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Seismic fragility curves have been introduced as key components of seismic probabilistic risk assessment studies. They
express the probability of failure of mechanical structures conditional to a seismic intensity measure and must take
into account various sources of uncertainties, the so-called epistemic uncertainties (i.e., coming from the uncertainty
on the mechanical parameters of the structure) and the aleatory uncertainties (i.e., coming from the randomness of the
seismic ground motions). For simulation-based approaches we propose a methodology to build and calibrate a Gaussian
process surrogate model to estimate a family of nonparametric seismic fragility curves for a mechanical structure by
propagating both the surrogate model uncertainty and the epistemic ones. Gaussian processes have indeed the main
advantage to propose both a predictor and an assessment of the uncertainty of its predictions. In addition, we extend
this methodology to sensitivity analysis. Global sensitivity indices such as aggregated Sobol’ indices and kernel-based
indices are proposed to know how the uncertainty on the seismic fragility curves is apportioned according to each
uncertain mechanical parameter. This comprehensive uncertainty quantification framework is finally applied to an
industrial test case consisting of a part of a piping system of a pressurized water reactor.

KEY WORDS: seismic fragility curves, uncertainty quantification, Gaussian processes, earthquake engi-
neering

1. INTRODUCTION

In the 1980s, a probabilistic framework was developed to evaluate the mean annual probability of occurrence of
severe damage on structures caused by seismic ground motions, coined seismic probabilistic risk assessment (SPRA)
[1–3]. One of the key elements of this approach is the fragility curve. Such a curve expresses the probability of failure
(or undesirable outcome) of a structure conditional to a seismic intensity measure and must take into account the
different sources of uncertainties that inevitably come into play in this type of study and which are classified into two
categories, namely: theepistemicand thealeatoryuncertainties. According to [4], distinguishing between these two
types of uncertainties is a pragmatic way of distinguishing which uncertainties engineers can reduce and which they
cannot, allowing for information-based design choices. For that reason, in practice, it is often assumed that epistemic
uncertainties are sources of uncertainty that can be reduced in the short term with a reasonable budget, while aleatory
uncertainties are devolved to sources of natural hazards due to physical phenomena. Thus, a seismic fragility curve is
not strictly speaking a single curve (i.e., mean curve), but a family of fragility curves which reflects the uncertainty
on the mean seismic fragility curve due to a certain lack of knowledge of the structure of interest and its environment
(i.e., including soil–structure interaction, etc.).

Since the 1980s, several techniques have been developed to estimate such curves, in the sense of mean fragility
curves most of the time. When few data are available, whether experimental, from post-earthquake feedback, or
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from numerical calculations, a classic approach to circumvent estimation difficulties is to use a parametric model of
the fragility curve, such as the lognormal model historically introduced in [1] (see, e.g., [5–10]). As the validity of
parametric models is questionable, nonparametric estimation techniques have also been developed, such as kernel
smoothing [8,9] or other methodologies [10,11]. Most of these strategies are compared in [8,9,12] and [8] presents
their advantages and disadvantages. Beyond these methods, techniques based on statistical and machine learning
on the mechanical response of the structure can also be used, including linear or generalized linear regression [8],
classification-based techniques [13,14], polynomial chaos expansion [15,16], and artificial neural networks [14,17].
Most of these techniques take advantage of the rise of computational power to allow estimations based on numerical
simulations. They make it possible to reduce the computational burden which remains high because such estimations
require a large number of numerical simulations to be precise. Nevertheless, despite all these techniques, one of the
main challenges that persists is the estimation at a lower numerical cost (i.e., with few calls for computer codes) of
nonparametric fragility curves taking into account the two types of uncertainties.

The objective of this work is to propose a methodology that meets these requirements in a numerical simulation-
based framework. As we focus on approaches based on numerical simulations that rely on real seismic signal
databases enriched by means of a seismic signal generator that well encompasses their temporal and spectral nonsta-
tionarities [18], we assume that there is no epistemic uncertainty affecting the excitation which only represents the
aleatory uncertainty of the problem. Consequently, in our settings, epistemic uncertainties only concern the mechan-
ical parameters of the structures of interest. The physics-based approaches developed as part of performance-based
earthquake engineering (PBEE) address this problem [19]. However, they are not suitable when the use of detailed
finite element simulations is required, in order to take into account all the specificities of the structures of interest
as can be the case nowadays for the seismic safety studies in the nuclear industry [5,20,21]. So, in this paper, our
approach relies on the use of surrogate models of the computer codes, also referenced as metamodels, based on Gaus-
sian process regression. This framework corresponds to a data-driven approximation of the input/output relationship
of a numerical computer code based on a set of experiments (e.g., computer model calls) at different values of the
input parameters with a Gaussian process assumption on the numerical computer code output values [22]. Gaussian
process regression, or kriging in the field of geostatistics, has gained in popularity because of its predictive capabil-
ities and its ability to quantify the surrogate model uncertainty [23]. Gaussian process surrogates have already been
used for various applications in engineering, such as seismic risk assessment [24,25], thermohydraulics for safety
studies of nuclear power plants [26], or hydrogeology for radionucleide transport in groundwater [27]. In this work,
we propose a methodology to build and calibrate a Gaussian process surrogate model to estimate a family of seismic
fragility curves for mechanical structures—defined here as seismic fragility quantile curves—by propagating both the
surrogate model uncertainty and the epistemic ones.

In such a context, the use of sensitivity analysis (SA) techniques is essential for engineers. Indeed, according to
[28], the SA goal is to investigate how the uncertainty of the model output can be apportioned to different sources
of uncertainties of the model input. SA techniques are also performed according to a range of conceptual objectives,
coined as SA settings, defined in [28,29]. These objectives are prioritizing the most influential inputs; thus a possible
reduction of uncertainty affecting these inputs may lead to the largest reduction of the output uncertainty, and identi-
fying the noninfluential inputs which then could be fixed at a given value without any loss of information about the
model output. SA techniques are classically applied on the model output; however, it is possible to extend their fields
of application to goal-oriented quantities of interest such as seismic fragility curves. In our case, SA techniques will
help to determine which mechanical parameter uncertainties most influence the seismic fragility curve uncertainty.
Note that SA on the mechanical parameters of the structures is particulary challenging, due to the strong influence
of the seismic ground motions on their responses. However, even if the uncertainty coming from mechanical param-
eters is smaller that the one coming from the seismic ground motion, SA on these parameters is crucial to propose
information-based choices to engineers and to discuss quantitatively the different possible designs of the mechanical
structure studied, especially in the context of the nuclear industry where safety constraints imposed by regulatory
agencies are very high. In [30], CDF-based importance measures are used to address the problem of ranking of uncer-
tain model parameters in seismic fragility analysis. To go further, we propose to use global sensitivity analysis (GSA)
methods [31,32] which take into account the overall uncertainty ranges of the parameters. We present global sensitiv-
ity indices applied in the particular context of seismic fragility curves as a quantity of interest. We are first interested
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in the estimation of the Sobol’ indices [33,34] adapted to seismic fragility curves. We also focus on recently studied
global sensitivity indices based on kernel methods [35], theβk indices, which seem adapted to functional quantities
of interest like fragility curves. However, because the estimation of global sensitivity indices requires a large number
of simulations that is intractable using complex numerical simulations, the Gaussian process surrogate is also used
to estimate the global sensitivity indices on the seismic fragility curves. Moreover, as in [36], the Gaussian process
surrogate uncertainty will be propagated into the global sensitivity indices estimates.

This paper, which presents a comprehensive uncertainty quantification (UQ) framework for seismic fragility
curves of mechanical structures, taking into account metamodel and mechanical parameter uncertainties, is organized
as follows: Section 2 is devoted to the estimation of seismic fragility curves using Gaussian process regression;
Section 3 concerns the definition of global sensitivity indices tailored for seismic fragility curves, the aggregated
Sobol’ indices, and theβk indices. Section 4 presents an illustration of the methodology developed in this article to
an industrial test case consisting of a mock-up of a piping system of a French pressurized water reactor (PWR).

2. ESTIMATION OF FRAGILITY CURVES USING GAUSSIAN PROCESS SURROGATE

As discussed in the introduction, in this work the sources of uncertainties are divided into two categories: the aleatory
and the epistemic uncertainties.

Aleatory uncertainties are related to the stochastic ground motions. To account for them, we use a synthetic
generator of ground motions to enrich a set of real seismic signals selected in a database for a given magnitude (M)—
source-to-site distance (R) scenario. This generator is based on a filtered modulated white-noise process [18]. It is
common in SPRA studies to sum up the seismic hazard by a so-called intensity measure (IM), which is the variable
against which the fragility curves are conditioned. This is often a scalar value obtained from the seismic signals such
as the peak ground acceleration (PGA) or the pseudospectral acceleration (PSA). In [37], the author recalls the main
assumptions according to which it is possible to reduce the seismic hazard to the IM values (see also [38]). In the
following, we denote bya the scalar value corresponding to the IM.

Epistemic uncertainties are related to the mechanical properties of the model of the structure. These parameters
are denoted by the vectorx ∈ X ⊂ Rd. Furthermore, we denote byz the engineering demand parameter (EDP) of
interest, which can be the peak interstory drift for a multistory building or a rotation angle of a specific elbow of a
piping system of a nuclear power plant. A very common statistical model between the EDP and the combination of
structural and seismic uncertainty is the lognormal model [25]:

log(z(a,x)) = g(a,x) + ε(a,x), (1)

wherex is the vector of the mechanical properties of the structure,a is the IM, g(a,x) is the regression function,
andε(a,x) ∼ N (0, σε(a,x)2) is a nugget-centered Gaussian noise that satisfiesE[ε(a,x)ε(a′,x′)] = 0 if (a,x) 6=
(a′,x′). Note that this lognormal assumption for the EDP distribution is not necessary for the proposed methodology;
any transformation ofz(a,x) (such as Box-Cox transformation [39]) is possible as long as it is normally distributed
after this transformation. Indeed, this transformation ofz(a,x) aims for a Gaussian noiseε(a,x) as in Eq. (1). For
the sake of notation simplicity, we denotey(a,x) = log(z(a,x)). The fragility curve is then defined by

Ψ(a,x) = P(z(A,X) > C|A = a,X = x), (2)

whereA is the real-valued random variable of the seismic intensity measure andX the random vector of the mechan-
ical parameters of the structure.C corresponds to a deterministic threshold of acceptable robustness of the structure.
Substituting the model Eq. (1) into Eq. (2) we get the form of the fragility curve,

Ψ(a,x) = Φ
(

g(a,x)− log(C)
σε(a,x)

)
, (3)

whereΦ is the cumulative distribution function (cdf) of the standard Gaussian distribution. In this framework, the
numerical simulations of the structure are made by a computer model. The computer model is considered of high
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fidelity with respect to the mechanical problem studied and therefore it may involve a chain of multiphysics simulation
codes (involving finite elements or finite volumes, computational fluid dynamics, etc.) and thus it is considered as a
black-box. This means that the different strategies described throughout this paper are nonintrusive with respect to
this black-box computer model.

2.1 Gaussian Process Surrogate with Homoskedastic Nugget Noise

In this section, we suppose that the regression functiong is a realization of a Gaussian processG and the Gaus-
sian noiseε(a,x) is homoskedastic and will be denoted byε such thatε ∼ N (0,σ2

ε). We thus define the random
observation by

Y (a,x) = G(a,x) + ε. (4)

Note in Eq. (4) that, thanks to the Gaussian noise assumption on the noiseε, the random observationY (a,x) is
also a Gaussian process. We make the assumption thatG is a zero mean Gaussian process with a tensorized anisotropic
stationary Mat́ern 5/2 covariance function parametrized by its intensityσ and its length scales(ρi)1≤i≤d+1. This
covariance function is motivated by its popularity in the machine learning community as it covers a large number
of applications. Note also that with such a covariance function the Gaussian processG is two times mean-square
differentiable, which is a good compromise between the regularity of the regression functiong and the potential
sparsity of the data. Different covariance functions can actually be tested in order to select the best one with respect
to validation metrics. A benchmark is proposed in Appendix C.

Given an experimental design made ofn simulations of the mechanical computer model, we obtain the dataset
Dn = ((ai,xi), y(ai,xi))1≤i≤n. By the maximum likelihood method, we can provide estimates for the unknown
covariance function hyperparametersσ, (ρi)1≤i≤d+1 and also the Gaussian noise varianceσε (see [27] for a practical
implementation of the method). The datasetDn can then be used to derive the conditional distribution of the Gaussian
processY for any(a,x):

(Y (a,x)|Dn) ∼ N (
mn(a,x), σn(a,x)2

)
, (5)

wheremn(a,x) andσn(a,x)2 are obtained from the kriging equations [23, pp. 16,17]. In the same fashion, we can
derive the conditional distribution of the Gaussian processG on the regression function for any(a,x):

(G(a,x)|Dn) ∼ N (
mn(a,x), sn(a,x)2

)
, (6)

whereσn(a,x)2 = sn(a,x)2 + σ2
ε. The fragility curve is then obtained by replacing the computer model outputy

by a Gaussian processYn which follows the distribution of the Gaussian processY conditioned toDn detailed in
Eq. (5). Hence for any vector(a,x) we derive the estimator of the fragility curveΨ(1):

Ψ(1)(a,x) = P(Yn(A,X) > log(C)|A = a,X = x). (7)

We can then use the distribution ofYn to estimate the fragility curve:

Ψ(1)(a,x) = Φ
(

mn(a,x)− log(C)
σn(a,x)

)
. (8)

Moreover, the Gaussian process surrogate allows us to propagate the surrogate model uncertainty into the fragility
curve, thanks to the conditional distribution of the regression function(G(a,x)|Dn). We introduceGn, a Gaussian
process with the same distribution as the Gaussian process(G|Dn); then the fragility curve tainted by the uncertainty
of the Gaussian process surrogate is written:

Ψ(2)(a,x) = P(Yn(A,X) > log(C)|A = a,X = x, Gn), (9)

so that we have

Ψ(2)(a,x) = Φ
(

Gn(a,x)− log(C)
σε

)
, (10)

International Journal for Uncertainty Quantification



Uncertainty Quantification and Global Sensitivity Analysis of Seismic Fragility Curves Using Kriging 43

whereGn(a,x) ∼ N (
mn(a,x), sn(a,x)2

)
. Note thatΨ(1) is the mean ofΨ(2) with respect to the distribution of

Gn:
Ψ(1)(a,x) = E[Ψ(2)(a,x)], (11)

as shown in Appendix A. In order to estimate the distribution ofΨ(2), we simulateP realizations(Gn,p(a,x))1≤p≤P

with the distribution of(G(a,x)|Dn) to simulate a sample ofΨ(2):

Ψ(2)
p (a,x) = Φ

(
Gn,p(a,x)− log(C)

σε

)
. (12)

However, some mechanical structures have nonlinear behavior that can influence the local variability of the log-
EDPy(a,x). Thus, a varying nugget with respect to(a,x) is necessary to capture the form ofy(a,x). This comes
with a cost in terms of dataset size, due to the increase in the numbers of parameters to estimate. We deal with this
case in the next section.

2.2 Gaussian Process Surrogate with Heteroskedastic Nugget Noise

In this section, the log-EDPy(a,x) is now supposed to follow the statistical model described by Eq. (1) where
ε(a,x) ∼ N (0,σε(a,x)2). There are two ways of estimatingσε(a,x) described in [25]. The first one, called stochas-
tic kriging (SK), is to consider several replications at the same value of the input parameters(a,x) and to provide
an empirical estimation of the heteroskedastic standard deviationσε(a,x). The other one is to propose a parametric
model of the noise standard deviationσε(a,x) = ϕ(a,x; θ), and to calibrate the parameters vectorθ using the dataset
Dn = ((ai,xi), y(ai,xi))1≤i≤n. We decided to implement the second method with a parametric model for several
reasons. Because in the SK framework, we need to have the parameters of the stochastic ground motion generator in
the input parameters, in order to make several replications at precise seismic intensitya, we prefer to consider to have
a framework that is independent of the generator of seismic ground motions, due to the high number and diversity of
stochastic generators proposed in the literature. Moreover, in the SK framework, the design of experiments have to
be specifically built in order to be able to make replications, but in many applications, like in [26], due to budget or
time constraints engineers only have access to a Monte Carlo datasetDn = ((ai,xi), y(ai,xi))1≤i≤n; this makes it
impossible to perform SK to estimate the heteroskedastic noise.

The key aspect of the parametric modelization of the heteroskedastic noise is the choice of the family of para-
metric functionsϕ(a,x; θ). A sparse representation is preferable in order to limit the dimension of the parameters
vectorθ. Prior knowledge about earthquake engineering helps to reduce the dimension of the input parameters(a,x).
Indeed, it is common in earthquake engineering that the variability of the EDP is mainly caused by mechanical non-
linearities and, possibly, by the variability of the seismic signals (e.g., frequency content), which themselves depend
on the intensity of the seismic ground motion. This leads to the simplificationϕ(a,x;θ) = ϕ(a; θ). Thus,ϕ depends
on only one variable, reducing drastically the dimension ofθ. The calibration ofθ is performed using maximum like-
lihood estimation as in the homoskedastic case;θ is considered as a hyperparameter of the Gaussian process. After
calibration of the hyperparameters, we can obtain the conditional distribution of the heteroskedastic Gaussian process
for every(a,x),

(Y (a,x)|Dn) ∼ N (qmn(a,x), qσn(a,x)2
)
. (13)

We can also derive the conditional distribution of the Gaussian processG on the regression function:

(G(a,x)|Dn) ∼ N (qmn(a,x), qsn(a,x)2
)
, (14)

whereqσn(a,x)2 = qsn(a,x)2+ϕ(a; qθn)2; qθn is the vector of parameters of the parametrized heteroskedastic standard
deviation obtained by maximum likelihood. In the same fashion as for the homoskedastic Gaussian process we can
estimate the fragility curve using the conditional distribution:

qΨ(1)(a,x) = Φ
( qmn(a,x)− log(C)qσn(a,x)

)
. (15)
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The uncertainty on the Gaussian process(G|Dn) can be propagated in the fragility curve in the same fashion as for
the homoskedastic Gaussian process:

qΨ(2)(a,x) = Φ

(
Hn(a,x)− log(C)

ϕ(a; qθn)

)
, (16)

whereHn(a,x) ∼ N (qmn(a,x), qsn(a,x)2
)
. The distribution ofqΨ(2) is empirically estimated by generatingQ real-

izations(Hn,p(a,x))1≤p≤P from the distributionN (qmn(a,x), qsn(a,x)2
)

in order to estimate a sample ofqΨ(2):

qΨ(2)
p (a,x) = Φ

(
Hn,p(a,x)− log(C)

ϕ(a; qθn)

)
. (17)

2.3 Uncertainty Propagation on Seismic Fragility Curves Using Gaussian Process Surrogates

The Gaussian process surrogates allow us to propagate the uncertainties onX, such thatX ∼ PX, into the fragility
curves by considering the random functionsa → Ψ(a,X). We can derive from these random fragility curves several
statistical quantities of interest such that the mean fragility curve

Ψ̄(a) = EX[Ψ(a,X)]. (18)

Moreover, the mechanical engineer may be interested in more conservative statistical quantities that will be useful for
risk analysis. So, we define the seismic fragility quantile curvea → qγ(a) of levelγ ∈ (0, 1) as

qγ(a) = inf
q∈R

{
PX(Ψ(a,X) ≤ q) ≥ γ

}
. (19)

The estimation of these quantities of interest can be carried out using a Monte Carlo sample(Xj)1≤j≤m. For the
fragility quantile curve, the seismic fragility curve estimatorΨ(1) can be used to propose the following plug-in esti-
mator:

q(1)
γ (a) = inf

q∈R





1
m

m∑

j=1

1(Ψ(1)(a,Xj)≤q) ≥ γ



. (20)

Furthermore, the posterior predictive distribution of the GP surrogates can be used to obtain the posterior distribution
of the seismic fragility quantile curve usingΨ(2). An example of propagation of the posterior distribution of a Gaus-
sian process metamodel to the posterior distribution of a probability of failure is proposed in [40]. Using a sample
(Ψ(2)

p )1≤p≤P of Ψ(2), we can estimate aγG-level quantile w.r.t. the posterior distribution of the GP surrogate.

q(2)
γG

(a,X) = inf
q∈R





1
P

P∑

p=1

1
(Ψ

(2)
p (a,X)≤q)

≥ γG



. (21)

A bilevel seismic fragility quantile curve is then proposed by taking theγX-level quantile ofq(2)
γG(a,X) w.r.t. the

probability distribution ofX.

q(2)
γG,γX

(a) = inf
q∈R





1
m

m∑

j=1

1
(q

(2)
γG

(a,Xj)≤q)
≥ γX



. (22)

The denomination bilevel means that it encompasses both the uncertainty onX and on the GP surrogate modeling.
The procedure of estimation of the bilevel seismic fragility quantile curve is detailed in Algorithm 1. The same
procedure can be applied using the heteroskedastic GP surrogate.
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Algorithm 1: Uncertainty propagation on seismic fragility curves with Gaussian process
Requirements:

1. A regular grid(at)1≤t≤T .

2. A Monte Carlo sample(Xj)1≤j≤m with the distribution ofX.

3. A learning sampleDn = ((ai,xi), y(ai,xi))1≤i≤n.

Procedure: For eachat with 1≤ t ≤ T

1. For eachXj with 1≤ j ≤ m

a. Compute with the kriging equationsmn(at,Xj), σn(at,Xj), andsn(at,Xj).

b. ComputeΨ(1)(at,Xj) by Eq. (8).

c. For1≤ p ≤ P , sampleGn,p(at,Xj) ∼ N (mn(at,Xj), sn(at,Xj)2) and computeΨ(2)
p (at,Xj) by

Eq. (12).

2. Estimate the seismic fragility quantile curve at pointat using the dataset(Ψ(1)(at,Xj))1≤j≤m by Eq. (20).

3. Estimate the bilevel seismic fragility quantile curve with surrogate uncertainty at pointat using the dataset
(Ψ(2)

p (at,Xj))1≤p≤P,
1≤j≤m

by using Eqs. (21) and (22).

3. GLOBAL SENSITIVITY ANALYSIS OF SEISMIC FRAGILITY CURVES

Sensitivity analysis aims at determining the input parameters of a computer model that influence the most the model
response [31,32,41]. Global sensitivity analysis (GSA) methods are dedicated to taking into account the overall un-
certainty of the input parameters. In this paper, the quantity of interest is the seismic fragility curve and thus the
sensitivity index has to be defined on this quantity in order to be goal-oriented. Moreover, this is also coherent with
the distinction between epistemic and aleatory uncertainties: in industrial applications, the seismic intensity measure
is considered to be a penalizing input parameter which can dramatically influence the dynamical behavior of the
mechanical structure studied; we thus do not need to estimate a sensitivity index of the seismic ground motion and
it will not be considered as an input parameter in this part. However, the epistemic uncertainties are by definition
reducible with further data gathering or engineering studies [4]. Providing accurate sensitivity indices on the input
parameters tainted by epistemic uncertainties is then more justified, because they can inform the decision maker on
which parameter the reduction of uncertainty will have the most impact on the quantity of interest. Thus, the global
sensitivity indices will be computed only for each input parameter inx.

In this section, we propose two global sensitivity indices: the first ones are introduced in [42,43] and coined
aggregated Sobol’ indices; they are a natural extension of the classical Sobol’ indices to functional quantity of interest.
The second ones are maximum mean discrepancy (MMD) based Sobol’ indices, also coinedβk indices [35]. These
indices are based on a reproducing kernel Hilbert Space (RKHS); thus they can handle complex types of outputs
(such as functional output in our case) while being computationally tractable.

3.1 Aggregated Sobol’ Indices

Variance-based sensitivity formulation [33,34] is a very popular way of performing GSA on computer codes; the
associated sensitivity indices are coined as Sobol’ indices. For the case of independent inputs, we can use the ANOVA
decomposition [44,45] of a numerical modelZ = M(X(1), ..., X(d)) whereZ is a real-valued random variable and
(X(i))1≤i≤d ared real-valued random variables. The variance ofZ is decomposed as follows:
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Var(Z) = V =
d∑

i=1

Vi +
∑

1≤i<j≤d

Vij + · · ·+ V1...d =
∑

∅ u⊆{1,...,d}
Vu, (23)

where Vi = Var
(
E

[
Z|X(i)

])
, Vij = Var

(
E

[
Z|X(i), X(j)

]) − Var
(
E

[
Z|X(i)

]) − Var
(
E
[
Z|X(j)

])
, Vu =∑

v⊆u(−1)|u|−|v|Var
(
E[Z|(X(i))i∈v]

)
. Then, the Sobol’ indices are defined by

Si =
Vi

V
, Sij =

Vij

V
, Su =

Vu

V
, . . . , Ti =

∑

u⊆{1,...,d},i∈u

Su. (24)

The first-order Sobol’ indexSi measures the effect of only the inputX(i) on the variance of the outputZ, while the
total Sobol’ indexTi measures the effect ofX(i) and all the interactions betweenX(i) and the other inputs. Note that
Ti = 1− V−i/V , whereV−i = Var

(
E

[
Z|X(−i)

])
andX(−i) = (X(j))j 6=i the vector of all input variables except

X(i).
The same kind of variance-based sensitivity indices can be defined for seismic fragility curves. It was introduced

first in [42,43] in the context of probability of detection (POD) curves used in nondestructive testing studies. Using
the notationX = (X(1), . . . ,X(d)), we first define the following quantity:

Ψ(a) = EX[Ψ(a,X)],

ΨX(i)(a) = P(z(A,X) > C|A = a,X(i)),

ΨX(−i)(a) = P(z(A,X) > C|A = a,X(−i)),

D = EX

[‖Ψ−ΨX‖2
L2

]
= EX

[∫ a1

a0

(Ψ(a)−Ψ(a,X))2da

]
,

(25)

where theL2 norm is computed on the compact intervalA = [a0, a1]. Indeed, it is acceptable in terms of engineering
practice to consider minimum and maximum admissible values for the seismic intensity measure. The aggregated
Sobol’ indices for fragility curves are then written:

SFC
i =

1
D

∫ a1

a0

Var
(
E[ΨX(a)|X(i)]

)
da, (26)

TFC
i = 1− 1

D

∫ a1

a0

Var
(
E[ΨX(a)|X(−i)]

)
da, (27)

whereSFC
i (respectively,TFC

i ) is the first-order (respectively total) effect ofX(i) on the seismic fragility curve.
These indices are coined aggregated Sobol’ indices because they result from the integration of the Sobol’ indices of
the random variableΨX(a) for all admissible values of the seismic intensity measure betweena0 anda1. Moreover,
as the classical Sobol’ indices, they follow an ANOVA decomposition, allowing for a clear definition of the relative
influence of each subset of input parameters into the seismic fragility curve uncertainty. Pick-freeze estimators [32] of
the aggregated Sobol’ indices are used in order to avoid a double Monte Carlo loop. Moreover, the Gaussian process
surrogate model is used to replace the different fragility curves defined in Eq. (25) by their estimatorsΨ(1). Let X̃ be
an independent copy ofX. We defineX̃i = (X̃(1), . . . ,X(i), . . . , X̃(d)) andX̃−i = (X(1), . . . , X̃(i), . . . ,X(d)). The
pick-freeze principle relies on the following result, for alla ∈ [a0, a1]:

Var
(
E[ΨX(a)|X(i)]

)
= Cov(ΨX(a), ΨX̃i

(a)). (28)

By plugging Eq. (28) into Eqs. (26) and (27), it is possible to define a pick-freeze estimator of the aggregated Sobol’
indices. We draw a Monte Carlo sample of sizem of (X, X̃i, X̃−i) that we denote(Xj , X̃i,j , X̃−i,j)1≤j≤m. The
aggregated Sobol’ indices estimators are then written:
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pSFC
i,m,n =

T∑

t=1

〈
Ψ(1)(at,X)Ψ(1)(at, X̃i)

〉
m
−

〈
Ψ(1)(at,X)

〉
m

〈
Ψ(1)(at, X̃i)

〉
m

T∑

t=1

〈
Ψ(1)(at,X)2

〉
m
−

〈
Ψ(1)(at,X)

〉2

m

, (29)

pTFC
i,m,n = 1−

T∑

t=1

〈
Ψ(1)(at,X)Ψ(1)(at, X̃−i)

〉
m
−

〈
Ψ(1)(at,X)

〉
m

〈
Ψ(1)(at, X̃−i)

〉
m

T∑

t=1

〈
Ψ(1)(at,X)2

〉
m
−

〈
Ψ(1)(at,X)

〉2

m

, (30)

where we denote for any functionf :

〈
f(X, X̃i, X̃−i)

〉
m

=
1
m

m∑

j=1

f(Xj , X̃i,j , X̃−i,j). (31)

A regular grid(at)1≤t≤T is used to approximate the integral on the seismic intensity measure on the set[a0, a1].
Given that the Gaussian process surrogate provides a predictor and its associated uncertainty, we can propagate

it into the aggregated Sobol’ indices estimators by replacing the fragility curve estimatorΨ(1) by P drawsΨ(2)
p using

the probability distribution of(G|Dn). The aggregated Sobol’ indices are then written:

S̃FC
i,m,n,p =

T∑

t=1

〈
Ψ(2)

p (at,X)Ψ(2)
p (at, X̃i)

〉
m
−

〈
Ψ(2)

p (at,X)
〉

m

〈
Ψ(2)

p (at, X̃i)
〉

m

T∑

t=1

〈
Ψ(2)

p (at,X)2
〉

m
−

〈
Ψ(2)

p (at,X)
〉2

m

, (32)

T̃FC
i,m,n,p = 1−

T∑

t=1

〈
Ψ(2)

p (at,X)Ψ(2)
p (at, X̃−i)

〉
m
−

〈
Ψ(2)

p (at,X)
〉

m

〈
Ψ(2)

p (at, X̃−i)
〉

m

T∑

t=1

〈
Ψ(2)

p (at,X)2
〉

m
−

〈
Ψ(2)

p (at,X)
〉2

m

. (33)

The aggregated Sobol’ indices estimators defined in Eqs. (29) and (30) use the GP predictor of the fragility
curve Ψ(1) to quantify the impact of each input parameter on the overall fragility curve. The uncertainty on the
regression function is obtained with the probability distribution of(G|Dn) or (H|Dn) and is propagated into the
aggregated Sobol’ indices estimators in Eqs. (32) and (33). Moreover, in order to take into account the uncertainty
of the Monte Carlo estimation of the Sobol’ indices, we draw, forb = 1, . . . , B, the random variables(ub(j))1≤j≤m

with equiprobability and with replacement in{1, . . . , m} and replace the pick-freeze Monte Carlo sampling dataset
(Xj , X̃i,j , X̃−i,j)1≤j≤m by (Xub(j), X̃i,ub(j), X̃−i,ub(j))1≤j≤m. We thus obtain a sample of sizeP × B of aggre-
gated Sobol’ indices(S̃FC

i,m,n,p,b)1≤p≤P,
1≤b≤B

. This sample allows us to quantify the uncertainty ofSFC
i coming from

the kriging metamodel uncertainty and the pick-freeze Monte Carlo uncertainty. The same procedure can be made
with total Sobol’ indicesTFC

i . The estimation of the metamodel and Monte Carlo uncertainty onSFC
i is presented

in Algorithm 2. Note that for pick-freeze estimators we have to sample Gaussian vectors of size2mT which is, in
our application, close to 106. The classical sampling method for sampling Gaussian vectors uses a Cholesky decom-
position of the covariance matrix and has a cubic complexity with respect to the Gaussian vector size. Here we use
sampling by kriging conditioning and the Nyström procedure as described in [36] to make the computations tractable.
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Algorithm 2: Estimation of the metamodel and Monte Carlo uncertainty onSFC
i

Same requirements as Algorithm 1, with additionally:

1. A Monte-Carlo sample(Xj , X̃i,j)1≤j≤m with the distribution of(X, X̃i).

2. The numberP of realizations of the GP posterior distribution.

3. The numberB of bootstrap samples.

Procedure: For1≤ p ≤ P

1. SampleGn,p(D) with the posterior distribution(G(D)|Dn), where
D = (at,Xj)1≤t≤T,1≤j≤m ∪ (at, X̃i,j)1≤t≤T,1≤j≤m (see Appendix B).

2. For 1≤ b ≤ B

a. Sample with replacement in{1, . . . , m} the bootstrap indices(ub(j))1≤j≤m and then define the
bootstrap sampleDb = (at,Xub(j))1≤t≤T,1≤j≤m ∪ (at, X̃i,ub(j))1≤t≤T,1≤j≤m.

b. ComputeS̃FC
i,m,n,p,b by Eqs. (12) and (32) and by usingGn,p(Db).

In the same manner as in [36], we can also estimate the part of variance ofSFC
i coming from the Monte Carlo approx-

imation and the part related to the kriging metamodel uncertainty. The part of variance related to the metamodeling
is written: pσ2

Gn

(
S̃FC

i,m,n

)
=

1
B

B∑

b=1

1
P − 1

P∑

p=1

(
S̃FC

i,m,n,p,b −
〈
S̃FC

i,m,n,b

〉
P

)2
, (34)

where
〈
S̃FC

i,m,n,b

〉
P

= (1/P )
∑P

p=1 S̃FC
i,m,n,p,b. Furthermore, it is also possible to evaluate the part of the variance due

to Monte Carlo approximation of the aggregated Sobol’ indices:

pσ2
MCm

(
S̃FC

i,m,n

)
=

1
P

P∑

p=1

1
B − 1

B∑

b=1

(
S̃FC

i,m,n,p,b −
〈
S̃FC

i,m,n,p

〉
B

)2
, (35)

where
〈
S̃FC

i,m,n,p

〉
B

= (1/B)
∑B

b=1 S̃FC
i,m,n,p,b. Following [36], we can use these two variances as a rationale for

choosing the number of Monte Carlo samplesm and the number of mechanical simulations of the structuren. In-

deed, whenpσ2
MCm

(
S̃FC

i,m,n

)
≈ pσ2

Gn

(
S̃FC

i,m,n

)
the Monte Carlo and the kriging metamodel errors make the same

contributions to the estimation error of the aggregated Sobol’ indices. Note that these variances are defined for each
input parameter and each order of the aggregated Sobol’ indices. A compromise has to be made for choosing which
order and input parameter the engineer must consider.

3.2 βk Indices

Kernel-based methods in machine learning and statistics have gained in popularity due to their ability to simplify
difficult nonlinear problems into linear problems by embedding the data points into a reproducing kernel Hilbert
space (RKHS) [46]. The main applications involve independence testing [47,48] and dimension reduction [49–51].
A first use of kernel methods for GSA purposes was proposed in [52] where the Hilbert Schmidt independence
criterion (HSIC) was used to propose global sensitivity indices.βk indices [35] make also use of the RKHS and
are global sensitivity indices based on the maximum mean discrepancy (MMD) and defined with the rationale of
[53]. βk indices have also the interesting property of being Sobol’ indices on the kernel embedding of the output
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variable as shown in [32]. This is appealing for our application as we can use the same framework of estimation as
for the aggregated Sobol’ indices using a pick-freeze scheme and propagate the kriging prediction uncertainty into
the βk indices estimates. In order to define theβk indices, we have to define the MMD given the kernel function
(x, y) 7→ k(x, y) [54].

Lemma 1. LetT be a separable topological nonempty set andMT be the set of all probability measures onT . Let
(u, v) 7→ k(u, v) be a continuous positive-definite kernel. LetP,Q ∈MT . SupposeU,U ′ ∼ P andV, V ′ ∼ Q, where
U, U ′, V, V ′ are mutually independent, such thatE[

√
k(U,U ′)] < +∞ andE[

√
k(V, V ′)] < +∞. The maximum

mean discrepancy (MMD) betweenP andQ can be expressed as follows:

MMD(P,Q)2 = E[k(U,U ′)] + E[k(V, V ′)]− 2E[k(U, V )]. (36)

The MMD allows us to define a distance between probability measures. According to [52,53], it is possible to
define a global sensitivity index using a distance between probability measures. Given the same numerical model as
in Section 3.1,Z = M(X(1), . . . , X(d)), theβk index for the input variableX(i) is defined by

βk
i =

EX(i) [MMD(PZ ,PZ|X(i))2]
EX[MMD(PZ ,PZ|X)2]

. (37)

As shown in [32], these indices follow an ANOVA decomposition; the relative influence of each group of input
parameters can be assessed. We can then define the total orderβk index for the variableX(i) as follows:

βk
−i = 1− EX[MMD(PZ ,PZ|X(−i))2]

EX[MMD(PZ ,PZ|X)2]
. (38)

In the same spirit as in Section 3.1, it is possible to estimate theβk indices using a pick-freeze estimation
framework as shown in [32]. Using the same notations as in Section 3.1, we can rewrite the first-orderβk index as

βk
i =

E[k(M(X),M(X̃i))]− E[k(M(X),M(X̃))]
E[k(M(X),M(X))]− E[k(M(X),M(X̃))]

. (39)

The total orderβk index can be also expressed as

βk
−i = 1− E[k(M(X),M(X̃−i))]− E[k(M(X),M(X̃))]

E[k(M(X),M(X))]− E[k(M(X),M(X̃))]
. (40)

After defining theβk indices, we have to adapt to the case where the output variable of interest is no longer a
scalar variable but a functional variable. In order to defineβk indices on the seismic fragility curves, defineF =
L2([a0, a1]). We thus have to define a positive definite kernel onF × F , (Ψ1,Ψ2) → kF (Ψ1, Ψ2) for Ψ1, Ψ2 ∈ F .
According to [55], let∆(., .) be a semi-metric defined on the functional spaceF × F ; a kernel associated toF can
be defined askF (Ψ1,Ψ2) = k(∆(Ψ1,Ψ2)), wherek is acting onR. For the sake of notation simplicity, the kernel
acting on the functional spaceF will be denoted byk. For our application, we will choose the so-called Gaussian
kernel with squaredL2 norm:

k(Ψ1, Ψ2) = exp

(
−‖Ψ1 −Ψ2‖2

L2

2`2

)
, (41)

where` is a hyperparameter of the kernel that will be calibrated with the available data. The pick-freeze method
combined with the Gaussian process surrogates allows us to define the followingβk indices estimators:

pβk
i,m =

〈
k
(
Ψ(1)(.,X),Ψ(1)(., X̃i)

)
− k

(
Ψ(1)(.,X),Ψ(1)(., X̃)

)〉
m〈

k
(
Ψ(1)(.,X), Ψ(1)(.,X)

)
− k

(
Ψ(1)(.,X), Ψ(1)(., X̃)

)〉
m

, (42)
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pβk
−i,m = 1−

〈
k
(
Ψ(1)(.,X), Ψ(1)(., X̃−i)

)
− k

(
Ψ(1)(.,X),Ψ(1)(., X̃)

)〉
m〈

k
(
Ψ(1)(.,X),Ψ(1)(.,X)

)
− k

(
Ψ(1)(.,X),Ψ(1)(., X̃)

)〉
m

. (43)

In the same fashion as for the aggregated Sobol’ indices it is possible to propagate the uncertainty of the posterior
distribution(G|Dn) of the Gaussian process usingP realizations:

β̃k
i,m,p =

〈
k
(
Ψ(2)

p (.,X),Ψ(2)
p (., X̃i)

)
− k

(
Ψ(2)

p (.,X), Ψ(2)
p (., X̃)

)〉
m〈

k
(
Ψ(2)

p (.,X), Ψ(2)
p (.,X)

)
− k

(
Ψ(2)

p (.,X), Ψ(2)
p (., X̃)

)〉
m

, (44)

β̃k
−i,m,p = 1−

〈
k
(
Ψ(2)

p (.,X),Ψ(2)
p (., X̃−i)

)
− k

(
Ψ(2)

p (.,X),Ψ(2)
p (., X̃)

)〉
m〈

k
(
Ψ(2)

p (.,X),Ψ(2)
p (.,X)

)
− k

(
Ψ(2)

p (.,X),Ψ(2)
p (., X̃)

)〉
m

. (45)

Note that—similarly to the aggregated Sobol’ indices—we can estimate the share of variance of theβk indices
estimators due to the Monte Carlo pick-freeze estimation method and due to the Gaussian process surrogate model
uncertainty using Eqs. (34) and (35).

4. APPLICATION TO A SAFETY WATER PIPE OF A FRENCH PWR

4.1 Presentation of the Use Case

Regulatory seismic risk prevention work for the nuclear power plants includes the study of piping systems. Thus,
this use case is related to a numerical model of a part of a piping system which was validated after an experimental
campaign on a mock-up based on seismic tests on the Azalee shaking table of the EMSI laboratory of CEA Saclay.
The main results of this experimental program, called the ASG program, are detailed in [56]. The finite element (FE)
model, based on beam elements, is implemented with the homemade FE code CAST3M [57]. In Fig. 1(a), a view of
the mock-up mounted on the shaking table is shown. The FE model is depicted in Fig. 1(b).

The output variable of interest is the maximum of the out-of-plane rotation of a specific elbow of the piping
system. This is the EDP of this problem, as recommended in [58]. The sources of epistemic uncertainties are the
mechanical parameters of the numerical model and the boundary conditions. The mechanical properties do not vary
in space and the mass of the mock-up is considered as perfectly known. The boundary condition uncertainties are

(a)

 Guide

 Rod
  Mass

  Clamped end

(b)

FIG. 1: (a) Overview of the ASG mock-up on the CEA’s shaking table and (b) ASG FE model

International Journal for Uncertainty Quantification



Uncertainty Quantification and Global Sensitivity Analysis of Seismic Fragility Curves Using Kriging 51

intended to represent the fact that the mock-up is part of a much larger piping system in practice. The ten uncertain
parameters are detailed in Table 1. All the associated random variables follow uniform probability distributions with
prescribed means (the numerical values are in Table 1) and with coefficients with a variation of 15%. All inputs are
considered mutually independent. As the mock-up is part of a larger piping system with a known first eigenmode
obtained through numerical simulations, we choose the mean value for the boundary condition’s parameters so that
the first eigenmode of the mock-up matches the first eigenmode of the mock-up when coupled to the entire piping
system. So we assume for simplicity that the part of the piping system to which it is attached mainly contributes by its
stiffness. Therefore, computational experiments based on simulations with calibrated mock-up boundary conditions
are more representative of the mock-up in its real environment.

Due to the limited number of records of real seismic ground motion acceleration signals, it is common to gen-
erate artificial seismic signals using a stochastic generator fitted on real accelerogram records. We use the stochastic
generator defined in [18] whose calibration is described in [14]. Finally, as the piping system is in practice located
in a building, the synthetic signals are filtered by a deterministic fictitious linear single-mode building at 5 Hz and
damped at 2%. The seismic intensity measure,a, chosen in this study, is the pseudo-spectral acceleration at 5 Hz and
1% damping ratio.

The computer model of the ASG mock-up is composed of a linear FE model when the maximal stress in the
mock-up pipe elbow is less than the elasticity limit Sy, and a nonlinear FE model when the maximal stress is greater.
A run of the linear FE model has a computation of a dozen seconds—the numerical resolution is based on a modal
based projection—whereas a run of the nonlinear FE model has a computation time of approximately 10 min.

4.2 Dimension Reduction of the Input Space and Choice of the Heteroskedastic Noise Parametric
Model

In this section, we present a data selection step to reduce the dimension of the input space of the mechanical computer
model and the choice of the model of the variance that is retained for the heteroskedastic GP.

The dimension reduction step of the input space was performed with a HSIC-based statistical hypothesis test
using the ICSCREAM methodology developed in [26]: a Gaussian kernel was used for each input variable and for the
output variable (i.e., the log rotation of the pipe elbow). Two thousand mechanical simulations using the less expensive
linear FE model were carried out for the mechanical input variables screening and six variables were selected (the
variable numbers 1, 2, 3, 8, 9, 10 in Table 1).

For the parametric form of the standard deviation for the heteroskedastic Gaussian process, we consider the
following ramp function:

ϕ(a; θ) = max(θ0 + θ1a, θ2), (46)

whereθ = (θ0, θ1,θ2). This parametric model for the heteroskedastic standard deviation is motivated by the model
proposed in [25]. It has the advantage to depend only on one variable and the small dimension ofθ allows for its
calibration with a reasonably sized dataset (n < 1000).

TABLE 1: Epistemic variables definition for the ASG use case

Variable number Variable Mean
1 E, Young’s modulus 1.9236× 1011 Pa
2 Sy, Elasticity limit 300 MPa
3 H, Hardening modulus 4.27× 108 Pa
4 b, Modal damping ratio 1%
5 RPY151, Rotation stiffness for the P151 guide in Y direction 1.1× 105 Nm/rad
6 RPX29, Rotation stiffness for the P29 clamped end in X direction1.1× 105 Nm/rad
7 RPY29, Rotation stiffness for the P29 clamped end in Y direction3.3× 105 Nm/rad
8 TPX29, Translation stiffness for the P29 clamped end in X direction1.0× 106 N/m
9 TPY29, Translation stiffness for the P29 clamped end in Y direction2.0× 105 N/m
10 TPZ29, Translation stiffness for the P29 clamped end in Z direction1.0× 106 N/m

Volume 14, Issue 4, 2024



52 Gauchy, Feau, & Garnier

For the homoskedastic Gaussian process model, the hyperparameters are estimated using the maximum a pos-
teriori estimator proposed in [59] using a so-called jointly robust prior, which has the useful property of avoiding
hyperparameter values raising ill-conditioned correlation matrices. On the other hand, the heteroskedastic Gaussian
process is estimated using maximum likelihood. A Monte Carlo sample of sizen = 500 from the probability dis-
tribution of the mechanical parametersX is drawn, as well as 500 realizations of our stochastic ground motion
generator model. Then = 500mechanical simulations are then carried out using CAST3M. The performance of the
homoskedastic and heteroskedastic GP models is then assessed in the following section.

4.3 Performance Evaluation of the Gaussian Process Surrogates

This section is devoted to the qualitative evaluation of the predictive properties of the two surrogate models.
Figure 2 shows the predicted versus observed values of the log-EDPy(a,x) using a learning dataset ofn = 500

observations. The green solid line corresponds to the identity, the closer the data are from this line the better the
prediction quality of the surrogate is. We can notice that the heteroskedastic Gaussian process underestimates the
high values of the log-EDP; the homoskedastic surrogate also has this behavior but the data are closer to the identity
line for high values of the log-EDP. However, this concerns the log-EDP values greater than the 90%-level quantile.
Hence, it is not sufficient to determine whether the homoskedastic or the heteroskedastic Gaussian process has the
best performance in terms of prediction.

In order to study more quantitatively the predictive properties of the two surrogates, we use the prediction power
Q2 defined as

Q2 = 1−
∑nt

i=1(y(at
i,x

t
i)−mn(at

i,x
t
i))

2

∑nt

i=1(y(at
i,x

t
i)− ȳ)2

, (47)

where(at
i,x

t
i, y(at

i,x
t
i))1≤i≤nt is a test dataset, and̄y = (1/nt)

∑nt

i=1 y(at
i,x

t
i). In practice the computational cost

of mechanical models limits the sample size; thus the prediction powerQ2 is computed using the leave-one-out cross
validation technique [60]: the hyperparameters of the GP surrogates are estimated only once on the training sample to
alleviate the computational burden of hyperparameter tuning in the cross-validation procedure. Table 2 gathers theQ2

numerical values for the homoskedastic and heteroskedastic GP and learning sample size between 100 and 500. The
Q2 values of the heteroskedastic and homoskedastic GP surrogates being very close to each other, we can conclude
that the two surrogates raise the same predictive performance.
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FIG. 2: Predicted values versus observed values for the (a) heteroskedastic and (b) homoskedastic Gaussian process surrogate
with a dataset sizen = 500

TABLE 2: Q2 numerical values estimated by leave-one-out on the training sample
for various learning sample sizes and for the two GP surrogates

Learning sample size 100 200 300 400 500
Homoskedastic 0.835 0.888 0.875 0.890 0.888
Heteroskedastic 0.842 0.860 0.849 0.872 0.875
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Moreover, we also provide a graphical tool proposed in [26] which consists of evaluating the proportion of data
that lie in theα-theoretical confidence interval obtained with heteroskedastic and homoskedastic Gaussian process
surrogates. Several valuesα ∈ [0, 1] of the prediction interval level are chosen and the theoretical level of the pre-
diction interval is compared to the empirical proportion of the data that belong actually to this prediction interval.
The empirical coverage probabilities are also estimated by leave-one-out on the learning sample ofn = 500 non-
linear mechanical simulations. By definition, the more the points are close to the identity line, the better the quality
of the kriging surrogate is. Figure 3 gives the results for heteroskedastic and homoskedastic Gaussian process sur-
rogates. We can note that the empirical coverage probabilities with the heteroskedastic surrogate are closer to the
identity line than for the homoskedastic surrogate. This can be explained by the flexibility of the variance provided
by the heteroskedasticity which allows better adaptation to the distribution of the data than with a fixed value for the
variance.

Finally, the observations made in Fig. 2 and Table 2 indicate that the homoskedastic and heteroskedastic sur-
rogates perform similarly in terms of predictivity. Moreover, the heteroskedastic GP surrogate is better than the
homoskedastic one to approximate the overall distribution of the data as shown with the coverage probabilities illus-
trated in Fig. 3. Thus, regarding the performance metrics used in this article, the heteroskedastic model is preferred
to the homoskedastic one. However, in order to validate and benchmark the methodology proposed in this paper, the
two surrogate models will be used to propagate the epistemic uncertainties tainting the mechanical parameters to the
seismic fragility curve and for global sensitivity indices estimation.

4.4 Estimation of the Seismic Fragility Curves

The statistical quantities of interest defined in Section 2.3 are estimated empirically using a Monte Carlo sampling
(Xj)1≤j≤m of sizem = 1000. Numerical results for several training sizesn and failure elbow out-of-plane rotation
anglesC are shown in Figs. 4 and 5; the red area corresponds to the area determined by the 10% and 90% level
seismic fragility quantile curves estimated using(Ψ(1)(.,Xj))1≤j≤m and(qΨ(1)(.,Xj))1≤j≤m for, respectively, the
homoskedastic and heteroskedastic Gaussian processes. The Gaussian process surrogate uncertainty is assessed by
samplingP = 1000 realizations ofGn and Hn for each valueXj , 1 ≤ j ≤ m; the bilevel seismic fragility
quantile curves withγG = γX = 0.9 andγG = γX = 0.1 are shown in dashed green and they are estimated
empirically from the datasets(Ψ(2)

p (.,Xj))1≤p≤P,
1≤j≤m

and(qΨ(2)
p (.,Xj))1≤p≤P,

1≤j≤m
respectively, for the homoskedastic and

heteroskedastic Gaussian processes. The solid blue line corresponds to a nonparametric fragility curve estimation
of the mean fragility curve using K-means clustering and binned Monte Carlo [10] on a large dataset of 2000 FE
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FIG. 3: Observed proportion of the data that lie in theα-theoretical confidence intervals with respect to their theoretical pro-
portion for both heteroskedastic and homoskedastic Gaussian processes with a learning sample ofn = 500nonlinear mechanical
simulations
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FIG. 4: Uncertainty propagation of the epistemic uncertainties on the seismic fragility curves with a failure elbow out-of-plane
rotation angleC = 0.5◦. (a)C = 0.5◦, n = 200; (b) C = 0.5◦, n = 200; (c) C = 0.5◦, n = 500; and (d)C = 0.5◦, n = 500.

simulations of the piping system (the dashed blue lines determine the 90%-level confidence intervals whose half-
width is equal to 1.3 times the standard deviation of the empirical exceeding probability estimator in each cluster).
We can notice that the interquantile range is larger for the homoskedastic Gaussian process than the heteroskedastic
Gaussian process for small training datasets (n = 200) and both failure elbow out-of-plane rotation angles (C = 0.5◦

andC = 1◦). This tends to demonstrate that the heteroskedastic surrogate better fits the conditional distribution of
the log-EDP. The next section deals with the sensitivity analysis of the piping system.

4.5 Global Sensitivity Analysis of the Piping System Using the Gaussian Process Surrogates

Now we perform the estimation of the aggregated Sobol’ indices and theβk indices of the seismic fragility curves
of the piping system using the methodology described in Section 3. A training dataset ofn = 500simulations and
a Monte Carlo design of sizem = 20,000have been sampled in order to perform the pick-freeze estimation of the
aggregated Sobol’ indices.P = 200 realizations of the GP surrogate andB = 150 bootstrap redraws have been
carried out to assess the uncertainty of the aggregated Sobol’ indices both in terms of metamodeling and Monte Carlo
uncertainty. For the failure elbow out-of-plane rotation angleC = 0.5◦ we compute theL2 distance between fragility
curves on the intervala ∈ [0.1, 25] in order to focus on the transition area between small and high probabilities of
failure. Figures 6 and 7 provide the results for the estimation of both first-order and total-order aggregated Sobol’
indices forC = 1◦ using the homoskedastic and heteroskedastic Gaussian process surrogates.

Tables 3 and 4 gather the numerical values of the standard deviations of the first- and total-order aggregated
Sobol’ indices due to the metamodel uncertainty and the Monte Carlo estimation uncertainty for, respectively, the
homoskedastic and heteroskedastic Gaussian process surrogate models. Note that the standard deviation due to the
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FIG. 5: Uncertainty propagation of the epistemic uncertainties on the seismic fragility curves with a failure elbow out-of-plane
rotation angleC = 1◦. (a)C = 1◦, n = 200; (b) C = 1◦, n = 200; (c) C = 1◦, n = 500; and (d)C = 1◦, n = 500.
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FIG. 6: First-order aggregated Sobol’ indices for a failure rotation angleC = 1◦ estimated with the heteroskedastic and ho-
moskedastic GP surrogates

Monte Carlo estimation uncertainty is approximately ten times smaller than the one coming from the metamodel.
Since increasing the sample sizen is more computationally expensive than increasing the Monte Carlo sample sizem
due to the mechanical FE computer model, it is possible to choosem such that the Monte Carlo estimation uncertainty
is negligible with respect to the Gaussian process surrogate model uncertainty. The interquantile ranges represented
in Figs. 6 and 7 thus mostly come from the Gaussian process uncertainty.

Remark that the parameters E, TPX29, and TPY29 are the most influential on the seismic fragility curve. Indeed,
the modal properties of the piping system essentially drive its dynamic behavior and hence its robustness under
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FIG. 7: Total-order aggregated Sobol’ indices for a failure rotation angleC = 1◦ estimated with the heteroskedastic and ho-
moskedastic GP surrogates

TABLE 3: Numerical values of the part of variance ofS̃FC andT̃FC related to the Monte Carlo
estimation and to the homoskedastic Gaussian process metamodel uncertainty

E Sy H TXP29 TYP29 TZP29pσMCm(S̃FC) 0.006 0.005 0.006 0.006 0.006 0.006pσGn(S̃FC) 0.08 0.007 0.04 0.05 0.08 0.07pσMCm(S̃FC) / pσGn(S̃FC) 0.08 0.8 0.15 0.10 0.07 0.1pσMCm(T̃FC) 0.004 0.0004 0.003 0.003 0.005 0.004pσGn(T̃FC) 0.1 0.005 0.07 0.08 0.1 0.08pσMCm(T̃FC) / pσGn(T̃FC) 0.04 0.1 0.05 0.04 0.05 0.04

TABLE 4: Numerical values of the part of variance ofS̃FC andT̃FC related to the Monte Carlo
estimation and to the heteroskedastic Gaussian process metamodel uncertainty

E Sy H TXP29 TYP29 TZP29pσMCm(S̃FC) 0.006 0.007 0.007 0.007 0.006 0.007pσGn(S̃FC) 0.08 0.02 0.01 0.04 0.07 0.01pσMCm(S̃FC) / pσGn(S̃FC) 0.08 0.4 0.7 0.2 0.08 0.6pσMCm(T̃FC) 0.005 0.001 0.0007 0.003 0.006 0.001pσGn(T̃FC) 0.07 0.02 0.006 0.05 0.08 0.01pσMCm
(T̃FC) / pσGn

(T̃FC) 0.07 0.08 0.1 0.06 0.07 0.08

seismic loading. The variable TYP29 corresponds to the stiffness of the clamped end in the Y direction (i.e., the
direction of the permanent loading due to the piping system’s weight). What can explain why TPY29 is the most
influential mechanical parameter of the piping system is the coupling of the main eigenmodes between the X direction
(i.e., the direction of the seismic load) and the Y direction. The influence of variable TYP29 is more clearly detected by
the heteroskedastic Gaussian process surrogate; however, the two metamodels raise the same ranking of mechanical
parameters in terms of aggregated Sobol’ indices. The results of the estimation of theβk sensitivity indices are
shown in Figs. 8 and 9. We use the same parametersn, P , B as for the estimation of the aggregated Sobol’ indices.
However, we choosem = 15,000 for the Monte Carlo design used for theβk indices pick-freeze estimator. First note
that the ranking of inputs is the same as for the one obtained with aggregated Sobol’ indices. However, we can note
that theβk indices of the total-order indices have larger values than the first-order indices, whereas the aggregated
Sobol’ indices of first and total order have very close values. This means that the aggregated Sobol’ indices fail to
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FIG. 8: First-order MMD-based indices for a failure rotation angleC = 1◦ estimated with the heteroskedastic and homoskedastic
GP surrogates
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FIG. 9: Total-order MMD-based indices for a failure rotation angleC = 1◦ estimated with the heteroskedastic and homoskedastic
GP surrogates

detect interactions between input parameters. On the contrary, because theβk indices take into account the overall
probability distribution of the fragility curves conditional to the input parameters, it is not surprising to detect more
clearly interactions between inputs.

Tables 5 and 6 gather the numerical values of the standard deviation of theβk indices apportioned to the
Monte Carlo estimation uncertainty and to the Gaussian process surrogate model uncertainty, respectively, for the
homoskedastic and heteroskedastic Gaussian process surrogate models. Similarly as for the aggregated Sobol’ in-
dices, most of the uncertainty on theβk indices comes from the metamodel uncertainty. The interquantile ranges
shown in Figs. 8 and 9 mostly come from the uncertainty induced by Gaussian process metamodeling.

TABLE 5: Numerical values of the part of variance ofβ̃k of first and total order related to the
Monte Carlo estimation and to the homoskedastic Gaussian process metamodel uncertainty

E Sy H TXP29 TYP29 TZP29pσMCm
(β̃k

i ) 0.004 0.0006 0.003 0.004 0.005 0.004pσGn(β̃k
i ) 0.03 0.002 0.02 0.03 0.05 0.03pσMCm(β̃k

i ) / pσGn(β̃k
i ) 0.13 0.4 0.15 0.14 0.11 0.13pσMCm

(β̃k
−i) 0.005 0.0004 0.004 0.005 0.006 0.005pσGn

(β̃k
−i) 0.1 0.02 0.1 0.07 0.1 0.04pσMCm(β̃k

−i) / pσGn(β̃k
−i) 0.05 0.02 0.04 0.05 0.08 0.04
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TABLE 6: Numerical values of the part of variance ofβ̃k of first and total order related to the
Monte-Carlo estimation and to the heteroskedastic Gaussian process metamodel uncertainty

E Sy H TXP29 TYP29 TZP29pσMCm
(β̃k

i ) 0.004 0.0006 0.003 0.004 0.005 0.004pσGn
(β̃k

i ) 0.03 0.002 0.02 0.03 0.05 0.03pσMCm(β̃k
i ) / pσGn(β̃k

i ) 0.1 0.4 0.2 0.1 0.1 0.1pσMCm(β̃k
−i) 0.005 0.0004 0.004 0.005 0.006 0.005pσGn(β̃k
−i) 0.1 0.02 0.1 0.1 0.1 0.1pσMCm(β̃k

−i) / pσGn(β̃k
−i) 0.05 0.02 0.04 0.05 0.08 0.04

Note that theβk indices suffer from a lack of interpretability compared to the aggregated Sobol’ indices: the
choice of the kernel (or the choice of the length scale` in the case of the Gaussian kernel) is still an open question
for sensitivity analysis purposes [35]. Similarly to the aggregated Sobol’ indices, the influence of TYP29 seems more
clearly detected by the heteroskedastic Gaussian process surrogate than the homoskedastic one, while keeping the
same ranking of influence for each mechanical parameter.

5. CONCLUSION

This work focused on the development of a comprehensive uncertainty quantification methodology for seismic risk
assessment, with a particular emphasis on the seismic fragility curve, a key quantity for assessing seismic safety
of mechanical structures as part of SPRA studies. Gaussian process regressions have been proposed to estimate
seismic fragility curves, taking into account the epistemic uncertainties tainting the mechanical parameters of the
structure, among others. Gaussian process surrogates have indeed the main advantage to give both predictions and a
quantification of the uncertainty on the predictions, which allows one to assess the quality of the seismic fragility curve
estimation through confidence intervals. In this sense, this methodology is in line with the spirit of the pioneering
work of the 1980s on the SPRA framework, which defined a fragility curve not as a single curve (i.e., a mean curve)
but as a family of fragility curves which reflects the uncertainty on the mean curve due to the lack of knowledge
of the structures and their environment. In addition, two surrogate models have been proposed, one modeling a
homoskedastic noise and the other a heteroskedastic noise with a parametrized ramp function for the noise standard
deviation. Then, different metrics have been proposed to assess the quality of the two surrogates both in predictivity
and coverage performance, to allow the user an objective choice.

Additionally, the Gaussian process metamodels were used to perform a global sensitivity analysis on the mechan-
ical parameters of the structure, with the seismic fragility curve considered as a functional output. Global sensitivity
indices such as aggregated Sobol’ indices and kernel indices have been proposed to learn how the uncertainty on
the mean seismic fragility curve is distributed according to each uncertain mechanical parameter. Uncertainty from
Gaussian process surrogates was also taken into account when estimating the overall sensitivity indices.

This methodology was finally illustrated considering an industrial test case consisting of a part of a piping system
of a French PWR. The uncertain parameters were the constitutive material parameters of the piping system as well
as the boundary conditions. The quality of the two surrogates was assessed both in predictivity and coverage perfor-
mance, and seismic fragility curves were estimated for several failure thresholds and various sample sizes. Given the
different qualitative and quantitative metrics used to assess the performance of the two metamodels to fit the condi-
tional distribution of the log-EDP, the heteroskedastic metamodel was preferred because its predictive performance
was similar to that of the homoskedastic surrogate while raising more accurate coverage probabilities. In perspective,
another model selection methodology could be carried out using, for instance, the Bayesian information criterion
(BIC) [61,62] or the Aikake information criterion (AIC) [63]. Moreover, the Gaussian assumption of the log-EDP is a
common assumption in seismic probabilistic risk assessment which dates back to the early 1980s [1,2]. An extension
of the presented work could be the determination of a better EDP transformation using more advanced statistical
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tools. After that, the aggregated Sobol’ indices were estimated with the two surrogates as well as kernel indices. The
ranking of the input parameters was discussed and an interpretation for the results was proposed.

Another main advantage of the presented UQ methodology is its flexibility. It can be generalized to computer
codes with input parameters tainted by aleatory and epistemic uncertainties. The inputs with aleatory uncertainty are
considered as penalizing inputs of the computer models as explained in [26] and the quantity of interest defined in
[26, Section 6] seems quite similar to seismic fragility curves with epistemic uncertainties defined in this article.
Moreover, the methodology proposed in this article can be extended to other very similar quantities of interest such
as such as for POD curves estimation [42,43].

Another natural extension of this work will be to propose a UQ methodology for the SPRA framework. Thus, the
probability distribution of the seismic intensity measure can be taken into account and we will be able to perform the
UQ study on the probability of failure of the structure, by marginalizing the seismic fragility curve on the probability
distribution of the seismic intensity measure.

ACKNOWLEDGMENTS

This research was supported by CEA (French Alternative Energies and Atomic Energy Commission) and SEISM
Institute (www.institut-seism.fr/en/).

REFERENCES

1. Kennedy, R., Cornell, C., Campbell, R., Kaplan, S., and Perla, H., Probabilistic Seismic Safety Study of an Existing Nuclear
Power Plant,Nucl. Eng. Des., 59(2):315–338, 1980.

2. Kennedy, R. and Ravindra, M., Seismic Fragilities for Nuclear Power Plant Risk Studies,Nucl. Eng. Des., 79(1):47–68, 1984.

3. Baker, J. and Cornell, C., Uncertainty Propagation in Probabilistic Seismic Loss Estimation,Struct. Saf., 30:236–252, 2008.

4. Der Kiureghian, A. and Ditlevsen, O., Aleatory or Epistemic? Does It Matter?,Struct. Saf., 31(2):105–112, 2009.

5. Wang, F. and Feau, C., Influence of Input Motion’s Control Point Location in Nonlinear SSI Analysis of Equipment Seismic
Fragilities: Case Study on the Kashiwazaki-Kariwa NPP,Pure Appl. Geophys., 177(5):2391–2409, 2020.

6. Shinozuka, M., Feng, M.Q., Lee, J., and Naganuma, T., Statistical Analysis of Fragility Curves,J. Eng. Mech., 126(12):1224–
1231, 2000.

7. Ellingwood, B.R., Earthquake Risk Assessment of Building Structures,Reliab. Eng. Syst. Saf., 74(3):251–262, 2001.

8. Lallemant, D., Kiremidjian, A., and Burton, H., Statistical Procedures for Developing Earthquake Damage Fragility Curves,
Earthquake Eng. Struct. Dyn., 44(9):1373–1389, 2015.

9. Mai, C., Konakli, K., and Sudret, B., Seismic Fragility Curves for Structures Using Non-Parametric Representations,Front.
Struct. Civil Eng., 11(2):169–186, 2017.

10. Trevlopoulos, K., Feau, C., and Zentner, I., Parametric Models Averaging for Optimized Non-Parametric Fragility Curve
Estimation Based on Intensity Measure Data Clustering,Struct. Saf., 81:101865, 2019.

11. Altieri, D. and Patelli, E., An Efficient Approach for Computing Analytical Non-Parametric Fragility Curves,Struct. Saf.,
85:101956, 2020.

12. Baker, J.W., Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis,Earthquake Spectra,
31(1):579–599, 2015.

13. Bernier, C. and Padgett, J.E., Fragility and Risk Assessment of Aboveground Storage Tanks Subjected to Concurrent Surge,
Wave, and Wind Loads,Reliab. Eng. Syst. Saf., 191:106571, 2019.

14. Sainct, R., Feau, C., Martinez, J.M., and Garnier, J., Efficient Methodology for Seismic Fragility Curves Estimation by Active
Learning on Support Vector Machines,Struct. Saf., 86:101972, 2020.

15. Mai, C., Spiridonakos, M., Chatzi, E., and Sudret, B., Surrogate Modeling for Stochastic Dynamical Systems by Combining
Nonlinear Autoregressive with Exogenous Input Models and Polynomial Chaos Expansions,Int. J. Uncertainty Quant., 6:313–
339, 2016.

16. Zhu, X. and Sudret, B., Replication-Based Emulation of the Response Distribution of Stochastic Simulators Using Generalized
Lambda Distributions,Int. J. Uncertainty Quant., 10(3):249–275, 2020.

Volume 14, Issue 4, 2024



60 Gauchy, Feau, & Garnier

17. Wang, Z., Pedroni, N., Zentner, I., and Zio, E., Seismic Fragility Analysis with Artificial Neural Networks: Application to
Nuclear Power Plant Equipment,Eng. Struct., 162:213–225, 2018.

18. Rezaeian, S. and Der Kiureghian, A., Simulation of Synthetic Ground Motions for Specified Earthquake and Site Character-
istics,Earthquake Eng. Struct. Dyn., 39(10):1155–1180, 2010.

19. Gardoni, P., Kiureghian, A.D., and Mosalam, K.M., Probabilistic Capacity Models and Fragility Estimates for Reinforced
Concrete Columns Based on Experimental Observations,J. Eng. Mech., 128(10):1024–1038, 2002.

20. Zentner, I., Numerical Computation of Fragility Curves for NPP Equipment,Nucl. Eng. Des., 240(6):1614–1621, 2010.

21. Mandal, T.K., Ghosh, S., and Pujari, N.N., Seismic Fragility Analysis of a Typical Indian PHWR Containment: Comparison
of Fragility Models,Struct. Saf., 58:11–19, 2016.

22. Sacks, J., Welch, W., Mitchell, T., and Wynn, H.P., Design and Analysis of Computer Experiments,Stat. Sci., 4(4):409–423,
1989.

23. Williams, C.K. and Rasmussen, C.E.,Gaussian Processes for Machine Learning, Cambridge, MA: MIT Press, 2006.

24. Gidaris, I., Taflanidis, A.A., and Mavroeidis, G.P., Kriging Metamodeling in Seismic Risk Assessment Based on Stochastic
Ground Motion Models,Earthquake Eng. Struct. Dyn., 44(14):2377–2399, 2015.

25. Kyprioti, A.P. and Taflanidis, A.A., Kriging Metamodeling for Seismic Response Distribution Estimation,Earthquake Eng.
Struct. Dyn., 50(13):3550–3576, 2021.

26. Marrel, A., Iooss, B., and Chabridon, V., The ICSCREAM Methodology: Identification of Penalizing Configurations in Com-
puter Experiments Using Screening and Metamodel—Applications in Thermal-Hydraulics,Nucl. Sci. Eng., 196(3):301–321,
2022.

27. Marrel, A., Iooss, B., Van Dorpe, F., and Volkova, E., An Efficient Methodology for Modeling Complex Computer Codes with
Gaussian Processes,Comput. Stat. Data Anal., 52(10):4731–4744, 2008.

28. Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M.,Sensitivity Analysis in Practice: A Guide to Assessing Scientific
Models, New York: Wiley, 2004.

29. Borgonovo, E.,Sensitivity Analysis: An Introduction for the Management Scientist, International Series in Operations Research
& Management Science, Berlin: Springer International Publishing, 2017.

30. Borgonovo, E., Zentner, I., Pellegri, A., Tarantola, S., and de Rocquigny, E., On the Importance of Uncertain Factors in
Seismic Fragility Assessment,Reliab. Eng. Syst. Saf., 109:66–76, 2013.

31. Iooss, B. and Lemaı̂tre, P., A Review on Global Sensitivity Analysis Methods,Uncertainty Management in Simulation-
Optimization of Complex Systems: Algorithms and Applications, G. Dellino and C. Meloni, Eds., Operations Re-
search/Computer Science Interfaces Series, Boston, MA: Springer, pp. 101–122, 2015.

32. Da Veiga, S., Gamboa, F., Iooss, B., and Prieur, C.,Basics and Trends in Sensitivity Analysis, Philadelphia: Society for
Industrial and Applied Mathematics, 2021.

33. Sobol, I., Sensitivity Estimates for Non Linear Mathematical Models,Math. Model. Comput. Exp., 1:407–414, 1993.

34. Sobol, I., Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates,Math. Comput.
Simul., 55(1):271–280, 2001.

35. Barr, J. and Rabitz, H., A Generalized Kernel Method for Global Sensitivity Analysis,SIAM/ASA J. Uncertainty Quantif.,
10(1):27–54, 2022.

36. Le Gratiet, L., Cannamela, C., and Iooss, B., A Bayesian Approach for Global Sensitivity Analysis of (Multifidelity) Computer
Codes,SIAM/ASA J. Uncertainty Quantif., 2(1):336–363, 2014.

37. Cornell, A., Hazard, Ground Motions and Probabilistic Assessments for PBSD,Proc. of the Int. Workshop on Performance-
Based Seismic Design—Concepts and Implementation, University of California, Berkeley, PEER Center, pp. 39–52, 2004.

38. Grigoriu, M. and Radu, A., Are Seismic Fragility Curves Fragile?,Probab. Eng. Mech., 63:103115, 2021.

39. Box, G.E. and Cox, D.R., An Analysis of Transformations,J. R. Stat. Soc.: Ser. B, 26(2):211–243, 1964.

40. Perrin, G., Point Process-Based Approaches for the Reliability Analysis of Systems Modeled by Costly Simulators,Reliab.
Eng. Syst. Saf., 214:107799, 2021.

41. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.,Global Sensitivity
Analysis. The Primer, New York: John Wiley & Sons, 2007.

42. Iooss, B. and Le Gratiet, L., Uncertainty and Sensitivity Analysis of Functional Risk Curves Based on Gaussian Processes,
Reliab. Eng. Syst. Saf., 187:58–66, 2019.

International Journal for Uncertainty Quantification



Uncertainty Quantification and Global Sensitivity Analysis of Seismic Fragility Curves Using Kriging 61

43. Le Gratiet, L., Iooss, B., Blatman, G., Browne, T., Cordeiro, S., and Goursaud, B., Model Assisted Probability of Detection
Curves: New Statistical Tools and Progressive Methodology,J. Nondestr. Eval., 36(1):8, 2017.

44. Hoeffding, W., A Class of Statistics with Asymptotically Normal Distribution,Ann. Math. Stat., 19(3):293–325, 1948.

45. Antoniadis, A., Analysis of Variance on Function Spaces,Ser. Stat., 15(1):59–71, 1984.
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APPENDIX A. PROOF OF EQ. (11)

We have

Ψ(1)(a,x) = P(Yn(A,X) > log(C)|A = a,X = x)
= E[1(Yn(A,X)>log(C))|A = a,X = x]
= E[1(Gn(A,X)+ε>log(C))|A = a,X = x].

We now use the law of total expectationE[X] = E[E[X|Y ]] valid for two random variablesX andY (with X
integrable). This allows one to write

Ψ(1)(a,x) = E
[
E[1(Gn(A,X)+ε>log(C))|A = a,X = x, Gn]

∣∣A = a,X = x
]
.
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Note thatE[1(Gn(A,X)+ε>log(C))|A = a,X = x, Gn] = Ψ(2)(a,x). We can then conclude that

Ψ(1)(a,x) = EGn
[Ψ(2)(a,x)].

APPENDIX B. SAMPLING OF HIGH-DIMENSIONAL GAUSSIAN VECTORS FROM A GAUSSIAN
PROCESS POSTERIOR DISTRIBUTION

Sampling Gaussian vectors can be computationally cumbersome when their covariance matrix is not sparse. Further-
more, the covariance matrix of the conditioned Gaussian process can be ill-conditioned, which generates numerical
issues. First, the use of Matheron’s rule allows one to get rid of the ill-conditioning issue. Indeed, it only requires sam-
pling Gaussian vectors with covariance matrices computed using the prior covariance kernel. Second, the Nyström
approximation allows one to sample a Gaussian process without having to invert the covariance matrix, a computa-
tionally intensive operation when the matrix is large. The following lemma details the main principles of Matheron’s
rule [64].

Lemma 2. (Matheron’s rule) Consider a training datasetDn = ((a,xi), y(a,xi))1≤i≤n and the following GP
model:

Y (a,x) = G(a,x) + ε(a,x),

whereε is a nugget noise with varianceE[ε(a,x)2] = σε(a,x)2, andG is a zero-mean GP with covariance function
Σ. Consider the following Gaussian process:

G̃n(a,x) = mn(a,x)− m̃n(a,x) + G̃(a,x), (B.1)

wheremn is the predictive mean ofGn with Gn ∼ (G|Dn), m̃n is the predictive mean of(G|D̃n) when the output
observations vectoryn = (y(a,xi))1≤i≤n is replaced by a virtual output observations vectorỹn = (Ỹ (a,xi))1≤i≤n

sampled from the GP̃Y = G̃+ε̃, and(G̃, ε̃) has the same distributions as(G, ε). Then we have the following equality
in distribution between the two Gaussian processes:

G̃n
L= Gn.

The key result of Lemma 2 is that it allows sampling on a large test set((a, x̃i))1≤i≤ñ, ñ À 10,000, with respect
to the probability distribution ofGn by sampling an unconditioned Gaussian processG̃. The conditioning of the
covariance matrix of̃G on the test set is better than the one ofGn since the variance of̃G is not close to zero close to
points in the training dataset. Thenvbthe use of the Nyström procedure allows sampling a Gaussian process without
having to invert the covariance matrix of the whole test set, by approximating the Karhunen-Loève representation of
G̃ [23, Chapter 8].

APPENDIX C. GAUSSIAN PROCESS REGRESSION WITH OTHER COVARIANCE KERNELS

This section is devoted to benchmark performances of homoskedastic GP regression on our industrial test case using
different covariance kernels. We use the Matérn 1/2 kernel (e.g., the exponential kernel) and the radial basis function
(RBF) kernel (e.g., the Gaussian kernel). The first one assumes little regularity of the regression function while the
second kernel assumes smoothness of the regression function. We study these kernels using the same metrics as in
Section 4.3 (see Fig. C1 and Table C1).

The quantitative results obtained for the two covariance kernels tested in this section show no greater performance
than the ones obtained with the Matérn 5/2 covariance kernel chosen in this article. The weak influence of the choice
of the covariance kernel on the validation metrics proposed in this paper motivates the use of the standard Matérn 5/2
covariance kernel.
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FIG. C1: Observed proportion of the data that lie in theα-theoretical confidence intervals with respect to their theoretical
proportion for Gaussian processes with RBF and Matérn 1/2 covariance kernels with a learning sample ofn = 500 nonlinear
mechanical simulations

TABLE C1: Q2 numerical values estimated by leave-one-out on the
training sample for various learning sample sizes and for two different
covariance kernels

Learning sample size 100 200 300 400 500
Matérn 1/2 0.868 0.888 0.876 0.890 0.887

RBF 0.831 0.874 0.863 0.880 0.884
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