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WAVE PROPAGATION IN RANDOM MEDIA:

BEYOND GAUSSIAN STATISTICS

Josselin Garnier1

Abstract. In this paper we review some aspects of wave propagation in random media. In the
physics literature the picture seems simple: for large propagation distances, the wavefield has Gaussian
statistics, mean zero, and second-order moments determined by radiative transfer theory. The results
for the first two moments can be proved under general circumstances by multiscale analysis. The
Gaussian conjecture for the statistical distribution of the wavefield can be proved in some propagation
regimes, such as the white-noise paraxial regime that we address in the first part of this review. It may,
however, be wrong in other regimes, such as in randomly perturbed open waveguides, that we address
in the second part of this review. In the third and last part, we reconcile the two results by showing
that the Gaussian conjecture is restored in randomly perturbed open waveguides in the high-frequency
regime, when the number of propagating modes increases.

Résumé. Dans cet article, nous passons en revue certains aspects de la théorie de la propagation des
ondes dans les milieux aléatoires. Dans la littérature physique la situation semble simple : pour de
grandes distances de propagation, le champ d’ondes présente une statistique gaussienne, une moyenne
nulle et des moments d’ordre deux déterminés par la théorie du transfert radiatif. D’une part, les
résultats pour les deux premiers moments peuvent être prouvés dans un cadre assez général par une
analyse multi-échelle. D’autre part, on peut prouver que la conjecture gaussienne de la distribution
statistique du champ d’ondes est vraie dans certains régimes de propagation, comme le régime paraxial
et bruit blanc que nous abordons dans la première partie de cet article. Elle peut cependant être
fausse dans d’autres régimes, comme celui des guides d’ondes ouverts perturbés aléatoirement, que
nous abordons dans la deuxième partie de cet article. Dans la troisième et dernière partie, nous
réconcilions les deux résultats en montrant que la conjecture gaussienne est restaurée dans les guides
d’ondes ouverts perturbés aléatoirement dans le régime haute fréquence, lorsque le nombre de modes
propagatifs augmente.

1. Introduction

In many wave propagation scenarios the medium is not spatially homogeneous, but may vary on a spatial
scale that is small compared to the typical propagation distance. This is the case for wave propagation through
the turbulent atmosphere, the Earth’s crust, the ocean, and complex biological tissue for instance. If one aims
to use transmitted or reflected waves for communication or imaging purposes it is important to characterize
how such heterogeneities affect the waves.

Motivated by the situation described above we consider wave propagation through time-independent complex
media with a spatially varying index of refraction that is unknown to us, so we model it as a realization of a
random process. When the index of refraction is a random process, the wavefield is itself a random process
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and we are interested in how the statistics of the random medium affects the statistics of the wave field. The
analysis of wave propagation in random media has a long history. It was first dealt with phenomenogical models
such as the radiative transfer theory. The first mathematical papers were written in the 60’s by J. Keller [39]
who connected radiative transfer theory and random wave equations. The review [2] and the book [22] give the
state of the art about wave propagation in randomly layered media, that is a situation mathematically tractable
and physically relevant (especially in geophysics). They also describe the main multiscale analysis techniques
that were subsequently used to study wave propagation in three-dimensional random media. In the recent years
several new features have emerged.

(1) Statistical stability has become a central issue. Indeed the modeling of a complex medium by a random
medium involves ensemble averages. In some configurations, such as in the turbulent atmosphere or
the ocean, the medium may change (slowly) in time so that ensemble averages can be experimentally
achieved. This is not the case in other configurations, such as seismology, in which the Earth is not
moving although it can be considered as a realization of a random medium to model uncertainty and lack
of information. It is then important to look for statistically stable quantities, that is to say, quantities
that depend on the statistics of the random medium that can be known or estimated, but not on the
particular realization that is inaccessible. To quantify statistical stability, variance calculations are
required, which are based on high-order moment analysis.

(2) Motivated by statistical stability analysis and time-reversal experiments for waves in random me-
dia [21, 49], new methods for communication and imaging have been introduced that are based on
wavefield correlations. The understanding and analysis of these methods again require high-order mo-
ments calculations.

1.1. Multiscale analysis

In its most common form, the analysis of wave propagation in random media consists in studying the wavefield
solution of the scalar time-harmonic wave or Helmholtz equation with a randomly heterogeneous index of
refraction. Even though the scalar wave equation is simple and linear, the relation between the statistics of the
index of refraction and the statistics of the wavefield is highly nontrivial. In order to simplify and understand
this relation, one can carry out a multiscale analysis that transforms the random Helmholtz equation into
a mathematically tractable yet physically relevant problem. This analysis is based on a separation of scales
technique and limit theorems (homogenization, diffusion-approximation, ...), in the framework set forth by G.
Papanicolaou and coauthors [2]. The wave propagation problem can, indeed, be characterized by several length
scales: the typical wavelength (which depends on the source), the correlation radius of the medium, the typical
propagation distance. The bandwidth of the source and the relative amplitude of the medium fluctuations can
also play a role. Different scaling regimes (corresponding to different physical configurations) can be analyzed
when certain ratios between these length scales go to zero or infinity. They lead to tractable and relatively
easy to interpret asymptotic results. Typically the solution of the random Helmholtz equation can be shown
to converge to the solution of a deterministic partial differential equation or of a stochastic partial differential
equation driven by a Brownian field. Stochastic calculus can then be used to compute quantities of interest.

In the random travel time model, which is a special high-frequency regime in which the wavelength is much
smaller than the correlation radius of the medium, the fluctuations of the medium affect only the phase of the
wave, which satisfies a random eikonal equation [8,56]. In the random paraxial model in which the wavelength
is smaller than the correlation radius of the medium, backscattering can be neglected but there is significant
lateral scattering as the wave advances over long propagation distances and the wavefield satisfies a random
Schrödinger-type equation [55, 58]. This is the regime that we address in Section 2. In the randomly layered
regime, in which the medium is only varying along the longitudinal direction (along the propagation axis),
there is significant backscattering and the plane wave mode amplitudes satisfy a system of ordinary random
differential equations [22]. In the radiative transfer regime, in which the wavelength is of the same order as
the correlation radius of the medium, the angular distribution of the mean wave energy satisfies a transport
equation [51, 52]. In the waveguide regime, in which the wave is -partially- trapped transversely by a special
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profile of the index of refraction, the wavefield can be decomposed as a superposition of wave modes and the
wave mode amplitudes satisfy coupled stochastic differential equations [22, 26]. This is the regime that we
address in Section 3.

In this review paper we first consider a scaling regime corresponding to long-range high-frequency beam
propagation and small-scale medium fluctuations giving negligible backscattering. This is the so-called white-
noise paraxial regime, that gives rise to the Itô-Schrödinger model, which is presented in Section 2.1. This model
is a simplification of the random Helmholtz equation since it corresponds to an evolution problem, but yet in the
regime that we consider it describes the propagated field in a weak sense in that it gives the correct statistical
structure of the wavefield. The Itô-Schrödinger model can be derived rigorously from the random Helmholtz
equation by a separation of scales technique in the high-frequency regime (see [3] in the case of a randomly
layered medium and [29–31] in the case of a three-dimensional random medium). It models many situations,
for instance laser beam propagation [53], underwater acoustics [55], or migration problems in geophysics [12].
The Itô-Schrödinger model makes it possible to use Itô’s stochastic calculus, which in turn enables the closure
of the hierarchy of moment equations [23, 38]. The equations for the first-order and second-order moments are
easy to solve. The equation for the fourth-order moments is difficult and only approximations or numerical
solutions have been available for a long time (see [20, 57, 59] and [38, Sec. 20.18]). In a special scaling regime,
it is, however, possible to derive expressions for the fourth-order moments as presented in Section 2.2.

In the second part of this review paper we address wave propagation in a randomly perturbed open waveguide.
This is a physically relevant model as it can be encountered in optics (dielectric slab waveguide [47]) or in
underwater acoutics (Pekeris waveguide [61]) for instance. The wavefield can then be decomposed as the
superposition of propagating, radiating, and evanescent modes, and the mode amplitudes satisfy ordinary
differential equations that are coupled by the perturbations of the index of refraction or the waveguide geometry
(Section 3.2). When the wavelength is smaller than or of the order of the diameter of the waveguide and the
correlation length of the perturbation, which are themselves much smaller than the propagation distance along
the waveguide axis, then it can be shown that the mode amplitudes satisfy stochastic differential equations
driven by correlated Brownian motions as shown in Section 3.3. Using this model it is possible to write closed
equations for the moments of the wave mode amplitudes. The analysis of these equations reveal non-classical
forms of equipartition of energy as shown in Section 3.5 and exponential growth of the relative variances of the
mode amplitudes as shown in Section 3.6.

1.2. The Gaussian conjecture

Star scintillation is a well-known paradigm, related to the observation that the irradiance of a star fluctuates
due to interaction of the light with the turbulent atmosphere. Experimental observations indicate that the
statistical distribution of the irradiance is exponential, with the irradiance being the square magnitude of the
complex wavefield. In the physics literature it is a well-accepted conjecture that the statistics of the complex
wavefield becomes circularly symmetric complex Gaussian when the wave propagates through the turbulent
atmosphere [60, 62], so that the irradiance is the sum of the squares of two independent real Gaussian random
variables, which has chi-square distribution with two degrees of freedom, that is an exponential distribution.
The mathematical proof of this conjecture has been obtained in randomly layered media [22, Chapter 9] but is
still incomplete in three-dimensional random media [23, 32, 33, 41]. On the one hand, in Section 2.3 we report
results for the fourth-order moments that are consistent with the Gaussian conjecture in the paraxial white
noise regime. On the other hand, in Sections 3.6-3.7 we study the fluctuations of the mode amplitudes of a
wave propagating in a randomly perturbed open waveguide and we show that the relative variances of the mode
powers grow exponentially with the propagation distance. This demonstrates that the Gaussian conjecture is
wrong in this regime and that the picture is not simple.

Certain functionals of the wavefield carry information about the medium and can be characterized in some
specific regimes [4, 5, 19, 50]. For instance, the Wigner distribution (a transform in time-frequency analysis) is
known to be convenient to study the solution of Schrödinger equation [34, 51]. An important issue is the so-
called statistical stability property: we look for functionals that become deterministic in the considered scaling
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regime and that depend only on the statistics of the random medium and not on the particular realization. The
conjecture is that this can happen for well chosen functionals in the limit of rapid decorrelation of the medium
fluctuations. In [42, 43] the authors consider a situation with rapidly fluctuating random medium fluctuations
in which the Wigner distribution is statistically stable. As shown in [4], however, the statistical stability also
depends on the initial data and can be lost for very rough initial data even with a high lateral diversity as
considered there. In Section 2.4 we present a detailed and quantitative analysis of the stability of the Wigner
distribution in the white-noise paraxial regime. We derive an explicit expression of the coefficient of variation of
the smoothed Wigner distribution as a function of the smoothing parameters, in the general situation in which
the standard deviation can be of the same order as the mean. This is a realistic scenario, which is not too deep
into a statistical stabilization situation, but which gives partly coherent but fluctuating wave functionals. These
results make it possible to quantify such fluctuations and how their magnitudes can be controlled by optimal
smoothing of the Wigner distribution.

2. Wave propagation in an open random medium

In this section we address wave propagation in a d+ 1-dimensional random medium and we describe how to
derive the mathematically tractable Itô-Schrödinger model from the wave equation in a random medium. We
consider the d+ 1-dimensional scalar wave equation:

1

c2(x⃗)

∂2p

∂t2
(t, x⃗)−∆x⃗p(t, x⃗) = Fs(t, x⃗), t ∈ R, x⃗ ∈ Rd+1. (1)

Here the source emits a time-harmonic signal with frequency ω and it is localized in the plane z = 0:

Fs(t, x⃗) = δ(z)fs(x)e
−iωt, with x⃗ = (x, z) ∈ Rd × R, (2)

and the speed of propagation is spatially heterogeneous

1

c2(x⃗)
=

1

c2o

(
1 + µ(x⃗)

)
, (3)

where µ is a zero-mean random process with stationary and ergodic properties.

2.1. The white-noise paraxial model

The time-harmonic field p̂ such that p(t, x⃗) = p̂(x⃗)e−iωt is solution of the random Helmholtz equation

(∂2z +∆⊥)p̂+
ω2

c2o

(
1 + µ(x, z)

)
p̂ = −δ(z)fs(x),

where ∆x⃗ = ∆⊥ + ∂2z . Note that, when µ ≡ 0 and fs ≡ 1, then the solution is the plane wave p̂(x⃗) = ico
2ω e

iωz
co .

When the initial source fs is spatially limited (belongs to L2(Rd)) and µ is a stationary and ergodic process,

the function ϕ̂ (slowly-varying envelope of a plane wave going along the z-axis) defined by

p̂(x, z) =
ico
2ω

ei
ωz
co ϕ̂

(
x, z

)
(4)

satisfies the modified Helmholtz equation

∂2z ϕ̂+

(
2i
ω

co
∂zϕ̂+∆⊥ϕ̂+

ω2

c2o
µ
(
x, z

)
ϕ̂

)
= 2i

ω

co
δ(z)fs(x). (5)
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In the white-noise paraxial regime “λ≪ ℓc, ro ≪ z” (which means, the wavelength λ = 2πco/ω is much smaller
than the correlation radius ℓc of the medium and the radius ro of the source, which are themselves much smaller

than the propagation distance z) the forward-scattering approximation in direction z is valid and ϕ̂ satisfies the
Itô-Schrödinger equation [30]

dzϕ̂ =
ico
2ω

∆⊥ϕ̂ dz +
iω

2co
ϕ̂ ◦ dB(x, z), ϕ̂(x, z = 0) = fs(x), (6)

where ◦ stands for the Stratonovich integral, B(x, z) is a Brownian field, that is a Gaussian process with mean
zero and covariance

E[B(x, z)B(x′, z′)] = γ(x− x′)min(z, z′) with γ(x) =

∫
R
E[µ(0, 0)µ(x, z)]dz. (7)

Remark. Existence, uniqueness and continuity of solutions of the Itô-Schrödinger model (6) are established
in [16]. The proof of the convergence of the solution to (5) to the solution to (6) is in [30]. A first proof in the
case of layered media (i.e. when µ ≡ µ(z)) can be found in [3]. More precisely, the white-noise paraxial regime
“λ≪ ℓc, ro ≪ z” corresponds to the scaled regime

ω → ω

ε4
, µ(x, z) → ε3µ

( x
ε2
,
z

ε2
)
, fs(x) → fs

( x
ε2

)
,

where ε is a small dimensionless parameter. The scaled version of (5) for ϕ̂ε(x, z) = ϕ̂( x
ε2 , z) is then

ε4∂2z ϕ̂
ε +

(
2i
ω

co
∂zϕ̂

ε +∆⊥ϕ̂
ε +

ω2

c2oε
µ
(
x,

z

ε2
)
ϕ̂ε

)
= 2i

ω

co
δ(z)fs(x). (8)

When ε → 0 the second-order derivative in z is negligible (which proves the forward scattering approxima-
tion used in the physics literature) and the potential behaves like a white noise in z. The convergence in
C([0,∞), L2(Rd)) (or in C([0,∞), Hk(Rd))) of the solution of the scaled version (8) to the solution of the
Itô-Schrödinger equation (6) can then be established in distribution when ε → 0. This result requires mixing
properties for the random process µ. If, however, the process µ has long-range properties, in the sense that
E[µ(x, z)µ(x′, z′)] = r(z − z′)γ(x − x′) with r(z) ∼ cα|z|−α as |z| → +∞ and α ∈ (0, 1), then, under appro-
priate technical and scaling assumptions [37], the limiting equation is the fractional Itô-Schrödinger model (6)
in which B is a fractional Brownian field with Hurst index H = 1 − α/2 ∈ (1/2, 1), i.e. a Gaussian field with
mean zero and covariance

E[B(x, z)B(x′, z′)] = γ(x− x′)
cα

2H(2H − 1)

(
z2H + z′

2H − |z − z′|2H
)
.

In this case the stochastic integral in (6) can be understood as a generalized Stieltjes integral (as H > 1/2).

2.2. Statistics of the wavefield

In this section we describe how to compute the moments of the wavefield. By Itô’s formula and (6), the
coherent (or mean) wave satisfies the Schrödinger equation with homogeneous damping (for z > 0):

∂zE[ϕ̂] =
ico
2ω

∆⊥E[ϕ̂]−
ω2γ(0)

8c2o
E[ϕ̂], (9)

and therefore E
[
ϕ̂(x, z)

]
= ϕ̂hom(x, z) exp(−z/ℓsca), where ϕ̂hom is the solution in the homogeneous medium.

The coherent wave amplitude decays exponentially with the propagation distance and the characteristic decay
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length is the scattering mean free path ℓsca:

ℓsca =
8c2o

γ(0)ω2
. (10)

This result shows that any coherent imaging or communication method fails in random media when the propa-
gation distance is larger than the scattering mean free path [27]. But the wave energy is not lost or dissipated,
it is converted into incoherent (zero-mean) fluctuations that can be studied.

The mean Wigner distribution defined by

Wm(x, ξ, z) =

∫
Rd

exp
(
− iξ · y

)
E
[
ϕ̂
(
x+

y

2
, z
)
ϕ̂
(
x− y

2
, z
)]

dy (11)

is the local Fourier transform of the second-order moment of the wavefield (the bar stands for complex conju-
gation). It is the angularly-resolved mean wave energy density. By Itô’s formula and (6), it solves the radiative
transfer equation

∂zWm +
co
ω
ξ · ∇xWm =

ω2

4(2π)dc2o

∫
Rd

γ̂(κ)
[
Wm(ξ − κ)−Wm(ξ)

]
dκ, (12)

starting from Wm(x, ξ, z = 0) =Ws(x, ξ), the Wigner distribution of the source or initial field fs. Here

γ̂(κ) =

∫
Rd

γ(x) exp(−iκ · x)dx

is the Fourier transform of γ and determines the scattering cross section of the radiative transfer equation. This
result shows that the fields observed at nearby points are correlated and their correlations contain information
about the medium. Accordingly, one should use local cross correlations for imaging and communication in
random media [8, 10].

In order to quantify the stability of correlation-based imaging methods and to validate the Gaussian conjec-
ture, one needs to evaluate variances of empirical correlations, which involves the fourth-order moment:

M4(q1, q2, r1, r2, z) =E
[
ϕ̂
(r1 + r2 + q1 + q2

2
, z
)
ϕ̂
(r1 − r2 + q1 − q2

2
, z
)

× ϕ̂
(r1 + r2 − q1 − q2

2
, z
)
ϕ̂
(r1 − r2 − q1 + q2

2
, z
)]
. (13)

By Itô’s formula and (6), it satisfies the Schrödinger-type equation

∂zM4 =
ico
ω

(
∇r1 · ∇q1 +∇r2 · ∇q2

)
M4 +

ω2

4c2o
U4(q1, q2, r1, r2)M4, (14)

with the generalized potential

U4(q1, q2, r1, r2) = γ(q2 + q1) + γ(q2 − q1) + γ(r2 + q1) + γ(r2 − q1)

− γ(q2 + r2)− γ(q2 − r2)− 2γ(0). (15)

These moment equations have been known for a long time [38]. Recently it was shown [33] that in the regime
“λ ≪ ℓc ≪ ro ≪ z” the fourth-order moment can be expressed explicitly in terms of the function γ. These
results can be used to address a wide range of applications in imaging and communication. They also clarify
the Gaussian conjecture used in the physics literature as we will see below.
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2.3. The scintillation index

In this section we study the intensity fluctuations of the wavefield solution of (6) and characterize the
scintillation index which quantifies the relative intensity fluctuations. It is a fundamental quantity associated
for instance with light propagation through the atmosphere [38]. It is defined as the square coefficient of
variation of the intensity [38, Eq. (20.151)]:

S(x, z) =
E
[∣∣ϕ̂(x, z)∣∣4]− E

[∣∣ϕ̂(x, z)∣∣2]2
E
[∣∣ϕ̂(x, z)∣∣2]2 . (16)

Note that, if ϕ̂ had (complex) Gaussian statistics, then the scintillation index would be equal to one.
When the spatial profile of the source (or the initial beam) has a Gaussian profile,

fs(x) = exp
(
− |x|2

r2o

)
, (17)

and when “λ≪ ℓc ≪ ro ≪ z”, the behavior of the scintillation index can be described as follows [33].

Proposition 2.1. Let us consider the following form of the covariance function of the medium fluctuations:

γ(x) = γ(0)γ̃
( x

ℓc

)
,

with γ̃(0) = 1 and the width of the function γ̃ is of order one. In the regime “λ≪ ℓc ≪ ro ≪ z” the scintillation
index (16) has the following expression:

S(x, z) = 1−
exp

(
− 2|x|2

r2o

)
∣∣∣ 1
(4π)d/2

∫
Rd exp

(
2z
ℓsca

∫ 1

0
γ̃
(
v z
ℓdif

s
)
ds− |v|2

4 + iv · x
ro

)
dv

∣∣∣2 . (18)

In fact this result follows from the complete expressions of the second moment of the intensity and the second
moment of the field that are given in [33]. The scintillation index at the beam center x = 0 is a function of
z/ℓsca and z/ℓdif only, where ℓdif = ωroℓc/co is the typical propagation distance for which diffractive effects are
of order one, as shown in [30, Eq. (4.4)]. It is interesting to note that, even if the propagation distance is larger
than the scattering mean free path, the scintillation index can be smaller than one if ℓdif is small compared to
ℓsca.

In order to get more explicit expressions that facilitate interpretation of the results let us assume that γ(x)
is smooth and can be expanded as

γ(x) = γ(0)
(
1− |x|2

ℓ2c
+ o

( |x|2
ℓ2c

))
, x → 0. (19)

When scattering is strong in the sense that the propagation distance is larger than the scattering mean free
path z ≫ ℓsca, the expressions of the second moments of the field and of the intensity can be simplified:

Γ(2)(x,y, z) := E
[
ϕ̂
(
x+

y

2
, z
)
ϕ̂
(
x− y

2
, z
)]

=
rdo
Rdz

exp
(
− |x|2

R2
z

− |y|2

ρ2z
+ i

ωγ(0)z2x · y
2coℓ2cR

2
z

)
,

Γ(4)(x,y, z) := E
[∣∣ϕ̂(x+

y

2
, z
)∣∣2∣∣ϕ̂(x− y

2
, z
)∣∣2] = |Γ(2)(x,0, z)|2 + |Γ(2)(x,y, z)|2,

where the beam radius Rz is

R2
z = r2o +

γ(0)z3

3ℓ2c
(20)
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and the correlation radius of the beam ρz is

ρ2z =
4c2oℓ

2
c

ω2γ(0)z

r2o +
γ(0)z3

3ℓ2c

r2o +
γ(0)z3

12ℓ2c

. (21)

Note that, in this regime, the fourth-order moments satisfy the Isserlis formula (i.e. they can be expressed in
terms of sums of products of second-order moments), and therefore the scintillation index S(x, z) is equal to one.
This observation is consistent with the physical conjecture that, in the strongly scattering regime z/ℓsca ≫ 1, the
wavefield should have zero-mean complex circularly symmetric Gaussian statistics, and therefore the intensity
should have exponential (or Rayleigh) distribution [20,38].

2.4. Fluctuations of the Wigner distribution

In this section we give an explicit characterization of the signal-to-noise ratio of the Wigner distribution.
The Wigner distribution of the wavefield is defined by

W (x, ξ, z) =

∫
Rd

exp
(
− iξ · y

)
ϕ̂
(
x+

y

2
, z
)
ϕ̂
(
x− y

2
, z
)
dy. (22)

It can be interpreted as the angularly-resolved wave energy density (note, however, that it is real-valued but
not always non-negative valued). Its expectation Wm defined by (11) satisfies the radiative transfer equation
(12). It is known that the Wigner distribution is not statistically stable, and that it is necessary to smooth it
(that is to say, to convolve it with a smoothing kernel) to get a quantity that can be measured in a statistically
stable way (that is to say, the smoothed Wigner distribution for one typical realization is approximately equal
to its expected value) [4, 50]. Our goal in this section is to quantify this statistical stability.

Let us consider two positive parameters rs and ξs and define the smoothed Wigner distribution:

Ws(x, ξ, z) =
1

(2π)drds ξ
d
s

∫∫
R2d

W (x− x′, ξ − ξ′, z) exp
(
− |x′|2

2r2s
− |ξ′|2

2ξ2s

)
dx′dξ′. (23)

If we denote by ρz the correlation radius of the field (given by (21) in the strongly scattering regime), we may
anticipate that rs and 1/ξs should be of the order of ρz to ensure averaging. The coefficient of variation Cs of
the smoothed Wigner distribution, which characterizes its statistical stability, is defined by:

Cs(x, ξ, z) =

√
E[Ws(x, ξ, z)2]− E[Ws(x, ξ, z)]2

E[Ws(x, ξ, z)]
. (24)

An exact expression of the coefficient of variation of the smoothed Wigner distribution can be derived in the
regime “λ≪ ℓc ≪ ro ≪ z” [33]. It involves four-dimensional integrals and it is, therefore, difficult to derive its
qualitative behavior. This expression becomes simple in the strongly scattering regime z ≫ ℓsca. We then get
the following expression for the coefficient of variation [33].

Proposition 2.2. In the regime “λ ≪ ℓc ≪ ro ≪ z”, if additionally z ≫ ℓsca and γ can be expanded as (19),
then the coefficient of variation of the smoothed Wigner distribution (23) satisfies:

Cs(x, ξ, z)
2 =

1
ξ2s ρ

2
z
+ 1

4r2s
ρ2z

+ 1
, (25)

where ρz is the correlation radius (21).
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Note that the expression (25) of the coefficient of variation is independent of x and ξ. It is a formula that is
simple enough to help determining the smoothing parameters ξs and rs that are needed to reach a given value
for the coefficient of variation:

• For 2ξsrs = 1, we have Cs(x, ξ, z) = 1.
• For 2ξsrs < 1 (resp. > 1) we have Cs(x, ξ, z) > 1 (resp. < 1); in other words, the smoothed Wigner
transform can be considered as statistically stable when 2ξsrs > 1.

The critical value rs = 1/(2ξs) is indeed special. In this case, the smoothed Wigner distribution (23) can be

written as the double convolution of the Wigner distribution W of the random field ϕ̂(·, z) (defined by (22))
with the Wigner distribution

Wg(x, ξ) =

∫
Rd

exp
(
− iξ · y

)
ϕ̂g

(
x+

y

2

)
ϕ̂g

(
x− y

2

)
dy (26)

of the Gaussian state

ϕ̂g(x) = exp
(
− ξ2s |x|2

)
, (27)

since we have

Wg(x, ξ) =
(2π)d/2

ξds
exp

(
− 2ξ2s |x|2 −

|ξ|2

2ξ2s

)
,

and therefore

Ws(x, ξ, z) =
(2ξs)

d

(2π)3d/2

∫∫
R2d

W (x− x′, ξ − ξ′, z)Wg(x
′, ξ′)dx′dξ′, (28)

for rs = 1/(2ξs). It is known that the convolution of a Wigner distribution with a kernel that is itself the Wigner
distribution of a function (such as Wg) is nonnegative real valued (the smoothed Wigner distribution obtained
with the Gaussian Wg is called Husimi function) [11,45]. This can be shown easily in our case as the smoothed
Wigner distribution can be written as

Ws(x, ξ, z) =
2d/2ξds
πd/2

∣∣∣ ∫
Rd

exp
(
iξ · x′)ϕ̂g(x′)ϕ̂(x− x′, z)dx′

∣∣∣2, (29)

for rs = 1/(2ξs). From this representation formula of Ws valid for rs = 1/(2ξs), we can see that it is the square

modulus of a linear functional of ϕ̂(·, z). The physical conjecture that ϕ̂(·, z) has circularly symmetric complex
Gaussian statistics in strongly scattering media then predicts that Ws(x, ξ, z) should have an exponential
distribution, because the sum of the squares of two independent real-valued Gaussian random variables has an
exponential distribution. This is indeed consistent with Proposition 2.2 that shows that Cs = 1 for rs = 1/(2ξs).

If rs > 1/(2ξs), the smoothed Wigner distribution (23) can be expressed as:

Ws(z,x, ξ) =

∫
Rd

Ψ(x− x′)

(
2d/2ξds
πd/2

∣∣∣ ∫
Rd

exp
(
iξ · x′′)ϕ̂g(x′′)ϕ̂(x′ − x′′, z)dx′′

∣∣∣2)dx′, (30)

where the function Ψ is defined by

Ψ(x) =
23d/2ξ2ds rds

πd/2(4ξ2s r
2
s − 1)d/2

exp
(
− 2ξ2s |x|2

(4ξ2s r
2
s − 1)

)
. (31)

From this representation formula for Ws valid for rs > 1/(2ξs), we can see that it is nonnegative valued and
that it is a local average of (29), which has a unit coefficient of variation in the strongly scattering regime. That
is why the coefficient of variation of the smoothed Wigner distribution is smaller than one when rs > 1/(2ξs).
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Figure 1. Left: An ideal two-dimensional waveguide. Right: A two-dimensional waveguide
with cross-section perturbed by random fluctuations of the top and bottom boundaries. The
point source is in the plane z = 0.

3. Wave propagation in a random waveguide

In this section we address wave propagation in a two-dimensional randomly perturbed open waveguide. Our
model consists of a two-dimensional waveguide with range axis denoted by z ∈ R and transverse coordinate
denoted by x ∈ R (see Figure 1). A point-like source at a fixed position (x, z) = (xs, 0) transmits a time-harmonic
signal. The time-harmonic wavefield p̂(x, z) satisfies the Helmholtz equation:[

(∂2x + ∂2z ) + k2n2(x, z)
]
p̂(x, z) = δ(z)δ(x− xs), (32)

for (x, z) ∈ R2, where k is the homogeneous wavenumber and n(x, z) is the index of refraction at position (x, z).
In the case of ideal (unperturbed) waveguides, the index of refraction is range-independent and equal to

n(0)(x)2 =

{
n2 if x ∈ (−d/2, d/2),
1 otherwise,

(33)

where n > 1 is the relative index of the core and d > 0 is its diameter.
We are interested in randomly perturbed waveguides. We can address two types of random waveguides.
Type I perturbation: in the first type, the index of refraction within the core region x ∈ (−d/2, d/2) is

randomly perturbed [7, 13,14,35,40]:

n(ε)(x, z)2 =

{
n2 + εν(x, z) if x ∈ (−d/2, d/2) and z ∈ (0, L(ε)),
1 otherwise.

(34)

The fluctuations are modeled by the zero-mean, bounded, stationary in z random process ν(x, z) with smooth
covariance function

RI(x, x
′, z′) = E[ν(x, z)ν(x′, z + z′)]. (35)

It satisfies strong mixing conditions in z as defined for example in [48, section 2]. The typical amplitude of the
fluctuations of index of refraction is assumed to be much smaller than 1 and it is modeled by the small and
positive dimensionless parameter ε.

Type II perturbation: in the second type (see Figure 1), the boundaries of the core are randomly perturbed
[1, 9, 36,46,47]:

n(ε)(x, z)2 =

{
n2 if x ∈

(
D(ε)

− (z),D(ε)
+ (z)

)
and z ∈ (0, L(ε)),

1 otherwise,
(36)

where

D(ε)
− (z) = −d/2 + εdν1(z), D(ε)

+ (z) = d/2 + εdν2(z). (37)



ESAIM: PROCEEDINGS AND SURVEYS 73

The fluctuations are modeled by the zero-mean, bounded, independent and identically distributed stationary
random processes ν1 and ν2 with smooth covariance function

RII(z
′) = E[νq(z)νq(z + z′)], q = 1, 2. (38)

They satisfy strong mixing conditions. The typical amplitude of the fluctuations of the boundaries is assumed
to be much smaller than the core diameter d and it is modeled in (37) by the small and positive dimensionless
parameter ε.

We study the wavefield at z > 0, satisfying p̂(x, z) ∈ C0
(
(0,+∞), H2(R)

)
∩ C2

(
(0,+∞), L2(R)

)
, and to set

radiation conditions, we have assumed that the random fluctuations are supported in the range interval (0, L(ε)).
We will see that net scattering effect of these fluctuations becomes of order one at range distances of order ε−2,
so we consider the interesting case L(ε) = L/ε2.

3.1. Homogeneous waveguide

In this section, we consider an index of refraction of the form (33), which is stepwise constant. There is
no fluctuation of the medium along the z-axis. The analysis of the perfect waveguide is classical [44, 61]. The
Helmholtz operator has a spectrum of the form

(−∞, k2) ∪ {β2
N−1, . . . , β

2
0}, (39)

where the N = [
√
n2 − 1kd] modal wavenumbers βj are positive and k2 < β2

N−1 < · · · < β2
0 < n2k2. The

generalized eigenfunctions ϕt,γ , t ∈ {e, o}, associated to the spectral parameter γ in the continuous spectrum
(−∞, k2) and the eigenfunctions ϕj , j = 0, . . . , N−1, associated to the discrete spectrum, are given in [25]. The
generalized eigenfunctions ϕe,γ are even and ϕo,γ are odd. The eigenfunctions ϕj are even for even j and odd
for odd j. Any function can be expanded on the complete set of the eigenfunctions of the Helmholtz operator.
In particular, any solution of the Helmholtz equation in homogeneous medium can be expanded as

p̂(x, z) =

N−1∑
j=0

p̂j(z)ϕj(x) +
∑

t∈{e,o}

∫ k2

−∞
p̂t,γ(z)ϕt,γ(x)dγ. (40)

The modes for j = 0, . . . , N − 1 are guided, the modes for γ ∈ (0, k2) are radiating, the modes for γ ∈ (−∞, 0)
are evanescent. Indeed, the complex mode amplitudes satisfy

∂2z p̂j + β2
j p̂j = 0, j = 0, . . . , N − 1, (41)

∂2z p̂t,γ + γp̂t,γ = 0, γ ∈ (−∞, k2), (42)

for any z ̸= 0. Therefore, if the source is of the form (32), we have for z > 0:

p̂(x, z) =

N−1∑
j=0

aj,s√
βj
eiβjzϕj(x) +

∑
t∈{e,o}

∫ k2

0

at,γ,s
γ1/4

ei
√
γzϕt,γ(x)dγ +

∑
t∈{e,o}

∫ 0

−∞

at,γ,s
|γ|1/4

e−
√

|γ|zϕt,γ(x)dγ, (43)

where the mode amplitudes are constant and determined by the source:

aj,s =

√
βj

2
ϕj(xs), j = 0, . . . , N − 1, (44)

at,γ,s =
|γ|1/4

2
ϕt,γ(xs), γ ∈ (−∞, k2), t ∈ {e, o}. (45)
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3.2. Random waveguide

We consider the two types of random perturbations described in Section 3. In both cases we can write

n(ε)(x, z)2 = n(0)(x)2 + V (ε)(x, z)1(0,L(ε))(z),

where the perturbation is of the form

V (ε)(x, z) = εν(x, z) (46)

for type I perturbations, and

V (ε)(x, z) =(n2 − 1)
[
− 1(−d/2,−d/2+εdν1(z))(x)1(0,+∞)(ν1(z)) + 1(−d/2+εdν1(z),−d/2)(x)1(−∞,0)(ν1(z))

]
+ (n2 − 1)

[
1(d/2,d/2+εdν2(z))(x)1(0,+∞)(ν2(z))− 1(d/2+εdν2(z),d/2)(x)1(−∞,0)(ν2(z))

]
(47)

for type II perturbations.
The solution of the perturbed Helmholtz equation (32) can be expanded as (40) and the complex mode

amplitudes satisfy the coupled equations for z ∈ (0, L(ε)):

∂2z p̂j + β2
j p̂j = −k2

N−1∑
l=0

C
(ε)
j,l (z)p̂l − k2

∑
t′∈{e,o}

∫ k2

−∞
C

(ε)
j,t′,γ′(z)p̂t′,γ′dγ′, (48)

for j = 0, . . . , N − 1,

∂2z p̂t,γ + γp̂t,γ = −k2
N−1∑
l=0

C
(ε)
t,γ,l(z)p̂l − k2

∑
t′∈{e,o}

∫ k2

−∞
C

(ε)
t,γ,t′,γ′(z)p̂t′,γ′dγ′, (49)

for γ ∈ (−∞, k2) and t ∈ {e, o}, with

C
(ε)
j,l (z) =

(
ϕj , ϕlV

(ε)(·, z)
)
L2
, C

(ε)
j,t′,γ′(z) =

(
ϕj , ϕt′,γ′V (ε)(·, z)

)
L2
, (50)

C
(ε)
t,γ,l(z) =

(
ϕt,γ , ϕlV

(ε)(·, z)
)
L2
, C

(ε)
t,γ,t′,γ′(z) =

(
ϕt,γ , ϕt′,γ′V (ε)(·, z)

)
L2
, (51)

and (·, ·)L2 stands for the standard scalar product in L2(R). These equations are obtained by substituting the
ansatz (40) into (32) and by projecting onto the eigenmodes.

From the definitions (46) or (47) of V (ε)(x, z) and the Taylor expansions of the eigenfunctions ϕj(x) and

ϕt,γ(x) around x = ±d/2, we can obtain power series (in ε) expressions of the coefficients C
(ε)
j,l :

C
(ε)
j,l (z) =εCj,l(z) + ε2cj,l(z) + o(ε2), (52)

Cj,l(z) =

{
(ϕj , ϕlν(·, z))L2 type I
(n2 − 1)d

{
− ν1(z)[ϕjϕl]

(
− d

2

)
+ ν2(z)[ϕjϕl]

(
d
2

)}
type II

, (53)

cj,l(z) =

{
0 type I
(n2−1)d2

2

{
− ν21(z)∂x[ϕjϕl]

(
− d

2

)
+ ν22(z)∂x[ϕjϕl]

(
d
2

)}
type II

, (54)

and similarly for C
(ε)
j,t,γ , C

(ε)
t,γ,l, and C

(ε)
t,γ,t′,γ′ .

We finally introduce the generalized forward-going and backward-going mode amplitudes:

{aj(z), bj(z), j = 0, . . . , N − 1} and {at,γ(z), bt,γ(z), γ ∈ (0, k2)}, (55)
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for t ∈ {e, o}, which are defined such that

p̂j(z) =
1√
βj

(
aj(z)e

iβjz + bj(z)e
−iβjz

)
,

∂z p̂j(z) =i
√
βj

(
aj(z)e

iβjz − bj(z)e
−iβjz

)
, j = 0, . . . , N − 1, (56)

and

p̂t,γ(z) =
1

γ1/4

(
at,γ(z)e

i
√
γz + bt,γ(z)e

−i√γz
)
,

∂z p̂t,γ(z) =iγ
1/4

(
at,γ(z)e

i
√
γz − bt,γ(z)e

−i√γz
)
, γ ∈ (0, k2), t ∈ {e, o}. (57)

We can substitute (56–57) into (48–49) in order to obtain the first-order system of coupled random differential
equations satisfied by the mode amplitudes (55):

∂zaj(z) =
ik2

2

N−1∑
l′=0

C
(ε)
j,l′(z)√
βl′βj

[
al′(z)e

i(βl′−βj)z + bl′(z)e
i(−βl′−βj)z

]

+
ik2

2

∑
t′∈{e,o}

∫ k2

0

C
(ε)
j,t′,γ′(z)
4
√
γ′
√
βj

[
at′,γ′(z)ei(

√
γ′−βj)z + bt′,γ′(z)ei(−

√
γ′−βj)z

]
dγ′

+
ik2

2

∑
t′∈{e,o}

∫ 0

−∞

C
(ε)
j,t′,γ′(z)√

βj
p̂t′,γ′(z)e−iβjzdγ′, (58)

∂zat,γ(z) =
ik2

2

N−1∑
l′=0

C
(ε)
t,γ,l′(z)

4
√
γ
√
βl′

[
al′(z)e

i(βl′−
√
γ)z + bl′(z)e

i(−βl′−
√
γ)z

]

+
ik2

2

∑
t′∈{e,o}

∫ k2

0

C
(ε)
t,γ,t′,γ′(z)

4
√
γ′γ

[
at′,γ′(z)ei(

√
γ′−√

γ)z + bt′,γ′(z)ei(−
√
γ′−√

γ)z
]
dγ′

+
ik2

2

∑
t′∈{e,o}

∫ 0

−∞

C
(ε)
t,γ,t′,γ′(z)

4
√
γ

p̂t′,γ′(z)e−i
√
γzdγ′, (59)

with similar equations for bj and bt,γ . This system is complemented with the boundary conditions at z = 0 and

z = L(ε):
aj(0) = aj,s, bj(L

(ε)) = 0, at,γ(0) = at,γ,s, bt,γ(L
(ε)) = 0,

where aj,s and at,γ,s are defined by (44-45). The evanescent mode amplitudes p̂t,γ , t ∈ {e, o}, γ ∈ (−∞, 0),
satisfy (49).

3.3. The effective Markovian dynamics for the mode amplitudes

We rename the complex mode amplitudes in the long-range scaling as

aεj(z) = aj

( z
ε2

)
, bεj(z) = bj

( z
ε2

)
, j = 0, . . . , N − 1, (60)

aεt,γ(z) = at,γ

( z
ε2

)
, bεt,γ(z) = bt,γ

( z
ε2

)
, γ ∈ (0, k2), t ∈ {e, o}. (61)

We can follow the lines of [35] to get the following results.
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(1) In the regime ε ≪ 1 the evanescent mode amplitudes, that satisfy (49), can be expressed to leading
order in closed forms as functions of the guided and radiating mode amplitudes (60-61). Indeed it is
possible to invert the operator ∂2z + γ in (49) for γ < 0 by using the Green’s function that satisfies the
radiation condition and to obtain:

p̂t,γ(
z

ε2
) =

εk2

2
√
|γ|

∫ L/ε2

0

N−1∑
l′=0

{
Ct,γ,l′(z

′)√
βl′

[
aεl′(z)e

iβl′z
′
+ bεl′(z)e

−iβl′z
′
]

+

∫ k2

0

Ct,γ,t′,γ′(z′)
4
√
γ′

[
aεt′,γ′(z)ei

√
γ′z′ + bεt′,γ′(z)e−i

√
γ′z′

]
dγ′

}
e−

√
|γ|| z

ε2
−z′|dz′ +O(ε2), (62)

for z > 0, γ < 0 and t ∈ {e, o}. Here we recognize Gγ(z, z
′) = 1

2
√

|γ|
e−

√
|γ||z−z′| that is the Green’s

function of the equation ∂2zGγ(z, z
′) + γGγ(z, z

′) = −δ(z − z′) for γ < 0.

(2) Under the assumption that the power spectral density R̂I(κ, x, x
′) for type-I perturbations (or R̂II(κ)

for type-II perturbations) has compact support or fast decay, the forward-scattering approximation can
be proved, i.e. the coupling between forward-going and backward-going mode amplitudes is negligible,
so that we have

bεj(z) ≈ 0, j = 0, . . . , N − 1, bεt,γ(z) ≈ 0, γ ∈ (0, k2), t ∈ {e, o}.

(3) The forward-going guided mode amplitudes (aεj)
N−1
j=0 and radiating mode amplitudes (aεt,γ)γ∈(0,k2),t∈{e,o}

then satisfy a closed linear system of the form

daε

dz
=

1

ε
F(

z

ε2
)aε +G(

z

ε2
)aε + o(1),

with initial conditions for aε at z = 0. Here F, resp. G, is an operator with zero mean, resp. non-zero
mean, and ergodic properties inherited from those of the processes ν.

We can finally apply a diffusion approximation theorem to establish the following result (see [25, 35] for the
full statement, [40] for a first version in which the contributions of the evanescent modes is neglected, which
means that the operator L3 is missing in the expression of the generator L, and [25] for a detailed analysis).

Proposition 3.1. The random process

(
(aεj(z))

N−1
j=0 , (a

ε
t,γ(z))γ∈(0,k2),t∈{e,o}

)
converges in distribution in C0([0, L],CN ×L2((0, k2))2), the space of continuous functions from [0, L] to CN ×
L2((0, k2))2, to the Markov process

(
(aj(z))

N−1
j=0 , (at,γ(z))γ∈(0,k2),t∈{e,o}

)
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with infinitesimal generator L. Here CN × L2((0, k2))2 is equipped with the weak topology and the infinitesimal
generator has the form L = L1 + L2 + L3, where Lj, 1 ≤ j ≤ 3, are the differential operators:

L1 =
1

2

N−1∑
j,l=0

Γjl
(
ajaj∂al

∂al
+ alal∂aj

∂aj
− ajal∂aj

∂al
− ajal∂aj

∂al

)
1j ̸=l

+
1

2

N−1∑
j,l=0

Γ1
jl

(
ajal∂aj

∂al
+ ajal∂aj

∂al
− ajal∂aj

∂al
− ajal∂aj

∂al

)
+

1

2

N−1∑
j=0

(
Γjj − Γ1

jj

)(
aj∂aj

+ aj∂aj

)
+
i

2

N−1∑
j=0

Γsjj
(
aj∂aj

− aj∂aj

)
, (63)

L2 =− 1

2

N−1∑
j=0

(Λj + iΛsj)aj∂aj
+ (Λj − iΛsj)aj∂aj

, (64)

L3 =i

N−1∑
j=0

κj
(
aj∂aj

− aj∂aj

)
. (65)

In these definitions we use the classical complex derivative: if ζ = ζr + iζi, then ∂ζ = (1/2)(∂ζr − i∂ζi) and
∂ζ = (1/2)(∂ζr + i∂ζi), and the coefficients of the operators (63-65) are defined for j, l = 0, . . . , N−1, as follows:
- For all j ̸= l, Γjl and Γsjl are given by

Γjl =
k4

2βjβl

∫ ∞

0

Rjl(z) cos
(
(βl − βj)z

)
dz, (66)

Γsjl =
k4

2βjβl

∫ ∞

0

Rjl(z) sin
(
(βl − βj)z

)
dz, (67)

with Rjl(z) defined by

Rjl(z) := E[Cj,l(0)Cj,l(z)], (68)

E[Cj,l(0)Cj′,l′(z)] =

{ ∫ d/2
−d/2

∫ d/2
−d/2 ϕjϕl(x)RI(x, x

′, z)ϕj′ϕl′(x
′)dxdx′ type I

(n2 − 1)2d2
[
ϕjϕlϕj′ϕl′

(
− d

2

)
+ ϕjϕlϕj′ϕl′

(
d
2

)]
RII(z) type II

(69)

- For all j, l:

Γ1
jl =

k4

4βjβl

∫ ∞

0

E
[
Cj,j(0)Cl,l(z)

]
+ E

[
Cl,l(0)Cj,j(z)

]
dz.

- For all j, Λj is defined by

Λj =

∫ k2

0

k4

2
√
γβj

∑
t∈{e,o}

∫ ∞

0

Rj,t,γ(z) cos
(
(
√
γ − βj)z

)
dzdγ (70)
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and

Γjj =−
N−1∑
l=0,l ̸=j

Γjl, Γsjj = −
N−1∑
l=0,l ̸=j

Γsjl,

Λsj =
∑

t∈{e,o}

∫ k2

0

k4

2
√
γβj

∫ ∞

0

Rj,t,γ(z) sin
[
(
√
γ − βj)z

]
dzdγ,

κj =
∑

t∈{e,o}

∫ 0

−∞

k4

2
√
|γ|βj

∫ ∞

0

Rj,t,γ(z) cos(βjz)e
−
√

|γ|zdzdγ +
k2

2βj
E[cj,j(0)],

where Rj,t,γ(z) = E[Cj,t,γ(0)Cj,t,γ(z)] is defined as in (68) upon substitution (t, γ) for l and

E[cj,j(0)] =
{

0 type I
(n2 − 1)d2RII(0)∂x[ϕ

2
j ]
(
d
2

)
type II

We give some remarks before focusing our attention on the mode powers.

(1) The convergence result holds in the weak topology. This means that we can only compute quantities of

the form E[F (a0, . . . , aN−1,
∫ k2
0
αe,γae,γdγ,

∫ k2
0
αo,γao,γdγ)] for any test functions αe, αo ∈ L2((0, k2))

and F : RN+2 → R. These quantities are the limits of E[F (aε0, . . . , aεN−1,
∫ k2
0
αe,γa

ε
e,γdγ,

∫ k2
0
αo,γa

ε
o,γdγ)]

as ε→ 0.
(2) The generator L does not involve ∂at,γ

nor ∂āt,γ
. Therefore (aεj(z))

N−1
j=0 converges in distribution in

C0([0, L],CN ) to the Markov process (aj(z))
N−1
j=0 with generator L. The weak and strong topologies are

the same in CN , so we can compute any moment of the form E[F (a0, . . . , aN−1)], which are the limits
of E[F (aε0, . . . , aεN−1)].

(3) L1 is the contribution of the coupling between guided modes, which gives rise to power exchange between
the guided modes (effective diffusion).

(4) L2 is the contribution of the coupling between guided and radiating modes, which gives rise to power
leakage from the guided modes to the radiating ones (effective attenuation) and addition of frequency-
dependent phases on the guided mode amplitudes (effective dispersion). The effective attenuation and
dispersion are produced by causal phenomena and they are related to each other through Kramers-Konig
relations [28].

(5) L3 is the contribution of the coupling between guided and evanescent modes, which gives rise to addi-
tional phase terms on the guided mode amplitudes (effective dispersion). This term is the main effect
when the waveguide supports only one propagating mode and the core boundaries are hard or soft so
that there is no radiating mode [24].

(6) If the generator L is applied to a test function that depends only on the mode powers (Pj)
N−1
j=0 , with

Pj = |aj |2, then the result is a function that depends only on (Pj)
N−1
j=0 . Thus, the mode powers

(Pj(z))
N−1
j=0 define a Markov process, with infinitesimal generator defined by (72) below.

(7) The radiation mode amplitudes remain constant in L2((0, k2))2, equipped with the weak topology, as

ε → 0. However, this does not describe the power
∑
t∈{e,o}

∫ k2
0

|aεt,γ |2dγ transported by the radiation

modes, because the convergence does not hold in the strong topology of L2((0, k2))2 so we do not have∑
t∈{e,o}

∫ k2
0

|aεt,γ |2dγ →
∑
t∈{e,o}

∫ k2
0

|at,γ |2dγ as ε→ 0.
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(8) When N = 1, then the generator is

L =
Γ1
00

2

(
2a0a0∂a0∂a0

− a0a0∂a0∂a0 − a0a0∂a0
∂a0

− a0∂a0 − a0∂a0

)
− Λ0

2

(
a0∂a0

+ a0∂a0

)
+
i

2
(κ0 − Λs0)

(
a0∂a0

− a0∂a0

)
. (71)

This shows that a0 (the amplitude of the unique guided mode) has the same distribution as

a0(z) = a0,s exp
( i
2
(κ0 − Λs0)z + i

√
Γ1
00W

1
z − Λ0

2
z
)
,

whereW 1
z is a standard Brownian motion. The mode amplitude experiences a random phase modulation

and a deterministic damping, which both depend on frequency and two-point statistics of the medium
perturbations [24].

(9) When N ≥ 2, the limit process (aj(z))
N−1
j=0 can be identified as the solution of a system of stochastic

differential equations driven by correlated Brownian motions, as formulated in the following corollary.

Corollary 3.1. Let (W 1
j )
N−1
j=0 be a N -dimensional correlated Brownian motion with covariance function

E
[
W 1
j,zW

1
j′,z′

]
= Γ1

jj′z ∧ z′.

Let (Wjl)0≤j<l≤N−1 and (W̃jl)0≤j<l≤N−1 be independent standard Brownian motions. Set Wlj = Wjl and

W̃lj = −W̃jl for j < l.

Then the limit Markov process (aj(z))
N−1
j=0 has the same distribution as the unique solution of

daj = iaj ◦ dW 1
j,z +

∑
l ̸=j

√
Γjl√
2

al ◦
(
idWjl,z − dW̃jl,z

)
+

1

2

(
iΓsjj − Λj − iΛsj + iκj

)
ajdz,

starting from aj(z = 0) = aj,s, j = 0, . . . , N − 1, where ◦ stands for the Stratonovich integral.

The proof of the corollary is a straightforward application of Itô’s formula.

3.4. The effective Markovian dynamics for the mode powers

From the result for the complex mode amplitudes we get the following result.

Corollary 3.2. The process (|aεj(z)|2)
N−1
j=0 converges towards a Markov process P (z) = (Pj(z))

N−1
j=0 whose

infinitesimal generator LP writes:

LP =
∑
j ̸=l

Γjl

[
PlPj(

∂

∂Pj
− ∂

∂Pl
)
∂

∂Pj
+ (Pl − Pj)

∂

∂Pj

]
−
N−1∑
j=0

ΛjPj
∂

∂Pj
, (72)

where Γjl is defined by (66) and Λj is defined by (70).

The coefficients Γjl describe the effective mode coupling between guided modes due to random scattering. The
coefficients Λj are effective mode-dependent dissipation coefficients and they come from the coupling between
guided and radiative modes due to random scattering.

From the form of the generator LP , we can establish that the nth-order moments of the mode powers satisfy
closed equations. We will apply this to compute the first moments of P , as well as its second moments later in
Section 3.6.
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Using (72) we find that the mean mode powers

Qj(z) = E[Pj(z)] (73)

satisfy the closed system of equations

∂zQj = −ΛjQj +

N−1∑
l=0

Γjl
(
Ql −Qj

)
, (74)

starting from Qj(0) = |aj,s|2. This equation looks like a discrete radiative transfer equation, with the matrix Γ
that plays the role of the scattering cross section. The form of these coupled-mode equations is well-known [17]
although the mode-dependent attenuation terms Λj are usually introduced heuristically. The solution explicitly
writes:

Q(z) = exp(Az)Q(0), (75)

with the matrix A defined by (δjl is the Kronecker symbol):

A := (Γjl − Λjδjl)
N−1
j,l=0. (76)

We can also remark that the system (74) can be interpreted as the Kolmogorov equation associated to a
random walk on the finite space {0, . . . , N − 1}. If we denote by (Jz)z≥0 the Markov process on the state space
{0, . . . , N − 1} with infinitesimal generator Γ, then a Feynman-Kac formula gives the following probabilistic
representation of the mean mode powers Qj(z):

Qj(z) = E
[
|aJz,s|2 exp

(
−
∫ z

0

ΛJz′dz
′
)∣∣∣J0 = j

]
.

This representation makes it possible to anticipate the result derived below in the high-frequency regime (when
the number of modes becomes large), namely that the Qj ’s can be approximated by the solution of a diffusion
equation, because the normalized random walk (Jz/N)z≥0 can be approximated in distribution by a diffusion
process on [0, 1].

3.5. Long-range behavior of the mean mode powers

From now on we assume that the symmetric matrix Γ defined by Γjl given by (66) for j ̸= l, Γjj =
−
∑
l′ ̸=j Γjl′ , is irreducible. By Perron-Frobenius theorem, the first eigenvalue of A is simple and nonpositive

(we denote it by −λ) and the components of the corresponding unit eigenvector V have all the same sign (so
we can assume that they are positive). By (75) we get the following result.

Proposition 3.2. The mean mode powers (73) satisfy

Qj(z)
z→+∞≃ cV Vj exp

(
− λz

)(
1 + o(1)

)
, (77)

where (−λ,V ) is the first eigenvalue/eigenvector of A and cV =
∑N−1
l=0 Vl|al,s|2.

Special cases with explicit expressions are given in [25]. The main results are the following ones:

(1) If there is no dissipation (i.e. Λj = 0 for all j), then A = Γ and the first eigenvalue/eigenvector

(−λ(0),V (0)) of the matrix Γ is λ(0) = 0, V (0) =
(
1/
√
N
)N−1

j=0
, which gives the standard equipartition

result [15,22,26]:

Qj(z)
z→+∞−→ 1

N

N−1∑
l=0

|al,s|2, ∀j = 0, . . . , N − 1. (78)
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The total input power
∑N−1
l=0 |al,s|2 becomes equipartitioned amongst all guided modes.

(2) When there is dissipation (i.e. there exists j such that Λj > 0), then there is effective damping λ > 0

and the first eigenvector V is not the equipartitioned vector V (0) anymore. More exactly:
(a) When coupling (described by the matrix Γ) is stronger than dissipation (described by the matrix

Φ with Φjl = Λjδjl), then the effective damping coefficient λ of the mean mode powers is ap-
proximately the arithmetic average of the effective mode-dependent damping coefficients Λj , and
the distribution of the mean mode powers is approximately equipartitioned, with slightly reduced
allocations for the modes with the strongest damping coefficients.

(b) When coupling is weaker than dissipation, then the effective damping of the mean mode powers is
approximately the minimum of the effective mode-dependent damping coefficients Λj . The distri-
bution of the mean mode powers is, moreover, essentially concentrated on the modes corresponding
to the minimum of the mode-dependent damping coefficients.

3.6. Fluctuation analysis

By (72) we find that the second-order moments of the mode powers

Rjl(z) = E
[
Pj(z)Pl(z)

]
, j, l = 0, . . . , N − 1, (79)

satisfy the closed equations

∂zRjj =− 2ΛjRjj +
∑
n ̸=j

Γjn(4Rjn − 2Rjj), (80)

∂zRjl =− (2Γjl + Λj + Λl)Rjl +
∑
n̸=l

Γln(Rjn −Rjl) +
∑
n ̸=j

Γjn(Rnl −Rjl), j ̸= l. (81)

This system has the same form as the one found in the literature dedicated to coupled mode theory [15, 17].
The initial conditions are Rjl(0) = |aj,s|2|al,s|2. Let us introduce S = (Sjl)0≤j≤l≤N−1 defined by

Sjl =

{
Rjl +Rlj = 2Rjl if j < l,
Rjj if j = l.

(82)

The Sjl’s satisfy the system

∂zSjl =− (ΨS)jl + (ΘS)jl, (83)

(ΨS)jl =(Λj + Λl)Sjl, (84)

(ΘS)jl =2Γjl1j ̸=l(Sjj + Sll − 2Sjl) +
∑

n ̸∈{j,l}

[
Γln(Sjn − Sjl) + Γjn(Snl − Sjl)

]
, (85)

with the convention that whenever Sjl occurs with j > l, it is replaced by Slj . The operatorΘ is the infinitesimal
generator of a randomMarkov process (Jz, Lz)z≥0 that is a random walk on the discrete triangle {(j, l) ∈ N2, 0 ≤
j ≤ l ≤ N − 1}. Using a Feynmac-Kac formula we get the following probabilistic representation of Sjl:

Sjl(z) = E
[
|aJz,s|2|aLz,s|2 exp

(
−
∫ z

0

ΛJz′ + ΛLz′dz
′
)∣∣∣J0 = j, L0 = l

]
.

We can anticipate that, in the continuum limit, the Markov process (Jz/N,Lz/N)z≥0 behaves as a diffusion
process on the triangle {(u, v) ∈ R2, 0 ≤ u ≤ v ≤ 1}, and, therefore, Sjl satisfies a diffusion equation on this
triangle.
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Long-range behavior of the second-order moments of the mode powers. Eq. (83) has the form
∂zS = (Θ −Ψ)S. The linear operator Ψ is diagonal and the linear operator Θ is self-adjoint: for any T and

T̃ , we have ∑
0≤j≤l≤N−1

(ΘT )jlT̃jl = −
∑
j≤l

Θjl,jlTjlT̃jl +
∑

j<l,n̸∈{j,l}

(
ΓlnTjnT̃jl + ΓjnTnlT̃jl

)
+

∑
j ̸=n

(
ΓjnTjnT̃jj + ΓjnTnj T̃jj

)
+ 2

∑
j<l

(
ΓjlTjj T̃jl + ΓjlTjj T̃jl

)
=

∑
0≤j≤l≤N−1

Tjl(ΘT̃ )jl,

because 2
∑
j<l =

∑
j ̸=l. As a consequence, Θ−Ψ can be diagonalized and we get the following result.

Proposition 3.3. The second-order moments of the mode powers satisfy

S(z)
z→+∞≃ cWW exp

(
− µz

)(
1 + o(1)

)
, (86)

where (−µ,W ) is the first eigenvalue/eigenvector of Θ −Ψ and cW is the projection of the initial conditions

on the first eigenvector W : cW =
∑N−1
j,l=0Wjl|aj,s|2|al,s|2, with the convention that whenever Wjl occurs with

j > l, it is replaced by Wlj.

Special cases with explicit expressions are given in [25]. The main results are the following ones:

(1) If there is no dissipation, then the first eigenvalue/eigenvector (−µ(0),W (0)) of the matrix Θ is µ(0) = 0,

W (0) =
(
cN

)
0≤j≤l≤N−1

, with cN =
√
2/
√
N(N + 1). We have S(z)

z→+∞→ cWW (0). As
∑
j≤l Sjl(z) =∑

j,lRjl(z) = (
∑N−1
j=0 |aj,s|2)2, we deduce

Sjl(z)
z→+∞→

(N−1∑
l′=0

|al′,s|2
)2 2

N(N + 1)
and Rjl(z)

z→+∞→
(N−1∑
l′=0

|al′,s|2
)2 1 + δjl
N(N + 1)

.

By taking into account (78), this means that, when N ≫ 1, the mode powers Pj become uncorrelated.
This regime was analyzed in detail in [22, Chapter 20], where it is shown that the marginal distributions
of the mode powers Pj have the same moments as exponential distributions. In other words, the
mode powers behave as the square moduli of independent and identically distributed complex Gaussian
variables. This proves the Gaussian conjecture for wave propagation in random waveguides when there
is no radiative damping.

(2) When there is dissipation, µ− 2λ is negative-valued as soon as there exist j, j′ such that Λj ̸= Λj′ .

3.7. Exponential growth of the intensity fluctuations

It is a general feature that, for any matrix Γ and effective dissipation coefficients Λj , we have µ − 2λ ≤ 0
(this is a consequence of Cauchy-Schwarz inequality: the square of the mean mode power cannot grow faster
than the mean square mode power). The first two moments of the pointwise intensity |p̂(x, z)|2 for large z are

E[|p̂(x, z)|2] z→+∞≃
N−1∑
j=0

ϕj(x)
2

βj
cV Vje

−λz, (87)

E[|p̂(x, z)|4] z→+∞≃
N−1∑
j,l=0

ϕj(x)
2ϕl(x)

2

βjβl
cWWjle

−µz. (88)
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Without dissipation we have the following result for the relative fluctuations of the pointwise intensity:

E[|p̂(x, z)|4]
E[|p̂(x, z)|2]2

z→+∞−→ 2N

N + 1
,

which is equal to 2 when N ≫ 1.
With dissipation

E[|p̂(x, z)|4]
E[|p̂(x, z)|2]2

z→+∞∼ exp
(
− (µ− 2λ)z

)
, (89)

that grows exponentially with the propagation distance. This proves that the Gaussian conjecture is wrong for
wave propagation in random waveguides in the presence of radiative damping. The explicit formulas given in [25]
for some particular situations show that the growth rate of the relative variance of the intensity increases when
the effective modal dissipation coefficients become different from each other and decreases when the number
of modes increases. The analysis in the high-frequency regime carried out in the next section confirms that
the exponential growth rate of the relative intensity fluctuations vanishes when the number of modes goes to
infinity.

4. The high-frequency regime for wave propagation in random waveguides

In Section 2 we have addressed wave propagation in open random media in the regime λ≪ ro, ℓc ≪ L (with
ro the radius of the initial beam) and we have found that the Gaussian conjecture could be validated. In Section
3 we have addressed wave propagation in random waveguides in the regime λ ≲ d, ℓc ≪ L (with d the diameter
of the waveguide) and we have found that the Gaussian conjecture was wrong as the relative fluctuations of the
intensity are growing exponentially with the propagation distance. In this section we address the high-frequency
regime of wave propagation in random waveguides, that is to say, the regime λ≪ d, ℓc ≪ L, and we show that
we can reconcile the two results.

We consider wave propagation in random waveguides as introduced in Section 3. The following arguments
show that, when λ ≪ d, then the number of modes is large, and when λ ≪ ℓc, then coupling between guided
modes is essentially via nearest neighbors (between modes with close modal wavenumbers):
1) The number of modes becomes large when (n2 − 1)k2d2 ≫ 1. In other words, the number of modes is
large when the frequency is large because it is proportional to the ratio of the waveguide diameter over the
wavelength.
2) For type II perturbations, coupling via nearest neighbors happens when the fluctuations of the boundaries
are smooth so that the Fourier transform of RII decays fast and the correlation radius is much larger than

the wavelength. Under such circumstances, we have βj − βj+l ≃ π
√
n2−1
nd

j
N l for any l ≥ 1, |R̂II(βj − βj+1)| ≫

|R̂II(βj − βj+l)| for any l ≥ 2, and we can approximate the matrix Γ for all l ̸= j by:

Γjl =

{
γmin(l,j) if |j − l| = 1,
0 if |j − l| ≥ 2,

(90)

with

γj =
k2(n2 − 1)2d2

2βjβj+1
[ϕjϕj+1](

d

2
)2R̂II(βj − βj+1). (91)

For type I perturbations, coupling via nearest neighbors happens under similar conditions. Indeed, let us assume
that RI(x, x

′, z) can be factorized as

RI(x, x
′, z) = RI,c(x, x

′)RI,l(z),
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then for all l ̸= j:

Γjl =
k2

4βjβl
R̂I,l(βj − βl)

∫∫
[−d/2,d/2]2

RI,c(x, x
′)ϕjϕl(x)ϕjϕl(x

′)dxdx′,

where R̂I,l is the Fourier transform of RI,l. Again, if the fluctuations of the index of refraction are smooth so

that R̂I,l decays fast and the longitudinal correlation radius is much larger than the wavelength, then we can
approximate Γjl by (90) with

γj =
k2

4βjβj+1
R̂I,l(βj − βj+1)

∫∫
[−d/2,d/2]2

RI,c(x, x
′)ϕjϕj+1(x)ϕjϕj+1(x

′)dxdx′. (92)

Similarly, we find that Λj can be approximated by

Λj =

{
ΛN−1 if j = N − 1,
0 otherwise.

Other circumstances can lead to the same conclusions. For instance the band-limiting idealization hypothesis
in [35] gives the same result, and it is based on the behavior of the transverse covariance function RI,c.

4.1. Mean mode powers

The mean mode powers (73) satisfy the coupled equations (74):

∂zQ
(N)
N−1 = −Λ

(N)
N−1Q

(N)
N−1 + γ

(N)
N−2(Q

(N)
N−2 −Q

(N)
N−1), (93)

∂zQ
(N)
j = γ

(N)
j−1(Q

(N)
j−1 −Q

(N)
j ) + γ

(N)
j (Q

(N)
j+1 −Q

(N)
j ) for 1 ≤ j ≤ N − 2, (94)

∂zQ
(N)
0 = γ

(N)
0 (Q

(N)
1 −Q

(N)
0 ). (95)

The superscript (N) is added to remember that all coefficients depend on N . We have nearest-neighbor coupling:
The jth mode can exchange power with the lth mode only if they are neighbors, that is, if they satisfy |j−l| ≤ 1.

We note that the terms involving γ
(N)
j in (93-95) define the infinitesimal generator of a random walk on the

finite set {0 ≤ j ≤ N −1}. As shown in [35], following the ideas developed in [54, Chapter 11], if γ
(N)
j converges

in the sense that γ
(N)
⌊xN⌋ → γ∞(x) for any x ∈ (0, 1), where γ∞ is smooth and positive, then, for any function φ

in L2(0, 1), the function

Q(N)
φ (z, u) =

N−1∑
j=0

Q
(N)
j (z)φ(⌊j/N⌋),

where Q
(N)
j is the solution of (93-95) starting from Q

(N)
j (z = 0) = δj,⌊uN⌋, satisfies

lim
N→∞

Q(N)
φ (z, u) = Qφ(z, u),

where Qφ is the solution of the partial differential equation:

∂zQφ = H1Qφ, H1 = ∂u
(
γ∞(u)∂u ·

)
, (96)

with the mixed Neumann-Dirichlet boundary conditions

∂uQφ(z, 0) = 0, Qφ(z, 1) = 0, Qφ(0, u) = φ(u). (97)
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For type I perturbations we have from (92):

γ∞(u) =
1

4(n2 − 1)d2( n2

n2−1 − u2)
R̂I,l

(π√n2 − 1

nd
u
) ∫∫

[−d/2,d/2]2
RI,c(x, x

′) sin(πx/d) sin(πx′/d)dxdx′.

For type II perturbations, we have from (91):

γ∞(u) =
2(n2 − 1)u4

( n2

n2−1 − u2)
R̂II

(π√n2 − 1

nd
u
)
.

As a consequence of this result we get the following proposition.

Proposition 4.1. In the high-frequency regime, the first eigenvalue −λ(N) of the matrix A(N) defined by (76)
converges to −λ as N → ∞, with

λ = inf
φ∈D1

∫ 1

0

γ∞(u)φ′(u)2du (98)

and

D1 =
{
φ ∈ C∞([0, 1]),

∫ 1

0

φ(u)2du = 1, φ′(0) = 0, φ(1) = 0
}
. (99)

Moreover, −λ is a simple eigenvalue of the operator H1, the corresponding eigenvector φ is smooth and
unique (up to a multiplication by −1) and it can be chosen so as to satisfy φ(u) > 0 for u ∈ [0, 1). The
proof is given in [25], it is similar to the one proposed in [35] for the Pekeris waveguide and it is based on a
modified version of Krein-Rutman theorem. The eigenvector φ gives the asymptotic mode distribution for large
propagation distance:

Q
(N)
j (z)

z→+∞≃ cV φ(j/N) exp(−λz), (100)

with cV =
∑N−1
l=0 |al,s|2φ(l/N)/N . We, therefore, observe an exponential decay of the mean power transported

by the guided modes and a form of equipartition of the mean mode powers, but not with the uniform distribu-
tion, but with the distribution proportional to the eigenvector φ.

4.2. Mode power fluctuations

When Γjl is of the form (90), the system (83) for the second-order moments of the mode powers (82) reads

∂zS
(N)
jl =δjl

[
2γ

(N)
j (S

(N)
jj+1 − S

(N)
jj )1j≤N−2 + 2γ

(N)
j−1(S

(N)
j−1j − S

(N)
jj )1j≥1

]
+ δlj+1

[
2γj(Sjj + S

(N)
j+1j+1 − 2S

(N)
jj+1) + γ

(N)
j−1(S

(N)
j−1j+1 − S

(N)
jj+1)1j≥1 + γ

(N)
j+1(S

(N)
jj+2 − S

(N)
jj+1)1j≤N−3

]
+ 1j≤l−2

[
γ
(N)
l−1 (S

(N)
jl−1 − S

(N)
jl )1l≥1 + γ

(N)
l (S

(N)
jl+1 − S

(N)
jl )1l≤N−2 + γ

(N)
j−1(S

(N)
j−1l − S

(N)
jl )1j≥1

]
+ 1j≤l−2

[
γ
(N)
j (S

(N)
j+1l − S

(N)
jl )

]
− Λ

(N)
N−1(δjN−1 + δlN−1)S

(N)
jl . (101)

Here again the superscript (N) is added to remember that all coefficients depend on N . Note that the terms

involving γ
(N)
j define the infinitesimal generator of a random walk (Jz, Lz)z≥0 on the finite set DN = {0 ≤ j ≤

l ≤ N − 1}.
It is possible to determine the asymptotic behavior of S

(N)
jl when N → +∞ [25,35]. We introduce the triangle

D = {(u, v) ∈ R2, 0 < u < v < 1}. We get that, for any function ψ in L2(D), the function

S
(N)
ψ (z, u, v) =

∑
0≤j≤l≤N−1

S
(N)
jl (z)ψ(⌊j/N⌋, ⌊l/N⌋),
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where S
(N)
jl is the solution of (101) starting from S

(N)
jl (z = 0) = δj,⌊uN⌋δl,⌊vN⌋, satisfies

lim
N→∞

S
(N)
ψ (z, u, v) = Sψ(z, u, v),

where Sψ is the solution of the partial differential equation:

∂zSψ = H2Sψ, H2 = ∂u
(
γ∞(u)∂u·) + ∂v

(
γ∞(v)∂v·), (102)

with the boundary condition (Dirichlet on the face {u = 1} of the triangle D, Neumann on the faces {v = 0}
and {u = v}):

∂uSψ(z, 0, v) = 0, Sψ(z, u, 1) = 0, (∂u − ∂v)Sψ(z, u, v) |u=v= 0, (103)

and the initial condition Sψ(0, u, v) = ψ(u, v). Consequently, we get the following result.

Proposition 4.2. In the high-frequency regime, the first eigenvalue −µ(N) of Θ(N) −Ψ(N) (where Θ(N) and

Ψ(N)are defined by (84) and (85)) converges as N → ∞ to −µ with

µ = inf
ψ∈D2

∫∫
D

γ∞(u)[∂uψ(u, v)]
2 + γ∞(v)[∂vψ(u, v)]

2dudv (104)

and

D2 =
{
ψ ∈ C∞(D̄),

∫∫
D

ψ(u, v)2dudv = 1, ∂uψ(0, v) = 0, ψ(u, 1) = 0, (∂u − ∂v)ψ(u, v) |u=v= 0
}
. (105)

Equivalently,

µ = inf
ψ̌∈Ď2

∫∫
(0,1)2

γ∞(u)[∂uψ̌(u, v)]
2 + γ∞(v)[∂vψ̌(u, v)]

2dudv, (106)

with

Ď2 =
{
ψ̌ ∈ C∞([0, 1]2),

∫∫
(0,1)2

ψ̌(u, v)2dudv = 1, ∂uψ̌(0, v) = 0, ∂vψ̌(u, 0) = 0, ψ̌(u, 1) = 0, ψ̌(1, v) = 0
}
.

(107)

Propositions 4.1 and 4.2 make it possible to prove the following identity that establishes a simple relation
between the growth rates of the means and variances of the mode powers in the high-frequency regime.

Proposition 4.3. In the high-frequency regime, we have

µ = 2λ, (108)

where λ and µ are defined in Propositions 4.1 and 4.2, respectively.

By uniqueness the eigenvector ψ̌ of H2 on (0, 1)2 associated to −µ is ψ̌ : (u, v) ∈ (0, 1)2 7→ φ(u)φ(v). This in

turn implies that the eigenvector ψ of H2 on D associated to −µ = −2λ is ψ : (u, v) ∈ D 7→
√
2φ(u)φ(v). As a

result we get

Sjl(z)
z→+∞≃ 2cWφ(j/N)φ(l/N) exp

(
− 2λz

)
,

with cW =
∑N−1
j,l=0 φ(j/N)φ(l/N)|aj,s|2|al,s|2/N2 = c2V , cV =

∑N−1
j=0 φ(j/N)|aj,s|2|/N , and therefore

Rjl(z)
z→+∞≃ c2V (1 + δjl)φ(j/N)φ(l/N) exp

(
− 2λz

)
. (109)

This result is the key to show that we will not observe any exponential growth of the relative intensity fluctuations
in the high-frequency regime.
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4.3. Stability of the intensity fluctuations

In the high-frequency regime, when the number of modes becomes large, we have µ = 2λ and (109) holds.
Therefore there is no exponential growth of the fluctuations and we have

E[|p̂(x, z)|4]
E[|p̂(x, z)|2]2

z→+∞≃ 2, (110)

which corresponds to a relative variance (or scintillation index) equal to one. We recover the standard result
that the wavefield, in the point of view of the fourth-order moments, behaves as a Gaussian process with relative
variance (scintillation index) equal to one [33].

5. Conclusion

In this paper we have reviewed an asymptotic theory of wave propagation in random media and we have
contrasted the situations in open media and waveguides. We have presented standard results about the first
two moments of the wave amplitudes: the mean amplitudes decay exponentially with the propagation distance
and the mean Wigner transform (for the open medium case) and the mean mode powers (for the waveguide
case) satisfy a radiative transfer equation. The fourth-order moment analysis reveals that the fluctuations of
the wave amplitudes may have very different behaviors. The wave amplitudes have asymptotically Gaussian
statistics when scattering is strong enough in the open medium case in the white-noise paraxial regime, while
the variance of the fluctuations may grow exponentially with the propagation distance in the waveguide case.
We have carefully studied the exponential growth rates of the relative variances for different models of randomly
perturbed waveguides. We have shown that, in the high-frequency regime, when the number of guided modes
increases, the exponential growth rates vanish and the scintillation index (the relative variance of the intensity
fluctuations) becomes equal to one, as observed in open media in the white-noise paraxial regime.

These results show that incoherent imaging in a random waveguide (such as a Pekeris waveguide in underwater
acoustics) is challenging. Indeed incoherent imaging is based on the use of the cross correlations of the recorded
signals [18]. The estimation of the second-order moments of the wavefield is, however, extremely difficult
because of the large variances of the empirical second-order moments and one may need to average over a
lot a samples (while the medium may be not stationary as in underwater acoustics). This is in contrast with
the situation in open random media where smoothed Wigner transforms are statistically stable [5, 6, 33]. More
generally, the results on the fourth-order moments in the waveguide case show that the predictions of the coupled
mode equations (which describe the evolutions of the statistical second-order moments of the wavefield, such as
Eq. (74)) may be not easy to exploit experimentally.

Finally, we can now challenge the Gaussian conjecture for wave propagation in random media. This conjecture
claims that, after a large propagation distance, the wavefield has Gaussian statistics and therefore we know
everything as soon as the first two moments are characterized. We have shown in this paper that the conjecture
is sometimes right, but it can be wrong; and then the picture given by the first two moments is not complete.
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