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Abstract
We consider a stylized model for investment into renewable power plants under long-term
uncertainty. We model risk-averse agents facing heterogeneous weather conditions and a
common noise including uncertainty on demand trends, future fuel prices and the average
national weather conditions. The objective of each agent is to maximize multistage profit by
controlling investment in discrete time steps.We analyze thismodel in a noncooperative game
setting with N players, where the interaction among agents occurs through the spot price
mechanism. Our model extends to a mean field game with common noise when the number
of agents is infinite. We prove that the N -player game admits a Nash equilibrium. Moreover,
we prove that under appropriate assumptions, any sequence of Nash equilibria to the N -
player game converges to the unique solution of the MFG game. Our numerical experiments
highlight the impact of the risk aversion parameter and the importance of correctly specifying
the distribution of the heterogeneity among agents. Moreover, we demonstrate that the results
obtained by our model cannot be replicated by a model based on a representative agent with
a unique parameter that would represent homogenized weather conditions. This emphasizes
the importance of including explicit modeling of heterogeneity in prospective models when
a heterogeneous parameter is expected to have a significant influence on the outcomes.
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1 Introduction

1.1 Context and Objectives

The achievement of carbon neutrality by 2050 requires significant and prompt reductions
of emissions in the energy sector [47]. Energy-related emissions contribute to nearly 75%
of global greenhouse gas emissions [32]. Decarbonization of the electricity sector through
renewable energy investment plays a key role in all decarbonization strategies, given the con-
siderable cost reductions of variable renewable energy (VRE) sources over the last decade
IEA [33], Pörtner et al. [47]. Furthermore, fossil fuels are expected to be replaced by low-
carbon electricity through electrification of sectors such as heating and transportation, thus
increasing the role of electricity decarbonization to reduce greenhouse gas emissions. Con-
sequently, most energy transition scenarios rely on heavy investments in low-carbon assets,
including renewable power plants, such as onshore and offshore wind turbines, solar panels,
and biomass, to attain the necessary emissions reductions [33]. Understanding whether mar-
ket rules and regulatory arrangements in the energy sector allow to follow such scaling up of
renewable investments is therefore a key issue for policy makers today [28].

Prospective models investigating investment in the energy sector—and more specifically
in renewable power plants—should strive to include some essential features. Since the liberal-
ization of the electricity sector, investment decisions are made by private risk-averse players,
and are subject to a significant amount of uncertainty [43]. Future evolution of electricity
markets is uncertain, regarding in particular future levels of electricity demand, evolution of
power mix and market design, technology costs, fuel costs, or public policy. With increasing
renewable penetration and subsequent decline in VRE unit revenues due to the cannibal-
ization effect [39], the impact of uncertainties related to weather and demand variability is
also becoming increasingly important to understand and to account for [50]. Such variability
includes different time scales, going from very short-term volatility (hourly scale) to inter-
annual variability [39]. All uncertainties translate into electricity price risk, and variable and
uncertain profits, thus impacting the decisions of risk-averse investors.

Moreover, such investors are numerous and may have different characteristics, such as
their geographical location, their level of risk aversion or their technology preferences. It is
therefore important to allow for the representation of many competing heterogeneous agents
who may share common features (such as national weather conditions) [8]. In particular, the
question of whether renewable support systems such as feed-in tariffs and feed-in premiums
should be geographically differentiated in order to avoid a higher concentration of renewable
energy technologies in most productive areas (such as sunny or windy areas) has been raised
[15]. Indeed, such geographical concentration could lead to congestion, increased costs in
the longer term and decreased energy supply security.

Long investment horizons (several decades) require consideration of multiple investment
decision periods to account for transformation pathways [31]. It is also essential to develop
tractable models with effective numerical tools to analyze and use the results.

Finally, one could expect to have theoretical guarantees on the properties of the model
output, such as whether the trajectory conforms to a Nash equilibrium, although it may be
not required by some authors interested in studying systems out of equilibrium. This last
feature distinguishes simulation models from optimization models. Our goal in this work is
to incorporate many of these desirable features into a new model investigating investment in
renewable power plants.
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Three main approaches have been used to develop prospective models for the evolution
of the energy sector.

First, equilibrium models are optimization models where the individual profit maximiza-
tion problems of the different market players are solved simultaneously to obtain a Nash
equilibrium [26]. Equilibrium models generally allow to represent different categories of
uncertainties through a scenario-based approach.While suchmodels can theoretically include
various agents with heterogeneous characteristics and multistage investment decisions, their
numerical complexity strongly limits the actual number of agents which can be considered
[40]. Equilibrium models are also mostly two-stage, thus not representing transformation
pathways.

Second, agent-based modeling (ABMs) represent a new and widely used approach in
the energy sector. ABMs provide a bottom-up description of a complex, evolving system in
which agents interact through a prescribed set of rules [30]. They allow the representation
of heterogeneous agents and a very high degree of realism in describing market structure
and real-world aspects such as asymmetric information, collective learning, or market power
[51, 53]. However, mimicking real-world behavior and realistic markets with a high level
of detail quickly leads to numerically intensive simulations and less transparent modeling.
Moreover, ABMs are simulation models, not optimization models. Therefore, they do not
provide theoretical guarantees for characterizing the model output, for example, proving that
it is a Nash equilibrium (that is to say a situation where any agent cannot profitably deviate)

Lastly, a more recent approach coming from the applied mathematics community is mean
field games (MFGs), which were introduced in Lasry and Lions [38]. They are stochastic
games where an infinite number of agents interact symmetrically through the average den-
sity of the players. MFG models therefore include by design a continuum of agents, and the
mathematical framework also allows to derive strong theoretical guarantees, such as the exis-
tence of a Nash equilibrium. However, such complex mathematical framework may require
sacrificingmodel realism or interpretability, and theMFG literature lacks effective numerical
tools to analyze the model outputs in more complex settings than the linear quadratic setting.

Our goal is to provide a middle way approach trying to include as many of previously
listed features as possible to model investment into renewable power plants by heterogeneous
agents under long-term uncertainty and risk aversion. Our approach relies on theMFG frame-
work, thus allowing by essence the representation of numerous heterogeneous agents and
deriving theoretical guarantees regarding existence of a Nash equilibrium and convergence
of the N -player game toward the limiting MFG. On the other hand, we strive to provide a
realistic and interpretablemodel, wheremany sources of uncertainties are included,where the
specificity of renewables variability is captured, and which is numerically tractable. Before
explaining in detail our original contributions to the topic, we shall first give the state of the
art with the previously introduced three approaches, both on the modeling viewpoint and the
mathematical analysis viewpoint.

1.2 State of the Art in Energy Economics andMFGs

Equilibrium models were firstly developed in response to the need to adapt traditional cost
minimization problems taking the perspective of a social planner to the new competitive
investment environment, with rising uncertainties and overwhelming risk [26]. While the
theoretical framework for such models is introduced with an arbitrary number of agents,
numerical experiments are often made with very few players, for example, two players in
Mays et al. [40] and Abada et al. [1] and three players in Ehrenmann and Smeers [26].
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All such papers also consider a two-stage setting, and while Ehrenmann and Smeers [26]
highlight that extending this to a multistage setting is not conceptually difficult, this would
result in a exponential increase (in the number of stages) of computational effort. Ambrosius
et al. [7] explore the interaction between different electricity market designs and risk aversion
in a stochastic multi-level equilibrium model. To circumvent the problem mentioned above
of computational complexity of representing multiple agents, the authors make the quite
demanding assumption that financial markets are complete, thus simplifying the equilibrium
decisions into welfare-maximizing decisions. The same hypothesis is made in Munoz et
al. [42] and Möbius et al. [41]. However, this assumption does not hold in real electricity
markets, where there are, for example, no long-term contracts to cope with risk management
over several years [1, 24].

As mentioned above, ABMs allow for greater level of detail in the modeling of wholesale
electricity markets than equilibrium models, and can include heterogeneous agents [51].
Such models make it possible to investigate the interdependencies between risk aversion and
market design. They have been used to study more specifically the effects of uncoordinated
changes in market design in a multi-country model [31], the impact of imperfect information
and firms’ heterogeneous attributes [8], and the effect of investors’ risk aversion on the
performance of support schemes [29]. Many sources of uncertainty can be included in such
models, such as load growth [8, 14, 34], inter-annual weather variability [31, 45], fuel prices
[22, 29, 34] and carbon prices [22, 34]. Uncertainties are usually represented through scenario
trees or Monte Carlo simulations. However, as stated previously, ABMs are not optimization
models and therefore do not provide any theoretical insights on the simulated trajectory.

MFG models have been developed and applied to the energy sector. Alasseur et al. [5]
explore how to optimally control a storage device in a noncooperative game setting where
nodes compete through the electricity price. The trade-offs between higher and more stable
revenues from fossil fuel thermal power plants and the negative externalities of a carbon
tax for electricity producers are studied in Carmona et al. [21]. Three papers should be
emphasized as they consider settings close to the one developed in this paper. Bonnans et
al. [13] analyze a model with risk-averse agents optimizing a linear discrete-time dynamical
system and interacting through a price which depends on the aggregate demand and through
a congestion function. This paper mostly focuses on proving existence of a solution in a
general theoretical setting. Aïd et al. [4] introduce a game where renewable and conventional
producers compete through optimal entry and exit times. Their optimal stoppingMFG setting
allows to understand the dynamics of investment and divestment in an uncertain context,
where conventional producers face uncertain costs represented through aCox–Ingersoll–Ross
process and renewable producers face intermittent output characterized by a slow climatic
variation through a Jacobi process. Dumitrescu et al. [25] improve on the previous paper by
adding common noise regarding transition scenario uncertainty in a discrete-time setting.

MFGalso provides a theoretical framework for deriving existence and convergence results.
Many results regarding existence of solutions to mean field games have been developed over
the last decade. Carmona and Delarue [18] develop a probabilistic approach to the MFG
problem. They derive a specific form of the stochastic maximum principle, and use fixed
point arguments in the space of flows of probability to conclude to the existence of the value
function. Their result is improved in Carmona et al. [20] to further include common noise.

The othermain approach to constructing equilibria inMFG recasts the fixed point problem
in terms of a forward-backward stochastic partial differential McKean–Vlasov equations and
relies on a monotonicity condition to prove existence [17].

The convergence problem is one of the current research questions inMFG. It asks whether
the N -player equilibria converge to a solution of the MFG. While it has been shown in vari-
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ous settings that MFG solutions provide approximate Nash equilibria to the N -player game
[18], the convergence problem is significantly harder. Convergence has been known in some
very specific settings, for example, in the linear-quadratic setting [9], or for ergodic MFG
[10]. Convergence results depend on the type of controls considered for the N -player game,
whether we consider open-loop or closed-loop controls. With open-loop controls, players
choose their control as an adapted process on some given filtered probability space. The
convergence for open-loop MFG has been extensively studied in Lacker [35]. In closed-loop
controls, players choose control as a feedback function of the state of the system. The conver-
gence problemwas solved in this setting relying on themaster equation framework. However,
this requires a sufficiently smooth solution to the value function [17]. These shortcomings
are addressed in Lacker and Flem [37], which relies on the probabilistic approach devel-
oped in Lacker [35] and on the notion of weak MFG solutions to prove that all closed-loop
approximative equilibria converge to a weak mean field equilibrium.

1.3 Contributions of ThisWork

We develop a stylized MFG model to study and understand investment in renewable energy
under long-term uncertainty regarding evolution of wholesale electricity markets. We con-
sider heterogeneous risk-averse agents investing in renewable capacity in discrete time steps
(corresponding to 5-year time steps), while being exposed to a common long-term uncer-
tainty and to the variability of renewable production at the hourly scale. The rest of the power
mix is assumed to evolve exogenously, as we expect that more stringent climate regulations
will dictate evolution in fossil-fuel capacities (such as gas), rather than market-based inter-
actions. A representative agent indexed by i controls her investment strategy

(
qit
)
1≤t≤T−1

and minimizes the following objective, knowing other agents’ strategy q−i :

J i (qi , q−i ) = E

[
T−1∑

t=1

Lβ(t, Qi
t , q

i
t ,m

N ,i
t , Dt , Dt−1,Y t ) + Qi

T e
−rT g(mN ,i

T , DT−1, (Y t )T≤t≤T ′ )

]

,

where the running cost Lβ has the following general form

Lβ(t, Qi
t , q

i
t ,m

N ,i
t , Dt , Dt−1,Y t ) = e−r t

(
Qi

t f
β(t,mN ,i

t , Dt , Dt−1,Y t ) + ctq
i
t + c̃(qit )

2
)

.

Running cost Lβ captures the (negative) agent’s profit Qi
t f

β(t,mN ,i
t , Dt , Dt−1,Y t ), and

the convex investment costs ctqit + c̃(qit )
2, see Sect. 2.3 for details. Qi

t represents agent i’s
total invested capacity weighted by the agent’s average capacity factor �i (see Eq. (3)). �i

represents whether agent i faces on average better or worse weather conditions than the
national average, and allows to capture heterogeneity among agents. Profit at time t depends
on agent i’s total invested capacity Qi

t , and on the electricity spot price, which itself depends
on aggregate renewable production mN ,i

t (see Eq. (5)). This is where interaction with the
other agents takes place. Profit is specified as the sum of hourly profits and relies on histor-
ical weather and demand data, thus capturing the daily and seasonal patterns characterizing
weather and demand variability and impacting electricity prices. The model allows to cap-
ture many types of uncertainties through the presence of common noise. The first kind of
uncertainty Dt corresponds to evolution of market trends. It includes uncertainty on future
levels of demand and the correlated uncertain evolution of power mix (e.g., evolution in gas
capacity), as well as uncertainty on fuel prices. Ourmodel also includes uncertainty on annual
weather scenario Y t , as we emphasized previously the essential role inter-annual variability
plays in power systems with a large renewable share. Running cost Lβ includes in mapping
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f β a convex combination between the random profit at time t and the conditional expected
shortfall for the same profit, determined by uncertain market trends Dt and uncertain weather
scenarioY t , thus capturing agents’ risk aversion. Finally, the objective ismultistage, allowing
to explore the impact of transformation pathways.

The main contribution of this paper is to provide a modeling framework trying to rec-
oncile the different advantages of the previously mentioned approaches (ABM, equilibrium
models, MFG). Our model, while stylized, includes many essential features for a realistic
description of electricity markets. Long-term uncertainties, inter-annual weather variability
and agents’ risk aversion are represented, while the multistage objective captures transfor-
mation pathways. The MFG framework allows to model explicitly a large number of agents
while avoiding any numerical complexity. In particular, theMFG framework allows to capture
explicitly heterogeneity among agents through their heterogeneous weather conditions. The
specific though sufficiently general formulation of the representative agent’s problem avoids
usual shortfalls ofMFGmodels by offering interpretability of the model output, and effective
numerical implementation. On the other hand, the MFG framework allows the derivation of
strong theoretical guarantees in our specific setting characterizing the output of the model. In
particular, we prove that the N -player game admits at least one equilibrium solution, which
we characterize through a closed-form condition. We then introduce the correspondingMFG
game and prove that under proper assumptions, this limiting game admits a unique solution,
also characterized by a closed-form condition. Finally, we prove that any sequence of Nash
equilibria to the N -player game converges to the unique solution of the MFG game. The
uniqueness guarantee for the limiting MFG game cannot be extended to the N-player game.
A more detailed explanation of the distinctions between the N-player game and the limiting
game can be found in Remark 5. A second contribution consists in using our model to derive
practical insights. In particular, we show that our results derived in the MFG framework with
heterogeneity regarding geographical localization cannot be reproducedwith a representative
agent’s model, i.e., a model which would be solved by considering a unique parameter �

representing homogenized weather conditions instead of the whole distribution. This high-
lights the importance of explicitly modeling heterogeneity in energy prospective models. We
develop a toy model applied to the specific case of France electricity market. Our numerical
experiments highlight the importance of the risk aversion parameter and the analysis of the
spread of invested capacity across agents, allowed by the explicit modeling of heterogeneity.

Wewant to emphasize the specificity of our contributions in comparison to the three papers
Aïd et al. [4], Dumitrescu et al. [25] and Bonnans et al. [13] mentioned in Sect. 1.2 as having
settings close to the one considered in this paper. While Aïd et al. [4] and Dumitrescu et
al. [25] also consider long-term evolution of electricity markets under uncertainty and large
renewable penetration, they differ in many aspects from our setting. First, from a modeling
perspective, they only consider renewable uncertain output through a slow climate variability,
but they fail to consider the weather variability (especially inter-annual). Second, they do not
include risk aversion. Third, they rely on an optimal stopping framework, therefore not
representing the choice of the size of invested capacity. From a numerical perspective, the
choice of a continuous settingwith relaxed solutions of optimal stoppingMFG inAïd et al. [4]
makes numerical implementation harder, and the model less interpretable for practitioners.
While Bonnans et al. [13] consider a similar discrete-time setting with risk-averse agents
interacting through a price function depending on their average density, their setting differs
fundamentally fromourwork in differentways. First, they focus on generic riskmeasures, and
include an additional congestion term, preventing them from finding a closed-form solution
for the optimal control. They focus on idiosyncratic noise and do not include common noise.
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Finally, their generic theoretical setting only allows them to derive an existence result, and
no result on uniqueness or convergence.

1.4 Notations

We set the investment time grid T := {1, . . . , T − 1}. In practice, T corresponds to the usual
prospective time horizon of 2050. The interval [t; t + 1] corresponds to 5 years in the model.
We set H the number of hours in a unit time interval [t; t+1).We denoteH = {0, . . . , H−1}
the set of hours included in time interval [t; t + 1). We write T ′ > T for the time after which
all invested capacities at time T are decommissioned, and we denote T̃ := {

1, . . . , T ′}. For
any t ∈ T and any vector (x0, . . . , xt ) we denote

x[t] = (x0, . . . , xt ).

Let N := {1, . . . , N } be the set of agents. We denote N−i := N\{i}, for i ∈ N . For any
vector x := (x1, . . . , xN ), we denote

x−i = (x1, . . . , xi−1, xi+1, . . . , xN ).

We define the positive part function as (x)+ = x for non-negative x and zero otherwise.

Control We consider a given filtration F. We denote by A a set of F-progressively adapted

controls (qt ). We define the �2 norm and �∞ norm as ‖q‖2 :=
(
E

[∑T−1
t=1 q2t

])1/2
, ‖q‖∞ :=

ess supt,ω qt (ω). We denote by AC the set of controls q ∈ A such that ‖q‖22 < C .

Probability Measures Let X be a subset of Rd and M0(X ) denote the set of probability
measures on X . Given p ∈ [1,∞), we define the set of finite p-th order moment measures
Mp(X ) := {

m ∈ M0 (X ) ,
∫
X |x |pdm(x) < +∞}

, that we endow with the Kantorovich–
Rubinstein distance [52, p. 94], defined by

d1(μ, ν) := sup
ψ∈1−Lip

∫

X
ψ(x)d(μ − ν)(x), (1)

for any μ and ν ∈ M1(X ). As usually, a function ϕ is C − Lip if ϕ is Lipschitz with a
Lipschitz constant smaller than C .

Remark 1 Note that if X1 and X2 are random variables defined on the same probability space
(	,F,P) such that the law of Xi is mi , then d1(m1,m2) ≤ E [|X1 − X2|] , because, for
any 1-Lipschitz map ψ : X → R,

∫
X ψ(x)d (m1 − m2) (x) = E [ψ (X1) − ψ (X2)] ≤

E [|X1 − X2|] .

Remark 2 Consider E a compact subspace of a metric space and denote K = supx∈E ‖x‖.
For all N ≥ 1, α ∈ E and μ ∈ M0(E), the metric d1 satisfies

d1

(
μ,

N − 1

N
μ + 1

N
δα

)
≤ 2K

N
. (2)
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2 The Investment Model

We consider a stylized model for investment. In this section, we introduce exhaustively the
different modeling assumptions related to agents’ dynamics and to electricity markets. The
cost minimization problem solved by each agent is introduced in Sect. 2.4.

2.1 Agent’s Dynamics

In order to model the state dynamics, we consider a complete probability space (	,F,P)

on which we define a common noise B0:

B0
t = (Dt ,Y t ) , Y t =

(
�t,h, D̃t,h

)

h∈H ∈ [0; 1]H × R
H .

For the sake of simplicity, we will assume in this section that Dt corresponds to average
demand during time interval [t; t + 1).More uncertainties are included in Dt in the numerical
experiments in Sect. 4, allowing for greater realism without modifying the theoretical results
obtained in Sect. 3. Y t corresponds to the random variable representing the weather and
centered demand scenario during time interval [t; t + 1). It includes information on average
national hourly capacity factor �t,h , and centered demand D̃t,h around the average value Dt ,
for all hours h ∈ H. Capacity factor corresponds to the dimensionless ratio of actual electrical
energy output over a given period of time to the theoretical maximum electrical energy output
over that period. Variable Y t therefore captures inter-annual weather variability.

We also consider N independent identically distributed (i.i.d) random variables �i which
are independent of B0 and which follow law λ� . �i corresponds to the typical capacity factor
for agent i , so that for a given hour h, agent i faces a final capacity factor of �i ×�t,h . �i > 1
(resp. �i < 1) implies that agent i faces better (resp. worse) weather conditions than the
national average.

We denote FN = (FN
t )t∈T the filtration defined by FN

t := σ((�i )i∈N , D[t−1],Y [t−1]).
Because Dt−1 and Y t−1 depend on average and hourly data on the interval [t −1, t), observe
that FN

t represents indeed the information available at time t for decisions. We make the
reasonable assumption that all agents are aware of the geographical conditions of other agents
(the variables �i ), and that such conditions do not evolve over time.

We make some assumptions on the common noise.

Assumption 1 The stochastic process (Dt )t∈T is a Markov process, with law λD .

Assumption 2 The random variables (Y t )t∈T̃ are independent and identically distributed
with common distribution λY , and (Y t )t∈T̃ is independent from (Dt )t∈T .

Assumption 3 We assume that all stochastic processes are defined on a finite support. We
denote by D, Y , G finite sets such that, a.s., Dt ∈ D for all t ∈ T , Yt ∈ Y for all t ∈ T̃ , and
�i ∈ G for all i ∈ N , and assume that G ⊂ [

�min;�max
]
with �min > 0.

Assumption 3 is a technical assumption for the proofs; note that in applied settings, it is not
really a restriction.

Each agent i ∈ N chooses strategy qi = (qit )t∈T , where qit corresponds to invested
capacity at time t . A FN

0 -adapted random variable �i defines agent i’s capacity factor, as
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described above. Agent i’s state Qi := (Qi
t )t∈T̃ verifies the following equation:

Qi
0 = 0,

Qi
t = (1 − ν)Qi

t−1 + �i qit , ∀t ∈ T ,

Qi
t = (1 − ν)Qi

t−1, ∀T ≤ t ≤ T ′,
(3)

where ν > 0 represents the depreciation of the installed capacities with time. Qi
t corresponds

to installed capacity, weighted by the agent’s capacity factor. We note that after time T − 1,
state dynamics are uncontrolled: agents do not plan investments after time T − 1, but due to
installations’ long lifetime, it is necessary to account for profits stemming from the installed
capacities after time T − 1 in order to avoid boundary effects.

A strategy qi is deemed admissible if it belongs to the set AN which consists of the FN -
progressively adapted non-negative real-valued processes (qt )t∈T satisfying ‖q‖22 < ∞.

Lemma 4 For any control qi ∈ AN , the state dynamics (3) are well-posed, and Qi ∈ AN .
Moreover, if there exists C > 0 such that qi ∈ AN

C , then there exists C ′ > 0 such that
Qi ∈ AN

C ′ .

Proof The proof is easy and available in the supplementary material [27, Section 5.1]. ��
An admissible strategy for all players q = (

qi
)
i∈N is such that qi ∈ AN for all i ∈ N .

For an admissible strategy q, the coupled state processes Q := (Qi )i∈N are governed by the
equations (3). We introduce the random empirical measure of the positions of all agents by

mN
t = 1

N

∑

i ′∈N
δQi ′

t
. (4)

For all i ∈ N , we denote similarly the random empirical measure of the positions of all
agents excluding agent i by

mN ,i
t = 1

N − 1

∑

i ′∈N i

δQi ′
t
, and mN ,i =

(
mN ,i

1 , . . . ,mN ,i
T−1

)
. (5)

2.2 Market Mechanisms

In this section, we detail some modeling assumptions regarding the electricity market from
which agents’ profits are stemming.

Assumption 5 We make a price-taking assumption, according to which the i th agent does
not consider her impact on market price. This assumption is justified in a setting where the
number of agents N is large. It is often made in a context of perfect competition, when
each agent’s influence on the price is negligible. Moreover, in our setting, the impact of this
assumption is very limited. This will be justified in more detail in Sect. 3.1, in particular
Proposition 9.

Residual Demand The hourly residual demand corresponds to the demand left to satisfy
after accounting for renewable production, and it is defined by the following mapping R :
H × M2(R

+) × D × Y → R by

R(h,mt , Dt ,Y t ) =
(
Dt + D̃t,h − �t,h

∫
xdmt (x)

)

+
. (6)
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The hourly residual demand considered by agent i in her optimization problem reads as
R(h,mN ,i

t , Dt ,Y t ) by the price-taking assumption. Note that average installed capacity is
considered in the definition of residual demand instead of total installed capacity, as there is
an equivalence between the two modeling choices as discussed in Remark 3.

Electricity Price We define an aggregate supply function for conventional producers (coal,
gas, nuclear, hydroelectricity) F(t, P) : R+ → R+ corresponding to the offered capacity
for a given price P at time t . It is obtained by summing all available capacities by increasing
marginal cost. Dependence in t indicates that the supply function evolves over time, as the
rest of the electricity mix is assumed to change exogenously.

Assumption 6 For all t ∈ T̃ , we define an aggregate supply function P ∈ [0;∞] →
F(t, P) ∈ [0;∞] which is smooth and strictly increasing in P . We assume that there exists
LF > 0 such that for all t ∈ T̃ , F(t, .) is LF -Lipschitz. This implies that F(t, .) admits an
inverse function which is smooth and strictly increasing. Moreover, we assume that F−1(t, .)
is also LF -Lipschitz for all t ∈ T̃ .

In a simplified representation of electricity markets, the electricity price on the spot market
is obtained by a cost minimization problem where the solution is provided by the merit-order
dispatching rule [23, Chapter 8]. According to this rule, the dispatching of power is ordered
from the least variable cost power plant to those with higher variable costs. Therefore, the
electricity price corresponds to the intersection between the residual demand and the supply
function.

Definition 1 The price mapping is defined following the merit-order rule, by the following
mapping: φ : T̃ × H × M2(R

+) × D × Y → R such that:

φ(t, h,mt , Dt ,Y t ) := F−1(t, R(h,mt , Dt ,Y t )) ∧ P̄ ≥ 0. (7)

where P̄ is the price cap.

Note that the price mapping is defined at the hourly scale and is bounded. A regulator
impacts agents’ profit through a deterministic additive process (αt )t∈T̃ ∈ R (see Eq. (9)).
This corresponds, for example, to feed-in premium or feed-in tariffs [6]. We assume that αt

is bounded.

2.3 Costs and Objective Function

Investment Costs They are defined as a convex function of the invested capacity q:

Ct (q) = ctq + c̃q2. (8)

The quadratic component c̃q2 captures the fact that marginal investment costs for a given
agent are increasing. We assume that the parameters ct and c̃ are positive.

Producer Profit We define the negative unit profit over time interval [t; t + 1) by

f (t,mt , Dt ,Y t ) = −
∑

h∈H
(φ(t, h,mt , Dt ,Y t ) + αt )�t,h . (9)

Therefore, agent i earns −Qi
t f (t,m

N ,i
t , Dt ,Y t ) total 5-year profits.
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Producer’s Cost Function Each producer has the same discount rate r ≥ 0 capturing the
value of time. The running cost of the producer L : T ×R

+ ×R
+ ×M2(R

+)×D×Y → R

is then defined by

L(t, Qt , qt ,mt , Dt ,Y t ) = e−r t (Qt f (t,mt , Dt ,Y t ) + ctqt + c̃q2t
)
. (10)

The first part of the running cost corresponds to the negative producer profit. The second part
of the running cost corresponds to the investment costs.
The terminal cost of the producer is definedby themapping g : M2(R

+)×D×YT ′−T+1 → R

g(mT , DT−1, (Y t )T≤t≤T ′ ) =
T ′∑

t=T

e−r(t−T )(1 − ν)t−T f

(
t,mT

(
.

(1 − ν)t−T

)
, DT−1,Y t

)
.

(11)

This terminal cost corresponds to the sum of negative discounted unit profits over time
interval

[
T ; T ′], and allows to avoid a discontinuity at the terminal date T − 1. We make the

assumption that average demand after time T stays equal to its value over interval
[
T ; T ′].

This assumption can be justified as there are very few forecasts for the evolution of electricity
demand after 2050.

Remark 3 In an initial game where total installed capacity is considered instead of average
installed capacity in the definition of residual demand (6), the quadratic component in invest-
ment costs in (8) initially scales as N such as investment costs write as Ct (q) = ctq + Nc̃q2.
In this initial game, the running cost then writes as

Ltot (t, Qi
t , q

i
t , NmN ,i

t , Dt ,Y t ) = e−r t
(
Qi

t f (t, NmN ,i
t , Dt ,Y t ) + ctq

i
t + c̃N (qit )

2
)

.

A change of variable qit ← qit
N in the above yields

Ltot (t, Qi
t , q

i
t , (N − 1)mN ,i

t , Dt ,Y t ) = e−r t

(
Qi

t

N
f (t,mN ,i

t , Dt ,Y t ) + ct
qit
N

+ Nc̃

(
qit
N

)2
)

= 1

N
L(t, Qi

t , q
i
t ,m

N ,i
t , Dt ,Y t ).

We obtain an equivalence up to a scaling factor between the running cost with total capacity,
and the running cost with average capacity defined in (10), and investment costs as introduced
in (8). The same holds for the terminal cost (11). This justifies the assumption of considering
average installed capacity instead of total installed capacity. As it will be seen in Sect. 3.2,
modeling with average capacity allows for MFG arguments.

2.4 Agent Minimization Problem

Following Rockafellar and Uryasev [48], we use the following definition of the expected
shortfall ESα of a random variable X :

ESα(X) = inf
x∈RE

[
x + (X − x)+

α

]
. (12)

Note that expected shortfall was initially named as the conditional value-at-risk in the liter-
ature [48]. However, this definition made it confusing to consider additional conditioning,
leading to the less ambiguous denomination of expected shortfall.
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In our case, X corresponds to negative profits (i.e., X ≤ 0). Therefore, theESα corresponds
to the conditional expectation of negative profits below the amount VaRα , where VaRα is
the lowest amount such that, with probability 1 − α, the negative profits will not exceed
this amount. The ESα therefore identifies the worst (100α) percent of profit outcomes for
an agent. Typical values for α are 0.05. The choice of ESα instead of VaRα allows to use a
coherent risk measure.

For any admissible strategy q−i ∈
∏

i∈N i

AN , and for a control qi ∈ AN the multistage

cost of agent i is given by

J i (qi , q−i ) := E

[

β

T−1∑

t=1

L(t, Qi
t , q

i
t ,m

N ,i
t , Dt ,Y t )

]

+ E

[

(1 − β)

T−1∑

t=1

ESα
(
L(t, Qi

t , q
i
t ,m

N ,i
t , Dt ,Y t ) | FN

t , qit , Q
i
t

)
]

+ E

[
Qi

T e
−rT g(mN ,i

T , DT−1, (Y t )T≤t≤T ′)
]

(13)

for β ∈ (0, 1). The first part of the objective corresponds to a risk-neutral assessment of
expected cost. The second part of the objective corresponds to a sum of conditional ESα .
This part of the objective corresponds to a time-consistent risk measure. Using a convex
combination of expectation and of ESα is a common modeling assumption when evaluating
the feasibility of an investment (see Munoz et al. [42]; Mays et al. [40]; Möbius et al. [41];
Fraunholz et al. [31])

Note that the objective function in Equation (13) is multistage, implying that the optimal
decision at time t includes anticipation of future time steps and future optimal decisions for
t ′ ≥ t + 1.

Deriving the Expected Shortfall We derive in the following preliminary discussion a new
form for the objective (13). We have

ESα
(
L(t, Qi

t , q
i
t ,m

N ,i
t , Dt ,Y t ) | FN

t , qit , Q
i
t

)
= e−r t Qi

tES
α

FN
t

(
f (t,mN ,i

t , Dt ,Y t )
)

+ e−r t
(
ctq

i
t + c̃(qit )

2
)

, (14)

wherewedenoteESα

FN
t

(
f (t,mN ,i

t , Dt ,Y t )
)

= infx∈R E

[
x + ( f (t,mN ,i

t ,Dt ,Y t )−x)+
α

| FN
t

]
.

Note that since D is Markovian, and since Yt is independent from Y[t−1] and from Dt−1, we
have

ESα

FN
t

(
f (t,mN ,i

t , Dt ,Y t )
)

= inf
x∈RE

[

x + ( f (t,mN ,i
t , Dt ,Y t ) − x)+

α
| Dt−1

]

.

One should note that the expectation in the expected shortfall does not include the random
variable mN ,i

t , which is fixed given Q−i
t . Consequently, we will write

ESα

FN
t

(
f (t,mN ,i

t , Dt ,Y t )
)

= ESα
Dt−1

(
f (t,mN ,i

t , ., .)
)

.

where we used the notation “.” to avoid confusions.
We define the following mapping and corresponding running cost

f β(t,m, D, D′,Y) = β f (t,m, D,Y ) + (1 − β)ESα
D′ ( f (t,m, ., .)) , (15)
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Lβ(t, Q, q,m, D, D′,Y) = e−r t (Q f β(t,m, D, D′,Y) + ctq + c̃q2
)
. (16)

With (13) and (14), we finally obtain the following simplified multistage cost:

J i (qi , q−i ) = E

[
T−1∑

t=1

Lβ(t, Qi
t , q

i
t ,m

N ,i
t , Dt , Dt−1,Y t ) + Qi

T e
−rT g(mN ,i

T , DT−1, (Y t )T≤t≤T ′ )

]

.

(17)

3 Theoretical Results

3.1 N-Player Game

This section focuses on the N -player game. We consider that players have access to open-
loop controls. This implies that their controls are only specified as Ft -adapted processes and
do not depend on the state of the system. A detailed discussion on the difference between
closed-loop and open-loop controls can be found in Carmona and Delarue [19].

In the following, we will consider Nash equilibriums, with the following definition.

Definition 2 We say that q∗ = (
q1,∗, . . . , qN ,∗) is a Nash equilibrium for the N -player game

if for any i ∈ N , for any q ∈ AN : J i (q, q−i,∗) ≥ J i (qi,∗, q−i,∗).

Existence of optimum for the producer problem. We consider a given strategy q−i ∈∏

i ′∈N i

AN with associated state dynamics Q−i = (Qi ′)′∈N i given by the equations (3) for

i ′ ∈ N−i . The control problem of agent i is obtained by solving

inf
qi∈AN

J i (qi , q−i ), (PN )

where J i was defined in (17). We will prove that Problem (PN ) admits a unique minimizer,
and that this unique minimizer can be characterized through a closed-form expression.

Proposition 7 Let q−i ∈
∏

i ′∈N i

AN and mN ,i be the associated empirical measure defined

in (5). The function J i (., q−i ) admits a unique minimizer denoted by qi,∗ ∈ AN given by:

qi,∗t = 1

2c̃
(Ht )+ , ∀t ∈ T , (18)

with

Ht = −E

[
T−1∑

t ′=t

x t
′−t�i f β(t ′,mN ,i

t ′ , Dt ′ , Dt ′−1,Y t ′ ) + xT−t�i g(mN ,i
T , DT−1, (Y t )T≤t≤T ′ ) | F N

t

]

− ct ,

and x = e−r (1 − ν).

Proof See Sect. 5.1. ��
Corollary 8 Let q∗ ∈ AN be the unique minimizer of Problem (PN ). There exist constants
C,C ′ > 0 independent of N such that q∗ ∈ AN

C , and Q∗ ∈ AN
C ′ .



Dynamic Games and Applications

Proof The proof directly stems from the boundedness of mapping f β in Lemma 24, and
from the closed-form expression of q∗ in (18). It is clear that the constant C does not depend
on N . Lemma 4 proves that there exists C ′ > 0 such that Q∗ ∈ AN

C ′ . ��
Wewill now justify in more detail the price-taking Assumption 5. Consider the alternative

optimization problem

inf
qi∈AN

J̄ i (qi , q), (QN )

where

J̄ i (qi , q) = E

[
T−1∑

t=0

Lβ(t, Qi
t , q

i
t ,m

N
t , Dt , Dt−1,Y t ) + Qi

T e
−rT g(mN

T , DT−1, (Y t )T≤t≤T ′ )

]

.

This optimization problemdepends on the empiricalmeasure (4) of the positions of all agents,
without excluding agent i . Therefore, the price-taking assumption for the N -player game is
removed. It cannot be solved through a closed-form solution as was done in Proposition 7.
However, Proposition 9 shows that any ε-solution to Problem (QN ) (in the sense of Eq. (32))
can be approximated by the optimal solution of Problem (PN ) with a rate 1

N . This further
justifies Assumption 5 for large number N of players.

Proposition 9 Let q−i ∈ ∏i ′∈N i AN
C . Let qi,∗ be the unique optimal solution of (PN ). Let

ε > 0, and q̄i be an ε-solution of (QN ). Then, the following holds:

• There exists a constant C independent from N such that q̄i ∈ AN
C and qi,∗ ∈ AN

C .
• There exists a constant κ > 0 (independent on N and ε) such that

∥∥∥q̄ i − qi,∗
∥∥∥
2

≤ 1

N

(
e−rT c̃

)−1
κ +

(
e−rT c̃

)− 1
2
ε

1
2 . (19)

Proof See Sect. 5.2. ��
Existence of Nash equilibrium for the N -player game.We state a result for which the proof
is similar to the one in Theorem 13 introduced later in Sect. 3.2.

Proposition 10 There exists at least one Nash equilibrium for the N-player game.

Proof The proof is completely similar to the proof of Theorem 13. Details are left to the
reader. ��

3.2 Limiting Game

In this section, we introduce a limiting mean field game. We introduce another random vari-
able �, independent of (B0

t )t∈T . Similarly as for the N -player game, this variable represents
the typical capacity factor, and its distribution represents the distribution of the capacity factor
over the distribution of agents.

We denote F = (Ft )t∈T the filtration defined by Ft := σ(�, D[t−1],Y [t−1]) and F B
t :=

σ(D[t−1],Y [t−1]) the filtration associated with the common noise.
As in Lacker and Zariphopoulou [36], there are two separate sources of randomness in this

limiting model. The first is due to the random processes Dt and Y t , while the second source is
static and comes from the random variable�, which represents the distribution of the capacity
factor across the continuum of agents. The agents can be thought of as a continuum, each
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assigned an independently and identically distributed capacity factor vector at the outset, and
they interact after these assignments are made. We adopt the MFG approach of depicting
a single representative agent as a random sample from the population, instead of explicitly
modeling the continuum of agents. Note that this is the extension of the N -player game,
where parameter �i was fixed for each player and known by all agents, and the equilibrium
strategy of player i depended on the distribution mN ,i of the finite set of other players.

For any control q , we denote Qq := (Qq
t )t∈T the state process corresponding to q , driven

by the following dynamics:

Qq
0 = 0,

Qq
t = (1 − ν)Qq

t−1 + �qt , ∀t ∈ T ,

Qq
t = (1 − ν)Qq

t−1, ∀T ≤ t ≤ T ′, (20)

mq
t = L(Qq

t | F B
t ), ∀t ∈ T , (21)

where L(. | F B
t ) denotes the conditional law given F B

t .
A strategy q is deemed admissible if it belongs to the set A which consists of the F-

progressively adapted non-negative real-valued processes (qt )t∈T satisfying ‖q‖2 < ∞. It
is easy to see that when q ∈ A, mq

t has finite second moment a.s., i.e., mq
t ∈ M2(R

+) a.s..
Therefore, mq

t ∈ L(	,Ft ,P,M2(R
+)), i.e., mq

t is an Ft -adapted random variable taking
values in M2(R

+).

Problem Definition The limiting game with common noise (MFG) is defined as follows.

Find a control q̂ ∈ A such that, given mq̂ :=
(
mq̂

t

)

t∈T , q̂ is an optimal control for the

stochastic control problem with state process (20) and cost

J m f g(q,mq̂ ) = E

[
T−1∑

t=1

Lβ(t, Qq
t , qt ,m

q̂
t , Dt , Dt−1,Y t ) + Qq

T e
−rT g(mq̂

T , DT−1, (Y t )T≤t≤T ′ )

]

.

(22)

We write

inf
q∈A

J m f g(q,mq̂). (P)

Alternatively, we can view Problem (MFG) as a fixed point problem as follows: given
a strategy q̂ ∈ A, find an optimal control q for the stochastic control problem with state
process (20) and cost (P) where mq̂ is defined as in Equation (21). Then, q̂ is a solution of
Problem (MFG) if and only if it is a fixed point of the following map:

q̂ := (q̂t )t∈T → Qq̂ = Qq(q̂) → mq̂ := (mq̂
t )t∈T → q := argminq∈A J m f g(q,mq̂)

(23)

We will define the map (23) formally later in (25). Our main result in this section is to show
existence and uniqueness of a solution to Problem (MFG).

We first suppose we are given a vector of random probability measures. We prove in the
following proposition that the standard control problem admits a unique minimizer, and we
give a closed-form expression for this minimizer.

Proposition 11 Letmq := (mq
t )t∈T withmq

t ∈ L(	,Ft ,P,M2(R
+)) be a vector of random

probability measures taking values in M2(R
+). The function J m f g(.,mq) admits a unique
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minimizer denoted by q∗ ∈ A given by:

q∗
t = 1

2c̃
(Ht )+ , ∀t ∈ T (24)

with

Ht = −E

[
T−1∑

t ′=t

�xt
′−t f β(t ′,mq

t ′ , Dt ′ , Dt ′−1,Y t ′ ) + xT−t�g(mq
T , DT−1, (Y t )T≤t≤T ′ ) | Ft

]

− ct ,

and x = e−r (1 − ν).

Proof The proof is exactly the same as the one for the N -player Nash game, see Sect. 5.1. ��
Corollary 12 Let q∗ ∈ A be the unique minimizer of Problem (P). There exists C > 0 such
that q∗ ∈ AC , and C ′ > 0 such that Q∗ ∈ AC ′ .

Proof The proof is the same as the proof for Corollary 8. ��

3.2.1 Existence of a MFG Solution

We begin by proving existence of a solution. We adopt an approach relying on Schauder’s
fixed point theorem. It should be emphasized that our proof is allowed by the fact that we
consider a discrete-time problem, and Proposition 11 gives a closed-form solution of the
optimization problem. We also strongly rely on the fact that the price process is bounded and
the support of all random variables is finite, therefore working on compact convex sets. This
allows simpler proofs than in classical continuous-time setting with common noise like in
Carmona et al. [20].

We define the map � : A → A as follows; given q̂ ∈ A, we define Qq̂ to be the state
process corresponding to q̂ as defined by (20), and mq̂ the (random) conditional probability
measure given by (21). We then solve Problem (P), and we set

�(q̂) = q. (25)

By Proposition 11, Problem (P) admits a unique minimizer, so the map� is well defined.
Furthermore, a fixed point of � clearly gives a solution of Problem (MFG).

Theorem 13 There exists a solution to Problem (MFG).

Proof See Sect. 5.3. ��
We now state a lemma necessary for Theorem 17.

Lemma 14 The following constants Ce and C ′
e are finite:

Ce := max

[

sup
q s.t. �(q)=q

‖q‖∞ , sup
N

sup
q s.t. �N (q)=q

‖q‖∞

]

,

C ′
e := max

[

sup
q s.t. �(q)=q

‖Q(q)‖∞ , sup
N

sup
q s.t. �N (q)=q

‖Q(q)‖∞

]

.

Proof The proof follows from the proof of Corollary 12. (The bound does not only hold in
�2 norm but also in �∞ norm.) The bound is independent of N . ��
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Remark 4 (Important) Our MFG problem is not equivalent to a game with a representative
player, i.e., with a unique parameter �̄ that would represent homogenizedweather conditions,
and with corresponding equilibrium state Q�̄ . Indeed, one can note that the optimal control
defined in (24) depends linearly in parameter �, therefore writing in a simplified form qt =
�q1t + q0t . Similarly, by the state equation, we can write Qt = �2Q1

t + �Q0
t . If problem

(MFG)was equivalent to a representative agent game, the equivalence of the optimal controls
would require thatE [Q] = Q�̄ . Thiswould yield thatE

[
�2
]
Q1+E [�] Q0 = �̄2Q1+�̄Q0.

In full generality on Q0 and Q1, such an equality can hold only whenE
[
�2
] = �̄2 = E [�]2,

i.e., � is constant, discarding interesting settings with heterogeneous players.
This will be further discussed in the numerical experiments in Sect. 4.

3.2.2 Uniqueness

To prove uniqueness, previous papers often use a monotonicity condition. See Cardaliaguet
et al. [17]; Ahuja [3]. We introduce the following assumptions needed in this section. The
first assumption denotes the fact that the function F−1(t, .) is strictly increasing and bounded
from below by a linear function. This is a very reasonable assumption based on the fact that
F−1(t, .) is increasing smoothly.

Assumption 15 Let t ∈ T̃ , and C ′
e > 0 as defined in Lemma 14. Let 0 < Q̄1 < Q̄2 ≤ C ′

e.
There exists C(26) > 0 such that

F−1(t, Q̄2) − F−1(t, Q̄1) ≥ C(26)(Q̄2 − Q̄1). (26)

The next assumption is needed to obtain a strict lower bound in the proof of Theorem 17.

Assumption 16 Let C ′
e > 0 as defined in Lemma 14. There exists ε > 0 such that, for all

t ∈ T̃ , for all Y t ∈ Y ,

Hε
t =

{
h ∈ H | ∀D ∈ D, �t,hC

′
e ≤ D + D̃t,h ≤ F(t, P̄) − ε, �t,h > ε

}

satisfies Hε
t �= ∅.

Assumption 16 justifies that for all possible weather annual scenarios, there exists a subset
of hours where average national renewable production is nonzero, renewables are not suffi-
cient to cover all demand, and demand does not reach market price cap. This assumption is
very realistic based on historical data and projections.

We can now state the following.

Theorem 17 Under Assumptions 15 and 16, the solution to Problem (MFG) is unique.

Proof See Sect. 5.4. ��
Remark 5 The uniqueness property is specific to this limiting MFG game. Indeed, for the
N -player game, the fixed point equation solving Problem (PN ) defines the optimal control
for each player i conditionally on the measure restricted to other players (i.e., with the price-
taking assumption). This yields existence of multiple equilibria. Moreover, solving this game
would require iterating on N fixed point conditions, resulting in substantial numerical com-
putation challenges as N increases. Therefore, the point of the limiting MFG game is to get
strong theoretical guarantees such as the uniqueness result, and to provide simple computa-
tion. Note that the N -player game without the price-taking assumption—with corresponding
optimal control problem QN—does not yield any closed-form expression.
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3.3 Algorithm to Find theMFG Equilibrium

Common algorithms to derive an MFG equilibrium include Fictitious play [16]. Algorithm
1 describes the process. Following Bonnans et al. [11], we use the Frank-Wolfe learning rate
of 2

k+2 which demonstrates sharper convergence results. Note that in Algorithm 1, notations

mk
t no longer refer to the solution of the Nash equilibrium, but to the consecutive iterations

of the algorithm.

Algorithm 1 Fictitious play

Input: number of time steps T − 1, initial policy m0

for k = 0, . . . , K − 1 do
Compute qk+1 ∈ argminq J m f g(q,mk )

Compute mqk+1

t = L(Qqk+1

t | Ft ), ∀t = 1, . . . , T − 1

Update mk+1
t = 1

k+2m
qk+1

t + k+1
k+2m

k
t

end for
Return: mK , qK

Remark 6 Proposition 11 gives a recursive form for the solution of the control problem,which
facilitates the calculus in the algorithm.

3.4 Convergence of the N-Player Game

This section focuses on proving that when N tends to infinity, any sequence of Nash equilibria
to the N -player game converges to the unique solution of the MFG problem. The following
section is greatly inspired from Lacker [35], where the author studies convergence of open-
loop N -player game to the corresponding MFG.

Definition 3 We will now write an MFG solution as a tuple (	,F,P, D,Y , �,m, q, Q),
where (	, (Ft )t∈T ,P) is a completefilteredprobability space supporting (D,Y , �,m, q, Q).
This MFG solution satisfies:

• D := (Dt )t∈T and Y := (Y t )t∈T̃ are Ft -adapted processes following, respectively, the

laws λD and λ⊗T ′
Y .

• � is a random variable with law λ� .
• � and D,Y are independent.
• qt is an Ft -adapted process such that q ∈ A.
• (q, �, Q) satisfy the state equation (20).
• m is the conditional law of Q given F

B : mt = L(Qt | F B
t ).

• For all q ′ ∈ A, we have E
[
J (q ′,m)

] ≥ E [J (q,m)] .

From Lemma 14, we know that if q is an MFG solution, ‖q‖∞ ≤ Ce and ‖Q‖∞ ≤ C ′
e.

From now on, we will denote E = [
0,max

[
Ce,C

′
e

]]
the compact convex subspace of R.

Given an MFG solution (	,F,P, D,Y ,m, �, q, Q), we may view D,Y , �,m, q, Q as
a random element of the canonical space

	 := (D)T−1 × (Y)T
′ × G × (M2(E))T−1 × ET−1 × ET−1. (27)

Note that 	 is a metric space, as product of metric spaces.
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An MFG solution thus induces a probability measure on 	, which itself we would like to
call a MFG solution. Following Lacker [35], we give the following equivalent definition for
an MFG solution.

Definition 4 If P ∈ M0(	) satisfies P = P ◦ (D,Y , �,m, q, Q)−1 for some MFG solution
(	,F,P, D,Y , �,m, q, Q), then we refer to P as the MFG solution.

From now on, we let D,Y , �,m, q, Q denote the identity maps on (D)T−1, (Y)T
′
, G,

(M2(E))T−1, ET−1, and ET−1, respectively. We define the objective functional

�(D,Y , �,m, q, Q) :=
T−1∑

t=1

Lβ(t, Qq
t , qt ,mt , Dt , Dt−1,Y t )

+ Qq
T e

−rT g(mT , DT−1, (Y t )T≤t≤T ′), (28)

and we define the reward associated with an element P ∈ M0(	) by

J (P) := E
P [�(D,Y , �,m, q, Q)] . (29)

We will now define some subsets of M0(	). Let M0(	
′) denote the set of ρ ∈ 	′ :=

(D)T−1 × (Y)T
′ × G × (M2(E))T−1 satisfying ρ ◦ (D,Y , �)−1 = λD ⊗ λ⊗T ′

Y ⊗ λ� .
For any ρ ∈ M0(	

′), the class RA(ρ) is the set of admissible joint laws for the optimal
control problem associated with ρ. Specifically, it is the set of probability measures P on 	

satisfying:

1. P ◦ (D,Y , �,m)−1 = ρ,

2. E
P

[
T−1∑

t=1

q2t

]

< ∞,

3. P ◦ (D,Y , �,m, q, Q)−1 ∈ M0(	) denotes the joint law of the solution and the inputs
to (20) (i.e., the canonical processes �, q, Q satisfy the state equation (20)).

Define the set of optimal controls corresponding to ρ by

RA∗(ρ) := arg min
P∈RA(ρ)

J (P).

By Proposition 11, we know thatRA∗(ρ) is reduced to a singleton. (We are simply changing
the probability space that we consider.)

The first lemma gives a characterization of an MFG solution.

Lemma 18 Let P ∈ M0(	), and define ρ := P ◦(D,Y , �,m)−1. If P satisfies the following
conditions:

1. ρ is in M0(	
′),

2. P ∈ RA(ρ),
3. m = P(Q ∈ . | D,Y ). That is, m is a version of the conditional law of Q given D,Y ,
4. P ∈ RA∗(ρ),

then P is an MFG solution.

Proof It directly follows from Definitions 3 and 4. ��

We now state some useful results following Lacker [35].
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Lemma 19 The map J : M(	) → R is continuous.

Proof The map � is bounded and continuous on 	. This directly yields the continuity of J
on M(	) (for the topology defined by the weak convergence). ��

We define the N -player environment:

EN :=
(
	, (FN

t )t ,P, D,Y , (�i )i∈1,...,N
)

.

We now consider a sequence of Nash equilibria. By Proposition 10, we know that there exists
at least one Nash equilibrium for the N -player game. For each N , let q1,N , . . . , qN ,N ∈ AN

C
denote such a Nash equilibrium. We let

PN := 1

N

N∑

i=1

P ◦
(
D,Y , �i ,mN ,i , qi,N , Qi,N

[
qi,N

])−1
. (30)

We can now prove the following lemma.

Lemma 20 The sequence (PN )N∈N ∈ M0(	) is relatively compact.

Proof 	 is a compact metric space, since the random variables D, Y and � have respective
finite support D, Y and G. It follows from [44, Theorem 6.4] that M0(	) is also a compact
metric space. Therefore, the sequence (PN )N∈N ∈ M0(	) is relatively compact. ��

By Lemma 20, we have that every subsequence PNk contains a further subsequence such
that this subsequence converges weakly to a limit point P ∈ M0(	).

Lemma 21 Each limit point P of any converging subsequence of (PN )N∈N is an MFG solu-
tion.

Proof See Sect. 5.5. ��
Proposition 22 The sequence (PN )N∈N converges to a unique limit solution which is the
solution to the (MFG) problem.

Proof Lemma 21 and Lemma 18 prove that the limit point P is an MFG solution. Therefore,
we have proven that each subsequence of PN contains a further subsequence converging
weakly to P where P is anMFG solution. By Proposition 11, we know that Problem (MFG)

admits a unique solution. Therefore, we conclude that (PN )N∈N convergesweakly to P where
P is the unique MFG solution. ��

3.5 Extension to the Case of Multiple Clusters

While the results derived in the previous subsections hold for the case where a single type of
producers is considered, an interesting application of the model includes the representation
of multiple clusters (e.g., producers of wind and solar). Our results of the existence of a Nash
equilibrium for the N -player game and for the MFG game can easily be extended to the
case of multiple clusters. The extension of the uniqueness result is left for future research.
However, we observed empirically in our simulations that uniqueness seems to hold in the
case of multiple clusters.

From a numerical perspective, including more than one type of renewable producers
requires only marginal adjustments. The random variable � now contains all variables that



Dynamic Games and Applications

determine the weather conditions important for all producers. For example, considering wind
producers and solar producers, we can define the optimal control problem for wind producers
as

min
q∈A

J m f g
wind(q,mk

wind + mk
solar )

The objective function depends on the sum of measures for both types of producers, as
it is the total renewable invested capacity which drives the profit on electricity markets. The
same holds for solar producers. The Fictitious Play algorithm can then be adapted as follows:

Algorithm 2 Fictitious play for multiple producers

Input: number of time steps T − 1, initial policy m0

for k = 0, . . . , K − 1 do
Compute qk+1

wind ∈ argminq J m f g
wind (q,mk

wind + mk
solar )

Compute qk+1
solar ∈ argminq J m f g

solar (q,mk
wind + mk

solar )

Compute mqk+1

t,wind = L(Qqk+1

t,wind | Ft ), ∀t = 1, . . . , T − 1

Compute mqk+1

t,solar = L(Qqk+1

t,solar | Ft ), ∀t = 1, . . . , T − 1

Update mk+1
t,wind = 1

k+2m
qk+1

t,wind + k+1
k+2m

k
t,wind

Update mk+1
t,solar = 1

k+2m
qk+1

t,solar + k+1
k+2m

k
t,solar

end for
Return: mK

wind , qK
wind ,mK

solar , q
K
solar

4 Numerical Simulations

The objective of this section is to provide a toy example inspired by the French electricity
sector to illustrate our model, rather than utilizing it for generating practical predictions.
These predictions will instead be the focus of forthcoming research.

The main energy sources that we consider are gas, coal, nuclear and intermittent renew-
ables, consisting of solar, onshore and offshore wind, and run-of-river. Initial capacities of
renewables are taken to be equal to 10GW, 18GW, 0 GW and 10 GW, respectively. We there-
fore consider an economy consisting of only these sources of electricity, without considering
other sources of flexibility such batteries, electrolyzers or imports. This allows us to derive
a practical toy model.

4.1 Setting and Data Gathering

Electricity and Mix Projections We use RTE’s (French transmission network operator)
latest study “Futurs Energétiques” [49] to obtain forecasts of evolution of electricity demand.
Three main scenarios are considered: a “Sobriety” scenario, a “Reference” scenario, and a
“Reindustrialization” scenario. Final electricity demand in 2050 amounts to a range between
555TWhand 750TWhaccording to the scenarios. This takes into account foreseeable change
in the demand profile up to 2050, including an increased demand for electric vehicles and
for heating.
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All capacities but onshore wind and solar capacities are assumed to evolve exogenously,
following scenario N1 of the “Futurs Energétiques’s” study. This study provides a variation
around the central N1 scenario to consider adjustment of themix to the demand scenario (e.g.,
offshore capacities are considered lower in the “Sobriety” scenario than in the “Reference”
scenario, as demand is lower).

We rely on such assumptions to create the aggregate supply function F(t, .). Note that
as exogenous power mix is taken to evolve over time following RTE’s given scenario, the
corresponding supply function also evolves in a deterministic manner over time. We build
this supply function as a piecewise affine function, according to the merit-order rule. Cutoff
points follow available capacity, while the slope of the function is determined by each tech-
nology’s variable cost. We consider a variable cost for gas of 23.2 EUR/MWh, following
IEA’s projections for 2040 [33]. We model different gas power plants with varying efficiency
between 0.4 (for open-cycle gas turbines) and 0.58 (for combined-cycle gas turbines), to
capture the heterogeneity of gas supply across France. Because of maintenance constraints,
nuclear capacity is not available for all hours. We consider a corresponding capacity factor
of 0.9. Finally, we assume a market price cap of 10,000 EUR/MWh.

Demand and Fuel Prices Uncertainty We use a Markovian model for demand uncertainty,
with a transition matrix between the different demand scenarios introduced beforehand.
Specifically, we consider that when on the “Reference” scenario, there is a 1

2 probability of
staying on that trajectory, and a 1

4 trajectory of shifting trajectory to either the lower or higher
demand scenario. When on an extreme scenario (either “Sobriety” or “Reindustrialization”),
there is a 3

4 of staying on that trajectory, and a 1
4 probability of shifting to the “Reference”

scenario trajectory.We do not consider transition from the “Sobriety” to the “Reindustrializa-
tion” scenario, as such transitionswould be very unrealistic.While a very simplisticmodeling
of uncertainty, this model allows to explore the impact of demand uncertainty on investment
decisions. Moreover, the jump from one trajectory to another may represent either political
decisions (e.g., rapid reindustrialization), or society shifts (e.g., decrease of consumption).
Moreover, parametrizing such an uncertainty is a difficult task.

We model fuel prices uncertainties by considering that variable gas price is a random
uniformvariablewithmeanof 23.2EUR/MWh(as stated before) and spreadof 10EUR/MWh.

Inter-annual Variability of Hourly Profiles As emphasized, our model relies on an hourly
time scale to calculate profits for producers, in order to capture the variability of demand
and intermittent renewables. This is captured in the random variable Y t . Hourly capacity for
offshore wind, onshore wind and solar PV was prepared using the renewables.ninja website,
1 which provides the hourly capacity factor profiles of solar and wind power from 1990
to 2019 at the geographical scale of French counties, following the methods elaborated by
Pfenninger and Staffell [46]. The hourly electricity demand profile was provided by RTE.

Estimating demand heat sensitivity is a very challenging task. Therefore, we choose not to
capture this in the model, and we focus on the inter-annual variability of renewable capacity
factors. The average correlation between demand and weather is still captured through the
average electricity profile.

Variability of Capacity Factor We test different distributions for the capacity factor, with a
range of [0.5; 1.5]. In particular, we consider a distribution made of two Diracs at 0.7 and

1 https://www.renewables.ninja/.

https://www.renewables.ninja/
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1.3, with equal (p = 1
2 ) or asymmetric probability (p = 1

4 and p = 3
4 , and p = 3

4 and
p = 1

4 ). We also consider Beta Binomial distributions with law

f (x + (y − x)
k

n
| a, b) :=

(
n

k

)
B(k + a, n − k + b)

B(a, b)
, ∀0 ≤ k ≤ n,

with x = 0.5, y = 1.5 and n = 12. We explore different combinations of parameters a and b
(namely a = 0.5 and b = 0.5, a = 0.15 and b = 0.3 and a = 0.3 and b = 0.15). In addition,
we also model representative agent model by taking singletons as distributions. We consider
different singletons distributions, spanning the whole range of the other distributions, with a
step of 0.05 for the value of the capacity factor for different singleton distributions.

RiskAversionParameter Since there is no literature specifying realistic values for investors’
decisions, we considered in an ad hoc way risk aversion parameter β ranging from 0.5 to
1 in our experiments. We will focus on specific values of 0.5 and 0.9 in the analysis. The
expected shortfall level is fixed at 0.05, following classical values found in literature [7, 40].

Costs, Discount Rate and Depreciation Rate Cost evolution assumptions are taken from
RTE [49]. Ground solar panels costs are assumed to fall from 750 EUR/MW in 2020 to
550EUR/MW in 2050. Onshore wind turbines costs are assumed to fall from 1300 EUR/MW
in 2020 to 900 EUR/MW.

Parameter c̃ is calibrated as follows. When total capacity is considered, the quadratic
component in investment costs scales as N , so that Ct (q) = ctq + Nc̃q2. For a classical
power plant size, we assume that the two components are equivalent: ctq ∼ Nc̃q2. Assuming
an average installation rate of 10 GW per time step of 5 years [49] and an average cost of
C = 12,000 EUR/GW, this yields Nc̃ = C

10/N .
Therefore, c̃ ∼ 12,000 for wind turbines. We obtain similarly that c̃ ∼ 5500 for solar

panels.
FollowingRTE [49], we consider that solar andwind power plants have an average lifetime

of 30 years, corresponding to 6 time stamps of 5 years. We model lifetime as a geometric
random variable, with average of 30 years. The devaluation rate ν is therefore taken equal to
1
6 . Following Aïd et al. [4], we take a yearly discount rate of r = 8.6%. The RTE study also
specifies such range of values when private investors’ decisions are considered. (A normative
approach would on the other hand rely on a lower discount rate.)

4.2 Interpretation

We perform 100 iterations of the algorithm as described in Sect. 3.3, and we monitor the
gain increase from switching to the best response for renewable producers, by summing gain
increase for solar producers and onshore wind producers. It can be seen in Fig. 1 that this
quantity converges to zero.

In the following, the average installed capacity refers to the quantity Q
�

with notations
from Sect. 2, while the average installed capacity with capacity factor refers to the quantity
Q. The former relates to actual investment decisions, while the latter relates to the average
production (product of investment decision and capacity factor). It is the latter which impacts
the electricity spot price.
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Fig. 1 Evolution of gain increase
over algorithm iterations

Fig. 2 Impact of capacity factor distribution for three different distributions: a symmetric two Dirac distri-
butions and two asymmetric two Dirac distributions. Left: average installed capacity in solar panels. Right:
average installed capacity in onshore wind turbines

When not specified, evolution of installed capacities in figures is taken by simulating the
“Reference” demand scenario trajectory.

The impact of the choice of distribution for the capacity factor is illustrated in Fig. 2.When
an asymmetric distribution is considered, we obtain a larger average installed capacity when
the asymmetry is biased toward lower capacity factors. Intuition for this finding goes as
follows: deriving the optimal control against initial invested capacity using Equation (24) for
a smaller capacity factor results in reduced out-of-equilibrium production. In other words,
the optimal control does not align with the distribution it was originally optimized against.
Consequently, the fixed point condition defining the equilibrium is displaced, leading to an
increase in investment for smaller capacity factor. Figure2 highlights the need to correctly
specify the distribution of the heterogeneity among agents when using such a prospective
model.

The impact of the risk aversion parameter is illustrated in Fig. 3. A lower risk parameter β

corresponds to higher risk aversion.When risk aversion increases, invested capacity decreases
by up to 6%. Indeed, higher risk aversion places more emphasis on bad outcomes, resulting
in reduced investment. As explained previously, the fixed point condition characterizing the
equilibrium is again displaced, mitigating the total reduction in investments due to higher
risk aversion. Such a result is aligned with the literature [31, 41].

Figure 4 shows the impact of the heterogeneity in terms of distribution of the installed
capacity.We observe that as time goes by and average installed renewable capacity increases,
the spread of installed capacity increases across the continuum of agents with different
capacity factors. This illustrates the cannibalization effect, and how such effect can impact
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Fig. 3 Impact of risk aversion
parameter β for two different
values of 0.5 and 0.9

Fig. 4 Evolution of the
distribution of installed capacity
across the considered time range.
The x-axis represents the value
for the solar panel capacity, while
the y-axis represents the
probability with which this value
is attained. The probability
corresponds to the distribution for
the capacity factor parameter

differently heterogeneous producers (e.g., in terms of geographical localizations). This points
out that a result of private risk-averse agents taking investment decisions may be a higher
concentration of renewable energy technologies in the most productive areas, which could
lead to congestion, increased costs and decreased energy supply security, because of increased
production correlation. Such an insight also highlights the interest for practitioners to work
with models designed to handle heterogeneity, as a representative agent model would not
allow to analyze such an impact.

Finally, we explore whether the results of the model with heterogeneity can be reproduced
with a representative agent model relying on a unique parameter � representing homoge-
nized weather condition instead of a whole distribution. Remark 4 already highlighted that
from a theoretical point of view, there exists many capacity factor distributions for which the
output of themodel cannot be reproducedwith a representative agent model. In the following,
we compare the average installed capacity and the average installed capacity weighted by
capacity factor for different distributions. Those two quantities jointly characterize the Nash
equilibrium. Specifically, we consider a beta binomial distribution with parameter a = 0.3
and b = 0.15. We compare in Fig. 5 the results obtained by solving the game with the whole
distribution with the results obtained by solving the game with singleton distributions. The
relative difference with respect to the beta binomial distribution is represented. Singleton dis-
tributionswith capacity factor of 1.3 and 1.25 are the closest to the installed capacityweighted
by capacity factor, within a 2% difference. However, the same singleton distributions yield
an installed capacity which differs by almost 10% from the capacity for the beta binomial
distribution. The same can be said when we try to select the singleton distributions yielding
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Fig. 5 Comparison of model outcomes for different capacity factor distributions. Left: average capacity
weighted by the capacity factor. This is the quantity that impacts the spot price and therefore agents’ profits.
Right: average capacity. This is the quantity actually invested by agents, and derived from the average capacity
weighted by the capacity factor

the closest results to the beta binomial distribution in terms of installed capacity: in that case,
the selected singleton distributions yield an installed capacity weighted by capacity factor
which differs by almost 10% from the one obtained with the beta binomial distribution. This
indicates that a singleton distribution cannot approximate similarly well both the installed
capacity and the installed capacity weighted by the capacity factor. Therefore, the Nash equi-
librium corresponding to the beta binomial distribution cannot be obtained by solving a game
with a singleton distribution. When solving the limiting game, the solution actually depends
on the whole distribution and not just on a representative parameter �. Once again, this
prompts practitioners to use models handling explicitly heterogeneity, and to pay attention to
the use of representative agent’s model in settings where the heterogeneous parameter may
impact the results.

5 Proofs

5.1 Proof of Proposition 7

We first prove that J i (qi , .) is strongly convex. The linearity of the dynamics (3) and the
quadratic/convex functions in the definition (16) of Lβ(t, Q, q,m, D, D′,Y) give us that

J i (λq1 + (1 − λ)q2, q−i ) = λJ i (q1, q−i ) + (1 − λ)J i (q2, q−i )

+ E

[
T−1∑

t=1

e−r t c̃
((

λq1t + (1 − λ)q2t
)2 − λ(q1t )

2 − (1 − λ)(q2t )2
)
]

≤ λJ i (q1, q−i ) + (1 − λ)J i (q2, q−i ) − e−rT c̃λ(1 − λ)
∥∥q1 − q2

∥∥2
2 .

We now define qi,∗ and Ht as given in Equation (18). Let �q ∈ A such that for all t ∈ T ,
�qt takes arbitrary values in

[ − qi,∗t ,+∞)
, and define an admissible control q̄ i ∈ A such

that

q̄ it = qi,∗t + �qt .

Let us compute �J i (qi,∗, q−i ) = J i (q̄ i , q−i ) − J i (qi,∗, q−i ). Denote �t ′ = t ′ − t,
and x = e−r (1 − ν).



Dynamic Games and Applications

We have that

�J i (qi,∗, q−i )

=
T−1∑

t=1

e−r t
E

⎡

⎣
∑

t ′≥t

x�t ′ �i f β(t ′,mN ,i
t ′ , Dt ′ , Dt ′−1,Y t ′ )�qt + �qt ct + c̃

((
q̄ it
)2 −

(
qi,∗t

)2)
⎤

⎦

+
T−1∑

t=1

e−r t
E

[
x�T �i�qt g(m

N ,i
T , DT−1, (Y t )T≤t≤T ′ )

]

=
T−1∑

t=1

e−r t
E

⎡

⎣�qtE

⎡

⎣
∑

t ′≥t

x�t ′ �i f β(t ′,mN ,i
t ′ , Dt ′ , Dt ′−1,Y t ′ ) + ct | FN

t

⎤

⎦+ c̃

((
q̄ it
)2 −

(
qi,∗t

)2)
⎤

⎦

+
T−1∑

t=1

e−r t
E

[
�qtE

[
x�T �i g(mN ,i

T , DT−1, (Y t )T≤t≤T ′ ) | FN
t

]]

=
T−1∑

t=1

e−r t
E

[
−�qt Ht + c̃

((
q̄ it
)2 −

(
qi,∗t

)2)]
,

where the third equality comes from definition of Ht .

Let us analyze the sign of the quantity−�qt Ht + c̃

((
q̄ it
)2 −

(
qi,∗t

)2)
inside of the expecta-

tion. If qi,∗t = 0, then Ht ≤ 0 and �qt ≥ 0: −�qt Ht + c̃

((
q̄ it
)2 −

(
qi,∗t

)2) = −�qt Ht +

c̃
((
q̄ it
)2) ≥ 0. Otherwise, Ht = 2c̃qi,∗t and then −�qt Ht + c̃

((
q̄ it
)2 −

(
qi,∗t

)2) =
c̃(�qt )2 ≥ 0.

Therefore, we obtain that for all admissible control qi,∗ + �q , we have

�J i (qi,∗, q−i ) ≥ e−rT c̃ E

[
T−1∑

t=1

(�qt )
2

]

≥ 0. (31)

This proves that qi,∗ is a global minimum.
Moreover, we proved previously that J i (qi , .) is strongly convex. As A is a convex set,

we conclude that qi,∗ is actually the unique global minimum. ��

5.2 Proof of Proposition 9

The proof of the first point directly follows from Lemma 25. Indeed, since q̄ is an ε-solution,
we have:

J̄ i
(
q̂ i , q

)
≤ inf

qi∈A
J̄ i
(
qi , q

)
+ ε. (32)

Therefore, there exists a constantC1 > 0 independent of N such that q̄ i ∈ AC1 . We also have
by Corollary 8 that qi,∗ belongs to AC . We obtain the result by taking C = max [C1,C].

The proof of the second point is a consequence of Bonnans and Shapiro, [12, Proposition
4.32]. We define �J i (qi ) := J i (qi , q−i ) − J̄ i (qi , q). Following the above reference, we
will prove i) that

J i (qi , q−i ) − J i (qi,∗, q−i ) ≥ e−rT c̃
∥∥∥qi − qi,∗

∥∥∥
2

2
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and that ii) there exists κ > 0 such that
∣
∣
∣�J i (qi,1) − �J i (qi,2)

∣
∣
∣ ≤ κ

N
‖�q‖2 .

Details are given in the supplementary material Escribe et al., [27, Section 5.3]. The proof is
complete. ��

5.3 Proof of Theorem 13

Step 1. By Proposition 11, there exists C > 0 such that the minimizer of (P) belongs to
AC . Therefore, the map � maps AC into itself. Moreover, by Assumption 3, the support
of filtration F is finite. Therefore, A is of finite dimension, and by Riesz theorem, AC is
compact. Moreover, it is also convex.
Step 2. We now check that � is continuous on AC . Let q̂1, q̂2 ∈ AC . Denote Q1 and Q2

the associated installed capacities,mq1 andmq2 the associated random vectors of probability
measures, and q1 = �(q̂1) and q2 = �(q̂2). We also denote

� f β(t,mq̂1
t ,mq̂2

t ) = f β(t,mq̂1
t , Dt , Dt−1,Y t ) − f β(t,mq̂2

t , Dt , Dt−1,Y t ),

�g(mq1

T ,mq̂2

T ) = g(mq̂1

T , DT−1, (Y t )T≤t≤T ′) − g(mq̂2

T , DT−1, (Y t )T≤t≤T ′).

We write x = e−r (1 − ν). Then,

∥∥q1 − q2
∥∥2
2 ≤ 1

(2c̃)2

T−1∑

t=1

E
[|H1

t − H2
t |2]

≤ 1

2c̃2

T−1∑

t=1

E

[

E

[

(T − t)
T−1∑

t ′=t

x2(t
′−t)�2� f β(t ′,mq̂1

t ′ ,mq̂2

t ′ )2 + x2(T−t)�2�g(mq̂1

T ,mq̂2

T )2 | Ft

]]

where we used the definition of q in (24), Jensen and Cauchy–Schwarz inequalities.

Wenote that after conditioning onFt ′ ,m
q1

t ′ andmq2

t ′ are deterministic probabilitymeasures.
Therefore, by Lemma 27,

E

[
� f β(t ′,mq̂1

t ′ ,mq̂2

t ′ )2 | Ft ′
]

≤ L2
f E

[
d1
(
mq̂1

t ′ ,mq̂2

t ′
)2 | Ft ′

]
.

From Remark 1, it readily follows that

d1
(
mq̂1

t ′ ,mq̂2

t ′
)

= sup
ψ 1−Lip

E

[
ψ(Q̂1

t ′) − ψ(Q̂2
t ′) | F B

t ′
]

≤ E

[∣∣∣Q̂1
t ′ − Q̂2

t ′
∣∣∣ | F B

t ′
]
.

Therefore,

E

[
� f β(t ′,mq̂1

t ′ ,mq̂2

t ′ )2 | Ft ′
]

≤ L2
f E

[
E

[∣∣∣Q̂1
t ′ − Q̂2

t ′
∣∣∣ | F B

t ′
]2 | Ft ′

]

≤ L2
f E

[(
Q̂1

t ′ − Q̂2
t ′
)2 | F B

t ′

]
,

where we used Jensen inequality. Thus, for t ′ ≥ t ,

E

[
�2� f β(t ′,mq̂1

t ′ ,mq̂2

t ′ )2 | Ft

]
= E

[
�2

E

[
� f β(t ′,mq̂1

t ′ ,mq̂2

t ′ )2 | Ft ′
]

| Ft

]

≤ L2
� f

E

[
E

[(
Q̂1

t ′ − Q̂2
t ′
)2 | F B

t ′

]
| Ft

]
,

(33)
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with L2
� f

:= (�max )2L2
f . Similarly, with Lemma 28 and Remark 1, we obtain that

E

[
�2�g(mq̂1

T ,mq̂2

T )2 | FT−1

]
≤ L2

�g
E

[
(Q̂1

T−1 − Q̂2
T−1)

2 | F B
T−1

]
,

with L2
�g

= (�max )2L2
g(1−ν)2. We used similarly Cauchy–Schwarz inequality and the fact

that since the state dynamics are uncontrolled after time T , mq1

t ′ and mq2

t ′ are deterministic
probability measures for all t ′ ≥ T after conditioning on FT−1. Therefore,

E

[
�2�g(mq̂1

T ,mq̂2

T )2 | Ft

]
≤ L2

�g
E

[
E

[(
Q̂1

T−1 − Q̂2
T−1

)2 | F B
T−1

]
| Ft

]
. (34)

The combination of (33) and (34) gives the existence of constant L = 1
2c̃2

(
(T − 1)L2

� f

+L2
�g

)
such that

∥
∥q1 − q2

∥
∥2
2 ≤ L

T−1∑

t=1

T−1∑

t ′=t

E

[(
Q̂1

t ′ − Q̂2
t ′
)2] ≤ L(T − 1)E

[
T−1∑

t=1

(
Q̂1

t − Q̂2
t

)2
]

. (35)

With the state dynamics, we finally have obtain that there exists a constant L > 0 such that∥∥q1 − q2
∥∥2
2 ≤ L

∥∥q̂1 − q̂2
∥∥2
2 . We conclude that the map � is continuous in q .

Step 3.We finally conclude by using Schauder’s fixed point theorem on the map � which is
continuous on the compact convex set AC . ��

5.4 Proof of Theorem 17

Let q1, q2 ∈ AC two fixed points of the map �. By Lemma 14, we have that almost surely,

for all t ∈ T ,
∫
xdmq1

t (x) ≤ C ′
e, where m

q1 and mq2 are the associated random vectors of

probability measures. The same holds for mq2 . As previously, we denote

� f β(t,mq1
t ,mq2

t ) = f β(t,mq1
t , Dt , Dt−1,Y t ) − f β(t,mq2

t , Dt , Dt−1,Y t ),

�g(mq1

T ,mq2

T ) = g(mq1

T , DT−1, (Y t )T≤t≤T ′) − g(mq2

T , DT−1, (Y t )T≤t≤T ′).

As stated previously, fixed points of � are minimizers of (P), and therefore,

J m f g(q1,mq1) ≤ J m f g(q2,mq1), and J m f g(q2,mq2) ≤ J m f g(q1,mq2).

By summing the two previous inequalities, we get

E

[
T−1∑

t=1

e−r t (Q1
t − Q2

t

)
� f β(t,mq1

t ,mq2
t ) + (

Q1
T − Q2

T

)
e−rT�g(mq1

T ,mq2

T )

]

≤ 0.

Conditioned on F B
t , m

q1
t and mq2

t are deterministic probability measures. By Lemma 29,

E

[(
Q1

t − Q2
t

)
� f β(t,mq1

t ,mq2
t )
]

= E

[
E

[(
Q1

t − Q2
t

)
� f β(t,mq1

t ,mq2
t ) | F B

t

]]

= E

[
E

[
� f β(t,mq1

t ,mq2
t )E

[(
Q1

t − Q2
t

)
| F B

t

]
| F B

t

]]

≥ K ε

(A8)
E

[(
E

[
Q1

t | F B
t

]
− E

[
Q2

t | F B
t

])2]
.
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By Lemma 30, we obtain similarly that

E

[(
Q1

T − Q2
T

)
�g(mq1

T ,mq2

T ) | Ft

]
≥ K ε

(A11)E

[(
E

[
Q1

T | F B
T

]
− E

[
Q2

T | F B
T

])2]
.

Therefore, by combining the above inequalities, we get

0 ≥ KE

[
T∑

t=1

e−r t
(
E

[
Q1

t | F B
t

]
− E

[
Q2

t | F B
t

])2
]

where K = min
[
K ε

(A8)
, K ε

(A11)

]
. This implies that for all t ∈ T ,

E

[
Q1

t | F B
t

]
= E

[
Q2

t | F B
t

]
.

We will now prove that the equality actually holds for the probability measure in addition
to the expectation. By Proposition 11, for a given vector of random probability measures m,
there exists a unique minimizer q∗ ∈ A. We have shown that if q1, q2 are two fixed points
of the mapping �, we have that for all t ∈ T

∫
xdmq1

t (x) =
∫

xdmq2
t (x).

Therefore, since the mapping J m f g(.,mq) only depends on the quantity
∫
xdmq

t (x), we can
conclude that the minimizers q1,∗ and q2,∗ are also equal. This concludes that if q1, q2 are
two Nash equilibria, we have that q1 = q2. ��

5.5 Proof of Lemma 21

We abuse notation somewhat by assuming that PN → P , with the understanding that this is
along a subsequence.We now check that P satisfies the four conditions of Lemma 18. Define
ρ := P ◦ (D,Y , �,m)−1. By definition of PN in (30), we have that

PN ◦ (D,Y , �)−1 = 1

N

N∑

i=1

P ◦
(
D,Y , �i

)−1 = λD ⊗ λ⊗T ′
Y ⊗ λ�.

Therefore, PN ◦ (D,Y , �)−1 satisfies the required law. Since PN converges in distribution
to P , we directly obtain that ρ ◦ (D,Y , �) also satisfies the required law. Therefore, ρ ∈ M.
Since �i and D,Y are independent under P for each i , it follows that � and D,Y are
independent under PN for each N . Thus, �, D and Y are independent under P .

Since
(
q1,N , . . . , qN ,N

)
is a Nash equilibrium, we have by Corollary 8 that

sup
N

1

N
E
P

[
N∑

i=1

T−1∑

t=1

(qi,Nt )2

]

≤ C .

Moreover, all processes qi,N are uniformly bounded in N . Therefore, by taking the limit in

the previous equation, we get that EP
[∑T−1

t=1 (qt )2
]

≤ C .

Moreover, since
(
�i , qi , Qi

)
verifies the state equation under P, the canonical processes

(D,Y , �,m, q, D) also verify the state equation under each PN . Since all processes are
uniformly bounded in N , we directly obtain that the state equation also holds under the limit
P .
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We now check the third condition: Consider � : ET−1 → R and � : DT−1 × YT ′ → R

two bounded and Lipschitz continuous mappings with corresponding Lipschitz constants L�

and L� . Note that by Remark 2 and by definition of E , we have d1(mN ,mN ,i ) ≤ 2C ′
e

N almost
surely. Therefore,

∣
∣
∣
∣
∣
E
P

[

�(D,Y)
1

N

N∑

i=1

∫

E
�d(mN ,mN ,i )

]∣∣
∣
∣
∣
≤ 2C ′

eL�

N
E
P [|�(D,Y)|] → 0.

We finally obtain that

E
P [�(D,Y)�(Q)] = lim

N→∞E
P

[

�(D,Y)
1

N

N∑

i=1

∫

E
�dmN ,i

]

= E
P
[
�(D,Y)

∫

K
�dm)

]
.

Finally, from the density of Lipschitz functions in the space of bounded uniformly continuous
functions, we obtain that for all� : ET−1 → R and� : DT−1×YT ′ → R bounded and uni-
formly continuous mappings, EP [�(D,Y)�(Q)] = E

P
[
�(D,Y)

∫
K �dm

]
. Therefore,

we conclude that conditioned on the common noise, the law of Q under P is m.
We now check the final condition, which requires to prove that P is optimal, i.e., that

P ∈ RA∗(ρ), and so that for all P̃ ∈ RA(ρ), J (P̃) ≥ J (P). Let P̃ ∈ RA(ρ). We have
P̃ ◦ (D,Y , �,m)−1 = ρ. Moreover, there exists q̃ ∈ A such that P̃ ◦ (D,Y , �,m, q, Q)−1

denotes the joint law of the solution and the inputs to state equation (20) associated with
control q̃ . Denote Qq̃ the associated state process.
For 1 ≤ k ≤ N , let

P̃N ,k := P ◦ (D,Y , �k,mN ,k, q̃, Qq̃)−1.

By definition of the PN and their weak convergence toward P , and since

P̃N ,k ◦ (D,Y , �k)−1 = P ◦ (D,Y , �k)−1,

we obtain that limN→∞ 1
N

∑N
k=1 P̃N ,k = P̃. It is fairly straightforward to verify that J is

linear. The continuity of J of Lemma 19 implies

lim
N→∞

1

N

N∑

k=1

J (P̃N ,k) = lim
N→∞ J (

1

N

N∑

k=1

P̃N ,k) = J (P̃).

By Lemma 19, we have that J (P) = limN→∞ J (PN ) = limN→∞ 1
N

∑N
k=1 J k(qk, q−k).

Moreover, by definition of P̃N ,k , we obtain that

E
P

[
�(D,Y , �k,mN ,k, q̃, Qq̃)

]
= J (P̃N ,k).

Finally, since all PN are Nash equilibria, we have

J (P) ≤ lim
N→∞

1

N

N∑

k=1

J k(q̃, q−k) ≤ lim
N→∞

1

N

N∑

k=1

J (P̃N ,k) = J (P̃).

This finally proves that P ∈ RA∗(ρ). ��
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Conclusion

We developed in this paper a new modeling framework which allows to study the long-term
evolution of investment into renewable resources under uncertainty and risk aversion. We
contribute to bridging the gap between the equilibrium models and agent-based models, and
the mathematical approach of mean field games, by using the MFG framework to derive
strong theoretical guarantees for games with large number of players, while striving to intro-
duce a simple and interpretable model with closed-form solutions. We prove that both the
N -player game and the corresponding MFG game admit an equilibrium solution, which we
characterize through a closed-form solution. We also prove that any sequence of Nash equi-
libria to the N -player game converges to the unique solution of the MFG game. We develop
a toy model applied to the specific case of France electricity market. Our numerical exper-
iments highlight the importance of the risk aversion parameter and the analysis of invested
capacity spread, allowed by the explicit modeling of heterogeneity. We show that our results
derived in the MFG framework with heterogeneity regarding geographical localization can-
not be reproduced with a representative agent’s model. This highlights the importance of
explicitly modeling heterogeneity in energy prospective models. This paper paves the way
for future research into the impact of agents’ heterogeneity on the prospective evolution of
energy markets.

This paper constitutes a first step and calls for future research and improvements. In
particular, the representation of the price mechanism could be improved from the current
static representation through themerit-order curve to amore evolved representation capturing
dynamic effects caused by storage and demand flexibility. Another future line of research
could strive to modify the scope of the model by adding other types of producers, such
as storage producers, in order to come closer to partial equilibrium models of the whole
electricity market. It would also be interesting to include a time dependence for the weather
parameter.
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Appendix A Technical lemmas

This section is concernedwith proving some technical lemmason the structure of our problem.

A.1 Some properties of the Expected Shortfall

Lemma 23 Let A, B be two random variables on (	,F,P), and let F ′ be a sub-σ -field of
F . Then,

∣
∣ESα

F ′(A) − ESα
F ′(B)

∣
∣ ≤ E

[|A − B| | F ′]

α
, (A1)

ESα
F ′(A) − ESα

F ′(B) ≥ 1

α
inf
x∈RE

[
(A − x)+ − (B − x)+ | F ′] . (A2)

Proof The proof follows [2, p.14]. ��

A.2 Lemmas for the N-player game

The following lemma uses the fact that the market price is bounded to derive some bounds
on the coefficients in the cost function.

Lemma 24 There exists K > 0 such that for all m ∈ M2(R
+), for all D, D′ ∈ D, and for

all Y ∈ Y ,

| f β(t,m, D, D′,Y)| ≤ K . (A3)

Proof Definition of function f in Equation (9) and the fact that the price mapping is bounded
directly yields that function f is bounded. Moreover, definition of expected shortfall (12)
gives that ESα

D′ ( f (t,m, ., .)) is also bounded. Finally, by definition of function f β in Equa-
tion (15), we obtain that there exists K > 0 satisfying (A3). ��

The following lemma is an estimate of the second-ordermoment of all suboptimal controls.

Lemma 25 Let q ∈
∏

i∈N
A and C1 > 0. There exists C2 > 0 independent from N such that

for any i ∈ N ,

• if q̂i satisfies

J i
(
q̂ i , q−i

)
≤ inf

qi∈A
J i
(
qi , q−i

)
+ C1, (A4)

and then, q̂i ∈ AC2 .
• if q̂i satisfies

J̄ i
(
q̂ i , q

)
≤ inf

qi∈A
J̄ i
(
qi , q

)
+ C1, (A5)

then q̂i ∈ AC2 .

Proof Wewill prove the first point, as the second point directly follows from the same proof.
Let i ∈ N and let q̂ i satisfy (A4). Then,

J i
(
q̂ i , q−i

) ≤ J i
(
0, q−i

)+ C1 = C1. (A6)
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We need now to boundJ i
(
q̂ i , q−i

)
from below. Lemma 24 directly gives us that there exists

a constant K > 0 such that for all m ∈ M2(R+), for all Dt , Dt−1 ∈ D, for all Y t ∈ Y ,
f β(t,m, Dt , Dt−1,Y t ) ≥ −K . Therefore, combining this previous result with the fact that
qit ≥ 0 a.s., and that ct > 0, we have that

Lβ(t, Qi
t , q

i
t ,m, Dt , Dt−1,Y t ) ≥ e−r t

(
−Qi

t K + c̃qit )
2
)

a.s..

Therefore, we obtain by combining the definition of the state equation andYoung’s inequality
that

J i
(
q̂ i , q−i

)
≥ E

[
T−1∑

t=1

(
c̃|qit |2 − Qi

t K
)

− Qi
T K

]

≥ E

[
T−1∑

t=1

(

c̃|qit |2 − 2
T−1∑

t=1

KT√
c̃

√
c̃qit

)]

≥ c̃

2
E

[
T−1∑

t=1

|qit |2
]

− K ′.

(A7)

By combining (A6) and (A7), we finally obtain that E

[
T−1∑

t=1

|qit |2
]

≤ 2
c̃

(
C1 + K ′) =: C2 as

announced. ��

We now move to some lemmas corresponding to the limiting game. We first prove that the
different mappings are Lipschitz with respect to the Kantorovich–Rubinstein distance.

Lemma 26 Let m1,m2 ∈ M2(R
+), D ∈ D and Y ∈ Y . Then,

|R(h,m1, D,Y) − R(h,m2, D,Y )| ≤ d1(m1,m2),

|φ(t, h,m1, D,Y ) − φ(t, h,m2, D,Y )| ≤ LFd1(m1,m2).

Proof By definition (6) of R,

|R(h,m1, D,Y) − R(h,m2, D,Y)|
=
∣∣∣∣

(
D + D̃ − �h

∫
xdm1(x)

)

+
−
(
D + D̃ − �h

∫
xdm2(x)

)

+

∣∣∣∣

≤ d1(m1,m2)

where we used the fact that �h ∈ [0, 1] and the definition of the distance d1 in (1). By
definition (7) of φ,

|φ(t, h,m1, D,Y ) − φ(t, h,m2, D,Y )|
= ∣∣F−1(t, R(h,m1, D,Y)) ∧ P̄ − F−1(t, R(h,m2, D,Y)) ∧ P̄

∣∣

≤ ∣∣F−1(t, R(h,m1, D,Y )) − F−1(t, R(h,m2, D,Y))
∣∣

≤ LF |R(h,m1, D,Y) − R(h,m2, D,Y )|
≤ LFd1(m1,m2),

where line 4 comes from Assumption 6. ��
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Lemma 27 Let m1,m2 ∈ M2(R
+), D, D′ ∈ D and Y ∈ Y . Then, there exists a constant

L f > 0 such that
∣
∣ f β(t,m1, D, D′,Y) − f β(t,m2, D, D′,Y)

∣
∣ ≤ L f d1(m1,m2).

Proof The proof directly follows from Lemma 26, relying on Lemma 23. Details are given
in supplementary material [27, Lemma A.5]. ��
Lemma 28 Let m1

T ,m2
T ∈ M2(R

+), DT−1 ∈ D and (Y t )T≤t≤T ′ ∈ YT ′−T+1. Then, there
exists a constant Lg > 0 such that

∣
∣g(m1

T , DT−1, (Y t )T≤t≤T ′) − g(m2
T , DT−1, (Y t )T≤t≤T ′)

∣
∣ ≤ Lgd1(m

1
T ,m2

T ).

Proof See supplementary material [27, Lemma A.6]. ��
Thenext lemma introduces amonotonicity condition similar in spirit to the ones introduced

in Cardaliaguet et al. [17] or Ahuja [3].

Lemma 29 Assume Assumption 16 and Assumption 15 hold, and fix ε > 0 as defined in
Assumption 16. Let t ∈ T . There exists K ε

(A8)
> 0 such that for allY ∈ Y , for all D, D′ ∈ D,

for all m1,m2 ∈ M2(R+) such that 0 ≤ ∫
xdm1 <

∫
xdm2 ≤ C ′

e, we have

f β(t,m1, D, D′,Y) − f β(t,m2, D, D′,Y) ≤ K ε

(A8)

∫
xd(m1 − m2) ≤ 0. (A8)

Proof Note that since
∫
xdm1 <

∫
xdm2,

F−1(t, R(h,m1, D,Y )) ≥ F−1(t, R(h,m2, D,Y)),

for all D ∈ D and Y ∈ Y . By Assumption 16, for all Y ∈ Y , Hε
t �= ∅. Then, for all D ∈ D

and Y ∈ Y ,

f (t,m1, D,Y ) − f (t,m2, D,Y )

= −
∑

h∈H
�t,h

(
F−1(t, R(h,m1, D,Y )) ∧ P̄ − F−1(t, R(h,m2, D,Y)) ∧ P̄

)

≤
∑

h∈Hε
t

�t,h
(
F−1(t, R(h,m2, D,Y )) − F−1(t, R(h,m1, D,Y))

)

≤
∑

h∈Hε
t

�t,hC(26)
(
R(h,m2, D,Y) − R(t,m1, D,Y )

)

≤
∑

h∈Hε
t

�2
t,hC(26)

∫
xd(m1 − m2)

≤ ∣∣Hε
t

∣∣C(26)ε
2
∫

xd(m1 − m2) ≤ 0 (A9)

where third line comes from Assumption 15, and the rest follows from the definition of the
subset Hε

t .
Moreover, (A2) from Lemma 23 gives that

ESα
D′( f (t,m2, ., .)) − ESα

D′( f (t,m1, ., .))

≥ 1

α
inf
x∈RE

[
( f (t,m2, D,Y) − x)+ − ( f (t,m1, D,Y ) − x)+ | D′] ≥ 0 (A10)

using (A9) for the last inequality. Combining (A9) and (A10), we get that for all D, D′ ∈ D
and for all Y ∈ Y ,
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f β(t,m1, D, D′,Y) − f β(t,m2, D, D′,Y)

= β
(
f (t,m1, D,Y ) − f (t,m2, D,Y )

)+ (1 − β)
(
ESα

D′( f (t,m1, ., .))

−ESα
D′( f (t,m2, ., .))

)

≤ β
∣
∣Hε

t

∣
∣C(26)ε

2
∫

xd(m1 − m2).

We obtain the announced result with K ε

(A8)
= β

∣
∣Hε

t

∣
∣C(26)ε

2. ��

Lemma 30 Assume Assumption 16 and Assumption 15 hold, and fix ε > 0 as defined in
Assumption 16. Then, there exists K ε

(A11) > 0 such that for all Y ∈ Y , for all D, D′ ∈ D, for

all m1,m2 ∈ M2(R+) such that 0 ≤ ∫
xdm1 <

∫
xdm2 ≤ C ′

e,

g(m1, D, (Y t )T≤t≤T ′) − g(m2, D, (Y t )T≤t≤T ′) ≤ K ε
(A11)

∫
xd(m1 − m2). (A11)

Proof We mimic the proof of Lemma 29 with β = 1, which gives, in view of the definition
(11) of g,

g(m1, D, (Y t )T≤t≤T ′) − g(m2, D, (Y t )T≤t≤T ′)

≤
T ′∑

t=T

e−r(t−T )(1 − ν)t−T
∣∣Hε

t

∣∣C(26)ε
2
∫

(1 − ν)t−T xd(m1 − m2).

We conclude by defining K ε
(A11) = C(26)ε

2∑T ′
t=T

∣∣Hε
t

∣∣ > 0. ��
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