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Abstract. We present an analysis of enhanced wave transmission through random media with
mirror symmetry about a reflecting barrier. The mathematical model is the acoustic wave equation
and we consider two setups, where the wave propagation is along a preferred direction: in a randomly
layered medium and in a randomly perturbed waveguide. We use the asymptotic stochastic theory
of wave propagation in random media to characterize the statistical moments of the frequency-
dependent random transmission and reflection coefficients, which are scalar-valued in layered media
and matrix-valued in waveguides. With these moments, we can quantify explicitly the enhancement
of the net mean transmitted intensity, induced by wave interference near the barrier.
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1. Introduction. Multiple scattering of waves traveling through disordered me-
dia is a serious impediment for applications like imaging and free space communica-
tions. This has motivated the pursuit of strategies for wave transmission enhancement
and mitigation of scattering effects.

At propagation distances (depths) that do not exceed a few scattering mean free
paths, the wave field retains some coherence. Mitigation strategies seek to enhance
this coherence by: filtering the incoherent wave components, like in optical coherence
tomography [17] and in imaging in waveguides with rough boundary [4]; correcting
wavefront distortion in adaptive optics [16]; or using coherent interferometry [5, 3].

Beyond a few scattering mean free paths, the wave field is incoherent and it is
typically described by the radiative transfer theory [7, 21, 2] or the diffusion the-
ory [22]. These theories neglect wave interference effects that cause phenomena like
coherent backscattering enhancement a.k.a. weak localization [25, 13] and Anderson
localization [18]. Such interference effects can be exploited for enhancing transmission
through a strongly scattering medium. In [10] it was shown, using random matrix
theory, that in a disordered three-dimensional metallic body, some of the eigenvalues
of the transmission matrix are close to one. The eigenvectors for such eigenvalues
are known as open channels and their existence has been demonstrated in optics ex-
periments in [23]. If the transmission matrix can be measured, the open channels
can be determined and used for improved focusing and delivering waves deep inside
disordered media [23, 20, 6].

Recent developments show that interesting wave interference phenomena can also
be induced by mirror symmetry in chaotic cavities and in waveguides filled with dis-
ordered media. Large conductance enhancement through a reflecting barrier has been
demonstrated in [24] for symmetric quantum dots and in [14, 15] for symmetric chaotic
cavities. Experimental demonstration of broadband wave transmission enhancement
through diffusive, symmetric slabs with a barrier in the middle is given in [8, 9]. Sym-
metric media are also encountered when studying waves propagating in a random
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half-space with Dirichlet boundary condition. The method of images replaces this
half-space problem by a full-space problem with symmetric sources and media [19].

Our goal in this paper is to study mathematically wave transmission enhancement
in disordered systems with mirror symmetry. The analysis can be carried out for
any type of linear waves, but for simplicity we consider acoustic waves. We are
interested in two setups, where the wave propagation is along a preferred direction: a
randomly layered medium and a waveguide filled with a disordered medium. In both
cases, the disordered medium is modeled by random fluctuations of the coefficients
of the wave equation. These fluctuations are mirror symmetric with respect to a
reflecting barrier. The interaction of the waves with the barrier and the random
medium is described by frequency-dependent reflection and transmission coefficients,
which are scalar-valued in the layered case and matrix-valued in waveguides. We use
the stochastic asymptotic theory of wave propagation [11, 12] to write the statistical
moments of these coefficients and thus quantify explicitly the net mean transmission
intensity for various opacities of the barrier. In both settings we find that the mirror
symmetry has a beneficial effect on the transmission. This effect is more striking when
the obstruction at the barrier is strong.

We organize the analysis and results in two main sections: We begin in section 2
with the case of waves propagating at normal incidence through a randomly layered
medium. This lets us introduce the main ideas in a simpler, one-dimensional setting,
so we can analyze the enhanced transmission in great detail. Then, we study in section
3 transmission through random waveguides. The statistical moments of the reflection
and transmission matrices in random waveguides are known, but their computation is
much more complicated than in the one-dimensional case [12]. Thus, for waveguides,
we consider a regime of weak scattering in the random medium, so we can get an
explicit approximation of the net transmitted intensity. The involved calculations
needed to derive the results in sections 2 and 3 are given in appendixes. We end with
a summary in section 4.

2. Enhanced transmission in randomly layered media. We give here the
analysis of wave transmission in one-dimensional (layered) random media with mirror
symmetry. We begin in section 2.1 with the setup and the wave decomposition in
forward and backward going modes. The analysis of the reflection and transmission
of these modes at the reflecting barrier is in section 2.2 and in the random medium
is in section 2.3. We gather the results in section 2.4 to quantify the transmission
enhancement.

2.1. Setup. One-dimensional wave propagation along the z−axis is described
by the first order system[(

ρ(z) 0
0 K−1(z)

)
∂t +

(
0 1
1 0

)
∂z

](
u(t, z)
p(t, z)

)
= 0, t ∈ R, z ∈ R, (2.1)

where p is the acoustic pressure and u is the velocity. The medium is modeled by the
variable density ρ and bulk modulus K, which determine the local wave speed c and
impedance ζ,

c(z) =
√
K(z)/ρ(z), ζ(z) =

√
K(z)ρ(z). (2.2)

The medium contains a thin barrier at z ∈ (−d/2, d/2), sandwiched between two
randomly perturbed, symmetric regions at d/2 ≤ |z| ≤ L. Assuming that the z−axis

2



is horizontal, we call the region z < −d/2 the left side of the barrier and the region
z > d/2 the right side of the barrier. The medium is modeled by

ρ(z) =

{
ρ0 if |z| ≥ d/2,
ρ1 if |z| < d/2,

and
1

K(z)
=


1
K0

if |z| > L,
1
K0

[
1 + µ(|z|)

]
if |z| ∈

[
d/2, L

]
,

1
K1

if |z| < d/2,
(2.3)

where ρj and Kj are positive constants, for j = 0, 1 and µ is a mean zero, mixing
random process, satisfying the uniform bound |µ| < 1, so that the bulk modulus is
a positive function [11, Chapter 6]. Note that only the bulk modulus has random
fluctuations in our model. This simplifies the presentation and unifies it with that in
the next section, because (2.1) reduces to the standard second-order wave equation
for the pressure at |z| > d/2 and at |z| < d/2. Random fluctuations of the density
can be included, and the results are qualitatively the same [11, Chapter 17].

The interaction of the waves with the medium depends on frequency, so we Fourier
transform with respect to time,

p̂(ω, z) =

∫
R
dt eiωtp(t, z), û(ω, z) =

∫
R
dt eiωtu(t, z), (2.4)

and then decompose the wave field into right (forward) going and left (backward)
going modes [11, Chapter 7]. The decomposition at |z| ≥ d/2 is

â(ω, z) =
[
ζ
−1/2
0 p̂(ω, z) + ζ

1/2
0 û(ω, z)

]
e−iω z

co , (2.5)

b̂(ω, z) =
[
−ζ

−1/2
0 p̂(ω, z) + ζ

1/2
0 û(ω, z)

]
eiω

z
co , (2.6)

where c0 =
√
K0/ρ0 and ζ0 =

√
K0ρ0. The decomposition at |z| < d/2 is similar,

except that c0 and ζ0 are replaced by c1 =
√

K1/ρ1 and ζ1 =
√
K1ρ1. Note that

equations (2.4-2.6) give

p(t, z) =
ζ
1/2
0

4π

∫
R
dω e−iωt

[
â(ω, z)eiω

z
co − b̂(ω, z)e−iω z

co

]
, (2.7)

u(t, z) =
ζ
−1/2
0

4π

∫
R
dω e−iωt

[
â(ω, z)eiω

z
co + b̂(ω, z)e−iω z

co

]
. (2.8)

This is a decomposition in monochromatic waves propagating along the z−axis in the
right direction, with amplitude â, and the left direction, with amplitude b̂.

The wave excitation specifies â(ω,−L), and corresponds to a wave impinging on
the heterogeneous medium at z = −L. The goal is to quantify the wave emerging at
z = L, with amplitude â(ω,L) (see Fig. 2.1). Since the medium is homogeneous at

z > L, the wave is outgoing there i.e., b̂(ω, z) = b̂(ω,L) = 0 for z ≥ L.

2.2. Model of the barrier. The mapping of the wave modes on the left of the
barrier, at z = −d/2, to the modes on the right of the barrier, at z = d/2, is given by
the 2× 2 frequency-dependent propagator matrix P1. The expression of this matrix
is derived in Appendix A.1, by imposing the continuity of the pressure and velocity
at z = ±d/2. We state the result in the next lemma.

Lemma 2.1. We have(
â(ω, d/2)

b̂(ω, d/2)

)
= P1(ω)

(
â(ω,−d/2)

b̂(ω,−d/2)

)
, P1(ω) =

(
α(ω) γ(ω)

γ(ω) α(ω)

)
, (2.9)
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where the bar denotes complex conjugate and

α(ω) =

[
cos
(ωd
c1

)
+

i

2

(ζ1
ζ0

+
ζ0
ζ1

)
sin
(ωd
c1

)]
e−iωd/c0 , (2.10)

γ(ω) =
i

2

(ζ0
ζ1

− ζ1
ζ0

)
sin
(ωd
c1

)
. (2.11)

The scattering matrix S1 maps the wave mode amplitudes that impinge on the
barrier to the outgoing wave mode amplitudes(

â(ω, d/2)

b̂(ω,−d/2)

)
= S1(ω)

(
â(ω,−d/2)

b̂(ω, d/2)

)
. (2.12)

Its expression follows from equation (2.9),

S1(ω) =

(
T1(ω) R1(ω)
R1(ω) T1(ω),

)
, R1(ω) = −γ(ω)

α(ω)
, T1(ω) =

1

α(ω)
, (2.13)

where T1 and R1 are the transmission and reflection coefficients of the barrier.
We are interested in a thin barrier, with d much smaller than the wavelength, so

there are no trapped propagating modes at z ∈ (−d/2, d/2). There are two distin-
guished asymptotic regimes that give an order one net effect of the barrier:
1: The first regime is

ωd

cj
→ 0 for j = 0, 1 and

ζ0
ζ1

→ ∞ such that
ζ0
ζ1

ωd

2c1
→ q(ω), (2.14)

with finite q. The asymptotic limit of the transmission and reflection coefficients is

T1(ω) =
i

i+ q(ω)
and R1(ω) =

q(ω)

i+ q(ω)
. (2.15)

2: The second regime is

ωd

cj
→ 0 for j = 0, 1 and

ζ1
ζ0

→ ∞ such that
ζ1
ζ0

ωd

2c1
→ q(ω), (2.16)

and the transmission and reflection coefficients are

T1(ω) =
i

i+ q(ω)
and R1(ω) = − q(ω)

i+ q(ω)
. (2.17)

The two cases are similar, so we consider henceforth the asymptotic regime (2.14).

2.3. Reflection and transmission in the random medium. The propaga-
tion of waves in randomly layered media is studied in detail in [11]. We gather the
relevant results from there and characterize the transmission through the random
medium with mirror symmetry in the next lemma, proved in Appendix A.2.

Lemma 2.2. We have(
â(ω,−d/2)

b̂(ω,−L)

)
= S−(ω)

(
â(ω,−L)

b̂(ω,−d/2)

)
,

(
â(ω,L)

b̂(ω, d/2)

)
= S+(ω)

(
â(ω, d/2)

b̂(ω,L)

)
,

(2.18)
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where S− and S+ are the scattering matrices of the first and second random regions
[−L,−d/2] and [d/2, L], respectively:

S−(ω) =

(
T−(ω) R̃−(ω)
R−(ω) T−(ω)

)
, S+(ω) =

(
T+(ω) R̃+(ω)
R+(ω) T+(ω)

)
. (2.19)

Due to the symmetry of the random medium, the transmission and reflection coeffi-
cients in these matrices satisfy

T−(ω) = T+(ω), R−(ω) = R̃+(ω), R̃−(ω) = R+(ω). (2.20)

For quantifying the net mean intensity transmitted through the medium we only
need the expressions of the statistical moments of the square modulus of the transmis-
sion coefficient of one random section. The moments of T+ are studied in [11, Section

7.1.5] and the moments of R+ and R̃+ are in [11, Section 9.2.1], in the so-called
strongly heterogeneous white-noise regime defined by the scaling relations

ℓc ≪ λ ≪ L, Var(µ) = O(1), (2.21)

where ℓc is the correlation length of the random fluctuations µ of the medium and
λ = 2πco/ω is the wavelength. If in addition we have Var(µ)ℓcL/λ

2 = O(1), then the
effect of the random medium on the transmittivity is of order one. The expressions
of the moments of T+ are

E
[
|T+(ω)|2n

]
= exp

(
− L

4Lloc(ω)

)∫ ∞

0

e−Ls2/Lloc(ω) 2πs sinh(πs)

cosh2(πs)
ϕn(s)ds, (2.22)

for any positive integer n. Here E is the expectation with respect to the law of the
process µ, the functions ϕn are defined by

ϕ1(s) = 1, ϕn(s) =

n−1∏
j=1

s2 + (j − 1
2 )

2

j2
, n ≥ 2, (2.23)

and Lloc is the localization length of the random medium, which depends on the
frequency ω and the statistics of µ:

1

Lloc(ω)
=

ω2

4c20

∫
R
E[µ(0)µ(z)]dz. (2.24)

Note that 1/Lloc is of the order of Var(µ)ℓc/λ
2. If the wave travels deep in the medium

i.e., if L ≫ Lloc, then the moment formula (2.22) simplifies to

E
[
|T+(ω)|2n

]
≃ π5/2

2[L/Lloc(ω)]3/2
ϕn(0) exp

[
− L

4Lloc(ω)

]
. (2.25)

It is shown in [11, Section 7.3] that the moment formulas (2.22) also hold in
the asymptotic regime where the correlation length of the medium is similar to the
wavelength and smaller than the propagation distance, and the medium fluctuations
have small relative amplitude,

ℓc ∼ λ ≪ L, Var(µ) ≪ 1. (2.26)
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−L L z−d
2

d
2

Random section Random section
�̂
b(ω,−L) = R(ω)

-â(ω,−L) = 1

�

â(ω,L) = T (ω)-

b̂(ω,L) = 0

Fig. 2.1. Schematic of transmission and reflection in the random medium with mirror symmetry
about the thin barrier located at z ∈ (−d/2, d/2).

In this so-called weakly heterogeneous regime, the effect of the random medium fluctu-
ations on the transmittivity is of order one when Var(µ)ℓcL/λ

2 = O(1). The moments
of T+ are given by (2.22) with the localization length

1

Lloc(ω)
=

ω2

4c20

∫
R
E[µ(0)µ(z)] cos

(2ωz
c0

)
dz.

This is slightly different from the expression (2.24) of Lloc in the strongly heteroge-
neous white-noise regime (2.21).

2.4. Transmission enhancement. We are interested in the transmission of
the wave field through the medium, illustrated schematically in Fig. 2.1. The result
is stated in the next theorem, proved in Appendix A.3. In light of Lemma 2.2, we
simplify the notation in its statement using

T (ω) = T+(ω) = T−(ω), R(ω) = R+(ω) = R̃−(ω). (2.27)

Theorem 1. The transmission coefficient of the system is

T (ω) = T 2(ω)T1(ω)[1−R(ω)]−1
[
1−

(
2R1(ω)− 1

)
R(ω)

]−1
, (2.28)

and the expression of the mean transmitted intensity is

E
[∣∣T (ω)

∣∣2] = ∞∑
k=0

τk(ω)E
[
|T (ω)|4

(
1− |T (ω)|2

)k]
, (2.29)

where the moments of T are given in equation (2.22) and

τk(ω) =
1

4

∣∣∣1− (2R1(ω)− 1)
k+1
∣∣∣2 . (2.30)

Note that the coefficients (2.30) satisfy τk ≤ 1, because according to equation
(2.15),

|2R1(ω)− 1| =
∣∣∣∣q(ω)− i

q(ω) + i

∣∣∣∣ = 1. (2.31)

Using this inequality in equation (2.29), we deduce that∗

E
[∣∣T (ω)

∣∣2] ≤ E

[
|T (ω)|4

∞∑
k=0

(
1− |T (ω)|2

)k]
= E

[
|T (ω)|2

]
. (2.32)

∗We can exchange the expectation with the sum because the series is uniformly convergent.
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Thus, no matter how weak or strong the barrier is, E[|T |2] cannot exceed the mean in-
tensity transmitted over half the distance, through one region of the random medium.

We analyze next the transmitted intensity in various scenarios. There are two
extreme cases:

• The first extreme case is not interesting because it assumes no random fluctua-
tions. We have T = 1 and the transmitted intensity is deterministic and equal to the
squared modulus of the transmission coefficient of the barrier∣∣T (ω)

∣∣2 (2.29)
= τ0(ω)

(2.30)
=

∣∣1−R1(ω)
∣∣2 (2.15)

=
∣∣T1(ω)

∣∣2. (2.33)

• The second extreme case assumes no barrier i.e., T1 = 1 and R1 = 0. Then,
the coefficients (2.30) satisfy τk = 0 for odd k and τk = 1 for even k, and the mean
transmitted intensity is, from (2.29),

E
[∣∣T (ω)

∣∣2] = E

[
|T (ω)|4

∞∑
k=0

(
1− |T (ω)|2

)2k]
= E

[
|T (ω)|2

2− |T (ω)|2

]
. (2.34)

If in addition the random sections are strongly scattering, i.e. L is larger than Lloc

so the approximation (2.25) holds, then we have

E
[∣∣T (ω)

∣∣2] (2.34)
=

∞∑
k=1

2−kE
[
|T (ω)|2k

] (2.25)
≃ CE

[
|T (ω)|2

]
, (2.35)

where

C =

∞∑
k=1

2−kϕk(0) ≈ 0.59. (2.36)

The result (2.34) says that, as expected from the estimate (2.32), the mean transmit-
ted intensity through the symmetric random medium occupying the interval [−L,L]
is less than the intensity transmitted through the single region z ∈ [0, L]. However,
the symmetry helps, because if the two random regions were independent, the mean
transmitted intensity would be (see Appendix A.4)

E
[∣∣T (ω)

∣∣2] = ∞∑
k=0

{
E
[
|T (ω)|2

(
1− |T (ω)|2

)k]}2

. (2.37)

This is smaller than (2.34), as illustrated in Fig. 2.2.
Physically, we can interpret the enhanced transmission due to symmetry as fol-

lows: It is known that the distribution of the random transmittivity has a small
component close to one, that actually gives the value of the mean transmittivity [11,
Section 7.1.6]. The medium configurations that give transmittivity close to one are
called open channels in the physics literature [10, 1]. Efficient transmission through
two independent media of length L requires the lucky situation where both media are
open channels. For the symmetric case, this requires only one medium of length L to
be an open channel as the symmetric medium is then automatically an open channel.

Now we demonstrate the transmission enhancement in the presence of the barrier:

• First, we can see from equation (2.29) that if the random sections are weakly
scattering, i.e. L/Lloc ≪ 1, then E[|R|2] = 1 − E[|T |2] ≪ 1 and we can approximate

7



Fig. 2.2. Mean transmitted intensity E[|T |2] of the system as a function of the strength L/Lloc

of the randomly scattering medium in the absence of the barrier. Left: The black solid line is
the result (2.34) for symmetric media and the red dashed line is the result (2.37) for independent
media. Right: Ratio of the mean transmission of independent media and the mean transmission of
symmetric media.

the mean transmitted intensity by

E[|T (ω)|2] = τ0(ω)E[|T (ω)|4] + τ1(ω)E
[
[|T (ω)|4|R(ω)|2

]
+ o

(
E[|R(ω)|2]

)
= τ0(ω) + (τ1(ω)− 2τ0(ω))E[|R(ω)|2] + o

(
E[|R(ω)|2]

)
.

Equation (2.30) gives

τ0(ω) = |1−R1(ω)|2
(2.15)
= |T1(ω)|2

τ1(ω) = 4|R1(ω)|2 |1−R1(ω)|2 = 4|T1(ω)|2(1− |T1(ω)|2),

so to leading order in the reflection coefficient we have

E[|T (ω)|2] ≈ |T1(ω)|2
{
1 + 2

(
1− 2|T1(ω)|2

)
E[|R(ω)|2]

}
. (2.38)

This is larger than the transmission intensity of the barrier |T1(ω)|2, as long as the
barrier is reflecting enough i.e., for |T1(ω)| < 1/

√
2.

• If the random sections are more scattering, i.e. L ≳ Lloc , then we must consider
the series in (2.29). We compare the result in Fig. 2.3 with the mean intensity
calculated in the absence of symmetry i.e., for two independent random media to the
left and right of the barrier. The expression of the latter is

E
[
|T (ω)|2

]
= |T1(ω)|2

∞∑
k,k′=0

Ck,k′(ω)E
[
|T (ω)|2(1− |T (ω)|2)k

]
×E
[
|T (ω)|2(1− |T (ω)|2)k

′]
, (2.39)

with

Ck,k′(ω) =

∣∣∣∣∣∣
k+k′∑

j=max(k,k′)

j!R2j−k−k′

1 (ω)[1− 2R1(ω)]
k+k′−j

(k + k′ − j)!(j − k)!(j − k′)!

∣∣∣∣∣∣
2

.

Its derivation is given in Appendix A.4.
Again, the transmission is enhanced by symmetry, and this is even more pro-

nounced if the barrier is more reflecting, as shown in Fig. 2.4. See also the next case.

8



Fig. 2.3. Left: Mean transmission E[|T |2] of the system as a function of the strength L/Lloc

of the randomly scattering medium; the black solid line corresponds to the symmetric media and the
red dashed line corresponds to the independent media. Right: the mean transmission E[|T |2] of one
random section (dashed) and the transmission |T1|2 of the barrier (dot-dashed). Here |T1|2 = 0.4.

Fig. 2.4. Same as in Figure 2.3 but but for a more reflecting barrier with |T1|2 = 0.1.

• If the barrier is strongly reflecting, i.e. |T1| ≪ 1, which is equivalent to having
q ≫ 1, we can use the identity

2R1(ω)− 1
(2.15)
=

q(ω)− i

q(ω) + i
= 1− 2T1(ω),

in equation (2.30) to obtain

τk(ω) = (k + 1)2|T1(ω)|2 + o
(
|T1(ω)|2

)
, k ≥ 0.

Substituting this into the expression (2.29) of the mean transmitted intensity we have

E
[
|T (ω)|2

]
= |T1(ω)|2E

[
|T (ω)|4

∞∑
k=0

(k + 1)2
(
1− |T (ω)|2

)k]
. (2.40)

This expression can be simplified using the series

∞∑
k=0

(1 + k)2xk =
1 + x

(1− x)3
, ∀x ∈ (0, 1),

and we obtain that

E
[
|T (ω)|2

]
= |T1(ω)|2

{
2E
[
|T (ω)|−2

]
− 1
}
+ o

(
|T1(ω)|2

)
. (2.41)

9



-

6

−X
2

X
2

−L L z
−d

2
d
2

x

Random section Random section�̂
b(ω,−L)

-â(ω,−L)

�

â(ω,L)-

b̂(ω,L) = 0

Fig. 3.1. Waveguide occupying the domain Ω = (−X/2, X/2)×R filled at |z| ∈ (d/2, L) with a
random medium with mirror symmetry about the thin barrier located at |z| < d/2.

By solving the Kolmogorov equation ∂LU = L−1
loc

(
2U−1

)
satisfied by U(L) = E[|T |−2],

derived using the expression of the infinitesimal generator of |T |2 given in [11, Propo-
sition 7.3], we get that

2E
[
|T (ω)|−2

]
− 1 = exp[2L/Lloc(ω)]. (2.42)

This result and equation (2.41) show that the transmission enhancement by the ran-
dom medium can be very large when the barrier is reflecting, as seen in Fig. 2.4.

3. Enhanced transmission in random waveguides. In this section we study
wave transmission in random waveguides. To simplify the analysis, we consider two-
dimensional waveguides with straight, sound soft boundary, as described in section
3.1. The mathematical model is the scalar wave equation for the pressure field. The
decomposition of the wave into modes is in section 3.2. The interaction of these
modes with the reflecting barrier is in section 3.3. The transmission and reflection of
the modes through the random sections is described in section 3.4. The transmission
through the whole system is analyzed in section 3.5. We use the results in section 3.6
to quantify the transmission enhancement induced by symmetry, in the case of weak
random scattering.

3.1. Setup. Consider a waveguide occupying the domain Ω = (−X/2, X/2)×R
and introduce the system of coordinates x = (x, z), with x ∈ (−X/2, X/2) and z ∈ R.
Assume, as illustrated in Fig. 3.1, that the waveguide contains a thin reflecting barrier
at |z| < d/2, lying between two random sections at |z| ∈ (d/2, L), which are mirror
symmetric with respect to z = 0.

The wave at frequency ω is modeled by the Fourier transform p̂ of the pressure,
the solution of the Helmholtz equation[

ω2

c2(x, z)
+ ∆

]
p̂(ω, x, z) = 0, (x, z) ∈ Ω, (3.1)

with Dirichlet boundary condition at the sound soft boundary x = ±X/2,

p̂(ω,±X/2, z) = 0, z ∈ R, (3.2)

and outgoing boundary condition at z → +∞. The medium that fills the waveguide
is heterogeneous, with wave speed c of the form

c−2(x, z) =


c−2
0 if |z| > L,
c−2
1 if |z| < d/2,
c−2
0 [1 + µ(x, |z|)] if d/2 ≤ |z| ≤ L.

(3.3)

10



Here c0 and c1 are constants satisfying c1 < c0, and µ is a zero mean, mixing random
process, with the uniform bound |µ| < 1.

The excitation is defined by a right going wave impinging on the random medium
at z = −L and our goal is to quantify the transmitted wave at z = L.

3.2. Mode decomposition outside the barrier. We are interested in the
case of small standard deviation of the fluctuations µ of c−2, so we define the wave
decomposition at |z| > d/2 in the reference medium with wave speed c0.

The decomposition uses the spectrum of the self-adjoint, negative definite oper-
ator ∂2

x with Dirichlet boundary conditions at x = ±X/2. The eigenvalues are given
by −λj , where λj = (jπ/X)2 and the eigenfunctions are φj(x) =

√
2/X sin(jπx/X),

for j ≥ 1. These form an orthonormal basis of L2(−X/2, X/2).
Let k(ω) = ω/c0 be the wavenumber and define the natural number

N(ω) = ⌊k(ω)X/π⌋, (3.4)

such that

λN(ω) ≤ k2(ω) < λN(ω)+1. (3.5)

Here ⌊·⌋ denotes the integer part. The wave decomposition is

p̂(ω, x, z) =

∞∑
j=1

φj(x)p̂j(ω, z), (3.6)

where p̂j are one-dimensional, time-harmonic waves, called waveguide modes. The
first N of them are propagating waves, with wavenumbers

βj(ω) =
√
k2(ω)− λj , if j ≤ N(ω), (3.7)

and the remaining ones are evanescent waves. These decay exponentially in |z| on the
length scale β−1

j , where

βj(ω) =
√
λj − k2(ω), if j > N(ω). (3.8)

Note that if k2 = λN , the wave p̂N does not propagate. The analysis of waveguides
with such standing modes is more involved than needed in this paper, so we assume
that βN > 0.

The propagating waves can be decomposed further into right (forward) and left
(backward) going modes, using the following equations [11, Chapter 20]

p̂j(ω, z) =
1√
βj(ω)

[
âj(ω, z)e

iβj(ω)z + b̂j(ω, z)e
−iβj(ω)z

]
, (3.9)

∂z p̂j(ω, z) = i
√
βj(ω)

[
âj(ω, z)e

iβj(ω)z − b̂j(ω, z)e
−iβj(ω)z

]
. (3.10)

The complex valued amplitudes of these modes are gathered in the vector fields

â(ω, z) =

 â1(ω, z)
...

âN(ω)(ω, z)

 , b̂(ω, z) =

 b̂1(ω, z)
...

b̂N(ω)(ω, z)

 , (3.11)
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and they satisfy the coupled system of equations

∂z

(
â(ω, z)

b̂(ω, z)

)
=

(
H(ω, z) K(ω, z)

K(ω, z) H(ω, z)

)(
â(ω, z)

b̂(ω, z)

)
, (3.12)

derived in [11, Chapter 20]. The derivation involves substituting (3.6), (3.9-3.10)
into (3.1), using the orthonormality of the eigenfunctions and also expressing the
evanescent modes in terms of the propagating ones [11, Section 20.2.3]. The matrices
H,K ∈ CN×N are given explicitly in [11, Section 20.2.4]. They depend on the mode
wavenumbers (3.7-3.8) and the random process ν = (νj,l)j,l≥1, with components

νj,l(|z|) =
∫ X/2

−X/2

dxφj(x)φl(x)µ(x, |z|), j, l ≥ 1. (3.13)

In the absence of fluctuations, the matrices H and K would be zero i.e., the mode
amplitudes would be decoupled and constant. This is the case at |z| > L, where the
wave speed equals the constant co.

The system of ODEs (3.12) is complemented with the excitation â(ω,−L) that
specifies the incoming wave impinging on the random medium and the outgoing
boundary condition b̂(ω,L) = 0. Our goal is to characterize the transmitted mode
amplitudes â(ω,L). This requires the analysis of the transmission and reflection of
the modes at the thin barrier, described next.

3.3. Transmission and reflection at the barrier. The mode decomposition
inside the barrier is similar to that in equations (3.6-3.10), except that the wave speed
c0 is replaced by c1. Since we assume that c1 < c0, we deduce from equation (3.4)
and its analogue inside the barrier that there are

N1(ω) > N(ω) (3.14)

propagating modes at |z| < d/2. The modes are uncoupled, with constant amplitudes,
because the wave speed is constant inside the barrier.

The x−profiles of the modes inside and outside the barrier are given by the same
eigenfunctions φj for all z ∈ R, so to analyze the wave reflection and transmission at
the barrier, it is sufficient to match {p̂j , ∂z p̂j}Nj=1 at z = ±d/2. For j ≥ N + 1 the
modes impinging on the barrier are evanescent and their amplitude is negligible for
large enough L.

The next lemma describes the propagator of the barrier. Its proof follows from
the continuity of the first N modes, using a calculation that is similar to the proof of
Lemma 2.1 in Appendix A.1.

Lemma 1. We have(
â(ω, d/2)

b̂(ω, d/2)

)
= P1(ω)

(
â(ω,−d/2)

b̂(ω,−d/2)

)
, P1(ω) =

(
P

(a)
1 (ω) P

(b)
1 (ω)

P
(b)
1 (ω) P

(a)
1 (ω)

)
, (3.15)

where P1 is the 2N × 2N propagator matrix of the barrier, with diagonal blocks

P
(a)
1 (ω) = diag (αj(ω))

N(ω)
j=1 and P

(b)
1 (ω) = diag (γj(ω))

N(ω)
j=1 . (3.16)
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The entries of these blocks are

αj(ω) =

[
cos
(
β1,j(ω)d

)
+

i

2

(
β1,j(ω)

βj(ω)
+

βj(ω)

β1,j(ω)

)
sin
(
β1,j(ω)d

)]
, (3.17)

γj(ω) =
i

2

(
βj(ω)

β1,j(ω)
− β1,j(ω)

βj(ω)

)
sin
(
β1,j(ω)d

)
, (3.18)

and

β1,j(ω) =

√(
ω

c1

)2

− λj , j = 1, . . . , N(ω), (3.19)

are the mode wavenumbers inside the barrier.

As we have done in section 2.2, we derive from the propagator P1 the scatter-
ing matrix S1 ∈ C2N×2N of the barrier. This relates the amplitudes of the modes
impinging on the barrier to those leaving the barrier,(

â(ω, d/2)

b̂(ω,−d/2)

)
= S1(ω)

(
â(ω,−d/2)

b̂(ω, d/2)

)
, (3.20)

and has the block structure

S1(ω) =

(
T1(ω) R1(ω)
R1(ω) T1(ω),

)
(3.21)

with diagonal N ×N blocks

T1(ω) = diag
(
1/αj(ω)

)N(ω)

j=1
and R1(ω) = diag

(
−γj(ω)/αj(ω)

)N(ω)

j=1
, (3.22)

containing the mode-dependent transmission and reflection coefficients of the barrier.
Similar to the layered case, we are interested in the asymptotic regime

k(ω)d → 0,
c0
c1

→ ∞, such that

(
c0
c1

)2

k(ω)d = O(1). (3.23)

In this regime, we deduce from the expressions (3.17-3.18) of the coefficients that
define the propagator that

αj(ω) ≈ 1 + iqj(ω) and γj(ω) ≈ −iqj(ω), (3.24)

where

qj(ω) =
β2
1,j(ω)d

2βj(ω)

(3.23)
= O(1), j = 1, . . . , N. (3.25)

The asymptotic approximation of the transmission and reflection coefficients is

T1,j(ω)
(3.22)
=

1

αj(ω)

(3.24)
≈ 1

1− iqj(ω)
, (3.26)

R1,j(ω)
(3.22)
=

−γj(ω)

αj(ω)

(3.24)
≈ iqj(ω)

1− iqj(ω)
, j = 1, . . . , N(ω). (3.27)
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3.4. Transmission and reflection in the random sections. We collect here
the relevant results from [11, Chapter 20] and [12] on wave propagation in random
waveguides. As stated at the beginning of section 3.2, we are interested in small
random fluctuations µ of c−2. These have a nontrivial effect at a long distance L
of propagation with respect to the correlation length ℓc of the fluctuations and the
wavelength λ. Thus, we consider the asymptotic regime

ℓc ∼ λ ∼ X ≪ L, Var(µ) ≪ 1, (3.28)

where we deduce from equation (3.4) that the number N of propagative modes is of
order one. The scattering effect of the randommedium on the transmittivity is of order
one when Var(µ)ℓcL/λ

2 = O(1) and it is smaller than one when Var(µ)ℓcL ≪ λ2. The
latter defines what we call the weak scattering regime and is of particular interest in
this paper because it allows the explicit quantification of the mean transmittivity of
the waveguide (see section 3.6).

The propagator matrix P− for the left random section is the solution of

∂zP−(ω, z) =

(
H(ω, z) K(ω, z)

K(ω, z) H(ω, z)

)
P−(ω, z), z ∈ (−L,−d/2), (3.29)

P−(ω,−d/2) = I2N (3.30)

where I2N denotes the 2N × 2N identity matrix. Given the algebraic form of the
coupling matrix in the right hand side of (3.29), one can deduce that the propagator
has the block form [11, Section 20.2.5]

P−(ω, z) =

(
P

(a)
− (ω, z) P

(b)
− (ω, z)

P
(b)
− (ω, z) P

(a)
− (ω, z)

)
, (3.31)

with full blocks P
(a)
− ,P

(b)
− ∈ CN×N that capture mode coupling induced by scattering

in the random medium. We are interested in the propagator evaluated at z = −L,
which defines the N ×N transmission and reflection matrices of the left random sec-
tion. These matrices are the analogues of the scalar valued transmission and reflection
coefficients in layered media, deduced from the propagator as explained in Appendix
A.2. We have (

I
R−(ω)

)
= P−(ω,−L)

(
T−(ω)

0

)
, (3.32)

which can be understood from the waveguide analogue of Fig. A.3 and(
0

T̃−(ω)

)
= P−(ω,−L)

(
R̃−(ω)

I

)
, (3.33)

which corresponds to the analogue of Fig. A.4. Here 0 and I are the N ×N zero and
identity matrices, respectively.

Similarly, the propagator P+ for the right random section is the solution of

∂zP+(ω, z) =

(
H(ω, z) K(ω, z)

K(ω, z) H(ω, z)

)
P+(ω, z), z ∈ (d/2, L), (3.34)

P+(ω, d/2) = I2N , (3.35)
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and its algebraic structure is like in equation (3.31), with N×N blocks P
(a)
+ and P

(b)
+ .

This propagator defines the N ×N transmission and reflection matrices of the right
random section according to equations(

T+(ω)
0

)
= P+(ω,L)

(
I

R+(ω)

)
, (3.36)

and (
R̃+(ω)

I

)
= P+(ω,L)

(
0

T̃+(ω)

)
. (3.37)

These can be understood from the waveguide analogues of Fig. A.1-A.2.

Note the symmetry of the definitions (3.29-3.30) and (3.34-3.35). Both propaga-
tors start as the identity I2N at z = ±d/2 and define the transmission and reflection
matrices at z = ±L. The expression of the coupling matrices H and K given in [11,
Section 20.2.4] and the symmetry of the fluctuations about z = 0, give that

H(ω, z) = −H(ω,−z) and K(ω, z) = −K(ω,−z). (3.38)

This implies that

P−(ω,−L) = P+(ω,L), (3.39)

and solving equations (3.32-3.33) and (3.36-3.37), we get: The transmission matrices
satisfy

T+(ω) = T̃−(ω) = P
(a)
+ (ω,L)−P

(b)
+ (ω,L)

[
P

(a)
+ (ω,L)

]−1

P
(b)
+ (ω,L),

T̃+(ω) = T−(ω) =
[
P

(a)
+ (ω,L)

]−1

, (3.40)

and the reflection matrices satisfy

R+(ω) = R̃−(ω) = −
[
P

(a)
+ (ω,L)

]−1

P
(b)
+ (ω,L),

R̃+(ω) = R−(ω) = P
(b)
+ (ω,L)

[
P

(a)
+ (ω,L)

]−1

. (3.41)

In addition, we have the energy conservation relation [11, Eq. (20.41)]

R⋆
+(ω)R+(ω) +T⋆

+(ω)T+(ω) = I, (3.42)

and the reciprocity relations [12, Page 1582]

RT
+(ω) ≈ R+(ω) and R̃T

+(ω) ≈ R̃+(ω). (3.43)

Here the index T stands for transpose, the star ⋆ denotes the complex conjugate
and transpose and the approximation in (3.43) means that reciprocity holds in the
asymptotic regime (3.28).
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3.5. Transmission through the system. The propagator matrix P for the
waveguide is defined by the equation(

â(ω,L)

b̂(ω,L)

)
= P(ω)

(
â(ω,−L)

b̂(ω,−L)

)
. (3.44)

From the definitions (3.15), (3.29) and (3.34) of the propagators of the barrier and
the random sections, and the identity (3.39), we deduce that

P(ω) = P+(ω,L)P1(ω)
[
P+(ω,L)

]−1

. (3.45)

Recalling that b̂(ω,L) = 0 and that the excitation specifies the incoming mode am-
plitudes stored in â(ω,−L), we can define the transmission and reflection matrices
T ,R ∈ CN×N of the system by the following equation(

I
R(ω)

)
= P(ω)

(
T (ω)
0

)
. (3.46)

The expression of the transmission matrix T is given in the next theorem, proved in
Appendix B.1.

Theorem 2. The N×N transmission matrix for the waveguide has the expression

T (ω) ≈ T+(ω)
[
T−1

1 (ω)−R+(ω)T
−1
1 (ω)R1(ω)−T−1

1 (ω)R1(ω)R+(ω) (3.47)

−R+(ω)T
−1
1 (ω)R+(ω)

]−1

TT
+(ω), (3.48)

where the approximation holds in the regime (3.28).

The transmissivity of the system is

Tr [T ⋆(ω)T (ω)] =

N(ω)∑
j,l=1

|Tjl(ω)|2 , (3.49)

where “Tr” denotes the trace. In the next section we quantify the mean of (3.49) in
the asymptotic regime (3.28).

3.6. Enhanced transmission. To quantify the effect of symmetry on the wave
transmission through the waveguide, we derive next the expression of the mean trans-
missivity. This requires the statistical moments of the products of the entries of the
transmission and reflection matrices T+ and R+. These moments are characterized
in the regime (3.28) in [12, Propositions 3.1, 4.2]. Their expression is very compli-
cated, so we do not repeat it here. However, the result simplifies in the case of weak
scattering in the random medium:

Theorem 3. When the random medium is weakly scattering i.e., in the asymp-
totic regime (3.28) with Var(µ)ℓcL ≪ λ2, the mean transmissivity is approximated
by

E

N(ω)∑
j,l=1

|Tjl(ω)|2
 ≈ T(ω) =

N(ω)∑
l=1

∣∣T1,l(ω)
∣∣2 + N(ω)∑

m=1

Mlm(ω)Blm(ω)

 , (3.50)
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where we introduced the moments

Mlm(ω) = E[|R+,lm(ω)|2], (3.51)

and the factors

Blm(ω) = |T1,l(ω) + T1,m(ω)− 2T1,l(ω)T1,m(ω)|2 − |T1,l(ω)|2 − |T1,m(ω)|2, (3.52)

that depend only on the barrier.

The proof of this theorem is in Appendix B.2. We conclude from its statement
that if there is no random medium, the transmissivity equals that of the barrier,
denoted by

T0(ω) =

N(ω)∑
l=1

∣∣T1,l(ω)
∣∣2. (3.53)

If the random medium is present, its effect on the mean transmissivity depends on the
strength of the barrier, which determines the sign of the factors (3.52). The moments
Mlm are positive by definition, so if the factors Blm are positive, we have transmission
enhancement induced by the symmetry of the random medium.

Let us write more explicitly equation (3.52),

Blm(ω) = 4|T1,l(ω)|2|T1,m(ω)|2 − 4|T1,m(ω)|2Re[T1,l(ω)]− 4|T1,l(ω)|2Re[T1,m(ω)]

+ 2Re[T1,m(ω)T1,l(ω)],

and observe from equation (3.26) that Re(T1,l) = |T1,l|2. This gives that

Blm(ω) = −4|T1,l(ω)|2|T1,m(ω)|2 + 2Re[T1,m(ω)T1,l(ω)]

(3.26)
=

−2[1− ql(ω)qm(ω)]

[1 + q2l (ω)][1 + q2m(ω)]
, l,m = 1, . . . , N(ω). (3.54)

Consequently, Blm < 0 if the barrier is weak i.e., the parameters {ql}Nl=1 are small,
and the random medium has a negative effect on the transmissitivity, because

T(ω)− T0(ω) < 0. (3.55)

However, if the barrier is strong enough to make the parameters {ql}Nl=1 larger than
1, the factors (3.54) are positive and we have transmission enhancement

T(ω)− T0(ω) ≈
N(ω)∑
l=1

N(ω)∑
m=1

Mlm(ω)Blm(ω) > 0. (3.56)

The enhancement is due to the symmetry of the random medium about the strong
barrier. Without the symmetry, the mean transmissivity is reduced, as stated in the
next proposition, proved in Appendix B.3.

Proposition 1. When the random medium is weakly scattering i.e., in the
asymptotic regime (3.28) with Var(µ)ℓcL ≪ λ2, and the random media in the left
and right sections of the waveguide are statistically independent, the mean transmis-
sivity of the system is approximated by

E

N(ω)∑
j,l=1

|Tjl(ω)|2
 ≈ T0(ω)− 2

N(ω)∑
l=1

N(ω)∑
m=1

Mlm(ω) |T1,l(ω)|2 |T1,m(ω)|2 , (3.57)

and is therefore smaller than the transmissivity T0(ω) of the barrier.
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4. Summary. We have introduced a detailed mathematical analysis of wave
transmission enhancement in random systems with symmetry about a reflecting bar-
rier. The analysis is motivated by recent experimental results reported in the physics
literature, which observe such enhancement in symmetric cavities and in diffusive
slabs. We consider acoustic waves for simplicity, although the methodology applies
to any linear waves. The main result is the quantification of the mean transmissiv-
ity of two random systems with a preferred direction of propagation: plane waves in
randomly layered media and waves in random waveguides. The first case is easier
to analyze and we consider both weak and strongly scattering random media. The
waveguide setting is significantly more complex, so we quantify the transmission en-
hancement only in the case of weakly scattering random media. The transmission
enhancement induced by symmetry is shown in both settings and it is much more
pronounced for large opacity of the barrier.
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Appendix A. Derivation of the results for randomly layered media. In
this appendix we prove the results stated in section 2. Since the frequency ω is fixed
in the proofs, we simplify the notation throughout the appendix, by dropping the
argument ω of the propagator and scattering matrices below.

A.1. Proof of Lemma 2.1. The statement of the lemma is derived from the
continuity of the Fourier coefficients of the pressure and velocity fields. The decom-
position of these fields is given in equations (2.7-2.8) outside the barrier and their
analogues inside the barrier. The medium inside the barrier is homogenenous, so
it follows from equation (2.1) that the right and left going mode amplitudes there,

denoted by â1 and b̂1, satisfy

∂zâ1(z) = ∂z b̂1(z) = 0, z ∈ (−d/2, d/2). (A.1)

When imposing the continuity of the wave field at z = −d/2, we obtain that(
â1
(
− d

2

)
e−iω d

2c1

b̂1
(
− d

2

)
eiω

d
2c1

)
=

(
r+ r−
r− r+

)(
â
(
− d

2

)
e−iω d

2c0

b̂
(
− d

2

)
eiω

d
2c0

)
, (A.2)

where

r± =
1

2

(√
ζ1
ζ0

−

√
ζ0
ζ1

)
. (A.3)

The continuity at z = d/2 gives(
â
(
d
2

)
eiω

d
2c0

b̂
(
d
2

)
e−iω d

2c0

)
=

(
r+ −r−
−r− r+

)(
â1
(
d
2

)
eiω

d
2c1

b̂1
(
d
2

)
e−iω d

2c1

)
, (A.4)
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Fig. A.1. Reflection and transmission coefficients R+ and T+ for the random section (d/2, L).

and from equation (A.1) we have

â1

(d
2

)
= â1

(
− d

2

)
, b̂1

(d
2

)
= b̂1

(
− d

2

)
. (A.5)

Combining these equations we obtain(
â
(
d
2

)
b̂
(
d
2

)) = P1

(
â
(
− d

2

)
b̂
(
− d

2

)) , (A.6)

where

P1 =

(
e−iω d

2c0 0

0 eiω
d

2c0

)(
r+ −r−
−r− r+

)(
eiω

d
c1 0

0 e−iω d
c1

)

×
(
r+ r−
r− r+

)(
e−iω d

2c0 0

0 eiω
d

2c0

)
. (A.7)

Multiplying the matrices in (A.7) we get the algebraic form (2.9) of P1, with

α =

[
(r2+ − r2−) cos

(ωd
c1

)
+ i(r2+ + r2−) sin

(ωd
c1

)]
e−iωd/c0 , (A.8)

γ = −2ir+r− sin
(ωd
c1

)
. (A.9)

Finally, definition (A.3) gives

r2+ − r2− = 1 and r+r− =
1

4

(
ζ1
ζ0

− ζ0
ζ1

)
, (A.10)

and the statement of Lemma 2.1 follows. □

A.2. Proof of Lemma 2.2. Consider first the random section [d/2, L] and
define the propagator P+ of the subsection [d/2, z] by(

â(z)

b̂(z)

)
= P+(z)

(
â
(
d
2

)
b̂
(
d
2

)) , z ∈
(d
2
, L
]
. (A.11)

It is shown in [11, Chapter 7 and Section 4.4.3] that

P+(z) =

(
α+(z) γ+(z)

γ+(z) α+(z)

)
, (A.12)
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Fig. A.2. Adjoint reflection and transmission coefficients R̃+ and T̃+ for z ∈ (d/2, L).

where α+ and γ+ satisfy the first order system

d

dz

(
α+(z)
γ+(z)

)
=

iω

2c0
µ(z)

(
1 −e−2iωz/c0

e2iωz/c0 −1

)(
α+(z)
γ+(z)

)
, (A.13)

at z ∈ (d/2, L), and the initial conditions

α+

(d
2

)
= 1, γ+

(d
2

)
= 0. (A.14)

This is illustrated schematically in Fig. A.1 and at z = L we have(
T+

0

)
= P+(L)

(
1
R+

)
, (A.15)

where T+ and R+ are the random transmission and reflection coefficients, defined by

T+ =
1

α+(L)
, R+ = − γ+(L)

α+(L)
. (A.16)

Since the matrix in equation (A.13) has trace zero, we have the conservation
relation [11, Section 7.1.1]

det [P+(L)] = |α+(L)|2 − |γ+(L)|2 = 1, (A.17)

which in light of definitions (A.16) is equivalent to |R+|2 + |T+|2 = 1. Because of this
relation, the inverse of the propagator is

P−1
+ (L) =

(
α+(L) −γ+(L)
−γ+(L) α+(L)

)
, (A.18)

and from (A.15) we obtain that(
1
R+

)
=

(
α+(L) −γ+(L)
−γ+(L) α+(L)

)(
T+

0

)
. (A.19)

Reordering these equations and defining

T̃+ = T+ =
1

α+(L)
, R̃+ =

γ+(L)

α+(L)
, (A.20)

we obtain the adjoint problem, illustrated schematically in Fig. A.2 ,(
R̃+

1

)
= P+(L)

(
0

T̃+(L)

)
. (A.21)
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Fig. A.3. Reflection and transmission coefficients R− and T− for random section (−L,−d/2).

Now we can obtain from equation (A.11) evaluated at z = L and the definitions
(A.16) and (A.20) of the transmission and reflection coefficients that(

â(L)

b̂
(
d
2

)) =

(
T+ R̃+

R+ T+

)
︸ ︷︷ ︸

S+

(
â
(
d
2

)
b̂(L)

)
, (A.22)

where S+ is the scattering matrix of the random section [d/2, L].
Similarly, the propagator matrix for the left random section satisfies(

â(z)

b̂(z)

)
= P−(z)

(
â
(
− d

2

)
b̂
(
− d

2

)) , z ∈
[
− L,−d

2

)
, (A.23)

where

P−(z) =

(
α−(z) γ−(z)

γ−(z) α−(z)

)
, (A.24)

and α− and β− satisfy

d

dz

(
α−(z)
γ−(z)

)
=

iω

2c0
µ(−z)

(
1 −e−2iωz/c0

e2iωz/c0 −1

)(
α−(z)
γ−(z)

)
, (A.25)

at z ∈ (−L,−d/2), and the initial conditions

α−

(
− d

2

)
= 1, γ−

(
− d

2

)
= 0. (A.26)

Note that due to the symmetry of the random medium,
(
α−(−z), γ−(−z)

)
satisfies

the same equation and initial condition as (α+(z), γ+(z)). Therefore,

α−(−L) = α+(L), γ−(−L) = γ+(L). (A.27)

The reflection and transmission through the left random section is illustrated
schematically in Figs. A.3-A.4 and the transmission and reflection coefficients are
defined by (

1
R−

)
= P−(−L)

(
T−
0

)
and

(
0

T̃−

)
= P−(−L)

(
R̃−
1

)
.

These equations and the relation (A.27) give

T− = T̃− =
1

α−(−L)
=

1

α+(L)

(A.16)
= T+,
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Fig. A.4. Adjoint reflection and transmission coefficients R̃− and T̃− for z ∈ (−L,−d/2).

and

R− =
γ−(−L)

α−(−L)
=

γ+(L)

α+(L)

(A.20)
= R̃+,

and

R̃− = − γ−(−L)

α−(−L)
= − γ+(L)

α+(L)

(A.16)
= R+,

as stated in the lemma. □

A.3. Proof of Theorem 1. Using the propagator matrices of the two random
regions and the barrier, described in Appendices A.1-A.2, we have(

â(L)

b̂(L)

)
= P+(L)P1P−(−L)

(
â(−L)

b̂(−L)

)
, (A.28)

To calculate the scattering matrix, we need a basic lemma.

Lemma 2. Consider a system consisting of two successive sectors: The left one
with propagator matrix Pl and the right one with propagator Pr,

Pl =

(
αl γl
γl αl

)
and Pr =

(
αr γr
γr αr

)
. (A.29)

The propagator matrix of the system is P = PrPl =

(
α γ
γ α

)
, where

α = αlαr + γlγr, γ = αlγr + γlαr. (A.30)

The scattering matrix is S =

(
T R̃
R T

)
, with entries

T =
1

α
= TlTr(1−RrR̃l)

−1, (A.31)

R = −γ

α
= Rl + T 2

l Rr(1−RrR̃l)
−1, (A.32)

R̃ =
γ

α
= R̃r + T 2

r R̃l(1−RrR̃l)
−1. (A.33)

Here Tj, Rj and R̃j are the transmission and reflection coefficients of the two sectors,
with j ∈ {l, r}.
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Proof: Equation (A.30) follows trivially from the multiplication of the matrices
(A.29). The expression of the transmission and reflection coefficients in terms of α
and β is as in equations (A.16) and (A.20). From definitions

Tj =
1

αj
, Rj = − γj

αj
, R̃j =

γj
αj

, j ∈ {l, r}, (A.34)

we get that the transmission coefficient satisfies

T =
1

α

(A.30)
=

1

αlαr

(
1 +

γl
αl

γr
αr

)−1
(A.34)
= TlTr

(
1−RlR̃r

)−1

.

For the reflection coefficient we have

R = −β

α

(A.30)
= − (αlγr + γlαr)

αlαr

(
1 +

γl
αl

γr
αr

)−1

(A.34)
=

(
|αl|2

αl
2 Rr +Rl

](
1− R̃lRr

)−1

(A.17)
=

[
(1 + |γl|2)

αl
2 Rr +Rl

](
1− R̃lRr

)−1

(A.34)
=

(
T 2
l Rr −RlR̃lRr +Rl

)(
1− R̃lRr

)−1

= T 2
l Rr

(
1− R̃lRr

)−1

+Rl.

The derivation of the expression of the adjoint reflection coefficient is similar

R̃ =
β

α

(A.30)
=

(αlγr + γlαr)

αlαr

(
1 +

γl
αl

γr
αr

)−1

(A.34)
=

[
R̃r +

(1 + |γr|2)
αr

2 R̃l

](
1− R̃lRr

)−1

(A.34)
=

(
R̃r + T 2

r R̃l − R̃rRrR̃l

)(
1− R̃lRr

)−1

= R̃r + T 2
r R̃l

(
1− R̃lRr

)−1

.

The proof of the lemma is complete. □
To derive the expression of the transmission coefficient stated in Theorem 1, we

apply Lemma 2 twice. The first time, we use the propagators Pl = P−(−L) and
Pr = P1 and obtain the transmission and reflection coefficients

T−,1
(A.31)
= T−T1(1−R1R̃−)

−1, (A.35)

R−,1
(A.32)
= R− + T 2

−R1(1−R1R̃−)
−1, (A.36)

R̃−,1
(A.33)
= R1 + T 2

1 R̃−(1−R1R̃−)
−1, (A.37)

with T− = T−(−L), R− = R−(−L), and R̃− = R̃−(−L). Here we used that R1 =

R̃1, according to equation (2.13). The second time we apply Lemma 2, we use the
propagators Pl = P−,b and Pr = P+(L). The transmission coefficient is

T (A.31)
= T−,1T+(1−R+R̃−,1)

−1

(A.35)
= T−T1T+

[
1−R1R̃− −R+R1(1−R1R̃−)−R+T

2
1 R̃−

]−1

, (A.38)
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with T+ = T+(L), R+ = R+(L), and R̃+ = R̃+(L). Now use the relations (2.27) in
this equation to obtain

T = T 2T1

[
1− 2RR1 + (R2

1 − T 2
1 )R

2
]−1

(A.39)

and deduce from equation (2.15) that

R2
1 − T 2

1 =
q2 + 1

(i+ q)2
= 2R1 − 1. (A.40)

The result (2.28) follows (A.39) and the identity

(1−R) [1− (2R1 − 1)R] = 1− 2RR1 + (2R1 − 1)R2.

We are interested in the mean transmitted intensity. To derive its expression, we
recall from [11, Section 7.1.1] that |R| < 1. Since R1 satisfies equation (2.31) and R1

satisfies equation (2.31), we can use the series expansions

(1−R)−1 =

∞∑
k=0

Rk and
[
1− (2R1 − 1)R

]−1
=

∞∑
k=0

(2R1 − 1)kRk,

and rewrite equation (2.28) as

E
[∣∣T ∣∣2] = |T1|2

∞∑
k1,k2,k3,k4=0

(2R1 − 1)k2
(
2R1 − 1

)k4E
[
|T |4Rk1+k2R

k3+k4
]
. (A.41)

It is shown in [11, Chapters 7 and 9] that

E
[
|T |2RjR

j′
]
= 0, if j ̸= j′,

so only the terms with k1 + k2 = k3 + k4 contribute in (A.41). Moreover, since
|R|2 = 1− |T |2, we obtain that

E
[∣∣T ∣∣2] = |T1|2

∞∑
k=0

k∑
k2,k4=0

(2R1 − 1)k2
(
2R1 − 1

)k4E
[
|T |4

(
1− |T |2

)k]
. (A.42)

Now, use the notation (2.30) and observe that

|T1|2
k∑

k2,k4=0

(2R1 − 1)k2
(
2R1 − 1

)k4
=

∣∣∣∣∣T1

k∑
k2=0

(2R1 − 1)k2

∣∣∣∣∣
2

=

∣∣∣∣ T1

2(1−R1)

[
1− (2R1 − 1)k+1

]∣∣∣∣2 ,
where according to equation (2.15) we have∣∣∣∣ T1

2(1−R1)

∣∣∣∣2 =
1

4
.

The result (2.29) follows, once we recall the definition (2.30) of τk. □
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A.4. Transmission through two independent random sections. To derive
the mean transmitted intensity in the absence of symmetry, we begin with the general
formula (A.38), where now the transmission and reflection coefficients in the two
random sections are statistically independent. Using equation (A.40) in (A.38) and
writing the inverse of the curly bracket as power series, we get

E
[
|T |2

]
= |T1|2

∞∑
j,l=0

E
[
|T−|2|T+|2

[
R1(R+ + R̃−) + (1− 2R1)R+R̃−

]j
×
[
R1(R+ + R̃−) + (1− 2R1)R+R̃−

]l]
.

Next, we expand the j and l powers using the binomial theorem and use the indepen-
dence of (T−, R̃−) and (T+, R̃+). Using also that E[|T+|2Rn

+R+
m
] = 0 unless m = n,

and the same for (T−, R̃−), we get the result (2.39).

Appendix B. Derivation of the results for random waveguides. In this
appendix we prove the results stated in section 3. The frequency ω is fixed, so we
simplify notation as in the previous appendix, by droping the ω argument.

B.1. Proof of Theorem 2. We obtain from equations (3.40-3.41) that

P
(a)
+ = T+

(
I−R+R+

)−1
and P

(b)
+ = −T+

(
I−R+R+

)−1
R+. (B.1)

Moreover, standard formulas for block matrix inversion give that

P−1
− (−L)

(3.39)
= P−1

+ (L) =

 T−1
+ R+T

−1
+

R+T
−1
+ T−1

+

 . (B.2)

Then, using this result in (3.45) and recalling the block algebraic structure of P+ and
P1, we get that the propagator of the system has the form

P =

(
P(a) P(b)

P(b) P(a)

)
. (B.3)

We are interested in the first block P(a), which according to definition (3.46) defines
the transmission matrix

T =
[
P(a)

]−1

. (B.4)

The expression of this block follows by carrying out the multiplication in (3.45),

P(a) = T+

(
I−R+R+

)−1
(
P

(a)
1 −R+P

(b)
1 +P

(b)
1 R+ −R+P

(a)
1 R+

) (
T+

)−1
.

But we also have from the relations (3.42-3.43) that

I−R+R+ ≈ I−R⋆
+R+ = T⋆

+T+,

which simplifies the factor

T+

(
I−R+R+

)−1 ≈ T+

(
T⋆

+T+

)−1
=
(
T⋆

+

)−1
. (B.5)

The statement of the theorem follows from (B.4) and the relations

P
(a)
1 = T−1

1 , P
(b)
1 = −P

(b)
1 = −T−1

1 R1,

deduced from equations (3.16) and (3.26-3.27). □
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B.2. Proof of Theorem 3. Weak scattering in the random medium means that
the norm of the reflection matrix R+ is small. Thus, we can use Neumann series to
approximate the square bracket in (3.48) by

Q =
[
T−1

1 −R+T
−1
1 R1 −T−1

1 R1R+ −R+T
−1
1 R+

]−1

=
[
I−T1R+R1T

−1
1 −R1R+ −T1R+T

−1
1 R+

]−1

T1

≈ T1 +T1R+R1 +R1R+T1, (B.6)

where in the second equality we used that R1 and T−1
1 commute, because they are

diagonal. This approximation is valid for weak scattering and neglects terms that
contain a product involving two (or more) reflection matrices R+. Substituting (B.6)
into (3.48), we get that

T ≈ T+ (T1 +T1R+R1 +R1R+T1)T
T
+, (B.7)

and the mean transmittivity is, from (3.49),

E

 N∑
j,l=1

|Tjl|2
 ≈ Tr

{
E
[(
I−R⋆

+R+

)
(T1 +T1R+R1 +R1R+T1)

⋆

×
(
I−R⋆

+R+

)
(T1 +T1R+R1 +R1R+T1)

]}
. (B.8)

Here we used the energy conservation relation (3.42) and the commutation property
of the trace

Tr
[
T+ATT

+

]
= Tr

[
TT

+T+A
] (3.42)

= Tr
[(
I−RT

+R+

)
A
]
, ∀A ∈ CN×N .

The approximation (B.8) is consistent with (B.6) because, if n ̸= n′, n, n′ ≥ 0, then

E

 n∏
k=1

R+,jklk

n′∏
k′=1

R+,j′
k′ l

′
k′

 = 0,

for any jk, lk, j
′
k′ , l′k′ ∈ {1, . . . , N}, as shown by the analysis of the statistical moments

of the transmission and reflection matrices of the random medium given in [12]. This
is why we could neglect the quadratic terms in (B.6). Only the terms that do not
involve R+ or that involve two reflection matrices, with one of them being complex-
conjugated, contribute to the approximation of (B.8). Thus, the mean transmissivity
is approximated by

T =Tr
{
E
[(
I−R⋆

+R+

)
T⋆

1T1 −T⋆
1R

⋆
+R+T1 +R⋆

1R
⋆
+T

⋆
1T1R+R1

+R⋆
1R

⋆
+T

⋆
1R1R+T1 +T⋆

1R
⋆
+R

⋆
1T1R+R1 +T⋆

1R
⋆
+R

⋆
1R1R+T1

]}
. (B.9)

The statement of the theorem follows from this equation once we write explicitly the
trace and use the expressions (3.26-3.27) of the entries of T1 and R1.

B.3. Proof of Proposition 1. The propagator matrix of the waveguide system
with two independent random sections is

P = P+(L)P1P̌+(L), (B.10)
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where P̌+ is an independent and identically distributed copy of P+. Given the alge-
braic structure of the propagator P1 of the barrier given in (3.15), and of the random
medium propagator P+ given in equations (3.31) and (3.39), we conclude from (B.10)

that P is of the form (B.3). We are interested in its first block P(a) which determines
the transmission matrix T , as in equation (B.4).

Using equation (B.1) and multiplying through in equation (B.10) we get that

P(a) = T+

(
I−R+R+

)−1
[(

P
(a)
1 −R+P

(b)
1

)
Ť+

(
I− Ř+Ř+

)−1

−
(
P

(b)
1 −R+P

(a)
1

)
Ť+

(
I− Ř+Ř+

)−1

Ř+

]
,

where the first factor is approximated in (B.5). This gives

T =
(
P(a)

)−1

≈
[(

P
(a)
1 −R+P

(b)
1

)
Ť+

(
I− Ř+Ř+

)−1

−
(
P

(b)
1 −R+P

(a)
1

)
Ť+

(
I− Ř+Ř+

)−1

Ř+

]−1

TT
+, (B.11)

where the square bracket can be approximated with Neumann series for small re-
flection matrices. Such series are also used to expand Tr(T ⋆T ) up to second order
in terms of the reflection matrices of the random medium. The result stated in the
proposition follows after we take the expectation and use that (T+,R+) and (Ť+, Ř+)
are independent.
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