µ̃ε(ξ1 + k, ξ2 − k, ζ 1, ζ 2)e
icoz/(εωo)k·(ζ 2−ζ 1)

+ µ̃ε(ξ1 + k, ξ2, ζ 1, ζ 2 − k)eicoz/(εωo)k·(ξ2−ζ 1)

− µ̃ε(ξ1, ξ2 − k, ζ 1, ζ 2 − k)eicoz/(εωo)(k·(ζ 2+ξ2)−|k|2)

− µ̃ε(ξ1, ξ2 − k, ζ 1, ζ 2 + k)eicoz/(εωo)(k·(ζ 2−ξ2)+|k|2)] dk, (A33)

starting from

µ̃ε(z = 0, ξ1, ξ2, ζ 1, ζ 2) = (2π)8A4j φ
1
ρo

(ξ1)φ
1
ρo

(ξ2)φ
ε
ro(ζ 1)φ

ε
ro(ζ 2)

+ (2π)8A4j φ
1
ρo

(ξ1)φ
1
ρo

(ζ 2)φ
ε
ro(ζ 1)φ

ε
ro(ξ2), (A34)
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where φε
ρ is defined by

φε
ρ(ξ) = ρ2

2πε2
exp

(
− ρ2

2ε2
|ξ |2

)
. (A35)

The following result shows that µ̃ε exhibits a multi-scale behavior as ε → 0, with some components
evolving at the scale ε and some components evolving on the order one scale [9].

Proposition A.1: The function µ̃ε(z, ξ1, ξ2, ζ 1, ζ 2) can be expanded as

µ̃ε
(
z, ξ1, ξ2, ζ 1, ζ 2

)
= (2π)8A4j φ

ε
ro(ζ 1)φ

ε
ro(ζ 2)B

(
z, ξ1, ξ2,

ζ 1

ε
,
ζ 2

ε

)

+ (2π)8A4j φ
ε
ro(ζ 1)φ

ε
ro(ξ2)B

(
z, ξ1, ζ 2,

ζ 1

ε
,
ξ2
ε

)

+ Rε(z, ξ1, ξ2, ζ 1, ζ 2), (A36)

where

B(z, ξ1, ξ2, ζ 1, ζ 2) = 1
(2π)4

∫∫

R2×R2
dx dy exp

(
− |x|2 + |y|2

2ρ2
o

− iξ1 · x − iξ2 · y

+k2o
4

∫ z

0
C
(
x + y + z′

ko
(ζ 1 + ζ 2)

)
+ C

(
x − y + z′

ko
(ζ 1 − ζ 2)

)
− 2C(0)dz′

)
,

(A37)

and the function Rε goes to 0 as ε → 0.

As a consequence, the second-order moment of the intensity is

E
[∣∣∣u

( z
ε
,
r
ε

+ q
2

)∣∣∣
2 ∣∣∣u

( z
ε
,
r
ε

− q
2

)∣∣∣
2
]

= A4j Iρo(z, 2r, 0) + A4j Jρo(z, 2r,q), (A38)

with

Iρo(z, r1, r2)

=
∫∫

R2×R2
dξ1 dξ2 dζ 1 dζ 2φ

1
ro(ζ 1)φ

1
ro(ζ 2)B(z, ξ1, ξ2, ζ 1, ζ 2)

× exp
(

−i
z
ko

(ξ1 · ζ 1 + ξ2 · ζ 2) + iζ 1 · r1 + iζ 2 · r2
)

=
(∫

R2
φ1
ro/

√
2
(ζ ) exp

(
iζ · r1 + r2

2
+ k2o

4

∫ z

0
C
(

ζ z′

ko

)
− C(0)dz′ − |ζ |2z2

4k2oρ2
o

)
dζ

)

×
(∫

R2
φ1
ro/

√
2
(ζ ) exp

(
iζ · r1 − r2

2
+ k2o

4

∫ z

0
C
(

ζ z′

ko

)
− C(0)dz′ − |ζ |2z2

4k2oρ2
o

)
dζ

)

= Hρo

(
z,
r1 + r2

2
, 0
)
Hρo

(
z,
r1 − r2

2
, 0
)

(A39)

and

Jρo(z, r1, r2)

=
∫∫

R2×R2
dξ1 dξ2 dζ 1 dζ 2φ

1
ro(ζ 1)φ

1
ro(ξ2)B(z, ξ1, ζ 2, ζ 1, ξ2)

× exp
(

−i
z
ko

(ξ1 · ζ 1 + ξ2 · ζ 2) + iζ 1 · r1 + iζ 2 · r2
)



WAVES IN RANDOM AND COMPLEX MEDIA 1365

=
∣∣∣∣

∫

R2
φ1
ro/

√
2
(ζ ) exp

(
iζ · r1

2
+ k2o

4

∫ z

0
C
(

ζ z′

ko
− r2

)
− C(0)dz′ − |(ζ z/ko) − r2|2

4ρ2
o

)
dζ

∣∣∣∣
2

=
∣∣∣Hρo

(
z,
r1
2
, r2
)∣∣∣

2
, (A40)

whereHρo is defined by (4). We finally remark that for far away points, the second-order moment of
the intensity is

E
[∣∣∣u

( z
ε
,
r
ε

+ q
2ε

)∣∣∣
2 ∣∣∣u

( z
ε
,
r
ε

− q
2ε

)∣∣∣
2
]

=
(
A21 + A22

)2 Iρo(z, 2r,q)

=
(
A21 + A22

)2 Hρo

(
z, r + q

2
, 0
)
Hρo

(
z, r − q

2
, 0
)

= E
[∣∣∣u

( z
ε
,
r
ε

+ q
2ε

)∣∣∣
2
]

E
[∣∣∣u

( z
ε
,
r
ε

− q
2ε

)∣∣∣
2
]
,

so that the intensities then indeed are uncorrelated.
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