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A B S T R A C T

One of the key elements of probabilistic seismic risk assessment studies is the fragility curve, which represents
the conditional probability of failure of a mechanical structure for a given scalar measure derived from seismic
ground motion. For many structures of interest, estimating these curves is a daunting task because of the limited
amount of data available; data which is only binary in our framework, i.e., only describing the structure
as being in a failure or non-failure state. A large number of methods described in the literature tackle this
challenging framework through parametric log-normal models. Bayesian approaches, on the other hand, allow
model parameters to be learned more efficiently. However, the impact of the choice of the prior distribution on
the posterior distribution cannot be readily neglected and, consequently, neither can its impact on any resulting
estimation. This paper proposes a comprehensive study of this parametric Bayesian estimation problem for
limited and binary data. Using the reference prior theory as a cornerstone, this study develops an objective
approach to choosing the prior. This approach leads to the Jeffreys prior, which is derived for this problem for
the first time. The posterior distribution is proven to be proper (i.e., it integrates to unity) with the Jeffreys
prior but improper with some traditional priors found in the literature. With the Jeffreys prior, the posterior
distribution is also shown to vanish at the boundaries of the parameters’ domain, which means that sampling
the posterior distribution of the parameters does not result in anomalously small or large values. Therefore,
the use of the Jeffreys prior does not result in degenerate fragility curves such as unit-step functions, and leads
to more robust credibility intervals. The numerical results obtained from two different case studies—including
an industrial example—illustrate the theoretical predictions.
1. Introduction

Fragility curves are key assets for the probabilistic seismic risk
assessment (SPRA) of mechanical structures. Introduced in the 1980s
for seismic risk assessment studies carried out on nuclear facilities (for
example, [1–5]), they express the probability of failure of mechanical
structures as a function of a scalar value derived from seismic ground
motions, called the intensity measure (IM). One example of such a
scalar value is the peak ground acceleration (PGA). In [5], Cornell
states the condition under which reducing seismic risk to IM values
is relevant. This condition is the so-called ‘‘sufficiency assumption’’ of
the IM with regards to the magnitude M, the source-site distance R, and
other parameters which are thought to drive seismic risk at the location
considered [6]. Fragility curves can be estimated using data collated
from various sources, namely: (i) expert assessments supported by test
data [1–3,7], (ii) experimental data [3,8,9], (iii) damage reports—
called empirical data—obtained from existing structures that have been
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subjected to an earthquake [10–12], and (iv) analytical results ob-
tained from various numerical models using artificial or natural seismic
excitations [13–18].

Parametric fragility curves were historically introduced in the SPRA
framework because an estimation of such curves is possible with small
sample sizes and binary data, i.e., when the only indication is the
state of the structure: failure or non-failure. Since then, the log-normal
model has become the most widely used [10–13,15–22], and it remains
prevalent to this day due to its proven capability to handle limited
and binary data (e.g., [14,23–25]). In practice, several strategies can
be implemented to adjust the two parameters for this model, namely
the median 𝛼 and the log standard deviation 𝛽. When the data is
binary, Lallemant et al. [11] recommends a strategy called the max-
imum likelihood estimation (MLE). This technique is one of the most
widely used. When the data samples are independent from each other,
the bootstrap technique can be used as an additional measure in
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order to obtain confidence intervals related to the size of the samples
considered [10,13,14].

If the data set contains more information than a simple indication
of failure, i.e., if data is not binary, techniques based on machine
learning can also be exploited. This is the case, for instance, when a
mechanical structural failure is the result of an engineering demand
parameter (EDP) exceeding a threshold limit, said EDP being observed
as part of an experiment (numerical or practical). Examples of such
techniques are: linear regression or generalized linear regression [11],
classification-based techniques [26–28], kriging [29–31], polynomial
chaos expansion [32], stochastic polynomial chaos expansions [33],
and artificial neural networks (ANN) [16,17,34]. Whenever data is
obtained through numerical simulations, some of these methods can be
coupled with adaptive techniques to reduce the number of calculations
required [17,28,29,35]. Some of these techniques are compared and
their strengths and weaknesses highlighted in [11].

The Bayesian framework has recently become increasingly popu-
lar in seismic fragility analysis [8,17,23,25,36–41]. It actually allows
solving the irregularity issues encountered when estimating parametric
fragility curves by using, for example, the MLE method, which can
indeed lead to unrealistic or degenerate fragility curves such as unit-
step functions when only limited data is available. Such problems
can particularly be encountered when resorting to high-fidelity models
(i.e., complex and detailed) because of the calculation load or for
example when experimental tests are carried out on shaking tables.
In earthquake engineering, Bayesian inference is often used to update
existing log-normal fragility curves previously obtained through vari-
ous approaches, assuming independent distributions for the prior values
of 𝛼 and 𝛽, such as log-normal distributions. For example, in [38,39],
he median prior values come from equivalent linearized mechanical
odels. In [17], both aleatory and epistemic uncertainties are taken

nto account in the parametric model originally introduced in [1]: an
NN is trained and used to characterize (i) the aleatory uncertainty
nd (ii) the prior median value of 𝛼, while the associated epistemic
ncertainty is taken from the existing literature. The log-normal prior
istribution of 𝛼 is then updated with empirical data. In [23], the
esults of incremental dynamic analysis are used to obtain a prior
alue of 𝛼, whereas the prior value of 𝛽 is determined through a
arametric study. This results in satisfactory convergence, whatever its
arget value, before application to practical problems. In [12], Straub
nd Der Kiureghian mainly focus on the implications for fragility
nalyses of statistical dependencies within the data. The prior is defined
s the product of a normal distribution for ln(𝛼), and the improper
istribution 1∕𝛽 for 𝛽. The definition of the normal distribution is based
n engineering assessments, assuming that, for the relevant component
or example, the median lies between 0.02 g and 3 g with a probability
f 90%. This prior was preferred to 1∕𝛼 on the grounds that it led
o unrealistically large posterior values of 𝛼. A sensitivity analysis is
urther performed to examine the impact of the choice of the prior
istribution on the final results. The Bayesian framework is also rele-
ant for fitting numerical models (e.g., mathematical expressions based
n engineering assessments or physics-based models) to experimental
ata in order to estimate fragility curves [8,41] or metamodels such as
ogistic regressions [36,40].

In this paper, we will deal with limited sets of binary data and
ill consider the log-normal model in a Bayesian framework. In this

ense, this paper will mainly address equipment problems for which
nly binary results of seismic qualification tests (e.g., tests of electrical
elays, etc.) or empirical data such as presented in [12] are available.
owever, the methodology developed here could perfectly be applied

o simulation-based approaches as well. The Bayesian perspective fo-
uses on the impact of the prior on the estimations of parametric
ragility curves, as part of the SPRA framework. With a limited data
et, the impact of the choice of the prior on the posterior distribution
annot be neglected and, consequently, neither does its impact on
2

he estimation of any key asset related to the fragility curves. In this
tudy, the goal is to choose the prior while eliminating, insofar as it
s possible, any subjectivity which would unavoidably lead to open
uestions regarding the impact of the prior on the final results. The
eference prior theory defines relevant metrics for determining whether
prior can be called ‘‘objective’’ [42]. This allows us to focus on the
ell-known Jeffreys prior, the asymptotic optimum of the ‘‘mutual

nformation’’ w.r.t. the size of the data set [43], and which will be
xplicitly derived for the first time in this study. Of course, from
subjectivity perspective, the choice of a parametric model for the

ragility curve is debatable. However, numerical experiments based on
he seismic responses of mechanical systems suggest that the choice
f an appropriate IM makes it possible to reduce the potential biases
etween reference fragility curves (that can be obtained by massive
onte-Carlo methods) and their log-normal estimations [35]. This

bservation is reinforced by recent studies on the impact of IMs on
ragility curves [28,44,45]. In this paper, we will ensure the relevance
f the estimations by comparing them to the results of massive Monte-
arlo methods on academic examples. Although the numerical results
re illustrated with the PGA, the proposed methodology is independent
f the choice of the IM, and it can be implemented with any IM of
nterest, without additional complexity.

After formulating the problem from a Bayesian perspective in the
ext section, we will review the objective prior theory in Section 3.
ur main contributions begin in Section 4, where the reference prior

s explicitly derived. In Section 5, we will present the estimation tools
nd the performance evaluation metrics used for this paper. These are
mplemented in Section 6 on two different case studies. For each case,
he a posteriori distributions of the parameters of the log-linear probit
odel and of the corresponding fragility curves are compared with

hose obtained with traditional a priori choices found in the literature.
ection 7 will conclude this paper and summarize our findings. Appen-
ices A and B deal with mathematical results regarding the asymptotic
roperties of the priors and posteriors considered in this work. In
articular, Appendix A.4 explains the apparition of degenerate and
nrealistic fragility curves with the MLE or Bayesian estimations of
raditional priors.

. Bayesian model for parametric log-normal seismic fragility
urves

As mentioned in the introduction, a log-linear probit model is often
sed to estimate fragility curves. In this model, the probability of failure
iven the IM takes the following form:

𝑓 (𝑎) = P(‘failure’|IM = 𝑎) = 𝛷
(

log 𝑎 − log 𝛼
𝛽

)

, (1)

where 𝛼, 𝛽 ∈ (0,+∞) are the two model parameters and 𝛷 is the
cumulative distribution function of a standard Gaussian variable. In the
following, we denote 𝜃 = (𝛼, 𝛽).

From a Bayesian perspective, 𝜃 is considered as a random vari-
able [46]. Its distribution is denoted by 𝜋 and called the prior. We
denote by 𝛩 ⊂ [0,+∞)2 the support of the prior distribution.

Our statistical model consists of the observations of independent
realizations (𝑎1, 𝑧1),… , (𝑎𝑘, 𝑧𝑘) ∈  × {0, 1}, where  ⊂ [0,+∞) is the
support of the distribution of the IM and 𝑘 is the size of the data set. For
the 𝑖th seismic event, 𝑎𝑖 is the observed IM, and 𝑧𝑖 is the observation
of a failure (𝑧𝑖 is equal to one if failure has been observed during the
𝑖th seismic event, and is equal to zero otherwise). The joint conditional
distribution of the pair (𝑎, 𝑧) on 𝜃 has the form:

𝑝(𝑎, 𝑧|𝜃) = 𝑝(𝑎)𝑝(𝑧|𝑎, 𝜃), (2)

where 𝑝(𝑎) denotes the distribution of the IM and 𝑝(𝑧|𝑎, 𝜃) is a Bernoulli
distribution whose parameter (the probability of failure) depends on 𝑎
and 𝜃 as expressed by Eq. (1). The product of the conditional distribu-
tions 𝑝(𝑧𝑖|𝑎𝑖, 𝜃) is the likelihood of our model expressed as:

𝓁𝑘(𝐳|𝐚, 𝜃) =
𝑘
∏

𝛷

(

log 𝑎𝑖
𝛼

)𝑧𝑖 (

1 −𝛷

(

log 𝑎𝑖
𝛼

))1−𝑧𝑖

, (3)

𝑖=1 𝛽 𝛽
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denoting 𝐚 = (𝑎𝑖)𝑘𝑖=1, 𝐳 = (𝑧𝑖)𝑘𝑖=1.
The a posteriori distribution of 𝜃 can be computed by the Bayes

theorem. The resulting distribution

𝑝(𝜃|𝐚, 𝐳) =
𝓁𝑘(𝐳|𝐚, 𝜃)𝜋(𝜃)

∫𝛩 𝓁𝑘(𝐳|𝐚, 𝜃′)𝜋(𝜃′)𝑑𝜃′
(4)

is called the posterior. Sampling 𝜃 with the posterior distribution allows
for the estimation of any relevant quantity. This method is explained
further in Section 5.2. Note that the Bayesian method requires choosing
the prior 𝜋. In the next section, we will discuss how to make such a
choice without any subjectivity.

3. Reference prior theory

This section is devoted to the choice of the prior in a Bayesian
context. To this end, we have to deal with the idea of mutual infor-
mation. Its definition and its usefulness in Bayesian problems are not
new [42,47]. However, its usefulness in estimating seismic fragility
curves has not yet been studied in the literature. Shannon’s information
theory provides relevant elements about this. Information entropy is a
common example that helps distinguish between an informative and a
non-informative distribution [48].

One way to define a non-subjective prior is to look for a non-
informative one (i.e., one with high entropy). However, this type
of prior leads to posterior distributions that are quite unaffected by
the likelihood of the statistical model. This can lead to the relevant
parameters taking unrealistic posterior values when a limited amount
of data is available. The consequence of this is a weaker convergence
of the resulting estimations. Moreover, in practice and in earthquake
engineering in particular, it is difficult to fully define a prior using a
‘‘rigorous’’ approach. For example, in the case of a given distribution
(which is already a subjective choice and not always easy to justify), the
median can be obtained beforehand through a less-refined mechanical
model. There remains, however, the matter of choosing the associated
variance, of which we have just said that the consequences for the
convergence of the a posteriori estimations cannot be neglected. For
all these reasons, it is relevant to search for an a priori with objective
information.

To choose such a prior, let us consider the criterion introduced
by Bernardo [47] to define the so-called reference priors. The idea is
to select the prior 𝜋 that maximizes the mutual information indicator
𝐼(𝜋|𝑘), which expresses the information provided by the data to the
posterior, relatively to the prior. In other words, the purpose of this
criterion is to identify the prior that maximizes the capacity to ‘‘learn’’
from observations. The mutual information indicator is defined by:

𝐼(𝜋|𝑘) =
∑

𝐳∈{0,1}𝑘
∫𝑘

𝐾𝐿(𝑝(⋅|𝐚, 𝐳) ∥ 𝜋)𝑝(𝐚, 𝐳)
𝑘
∏

𝑙=1
𝑑𝑎𝑙 , (5)

where the posterior 𝑝(⋅|𝐚, 𝐳) is given by (4), and the joint distribution
𝑝(𝐚, 𝐳) is from (2)–(3):

𝑝(𝐚, 𝐳) = ∫𝛩

𝑘
∏

𝑙=1
𝑝(𝑎𝑙 , 𝑧𝑙|𝜃)𝜋(𝜃)𝑑𝜃 = ∫𝛩

𝑘
∏

𝑙=1
𝑝(𝑎𝑙)𝓁𝑘(𝐳|𝐚, 𝜃)𝜋(𝜃)𝑑𝜃. (6)

As discussed in Section 4.2, 𝑝(𝑎) can be assumed to be a log-normal
probability distribution function, derived from seismic signals not in-
cluded in the observations. The indicator in Eq. (5) is therefore inde-
pendent from the data set considered. This indicator is based on the
Kullback–Leibler divergence between the posterior and the prior, which
is known to express the idea that the information is provided by one
distribution to another:

𝐾𝐿(𝑝 ∥ 𝑞) = ∫𝛩
𝑝(𝜃) log

𝑝(𝜃)
𝑞(𝜃)

𝑑𝜃. (7)

According to the literature, a reference prior can be suitably defined
s the result of an asymptotic optimization of this mutual information
3

etric [43,49]. It has been proven that, under some mild assumptions
hich are satisfied in our framework, the Jeffreys prior defined by

(𝜃) ∝
√

| det 𝑘(𝜃)|, (8)

s the reference prior, with 𝑘 being the Fisher information matrix:

(𝜃)𝑘𝑖,𝑗 = −
∑

𝐳∈{0,1}𝑘
∫𝑘

𝓁𝑘(𝐳|𝐚, 𝜃)
𝜕2 log𝓁𝑘(𝐳|𝐚, 𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗

𝑘
∏

𝑙=1
𝑝(𝑎𝑙)𝑑𝑎𝑙 . (9)

The property (𝜃)𝑘 = 𝑘(𝜃) makes 𝐽 independent of 𝑘, since it is defined
p to a multiplicative constant. The Jeffreys prior is already well known
n Bayesian theory for being invariant by a re-parametrization of the
tatistical model [50]. This property is essential as it makes the choice
f the model parameters 𝜃 without any incidence on the resulting
osterior.

. Constructing the Jeffreys prior

Based on the elements discussed in the previous section, the Jeffreys
rior seems to be the best objective candidate for this problem. In
his section, we will therefore calculate the Jeffreys prior in order to
stimate log-normal seismic fragility curves with binary data. To our
nowledge, the application of the reference prior theory to this field of
tudy is completely new. The explicit calculation of this prior is carried
ut in Section 4.1. It is followed in Section 4.2 by an explanation about
he practical implementation suggested and discussed in Section 4.3.
hat last section in particular tackles the question of the proper char-
cteristic of its resulting posterior, which is essential for the validation
f any MCMC-based posterior sampling algorithm.

.1. Calculating the Jeffreys prior

The first step consists in computing the Fisher information matrix
(𝜃) = (𝜃)1 in our model, defined in Eq. (3). Here, 𝜃 = (𝛼, 𝛽) ∈ 𝛩 and

(𝜃)𝑖,𝑗 = −
∑

𝑧∈{0,1}
∫

𝑝(𝑧|𝑎, 𝜃)
𝜕2 log 𝑝(𝑧|𝑎, 𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
𝑝(𝑎)𝑑𝑎 (10)

or 𝑖, 𝑗 ∈ {1, 2}, with 𝑝(𝑧|𝑎, 𝜃) = 𝓁1(𝑧|𝑎, 𝜃) being the likelihood expressed
n Eq. (3), i.e.,

og 𝑝(𝑧|𝑎, 𝜃) = 𝑧 log𝛷
(

log 𝑎 − log 𝛼
𝛽

)

+(1 − 𝑧) log
(

1 −𝛷
(

log 𝑎 − log 𝛼
𝛽

))

. (11)

Denoting 𝛾 = 𝛾(𝑎) = 𝛽−1 log(𝑎∕𝛼), the first-order partial derivatives
of log 𝑝(𝑧|𝑎, 𝜃) with respect to 𝜃 are:

𝜕
𝜕𝛼

log 𝑝(𝑧|𝑎, 𝜃) = − 1
𝛼𝛽

𝑧
𝛷′(𝛾)
𝛷(𝛾)

+ 1
𝛼𝛽

(1 − 𝑧)
𝛷′(𝛾)

1 −𝛷(𝛾)
, (12)

𝜕
𝜕𝛽

log 𝑝(𝑧|𝑎, 𝜃) = −
log 𝑎

𝛼

𝛽2
𝑧
𝛷′(𝛾)
𝛷(𝛾)

+
log 𝑎

𝛼

𝛽2
(1 − 𝑧)

𝛷′(𝛾)
1 −𝛷(𝛾)

, (13)

and the second-order partial derivatives are:

𝜕2

𝜕𝛼𝜕𝛽
log 𝑝(𝑧|𝑎, 𝜃) = − 1

𝛽
𝜕
𝜕𝛼

𝑝(𝑧|𝑎, 𝜃) +
log 𝑎

𝛼

𝛼𝛽3
𝑧
𝛷′′(𝛾)𝛷(𝛾) −𝛷′(𝛾)2

𝛷(𝛾)2

−
log 𝑎

𝛼

𝛼𝛽3
(1 − 𝑧)

𝛷′′(𝛾)(1 −𝛷(𝛾)) +𝛷′(𝛾)2

(1 −𝛷(𝛾))2
, (14)

𝜕2

𝜕𝛼2
log 𝑝(𝑧|𝑎, 𝜃) = − 1

𝛼
𝜕
𝜕𝛼

log 𝑝(𝑧|𝑎, 𝜃) + 1
𝛼2𝛽2

𝑧
𝛷′′(𝛾)𝛷(𝛾) −𝛷′(𝛾)2

𝛷(𝛾)2

− 1
𝛼2𝛽2

(1 − 𝑧)
𝛷′′(𝛾)(1 −𝛷(𝛾)) +𝛷′(𝛾)2

(1 −𝛷(𝛾))2
, (15)

and
𝜕2 log 𝑝(𝑧|𝑎, 𝜃)

𝜕𝛽2
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= − 2
𝛽

𝜕
𝜕𝛽

log 𝑝(𝑧|𝑎, 𝜃) +
log2 𝑎

𝛼

𝛽4
𝑧
𝛷′′(𝛾)𝛷(𝛾) −𝛷′(𝛾)2

𝛷(𝛾)2
(16)

−
log2 𝑎

𝛼

𝛽4
(1 − 𝑧)

𝛷′′(𝛾)(1 −𝛷(𝛾)) +𝛷′(𝛾)2

(1 −𝛷(𝛾))2
.

The expressions in Eqs. (14), (15), and (16) of the second-order
partial derivatives of 𝑝(𝑧|𝑎, 𝜃) need to be integrated over  and .
Summing over the discrete variable 𝑧 first replaces 𝑧 by 𝛷(𝛾) in the
equations. Finally, if we denote 𝐴01, 𝐴02, 𝐴11, 𝐴12, 𝐴21, 𝐴22 by

𝐴0𝑢 = ∫
𝛷′(𝛾(𝑎))2

𝛷((−1)𝑢+1𝛾(𝑎))
𝑝(𝑎)𝑑𝑎,

𝐴1𝑢 = ∫
log 𝑎

𝛼
𝛷′(𝛾(𝑎))2

𝛷((−1)𝑢+1𝛾(𝑎))
𝑝(𝑎)𝑑𝑎,

𝐴2𝑢 = ∫
log2 𝑎

𝛼
𝛷′(𝛾(𝑎))2

𝛷((−1)𝑢+1𝛾(𝑎))
𝑝(𝑎)𝑑𝑎,

(17)

for 𝑢 ∈ {1, 2}, then the information matrix (𝜃) takes on the following
form:

(𝜃) =
⎛

⎜

⎜

⎝

1
𝛼2𝛽2

(𝐴01 + 𝐴02)
1

𝛼𝛽3
(𝐴11 + 𝐴12)

1
𝛼𝛽3

(𝐴11 + 𝐴12)
1
𝛽4
(𝐴21 + 𝐴22)

⎞

⎟

⎟

⎠

. (18)

The integrals in Eq. (17) are computed using Simpson’s rule on a regular
grid. The distribution 𝑝(𝑎) is approximated by kernel density estimation
based on seismic signals. Finally, the Jeffreys prior is obtained by taking
the square root of the determinant of the matrix defined in Eq. (18).

4.2. Practical implementation

Section 3 showed that knowing the probability distribution of the
IM is required in order to calculate the Fisher information matrix.
Without compromising on the general applicability of the methodology,
let us consider in the following section the PGA as the IM. Still, it is
important to emphasize that this choice is purely illustrative and bears
no consequence for the proposed methodology. In this study, we used
105 artificial seismic signals generated using the stochastic generator
defined in [51] and implemented in [28] from 97 real accelerograms
selected in the European Strong Motion Database for 5.5 ≤ M ≤ 6.5
and R < 20 km. The generation of seismic ground motions is not a
necessity in the Bayesian framework (especially if a sufficient number
of real signals are available), but it allows comparisons with the Monte-
Carlo (MC) reference method for simulation-based approaches, as well
as comparative studies of performance. Note that the artificial signals
have the same PGA distribution as the real ones, as shown in Fig. 1.

In practice, the use of Markov Chain Monte-Carlo (MCMC) methods
(see Section 5.2) to sample the a posteriori distribution means that
the prior must be evaluated (up to a multiplicative constant) many
times during the calculations. Considering the computational complex-
ity stemming from the integrals that need to be calculated, it was
decided to perform the evaluations of the prior on an experimental
design based on a fine-mesh grid of 𝛩 (here [0,+∞)2) and to build an
interpolated approximation of the Jeffreys prior matching this design.
This strategy is more suitable for our numerical applications and very
tractable because 𝛩 is a two-dimensional domain. Fig. 2 shows a plot of
the Jeffreys prior. To be precise, 500 × 500 prior values were computed
for 𝛼 ∈ [10−5, 10] and 𝛽 ∈ [10−3, 2] and then processed in order to obtain
a linear interpolation.

4.3. Discussion

The computational complexity of the Jeffreys prior is not in itself
a major drawback. Since it depends exclusively on the distribution
of the IM, the initial cost of the Jeffreys prior’s complex calculation
would quickly be recovered in installations on the scale of a nuclear
power plant, where it is necessary to determine the fragility curves
of a large number of Structures and Components (SCs). Compared to
4

Fig. 1. Comparison of a sectional view of the Jeffreys prior w.r.t. 𝛼 (blue line) with
some PGA distributions: approximated distribution of real accelerograms via Gaussian
kernels in red, histogram of the generated signals in gray, and log-normal fit of the
distribution in black. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. The Jeffreys prior calculated from PGA and plotted in the subdomain [0, 6] ×
[0.1, 0.5].

methodologies that aim to define a prior based on mechanical calcu-
lations which are, by definition, specific to SCs, the generic character
of the Jeffreys prior is a clear advantage. This will be explored in the
applications section of this paper (Section 6). Moreover, the Jeffreys
prior is completely defined and does not depend on any additional
subjective choices.

The Jeffreys prior is known to be improper in numerous common
cases (i.e., it cannot be normalized as a probability). This is relevant
to our study, as evidenced in Appendix A, where a calculation of the
asymptotic behavior for different limits of 𝜃 = (𝛼, 𝛽) shows that the Jef-
freys prior is indeed improper in our case. However, this characteristic
is not an issue since our study focuses on the posterior, which is itself
proper, as proven in Appendix A. This is a critical issue, since MCMC
algorithms would not make any sense if the posterior were improper.
These asymptotic expansions also provide complementary and essential
insight into the Jeffreys prior. They make it possible to understand that
its behavior in 𝛼 is similar to that of a log-normal distribution having
the same median as that of the IM (i.e., here 1.1 m/s2) with a variance
calculated as the sum of the variance of the IM and of a term that
depends on 𝛽. Fig. 1 clearly illustrates this result.

5. Estimation tools, competing approaches and performance eval-
uation metrics

In this section, we will first present the Bayesian estimation tools
and the MC reference method used to evaluate the relevance of the
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Fig. 3. Prior suggested by Straub and Der Kiureghian [12] and plotted in the
subdomain [0, 6] × [0.1, 0.5]. It is expressed in Eq. (21) and scaled to a log-normal
estimation of the PGA’s distribution.

log-normal model when the amount of data allows it. We will then
present two competing approaches, implemented in order to evaluate
the performance of the Jeffreys prior in practical cases. On the one
hand, we will apply the MLE method, widely used in literature, coupled
with a bootstrap technique. On the other hand, we will apply a Bayesian
technique implemented with the prior introduced by Straub and Der
Kiureghian [12]. For a fair comparison, this study proposes to calibrate
the latter according to the results of Fig. 1, which illustrates that in 𝛼
the distribution is similar to the PGA distribution of the artificial and
real signals. It would indeed be easy to calibrate it in such a way so as
to skew comparisons, for instance by considering too large a variance.
Finally, we will define performance evaluation metrics.

5.1. Fragility curves estimations via Monte-Carlo

Here, let us assume the availability of a validation data set (𝐚MC,
𝐳MC) = ((𝑎MC

𝑖 )𝑁MC

𝑖=1 , (𝑧MC
𝑖 )𝑁MC

𝑖=1 ). This section describes how a fragility
curve can be obtained from such a large data set by non-parametric
estimations that can serve as a reference. This way, our estimations
(based on a small data set and parametric estimations) can be compared
with this reference. Good candidates for estimating this reference are
MC estimators, which estimate the expected number of failures locally
w.r.t. the IM.

First, we need to divide the IM values into sub-intervals and es-
timate the probability of failure for each. Sub-intervals of regular
size should be avoided because the observed IMs are not uniformly
distributed. We will therefore consider clusters of IMs, defined through
the K-means, as suggested by Trevlopoulos et al. [22]. Given 𝑁𝑐 such
clusters (𝐾𝑗 )

𝑁𝑐
𝑗=1, the MC fragility curve estimated at the centroids (𝑐𝑗 )

𝑁𝑐
𝑗=1

is expressed as

𝑃MC
𝑓 (𝑐𝑗 ) =

1
𝑛𝑗

∑

𝑖, 𝑎MC
𝑖 ∈𝐾𝑗

𝑧MC
𝑖 , (19)

where 𝑛𝑗 is the sample size of cluster 𝐾𝑗 . An asymptotic confidence
interval for this estimator can also be derived from its Gaussian ap-
proximation. It is accepted that an MC-based fragility curve can be
considered a reference curve because it is not based on assumptions.

5.2. Fragility curves estimations in the Bayesian framework

The most relevant method in order to benefit from the Bayesian
theory introduced in Section 3 and the reference prior construction
presented in Section 4 consists in deriving the posterior defined in
Eq. (4). It then becomes possible to generate, according to that distribu-
tion, samples of 𝜃 conditioned on the observed data. These a posteriori
5

generations of 𝜃 can be obtained using MCMC methods. In this study,
we have implemented an adaptive Metropolis–Hastings (M-H) algo-
rithm with a Gaussian transition kernel and a covariance adaptation
process [52]. Such an algorithm allows sampling from a probability
density known up to a multiplicative constant. In this context, the a
posteriori samples of 𝜃 can be used to define credibility intervals for the
log-normal estimations of the fragility curves.

5.3. Multiple MLE by bootstrapping

The best known parameter estimation method is the MLE, defined
as the maximal argument of the likelihood derived from the observed
data:

�̂�MLE
𝑘 = arg max

𝜃∈𝛩
𝓁𝑘(𝐳|𝐚, 𝜃). (20)

A common method for obtaining a wide range of 𝜃 estimations
consists in calculating multiple MLEs by bootstrapping. Denoting the
data set size by 𝑘, bootstrapping consists in doing 𝐿 independent draws
with the replacement of 𝑘 items within the data set. These draws lead
to 𝐿 different likelihoods from the 𝑘 initial observations, and so to 𝐿
values of the estimator, which can then be averaged. This is a very
common approach for fragility curves (e.g., [10,11,14,53,54]). The
convergence of the MLE and the relevance of this method are detailed
in [55]. However, the relevance of the bootstrap method is often
limited by the irregularity of its results for small values of 𝑘 (e.g., [7]).
In this context, the 𝐿 values of 𝜃 are used to define confidence intervals
for the log-normal estimations of the fragility curves.

5.4. Example of a prior found in literature for log-normal seismic fragility
curves

For comparison purposes, we selected the prior suggested by Straub
and Der Kiureghian—called the SK prior—which is defined as the
product of a normal distribution for ln(𝛼) and the improper distribution
1∕𝛽 for 𝛽, namely:

𝜋𝑆𝐾 (𝜃) ∝
1
𝛼𝛽

exp
(

−
(log 𝛼 − 𝜇)2

2𝜎2
)

. (21)

In [12], the parameters 𝜇 and 𝜎 of the log-normal distribution are cho-
sen to generate a non-informative prior. As specified in the introduction
to Section 5, for a fair comparison with the approach proposed in this
paper, we decided to pick 𝜇 and 𝜎 as equal to the mean and the standard
deviation of the logarithm of the IM. This choice is consistent with the
fact that the Jeffreys prior is similar to a log-normal distribution with
these parameters (see Fig. 1). The prior 𝜋𝑆𝐾 (𝜃) is plotted in Fig. 3.

An analysis of the posterior obtained from the SK prior is given in
Appendix A. It shows that the posterior is improper, which jeopardizes
the validity of any a posteriori estimation using MCMC methods. This
could however be mitigated by truncating w.r.t. 𝛽. This issue persists in
the authors’ original framework, which is slightly different from ours.
This was confirmed in Appendix B.

5.5. Performance evaluation metrics

In order to obtain a clear view of the performance of the proposed
approach, we considered two quantitative metrics that can be calcu-
lated for each of the methods described in the previous subsections.
Considering the sample (𝐚, 𝐳), we denote by 𝑎 ↦ 𝑃 |𝐚,𝐳

𝑓 (𝑎) the random
process defined as the fragility curve conditional to the sample (the
probability distribution of 𝑃 |𝐚,𝐳

𝑓 (𝑎) is inherited from the a posteriori
distribution of 𝜃). For each value 𝑎 the 𝑟-quantile of the random variable
𝑃 |𝐚,𝐳(𝑎) is denoted by 𝑞|𝐚,𝐳(𝑎). We can then define:
𝑓 𝑟
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• The conditional quadratic error:

𝑄|𝐚,𝐳 = E
[

‖𝑃 |𝐚,𝐳
𝑓 − 𝑃MLE

𝑓 ‖

2
𝐿2 |𝐚, 𝐳

]

(22)

= ∫

𝐴max

0
E
[

(𝑃 |𝐚,𝐳
𝑓 (𝑎) − 𝑃MLE

𝑓 (𝑎))2|𝐚, 𝐳
]

𝑑𝑎.

𝑃MLE
𝑓 stands for the log-normal estimation of the fragility curve

obtained by the MLE (see Section 5.1) taking into account all
the data available in the case study. We further checked that
this estimation was close to the reference curve obtained by MC
whenever possible (see Section 6).

• The conditional width of the 1−𝑟 credibility zone for the fragility
curve:

𝑟|𝐚,𝐳 = ‖𝑞|𝐚,𝐳1−𝑟∕2 − 𝑞|𝐚,𝐳𝑟∕2 ‖
2
𝐿2 (23)

= ∫

𝐴max

0
(𝑞|𝐚,𝐳1−𝑟∕2(𝑎) − 𝑞|𝐚,𝐳𝑟∕2 (𝑎))

2𝑑𝑎.

To estimate such variables, we simulated a set of 𝐿 fragility curves
(𝑃 𝜃𝑖|𝐚,𝐳

𝑓 )𝐿𝑖=1 where (𝜃𝑖)𝐿𝑖=1 is a sample of the a posteriori distribution of
the model parameters obtained by MCMC. The empirical quantiles
𝑞
𝜃𝐿𝑖=1|𝐚,𝐳
𝑟 (𝑎) of (𝑃 𝜃𝑖|𝐚,𝐳

𝑓 (𝑎))𝐿𝑖=1 are approximations of the quantiles 𝑞|𝐚,𝐳𝑟 (𝑎)
of the random variable 𝑃 |𝐚,𝐳

𝑓 (𝑎). We derive:

• The approximated conditional quadratic error:

̂𝑄|𝐚,𝐳
𝐿 = 1

𝐿

𝐿
∑

𝑖=1
‖𝑃 𝜃𝑖|𝐚,𝐳

𝑓 − 𝑃MLE
𝑓 ‖

2
𝐿2 . (24)

• The approximated conditional width of the 1 − 𝑟 credibility zone
for the fragility curve:

̂𝑟|𝐚,𝐳
𝐿 = ‖𝑞

𝜃𝐿𝑖=1|𝐚,𝐳
1−𝑟∕2 − 𝑞

𝜃𝐿𝑖=1|𝐚,𝐳
𝑟∕2 ‖

2
𝐿2 . (25)

he 𝐿2 norms are integrals over 𝑎 ∈ [0, 𝐴max] which are approximated
umerically using Simpson’s interpolation on sub-intervals of regular
ize 0 = 𝐴0 < ⋯ < 𝐴𝑝 = 𝐴max. In the following examples, we shall use
0 = 0, 𝐴max = 12 m∕s2, and 𝑝 = 200.

For the MLE with bootstrapping, we can define a conditional
uadratic error similarly to Eq. (24) and a conditional width of the 1−𝑟
onfidence interval similarly to Eq. (25) using a bootstrapped sample
𝜃𝑖)𝐿𝑖=1.

. Numerical applications

In this section, we will examine two case studies. These leverage
he many simulation data sets available that have been previously
omputed for validation purposes. They will be used in the derivation
f a reference fragility curve (as suggested in Section 5.1), and allow
s to validate the corresponding log-normal models. The first case,
escribed in Section 6.1, deals with a nonlinear oscillator, for which
𝑠 = 105 nonlinear simulations have been implemented for validation
urposes. The second case study, described in Section 6.2, deals with a
iping system which is part of the secondary cooling system of a French
ressurized Water Reactor. Due to the high computational cost, only
𝑠 = 104 simulations have been performed for this case. In both cases,

stimations are performed using different testing data sets of a size 𝑘
hosen as negligible compared to 𝑁𝑠. These testing data sets are taken

from the set of available nonlinear dynamical simulation results. A third
case study is presented as supplementary material in order to showcase
how our method could be applied to practical experiments.

6.1. Case study 1: nonlinear oscillator

This first case study—depicted in Fig. 4—relates to a single-degree-
of-freedom elastoplastic oscillator with kinematic hardening. This me-
6

chanical system illustrates the essential features which can be found d
Fig. 4. Elastoplastic oscillator with kinematic hardening, with parameters 𝑓L = 5 Hz
and 𝜁 = 2%. The yield limit is 𝑌 = 5.10−3 m, and the post-yield stiffness is 20% of the
elastic stiffness, i.e., 𝑎 = 0.2.

Fig. 5. Reference fragility curve 𝑃MC
𝑓 (see Section 5.1) compared with 𝑃MLE

𝑓 (see
Section 5.5) for the elastoplastic oscillator (case study 1). Both curves were computed
using the full data set generated (105 items). The red crosses represent the observations;
0 means no failure, while 1 means failure. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

in the nonlinear responses of some real-world structures under seismic
excitation and has, for this reason, already been used in several stud-
ies [22,28,35]. The motion of a unit mass 𝑚 can be described by the
equation:

�̈�(𝑡) + 2𝜁𝜔L�̇�(𝑡) + 𝑓 (𝑡) = −𝑠(𝑡) , (26)

ith 𝑠(𝑡) a seismic signal, �̇�(𝑡) and �̈�(𝑡) respectively the relative velocity
nd acceleration of the mass, 𝜁 the damping ratio, and 𝜔L the circular
requency. The relevant EDP is the absolute maximum value of the
ass’ displacement, i.e., max𝑡∈[0,𝑇 ] |𝑦(𝑡)|, where 𝑇 is the duration of the

eismic excitation. The failure criterion 𝐶 is chosen to be the 90%-level
uantile of the maximum displacement calculated with 105 artificial
ignals, i.e., 𝐶 = 8.0 10−3 m. Fig. 5 compares the MC-based reference
ragility curve 𝑃MC

𝑓 (Eq. (19)) with its log-normal estimation 𝑃MLE
𝑓 ,

oth estimated using the results of the 105 simulations. In this case,
he log-normal fragility curve is a good approximation of the reference
urve.

The fragility curve estimations are shown in Fig. 6. They are ob-
ained from 𝐿 = 5000 samples of 𝜃 generated with the implemented
tatistical methods (see Section 5), which are based on two samples of
onlinear dynamical simulations of sizes 𝑘 = 20 and 𝑘 = 30. Although
he nature of the two intervals compared is different—credibility in-
erval for the Bayesian framework and confidence interval for the
LE—, these results clearly illustrate the advantage of the Bayesian

ramework over the MLE for small samples. With the MLE, irregularities
haracterized by null estimates of 𝛽 appear, resulting in ‘‘vertical’’
onfidence intervals. In Appendix A, we established that the likelihood
s easily maximized for 𝛽 = 0 when samples are partitioned into two

isjunct subsets when classified according to IM values: one subset for
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Fig. 6. 95% credibility (for Bayesian estimation) or confidence (for the MLE) intervals of fragility curve estimations for the elastoplastic oscillator, obtained from a total of 𝐿 = 5000
estimations of 𝜃 using the statistical methods introduced in Section 5.1: (from left to right) Bayesian estimation using the Jeffreys prior, Bayesian estimation using the SK prior,
and MLE with bootstrapping. For each of these, we considered two data samples of nonlinear dynamical simulations of two different sizes (𝑘 = 20 in blue, 𝑘 = 30 in orange). 𝑃MLE

𝑓
(see Section 5.5) is plotted in magenta. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Scatter plots of the generated 𝜃 for the estimation of the fragility curves presented in Fig. 6 for the elastoplastic oscillator. For all three statistical methods, we plotted 500
points out of the 𝐿 = 5000 𝜃 = (𝛼, 𝛽) estimated with two data sets of nonlinear dynamical simulations (of size 𝑘 = 20 in blue and 𝑘 = 30 in orange). The magenta crosses represent
𝜃MLE, used for the computation of 𝑃MLE

𝑓 (see Section 5.5). This figure reveals both the outliers generated from the SK prior (center) and the irregularities characterized by null
estimates of 𝛽 for the coupled MLE and bootstrap approach (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
which there is no failure and one for which there is failure. Moreover,
when few failures are observed in the initial sample, the bootstrap
technique can lead to the generation of a large number of samples
that maximize the likelihood at 𝛽 = 0. This is better evidenced by
an examination of the raw values of 𝜃 generated in Fig. 7. The degen-
erate 𝛽 values resulting from the MLE appear clearly but, although it
should theoretically also be affected, the Bayesian framework shows no
evidence of a similar phenomenon for this type of samples.

Since the SK prior is calibrated to look like the Jeffreys prior,
Fig. 6 shows a strong similarity between the Bayesian estimations of
the fragility curves obtained with these two priors. However, Fig. 7
(middle) shows that many outliers are obtained with the SK prior. These
values explain why the credibility intervals of the fragility curves are
larger with the SK prior when 𝑘 = 20. This observation is supported
theoretically by the calculation provided in Appendix A. There is actu-
ally a better convergence of the Jeffreys prior towards 0 when 𝛽 ⟶ ∞.
This superior asymptotic behavior obviously results in posteriors that
happen to assign a lower probability to outlier points (a phenomenon
particularly noticeable when the data sample is small) as well as to the
weight of the likelihood within the posterior.

For a better understanding of this phenomenon, we calculated the
quantitative metrics defined in Section 5.5. For any 𝑘 ranging from
15 to 100, we conducted 𝑚 = 200 different draws of observations
(𝐚(𝑗), 𝐳(𝑗))𝑚𝑗=1 in order to derive the metrics ̂𝑄|𝐚(𝑗) ,𝐳(𝑗)

𝐿,𝑅 , ̂𝑟|𝐚(𝑗) ,𝐳(𝑗)
𝐿,𝑅 , 𝑗 ∈

{1,… , 𝑚}, 𝑅 ∈ {‘MLE’, ‘SK’, ‘Jeffreys’}, 𝐿 = 5000, 1 − 𝑟 = 95%.
The corresponding means and 95%-confidence intervals are plotted in
Fig. 8. Firstly, these diagrams demonstrate the benefits of the Bayesian
framework compared to the MLE approach for small observation sets.
Secondly, the compared performance of the Jeffreys and SK posteriors
is highlighted by the confidence interval endpoints of the quadratic
7

error and the credibility interval. Specifically, the latter highlights the
effect of the superior asymptotic behavior of the Jeffreys prior along
the width of the credibility interval. It shows variations similar to but
smaller than the SK prior, thus highlighting its capacity to generate
fewer outliers for the pair (𝛼, 𝛽), as expected.

6.2. Case study 2 : piping system

This second case study deals with a piping system which is part of
the secondary cooling system of a French Pressurized Water Reactor.
This piping system was studied experimentally and numerically within
the framework of the ASG program [56]. Fig. 9 (left) shows a view of
the piping mock-up, mounted on the Azalee shaking table of the EMSI
laboratory of CEA/Saclay, whereas the finite element model (FEM)—
based on beam elements—is shown in Fig. 9 (right). The FEM was
implemented using CAST3M [57], a homemade FE code, and validated
through an experimental campaign.

The mock-up is a pipe filled with unpressurized water. The pipe has
an external diameter of 114.3 mm and a thickness of 8.56 mm, with an
elbow characteristic parameter of 0.47, and is made of TU42C carbon
steel. There are three elbows along the pipe as well as a 120 kg mass
standing in for a valve. This mass accounts for more than 30% of the
total mass of the mock-up. One end of the mock-up is clamped while the
other is supported by a guide in order to prevent displacements along
the X and Y axis. In addition, a rod is placed on top of the mock-up
to limit the mass displacements along the Z axis (see Fig. 9 (right)).
During the tests, the excitation is only imposed along the X axis. For
this study, the artificial signals are filtered by a fictional, 2%-damped
linear single-mode building at 5 Hz, 5 Hz being the first eigenfrequency
of the 1%-damped piping system. The failure criterion is considered
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Fig. 8. Performance evaluation metrics (see Section 5.5) for the elastoplastic oscillator computed by replications from independent draws in the full data set of nonlinear dynamical
simulations and for sample sizes ranging from 𝑘 = 15 to 100. Left: the dashed lines plot the quadratic errors as a function of the number of observations, and the shaded areas
show their confidence intervals. Right: the dashed lines plot the widths of the credibility (for the Bayesian estimation) or confidence intervals (for the MLE), and the shaded areas
show their confidence intervals.
Fig. 9. Overview of the piping system on the Azalee shaking table (left) and mock-up FEM (right).
Fig. 10. Reference fragility curve 𝑃MC
𝑓 (see Section 5.1) compared with 𝑃MLE

𝑓 (see
Section 5.5) for the piping system (case study 2). Both curves were computed using
the full data set generated (104 items). The red crosses represent the observations; 0
means no failure, while 1 means failure.

to be an excessive out-of-plane rotation of the elbow located near the
clamped end of the mock-up, as recommended in [58]. The critical
rotation considered is 4.1◦. This value is the 90%-level quantile of a
sample of nonlinear numerical simulations of size 104.

Fig. 10 shows the comparison between the reference, MC-based
fragility curve 𝑃MC

𝑓 (Eq. (19)) and its log-normal estimation 𝑃MLE
𝑓 , both

estimated using the results of 104 simulations. Here, the log-normal
fragility curve is also found to be a good approximation of the reference
curve.
8

Estimations similar to the first case study’s were performed here,
and were found to highlight the same trends. As expected, for sets
of 𝐿 = 5000 values of 𝜃—generated with each statistical method
considered in this work—and for two sample sizes 𝑘 = 20 and 𝑘 = 30
of nonlinear dynamical simulations, Fig. 11 shows the superiority of
the Bayesian framework over the coupled MLE and bootstrap approach.
Just like in the case study with the oscillator, irregularities appear
with the MLE-based approach: the confidence intervals are similarly
‘‘quasi-vertical’’, reflecting the fact that many estimations of 𝛽 are equal
to 0. Moreover, the credibility intervals are wider with the SK prior
than with the Jeffreys prior, which here too can be interpreted as an
increased number of outliers of 𝜃 being generated with the SK prior.
These observations are clearly supported by the results presented in
Fig. 12.

For a more complete overview of their relative performances, the
evaluation metrics described in Section 5.5 have been computed in the
same way as for the first case study: 𝑚 = 200 draws of data samples
(𝐚(𝑗), 𝐳(𝑗))𝑚𝑗=1 have been randomly chosen to compute, for any value of
𝑘 ranging from 15 to 100, 𝑚 values of the metrics ̂𝑄|𝐚(𝑗) ,𝐳(𝑗)

𝐿,𝑅 , ̂𝑟|𝐚(𝑗) ,𝐳(𝑗)
𝐿,𝑅 ,

𝑅 ∈ {‘MLE’, ‘SK’, ‘Jeffreys’}, 𝐿 = 5000, 1 − 𝑟 = 95%. Their means and
confidence intervals are presented in Fig. 13. These results confirm the
superior performance of the Jeffreys prior compared to the other two
methods.

7. Conclusion

Assessing the seismic fragility of Structures and Components (SCs) is
a daunting task when data is limited. The performance of the Bayesian
framework in this kind of situation is well-known. Nevertheless, choos-
ing a prior remains difficult because its impact on the a posteriori
distribution cannot be neglected, and therefore neither can its impact
on the estimation of any relevant element linked to the fragility curves.
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Fig. 11. 95% credibility (for Bayesian estimation) or confidence (for the MLE) intervals of fragility curve estimations for the piping system, obtained from a total of 𝐿 = 5000
estimations of 𝜃 using the statistical methods introduced in Section 5.1: (from left to right) Bayesian estimation using the Jeffreys prior, Bayesian estimation using the SK prior,
and MLE with bootstrapping. For each of these, we considered two data samples of nonlinear dynamical simulations of two different sizes (𝑘 = 20 in blue, 𝑘 = 30 in orange). 𝑃MLE

𝑓
(see Section 5.5) is plotted in magenta. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Scatter plots of the generated 𝜃 for the estimation of the fragility curves presented in Fig. 11 for the piping system. For all three statistical methods, we plotted 500
points out of the 𝐿 = 5000 𝜃 = (𝛼, 𝛽) estimated with two data sets of nonlinear dynamical simulations (of size 𝑘 = 20 in blue and 𝑘 = 30 in orange). The magenta crosses represent
𝜃MLE, used for the computation of 𝑃MLE

𝑓 (see Section 5.5). This figure unveils both the outliers generated from the SK prior (center) and the irregularities characterized by null
estimates of 𝛽 for the coupled MLE and bootstrap approach (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 13. Performance evaluation metrics (see Section 5.5) for the piping system computed by replications from independent draws in the full data set of nonlinear dynamical
simulations and for sample sizes ranging from 𝑘 = 15 to 100. Left: the dashed lines plot the quadratic errors as a function of the number of observations, and the shaded areas
show their confidence intervals. Right: the dashed lines plot the widths of the credibility intervals (for the Bayesian estimation) or confidence intervals (for the MLE), and the
shaded areas show their confidence intervals.
Elaborating on the reference prior theory in order to define an
objective prior, we derived, for the first time in this field of study, the
Jeffreys prior for the log-normal model, with binary data that indicates
the state of the structure (e.g., failure or non-failure). This prior is
completely defined, and does not depend on any additional subjective
choice.

This work is also an opportunity to develop a better theoretical
understanding of the conditions that result in non-degenerate fragility
curves (i.e., curves not taking the form of unit-step functions) in prac-
tice. This issue is quite inevitable when data is limited, since such
curves are a result of the very composition of the sample. Although
9

this issue affects every approach, we could demonstrate rigorously—
i.e., both theoretically and numerically—the robustness and advantages
of the proposed approach over the traditional ones found in the litera-
ture for estimating fragility curves in terms of regularization (i.e., the
absence of degenerate functions when sampling fragility curves with
the a posteriori distribution) and stability (i.e., the absence of outliers
when sampling the a posteriori distribution of the parameters). The
Jeffreys prior therefore leads to more robust credibility intervals.

Although its numerical implementation is complex – more so than
a prior defined as the product of two classical distributions such as log-
normal distributions, for instance – it is not a major issue. As a matter
of fact, since it depends solely on the distribution of the IM, the ‘‘cost’’
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of the initial calculation would quickly be recovered on the scale of
an industrial installation containing several SCs whose fragility curves
must be estimated. For example, compared to methodologies that aim
to define a prior based on mechanical calculations for a given SC, the
advantage of the Jeffreys prior lies in its generic nature. The fact that it
can be applied to all SCs subjected to the same seismic scenario largely
compensates for the implementation of mechanical studies dedicated to
each relevant SC. Additionally, the methodology can be implemented
with any relevant IM without creating additional complexity.
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Appendix A. Prior and posterior asymptotics

This appendix is dedicated to the asymptotic study of the density
functions considered in this paper. These calculations provide a proof
of the proper characteristics of the posterior distributions, which are
needed in order to validate the MCMC methods used for sampling. The
asymptotic expansions of the Jeffreys prior can also be compared to
the ones of Straub and Der Kiureghian’s prior in order to rigorously
establish their respective convergence rates. The derived asymptotic
expansions of the likelihood depend on the distribution of the observed
data. This gives rise to different phenomena discussed here. In order
to carry out our analysis of the Jeffreys prior convergence rates, it is
necessary to make one assumption about the IM’s distribution. In this
paper, we shall consider the following:

Assumption 1. The IM is distributed according to a log-normal
distribution, i.e., there exists 𝜇 ∈ R and 𝜎 ∈ (0,+∞) such that

𝑝(𝑎) = 1
√

2𝜋𝜎2𝑎
exp

(

−
(log 𝑎 − 𝜇)2

2𝜎2

)

. (A.1)

This assumption, which is not far from reality, feeds into the dis-
ussion conducted in Section 5.4. The SK prior is therefore given by

𝑆𝐾 (𝜃) =
1

√

2𝜋𝜎2𝛼𝛽
exp

(

−
(log 𝛼 − 𝜇)2

2𝜎2

)

. (A.2)

This appendix is organized as follows: a summary of our theoretical
esults about the asymptotic expansion of the likelihood is presented
irst in Appendix A.1, followed by the prior density functions in Ap-
endix A.2. Appendix A.3 contains a discussion and a comparison of the
esulting posteriors’ proper characteristics. Potential scenarios resulting
n degenerate fragility curves are presented in Appendix A.4. Finally,
he proofs are presented in Appendix A.5.
10

w

A.1. Likelihood asymptotic

The following proposition gives the asymptotic behaviors of the
likelihood for different limits of 𝜃 = (𝛼, 𝛽).

Proposition 1. Let us consider 𝑘 > 1 and a data sample (𝐚, 𝐳) =
(𝑎𝑖)𝑘𝑖=1, (𝑧𝑖)

𝑘
𝑖=1). Let us introduce the vectors 𝐍 = (𝑧𝑖1𝑎𝑖<𝛼+(1−𝑧𝑖)1𝑎𝑖>𝛼)

𝑘
𝑖=1,

og2 𝐚
𝛼 = (log2 𝑎𝑖

𝛼 )
𝑘
𝑖=1.

• Fixing 𝛼 > 0, then

𝓁𝑘(𝐳|𝐚, 𝜃) ⟶𝛽→∞
2−𝑘 (A.3)

and

𝓁𝑘(𝐳|𝐚, 𝜃) =
𝛽→0

𝑂

(

𝛽|𝐍|𝑒
−

𝐍𝑇 log2 𝐚
𝛼

2𝛽2

)

, (A.4)

where |𝐍| = ∑𝑘
𝑖=1 𝑁𝑖.

• Fixing 𝛽 > 0, then

𝓁𝑘(𝐳|𝐚, 𝜃) =𝛼→0
𝑂
(

| log 𝛼||𝐳|−𝑘𝑒
− 1

2𝛽2
∑𝑘

𝑖=1(1−𝑧𝑖)(log 𝑎𝑖−log 𝛼)
2
)

(A.5)

and

𝓁𝑘(𝐳|𝐚, 𝜃) =
𝛼→∞

𝑂
(

log(𝛼)−|𝐳|𝑒
− 1

2𝛽2
∑𝑘

𝑖=1 𝑧𝑖(log 𝑎𝑖−log 𝛼)
2
)

, (A.6)

where |𝐳| = ∑𝑘
𝑖=1 𝑧𝑖 is the number of failures in the observed sample.

Under general circumstances, the vector 𝐍 is not null, and the
likelihood converges rapidly to zero when 𝛽 ⟶ 0. Under some special
circumstances, however, the vector 𝐍 is null, and the likelihood does
not converge to zero when 𝛽 ⟶ 0. This happens when the failure
occurrences are perfectly separated, i.e., when there exists an open
interval 𝑈 such that ∀𝛼 ∈ 𝑈 , ∀𝑖, 𝑧𝑖 = 1 ⟺ 𝑎𝑖 > 𝛼. Under such
circumstances, the vector 𝐍 is equal to 𝟎 for any 𝛼 ∈ 𝑈 . The likelihood
converges also rapidly to zero when 𝛽 ⟶ 0 when the observed sample
only contains failures, resp. non-failures. Then the vector 𝐍 is equal to
𝟎 for 𝛼 < min(𝑎𝑖), resp. 𝛼 > max(𝑎𝑖).

A.2. Prior asymptotic

The following three propositions give the asymptotic behaviors of
the Jeffreys prior 𝐽 (𝜃) for different limits of 𝜃 = (𝛼, 𝛽).

Proposition 2. Fixing 𝛼 > 0, there exists a 𝐷′(𝛼) > 0 such that

(𝜃) ∼
𝛽→0

𝐷′(𝛼)
𝛽

. (A.7)

Proposition 3. There exists a constant 𝐸′ > 0 such that for any 𝛼 > 0

𝐽 (𝜃) ∼
𝛽→∞

𝐸′

𝛼𝛽3
. (A.8)

roposition 4. Fixing 𝛽 > 0, there exists a 𝐺′′(𝛽) > 0 such that

(𝜃) ∼
| log 𝛼|→∞

𝐺′′(𝛽)
| log 𝛼|

𝛼
exp

(

−
(log 𝛼 − 𝜇)2

2𝛽2 + 2𝜎2

)

. (A.9)

.3. Discussion about posteriors

iscussion about the proper characteristics. These results confirm that
he Jeffreys and SK priors are not proper with respect to 𝛽. For the
effreys prior, the divergence and convergence rates with respect to 𝛽
nly make the resulting posterior proper when the prior is coupled with
he likelihood. The particular circumstances leading to a likelihood
ivergence when 𝛽 → 0, as mentioned in Appendix A.1, do not apply.
owever, one can see that this is not the case for the SK posterior,

hich is not integrable w.r.t. 𝛽 because of a convergence rate that is

http://www.institut-seism.fr/en/
http://www.institut-seism.fr/en/
http://www.institut-seism.fr/en/
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too low at +∞. This prevents the validation of the MCMC estimates for
his posterior, unless a truncation of the distribution is considered. This
xplains the generation of a posteriori outliers using the SK prior. Note
hat Straub and Der Kiureghian considered this prior in [12], but within
Bayesian framework that slightly differs from ours. In Appendix B,
e confirmed that the posterior is not proper even when derived in the
xact framework of [12].

symptotic comparison of the Jeffrey and SK priors. By comparing the
effreys and SK prior asymptotics (A.2), it can be observed that:

• Regarding the asymptotics w.r.t. 𝛽, while the divergence rates are
the same when 𝛽 ⟶ 0, the Jeffreys prior performs better when
𝛽 ⟶ ∞:

𝐽 (𝜃) ∝
𝛽→∞

𝛽−2𝜋𝑆𝐾 (𝜃).

Consequently, the SK posterior results in higher probabilities for
high values of 𝛽 compared to the Jeffreys prior.

• Regarding the asymptotics w.r.t. 𝛼, both are asymptotically close
to a log-normal distribution, with a slight ‘‘disadvantage’’ for
the Jeffreys prior, for which the asymptotic variance is derived
by adding 𝛽2 to the variance of the SK prior. This means that
while for small values of 𝛽 (smaller than 𝜎), both priors remain
comparable w.r.t. 𝛼, the Jeffreys prior gives higher probabilities
to 𝛼 outliers when 𝛽 also has a high value. However, as seen
above, the probability for large values of 𝛽 is quite low for
the Jeffreys prior compared to the SK prior. This explains why
the generation of such 𝛼 outliers has not been observed in the
estimations presented in this paper.

.4. On the consequences of the non-convergence towards 0 of the likeli-
ood when 𝛽 tends towards 0 in certain circumstances

Proposition 1 formulates different convergence rates depending on
ow the observed data is distributed. As explained before, there are
hree kinds of samples which will lead to a divergence of the likelihood
hen 𝛽 tends towards 0: (i) a sample ordered by ‘‘no failure’’ and

‘failure’’ events when classified by IM values; (ii) a sample with only
‘no failure’’ events; and (iii) a sample with only ‘‘failure’’ events. Such
amples lead to unrealistic estimations of 𝛽 as 0 within the MLE estima-

tions, which result in unit-step fragility curves. In such circumstances,
the likelihood is not fully controlled by the priors used in this work,
leading to improper posteriors when the integration takes place around
𝛽 ⟶ 0. This can result in degenerate fragility curves as well, yet the
validity of such a posteriori estimations would remain questionable in
that case.

A.5. Proofs

In this section, we will prove Propositions 1 to 4. Let us first define
some upper bounds for the function 𝛾 ↦ [𝛷(𝛾)(1 −𝛷(𝛾))]−1.

Lemma 1. For any 𝛾 ∈ R, [𝛷(𝛾)(1 −𝛷(𝛾))]−1 ≤ 4 exp
(

2𝛾2∕𝜋
)

.

Lemma 2. For any 𝛾 ∈ R,

𝛷(𝛾)(1 −𝛷(𝛾)) ≥
√

2∕𝜋 exp(−𝛾2∕2)

(|𝛾| +
√

𝛾2 + 4)
. (A.10)

Proof of Lemma 1. From the following inequality about the erf
function [59]:

∀𝛾 > 0,

√

1 − 𝑒−
𝛾2
2 ≤ erf(𝛾∕

√

2) ≤

√

1 − 𝑒−2
𝛾2
𝜋 ,

we can deduce that, for any 𝛾 > 0,

𝑒−
2𝛾2
𝜋 ≤ 1 − erf(𝛾∕

√

2)2 ≤ 𝑒−
𝛾2
2 ,
11
1
4
𝑒−

2𝛾2
𝜋 ≤ 1

4

(

1 − erf
(

𝛾∕
√

2
))(

1 + erf
(

𝛾∕
√

2
))

≤ 1
4
𝑒−

𝛾2
2 ,

the middle term being equal to 𝛷(𝛾)(1 −𝛷(𝛾)). This implies that:

[𝛷(𝛾)(1 −𝛷(𝛾))]−1 ≤ 4𝑒
2𝛾2
𝜋 ,

hence the result for 𝛾 > 0.
While it is clear that the inequality still stands for 𝛾 = 0, notice that

from 𝛷(−𝛾) = 1 − 𝛷(𝛾) ∀𝛾 ∈ R it follows that 𝛾 ↦ 𝛷(𝛾)(1 − 𝛷(𝛾)) is
an even function. Thus, the inequality still stands for any 𝛾 < 0; this
concludes the proof of the lemma. □

Proof of Lemma 2. Komatsu’s inequality [60, p. 17]:

∀𝛾 > 0, 2
√

𝛾2 + 4 + 𝛾
≤ 𝑒

𝛾2
2
∫

∞

𝛾
𝑒−

𝑡2
2 𝑑𝑡 ≤ 2

√

𝛾2 + 2 + 𝛾

implies

∀𝛾 > 0, 2𝑒−
𝛾2
2

√

𝛾2 + 4 + 𝛾
≤
√

2𝜋(1 −𝛷(𝛾)) ≤ 2𝑒−
𝛾2
2

√

𝛾2 + 2 + 𝛾
.

Since 0 < 𝛷 < 1 it follows for 𝛾 > 0 that:

𝛷(𝛾)(1 −𝛷(𝛾)) ≥ 2𝑒−
𝛾2
2

√

𝛾2 + 4 + 𝛾

⎛

⎜

⎜

⎝

1 − 2𝑒−
𝛾2
2

√

𝛾2 + 2 + 𝛾

⎞

⎟

⎟

⎠

≥
√

2∕𝜋𝑒−
𝛾2
2

√

𝛾2 + 4 + 𝛾
.

Finally, since 𝛷(−𝛾) = 1 −𝛷(𝛾), 𝛾 ↦ 𝛷(𝛾)(1 −𝛷(𝛾)) is an even function
and we obtain for any 𝛾 ∈ R

𝛷(𝛾)(1 −𝛷(𝛾)) ≥
√

2∕𝜋𝑒−
𝛾2
2

√

𝛾2 + 4 + |𝛾|
. □

A.5.1. Proof of Proposition 1
As a reminder, the likelihood is expressed as:

𝓁𝑘(𝐳|𝐚, 𝜃)

=
𝑘
∏

𝑖=1
𝛷
(

log 𝑎𝑖 − log 𝛼
𝛽

)𝑧𝑖 (

1 −𝛷
(

log 𝑎𝑖 − log 𝛼
𝛽

))1−𝑧𝑖

= exp

[ 𝑘
∑

𝑖=1

(

𝑧𝑖 log𝛷(𝛾𝑖) + (1 − 𝑧𝑖) log(1 −𝛷(𝛾𝑖))
)

]

,

enoting 𝛾𝑖 = 𝛽−1 log 𝑎𝑖
𝛼 .

To treat the case where 𝛽 ⟶ ∞ we can observe that while 𝛼 is
ixed, the quantities 𝛷(𝛾𝑖) all converge to 1∕2. The product of those
imits gives the limit 𝓁𝑘(𝐳|𝐚, 𝜃) ⟶𝛽→∞

2−𝑘.

For the other cases, it should be reminded that 𝛷(𝑥) = 1
2 (1 +

erf(𝑥∕
√

2)) and erf(𝑥) =
𝑥→∞

1 − 𝑒−𝑥2

𝑥
√

𝜋
+ 𝑜

(

𝑒−𝑥2

𝑥

)

, which leads to

𝛷(𝑥) =
𝑥→∞

1 − 𝑒−
𝑥2
2

𝑥
√

2𝜋
+ 𝑜

⎛

⎜

⎜

⎝

𝑒−
𝑥2
2

𝑥

⎞

⎟

⎟

⎠

. (A.11)

Let us consider an 𝑖 ∈ {1,… , 𝑘} and compute

𝑧𝑖 log𝛷(𝛾𝑖) + (1 − 𝑧𝑖) log(1 −𝛷(𝛾𝑖))

=
𝛾𝑖→∞

𝑧𝑖 log
⎛

⎜

⎜

⎝

1 − 𝑒−
𝛾2𝑖
2

𝛾𝑖
√

2𝜋
+ 𝑜

⎛

⎜

⎜

⎝

𝑒−
𝛾2𝑖
2

𝛾𝑖

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

+ (1 − 𝑧𝑖) log
⎛

⎜

⎜

⎝

𝑒−
𝛾2𝑖
2

𝛾𝑖
√

2𝜋
+ 𝑜

⎛

⎜

⎜

⎝

𝑒−
𝛾2𝑖
2

𝛾𝑖

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

=
𝛾𝑖→∞

−𝑧𝑖
𝑒−

𝛾2𝑖
2

𝛾𝑖
√

2𝜋
+ (1 − 𝑧𝑖) log

⎛

⎜

⎜

⎝

𝑒−
𝛾2𝑖
2

𝛾𝑖
√

2𝜋

⎞

⎟

⎟

⎠

+ 𝑜(1)

=
𝛾𝑖→∞

−(1 − 𝑧𝑖)
𝛾2𝑖
2

− (1 − 𝑧𝑖) log(𝛾𝑖
√

2𝜋) + 𝑜(1).
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Using the relation 𝛷(−𝑥) = 1 − 𝛷(𝑥), it follows that calculation to the
following, in the case 𝑎𝑖 < 𝛼:

𝑧𝑖 log𝛷(𝛾𝑖) + (1 − 𝑧𝑖) log(1 −𝛷(𝛾𝑖)) =
𝛾𝑖→−∞

−𝑧𝑖
𝛾2𝑖
2

− 𝑧𝑖 log(−𝛾𝑖
√

2𝜋) + 𝑜(1).

Going back to the likelihood asymptotics, let us first 𝛼 > 0 and
uppose 𝛽 ⟶ 0. Thus, denoting the vectors 𝐍 = (𝑧𝑖1𝑎𝑖<𝛼 + (1 −
𝑖)1𝑎𝑖>𝛼)

𝑘
𝑖=1 and log2 𝐚

𝛼 = (log2 𝑎𝑖
𝛼 )

𝑘
𝑖=1, we obtain

𝑘(𝐳|𝐚, 𝜃) =
𝛽→0

𝐶(𝛼)
√

2𝜋
|𝐍| 𝛽

|𝐍|𝑒
−

𝐍𝑇 log2 𝐚
𝛼

2𝛽2
+𝑜(1)

=
𝛽→0

𝑂

(

𝛽|𝐍|𝑒
−

𝐍𝑇 log2 𝐚
𝛼

2𝛽2

)

,

where |𝐍| =
∑𝑘

𝑖=1 𝑁𝑖 and 𝐶(𝛼) =
∏𝑘

𝑖=1
|

|

|

log 𝑎𝑖
𝛼
|

|

|

𝑁𝑖 .
Let us then fix 𝛽 > 0 to get

𝓁𝑘(𝐳|𝐚, 𝜃) =
𝛼→∞

𝛽|𝐍|
√

2𝜋
|𝐍|

( 𝑘
∏

𝑖=1
log

(

𝛼
𝑎𝑖

)−𝑧𝑖
)

⋅ exp

(

− 1
2𝛽2

𝑘
∑

𝑖=1
𝑧𝑖(log 𝑎𝑖 − log 𝛼)2 + 𝑜(1)

)

=
𝛼→∞

𝑂
(

log(𝛼)−|𝐳|𝑒
− 1

2𝛽2
∑𝑘

𝑖=1 𝑧𝑖(log 𝑎𝑖−log 𝛼)
2
)

,

here |𝐳| =
∑𝑘

𝑖=1 𝑧𝑖 is the number of failures in the observed sample.
imilarly, we obtain

𝑘(𝐳|𝐚, 𝜃) =
𝛼→0

𝛽|𝐍|
√

2𝜋
|𝐍|

( 𝑘
∏

𝑖=1
log

(𝑎𝑖
𝛼

)−(1−𝑧𝑖)
)

⋅ exp

(

− 1
2𝛽2

𝑘
∑

𝑖=1
(1 − 𝑧𝑖)(log 𝑎𝑖 − log 𝛼)2 + 𝑜(1)

)

=
𝛼→0

𝑂
(

| log 𝛼||𝐳|−𝑘𝑒
− 1

2𝛽2
∑𝑘

𝑖=1(1−𝑧𝑖)(log 𝑎𝑖−log 𝛼)
2
)

.

A.5.2. Proof of Proposition 2
Let 𝛼 > 0. For 0 ≤ 𝑘 ≤ 2, let us consider 𝐴𝑘1,𝑘2 = 𝐴𝑘1 +𝐴𝑘2 with 𝐴𝑘𝑗

efined in (17):

𝑘1,𝑘2 = ∫

∞

0
log𝑘 𝑎

𝛼
𝛷′(𝛾(𝑎))2

𝛷(𝛾(𝑎))(1 −𝛷(𝛾(𝑎)))
𝑝(𝑎)𝑑𝑎.

We obtain

𝐴𝑘1,𝑘2 = 𝛽𝑘+1 ∫

∞

−∞
𝐹𝐴𝑘1,𝑘2

(𝛾)𝑑𝛾, (A.12)

𝐹𝐴𝑘1,𝑘2
(𝛾) =

𝛾𝑘

2
√

𝜋3𝜎2
𝑒−𝛾2𝑒−

(𝛽𝛾−𝜇+log 𝛼)2

2𝜎2

𝛷(𝛾)(1 −𝛷(𝛾))
. (A.13)

Using Lemma 1 an upper bound can be derived for 𝐹𝐴𝑘1𝑘2
: for any

∈ R, 𝛽 > 0,

𝐹𝐴𝑘1,𝑘2
(𝛾)| ≤ �̃�|𝛾|𝑘𝑒−

1
3 𝛾

2
(A.14)

which defines an integrable function on R, �̃� being a constant indepen-
dent of 𝛾 and 𝛽. Hence the limit

lim
𝛽→0∫

∞

−∞
𝐹𝐴𝑘1,𝑘2

(𝛾)𝑑𝛾 = ∫

∞

−∞

𝛾𝑘

2
√

𝜋3𝜎2
𝑒−𝛾2𝑒−

(𝜇−log 𝛼)2

2𝜎2

𝛷(𝛾)(1 −𝛷(𝛾))
𝑑𝛾.

The last integral is null when 𝑘 = 1 as the integrand is odd in this case.
When 𝑘 is even, the integrand is positive valued almost everywhere,
which implies that the integral is positive. From this, we can establish
that 𝐴𝑘1,𝑘2 ∼

𝛽→0
𝐷𝑘(𝛼)𝛽𝑘+1 for some 𝐷𝑘(𝛼) > 0 if 𝑘 = 0, 2, and 𝐴11,12 =

𝛽→0
(𝛽2).

Looking back at the Fisher information matrix, we can state that

et (𝜃) =
𝐷0(𝛼)𝐷2(𝛼) + 𝑜

(

1
)

.

12

𝛽→0 𝛼4𝛽2 𝛽2
Finally, we obtain:

𝐽 (𝜃) ∼
𝛽→0

𝐷′(𝛼)
𝛽

, (A.15)

here 𝐷′(𝛼) > 0 is a constant independent of 𝛽.

A.5.3. Proof of Proposition 3
As a reminder, the asymptotic expansion of the erf function in 0 is:

erf(𝛾) =
𝛾→0

2
√

𝜋
𝛾 + 𝑂(𝛾2),

which allows us to state the behavior of 𝛷(𝛾) when 𝛾 ⟶ 0:

(𝛾) =
𝛾→0

1
2
+ 1

√

2𝜋
𝛾 + 𝑂(𝛾2).

Let us now fix 𝛼 > 0 and consider 𝐴𝑘1,𝑘2 = 𝐴𝑘1 + 𝐴𝑘2:

𝐴𝑘1,𝑘2 = ∫

∞

−∞
𝐹𝐴𝑘1,𝑘2

(𝑥)𝑑𝑥,

̃𝐴𝑘1,𝑘2
(𝑥) = 𝑥𝑘

2
√

𝜋3𝜎2
𝑒
− 𝑥2

𝛽2 𝑒−
(𝑥−𝜇+log 𝛼)2

2𝜎2

𝛷(𝛽−1𝑥)(1 −𝛷(𝛽−1𝑥))
.

Let us note the convergence of 𝐹𝐴𝑘1,𝑘2
(𝑥) towards an integrable function

when 𝛽 ⟶ ∞. Moreover, Lemma 1 allows us to define bounds for
̃𝐴𝑘1,𝑘2

:

|𝐹𝐴𝑘1,𝑘2
(𝑥)| ≤ 2|𝑥|𝑘

√

𝜋3𝜎2
𝑒−

(𝑥−𝜇+log 𝛼)2

2𝜎2 𝑒
2 𝑥2

𝜋𝛽2

≤ 2|𝑥|𝑘
√

𝜋3𝜎2
𝑒−

(𝑥2−2(𝜇−log 𝛼))2

4𝜎2 𝑒
(𝜇+log 𝛼)2

2𝜎2 ,

for any 𝑥 ∈ R and 𝛽 > 2𝜎∕
√

𝜋. This dominating function is integrable
on R. Thus, when 𝛽 ⟶ ∞, 𝐴𝑘1,𝑘2 admits a limit expressed by:

lim
𝛽→∞

𝐴𝑘1,𝑘2 = 𝐸𝑘(𝛼) = ∫

∞

−∞

2𝑥𝑘
√

𝜋3𝜎2
𝑒−

(𝑥−𝜇+log 𝛼)2

2𝜎2 𝑑𝑥 =
2
√

2
𝜋

E[𝑋𝑘],

with 𝑋 ∼  (𝜇−log 𝛼, 𝜎2). Recalling the expression of the Jeffreys prior:

𝐽 (𝜃)2 =
|

|

|

|

1
𝛼2𝛽6

𝐴01,02𝐴21,22 −
1

𝛼2𝛽6
𝐴2
11,12

|

|

|

|

,

we can deduce that it is equivalent to (𝐸0(𝛼)𝐸2(𝛼) − 𝐸2
1 (𝛼))∕𝛼

2𝛽6 when
⟶ ∞. Finally,

(𝜃) ∼
𝛽→∞

𝐸′

𝛼𝛽3
,

with 𝐸′ =
√

𝐸0(𝛼)𝐸2(𝛼) − 𝐸2
1 (𝛼) = 2𝜎∕𝜋.

A.5.4. Proof of Proposition 4
As a preliminary result, let us use Eq. (A.11) to obtain

𝛷(𝛾)(1 −𝛷(𝛾)) ∼
|𝛾|⟶∞

𝑒
−𝛾2
2

|𝛾|
√

2𝜋
. (A.16)

Let us consider 𝐴𝑘1,𝑘2 = 𝐴𝑘1 + 𝐴𝑘2:

𝑘1,𝑘2 = 𝐶 ′
∫

∞

0

(

log 𝑎
𝛼

)𝑘 𝑒
− 1

𝛽2
log2 𝑎

𝛼 𝑒−
(log 𝑎−𝜇)2

2𝜎2

𝛷(𝛽−1 log 𝑎
𝛼 )

(

1 −𝛷(𝛽−1 log 𝑎
𝛼 )
)

𝑑𝑎
𝑎
,

denoting 𝐶 ′ =
√

4𝜋3𝜎2
−1

. By substituting

𝜈 = log 𝑎 − 𝜎2

𝜎2 + 𝛽2
log 𝛼 −

𝛽2

𝜎2 + 𝛽2
𝜇

= log 𝑎 − 𝑟 log 𝛼 − 𝑠𝜇,

e obtain

𝑘1,𝑘2 = 𝐶 ′
∞
𝐹𝐴 (𝜈)𝑑𝜈,
∫−∞ 𝑘1,𝑘1
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and

𝐹𝐴𝑘1,𝑘1
(𝜈) = (𝜈 + (𝑟 − 1) log 𝛼 + 𝑠𝜇)𝑘 𝑒

− (𝜈+(𝑟+1) log 𝛼+𝑠𝜇)2

𝛽2 𝑒−
(𝜈+𝑟 log 𝛼+(𝑠−1)𝜇)2

2𝜎2

[𝛷(1 −𝛷)] (ℎ𝛽 (𝜈))
,

where ℎ𝛽 (𝜈) = 𝛽−1(𝜈 + (𝑟 − 1) log 𝛼 + 𝑠𝜇). Using Eq. (A.16), we obtain

[𝛷(1 −𝛷)] (ℎ𝛽 (𝜈)) ∼
| log 𝛼|→∞

𝛽𝑒
− (𝜈+(𝑟−1) log 𝛼+𝑠𝜇)2

2𝛽2

|𝜈 + (𝑟 − 1) log 𝛼 + 𝑠𝜇|
√

2𝜋
. (A.17)

Then for a clear understanding of the asymptotic behavior of 𝐹𝐴𝑘1,𝑘2
,

let us compute

−
(𝜈 + (𝑟 − 1) log 𝛼 + 𝑠𝜇)2

2𝛽2
−

(𝜈 + 𝑟 log 𝛼 + (𝑠 − 1)𝜇)2

2𝜎2

−
(

1
2𝛽2

+ 1
2𝜎2

)

𝜈2

−
(

((𝑟 − 1) log 𝛼 + 𝑠𝜇)2

2𝛽2
+

(𝑟 log 𝛼 + (𝑠 − 1)𝜇)2

2𝜎2

)

= −
(

1
2𝛽2

+ 1
2𝜎2

)

𝜈2 −
(log 𝛼 − 𝜇)2

2(𝛽2 + 𝜎2)
. (A.18)

Expanding 𝐹𝑘1,𝑘2(𝜈) =
∑𝑘

𝑗=1 𝐶
𝑗
𝑘(𝑟 − 1)𝑗 log𝑗 𝛼(𝜈 + 𝑠𝜇)𝑘−𝑗𝑔(𝜈) =

∑𝑘
𝑗=0

𝐹 (𝑗)
𝑘1,𝑘2(𝜈), with 𝑔(𝜈) defined as

𝑔(𝜈) = 𝑒
− (𝜈+(𝑟+1) log 𝛼+𝑠𝜇)2

𝛽2 𝑒−
(𝜈+𝑟 log 𝛼+(𝑠−1)𝜇)2

2𝜎2

[𝛷(1 −𝛷)] (𝛽−1(𝜈 + (𝑟 − 1) log 𝛼 + 𝑠𝜇))
.

By combining Eqs. (A.17) and (A.18), we obtain that 𝐹 (𝑗)
𝑘1,𝑘2 satisfies

𝐹 (𝑗)
𝑘1,𝑘2(𝜈)𝑒

(log 𝛼−𝜇)2

2𝛽2+2𝜎2 (log 𝛼)−𝑗 | log 𝛼|−1

⟶
| log 𝛼|→∞

(
√

2𝜋𝛽)−1𝐶𝑗
𝑘(𝑟 − 1)𝑗+1(𝜈 + 𝑠𝜇)𝑘−𝑗𝑒

−
(

1
2𝛽2

+ 1
2𝜎2

)

𝜈2
.

Using Lemma 2, we can also define an upper bound for the above
function in the form of an integrable function expressed as

|𝐹 (𝑗)
𝑘1,𝑘2(𝜈)|𝑒

(log 𝛼−𝜇)2

2𝛽2+2𝜎2
| log 𝛼|−𝑗−1 ≤

√

2∕𝜋𝑒
−
(

1
2𝛽2

+ 1
2𝜎2

)

𝜈2

|ℎ𝛽 (𝜈)| +
√

ℎ𝛽 (𝜈)2 + 4

≤ 1
√

2𝜋
𝑒
−
(

1
2𝛽2

+ 1
2𝜎2

)

𝜈2
.

herefore, we can switch the limits and the integration, and the follow-
ng results are obtained:

′′𝛽𝐴01,02𝑒
(log 𝛼−𝜇)2

2𝛽2+2𝜎2 =
log 𝛼→∞

(1 − 𝑟)𝐺 log 𝛼 − 𝑠𝜇𝐺 + 𝑜(1),

𝐶 ′′𝛽𝐴11,12𝑒
(log 𝛼−𝜇)2

2𝛽2+2𝜎2 =
log 𝛼→∞

−(1 − 𝑟)2𝐺 log2 𝛼 − 𝑠2𝜇2𝐺

+ 2(1 − 𝑟)𝑠𝜇𝐺 log 𝛼 − 𝐺′ + 𝑜(1),

𝐶 ′′𝛽𝐴22,22𝑒
(log 𝛼−𝜇)2

2𝛽2+2𝜎2

=
log 𝛼→∞

(1 − 𝑟)3𝐺 log3 𝛼 − 𝑠3𝜇3𝐺 − 3(1 − 𝑟)2𝑠𝜇𝐺 log2 𝛼

− 3(1 − 𝑟)𝑠2𝜇2𝐺 log 𝛼 + 3(1 − 𝑟)𝐺′ log 𝛼 + 𝑜(1),

with 𝐶 ′′ = (𝐶 ′
√

2𝜋)−1, 𝐺 = 𝜎𝛽
√

2𝜋(𝛽2 + 𝜎2)−1 and 𝐺′ = 𝐺2∕2𝜋. This
way

𝐶 ′′𝛼𝛽8𝐽 (𝜃)2𝑒
(log 𝛼−𝜇)2

2𝛽2+2𝜎2

=
log 𝛼→∞

3(𝑟 − 1)2𝑠2𝜇2𝐺2 log2 𝛼 + 3(𝑟 − 1)2𝑠2𝜇2𝐺2 log2 𝛼

+ 3(𝑟 − 1)2𝐺𝐺′ log2 𝛼 − 4(𝑟 − 1)2𝑠2𝜇2𝐺2 log2 𝛼

− 2(𝑟 − 1)2𝑠2𝜇2𝐺2 log2 𝛼 − 2(𝑟 − 1)2𝐺𝐺′ log2 𝛼 + 𝑜(log2 𝛼).
13
Note that the above equality is still valid when log 𝛼 ⟶ −∞. Finally

𝐽 (𝜃) ∼
| log 𝛼|→∞

𝐺′′(𝛽)
| log 𝛼|

𝛼
exp

(

−
(log 𝛼 − 𝜇)2

2𝛽2 + 2𝜎2

)

,

ith

′′(𝛽) = 𝐶 ′′−1(𝑟 − 1)2𝐺𝐺′𝛽−4 =
2𝜎3𝛽3

√

𝜋(𝜎2 + 𝛽2)7∕2
.

ppendix B. A review of the properties of the SK posterior

In this paper, we have compared our approach with the one that
esults from an adaptation of the prior suggested by Straub and Der
iureghian [12]. We proved in Appendix A that within our framework,

his prior results in an improper posterior. This puts the validity of
he MCMC estimations into question, and could explain the lower
erformance of the SK prior compared to the Jeffreys prior. In [12],
he authors use the Bayesian methodology the same way we do, yet the
onsideration of uncertainties over the observed earthquake intensity
easures and the equipment capacities leads to a slightly different like-

ihood. In order to verify that the drawbacks of their prior highlighted
n this paper are not due to our statistical choices, we dedicated this
ppendix to the study of the asymptotic expansions of the posterior
n the exact framework presented in [12]. We shall first introduce
he exact model of Straub and Der Kiureghian for the estimation of
eismic fragility curves in Appendix B.1, using notations consistent with
ur study. We will then derive the likelihood and its asymptotics in
ppendix B.2. Finally, we will express the convergence rates of the
osterior in Appendix B.3, which will allow us to conclude that the
K posterior is indeed improper.

.1. Statistical model and likelihood

Let us consider the observations of earthquakes labeled 𝑙 = 1,… , 𝐿
t equipment labeled 𝑖 = 1,… , 𝐼𝑗 located in substations labeled 𝑗 =

1,… , 𝐽 . The observed items are (𝐳𝑗𝑙 , �̂�𝑗𝑙)𝑗,𝑙, 𝐳𝑗𝑙 = (𝑧𝑖𝑗𝑙)𝑖 being the
ailure occurrences of the 𝐼𝑗 pieces of equipment at substation 𝑗 during
arthquake 𝑙 (𝑧𝑖𝑗𝑙 ∈ {0, 1}), and �̂�𝑗𝑙 being the observed IM at substation
during earthquake 𝑙 (�̂�𝑗𝑙 ∈ (0,+∞)). They are assumed to follow the

atent model presented below.
At substation 𝑗 the 𝑙th earthquake results in an IM value 𝑎𝑗𝑙 that is

bserved with an uncertainty multiplicative noise: log �̂�𝑗𝑙 = log 𝑎𝑗𝑙 + 𝜀𝑗𝑙
here 𝜀𝑗𝑙 ∼  (0, 𝜎2𝜀 ). The noise variance 𝜎2𝜀 is supposed to be known.
he uncertain intrinsic capacity of equipment 𝑖 at substation 𝑗 is 𝑟𝑖𝑗 ∼
(𝜇𝑟, 𝜎2𝑟 ) and 𝑦𝑗𝑙 ∼  (0, 𝜎2𝑦 ) is the uncertain factor common to all

quipment capacities at substation 𝑗 during earthquake 𝑙. The random
ariables 𝑟𝑖𝑗 , 𝑦𝑗𝑙 and 𝜀𝑗𝑙 are supposed to be independent.

A failure of equipment 𝑖 at substation 𝑗 during earthquake 𝑙 is
onsidered when the performance of the structural component 𝑔𝑖𝑗𝑙
atisfies 𝑔𝑖𝑗𝑙 > 0. This performance can be expressed as

𝑖𝑗𝑙 = log �̂�𝑗𝑙 + 𝜀𝑗𝑙 − 𝑦𝑗𝑙 − 𝑟𝑖𝑗 = 𝑥𝑗𝑙 − 𝑟𝑖𝑗

ith 𝑥𝑗𝑙 = log �̂�𝑗𝑙 + 𝜀𝑗𝑙 − 𝑦𝑗𝑙.
This establishes the following conditional relation between the ob-

erved data:

(𝑧𝑖𝑗𝑙|�̂�𝑗𝑙 , 𝛴) = ∫R
𝑝(𝑧𝑖𝑗𝑙|𝑥𝑗𝑙 , �̂�𝑗𝑙 , 𝛴)

exp
(

− (𝑥𝑗𝑙−log �̂�𝑗𝑙 )2

2(𝜎2𝜀+𝜎2𝑦 )

)

√

2𝜋(𝜎2𝜀 + 𝜎2𝑦 )
𝑑𝑥𝑗𝑙 , (B.1)

enoting 𝛴 = (𝜎𝑟, 𝜎𝑦, 𝜇𝑟), and with

(𝑧𝑖𝑗𝑙|𝑥𝑗𝑙 , �̂�𝑗𝑙 , 𝛴) = 𝛷
(𝑥𝑗𝑙 − 𝜇𝑟

𝜎𝑟

)𝑧𝑖𝑗𝑙 (

1 −𝛷
(𝑥𝑗𝑙 − 𝜇𝑟

𝜎𝑟

))1−𝑧𝑖𝑗𝑙
, (B.2)

when substation 𝑗 is only affected by one earthquake. The method
proposed in [12] actually considers cases in which a substation may

be impacted by two successive earthquakes and takes into account the
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fact that its response to the second would be correlated to its response
to the first one. This would lead to a different likelihood. However, it
is mentioned that this possibility only concerns a small number of data
points. We can therefore limit our calculations to the simplest case and
assume 𝑙 = 𝐿 = 1. The subscript 𝑙 will therefore be dropped in what
follows.

Finally, the likelihood for this model can be expressed as:

𝓁𝐽 (𝐳|�̂�, 𝛴) (B.3)

=
𝐽
∏

𝑗=1
∫R

𝐼𝑗
∏

𝑖=1
𝑝(𝑧𝑖𝑗 |𝑥𝑗 , log �̂�𝑗 , 𝛴)

exp
(

− (𝑥𝑗−log �̂�𝑗 )2

2(𝜎2𝜀+𝜎2𝑦 )

)

√

2𝜋(𝜎2𝜀 + 𝜎2𝑦 )
𝑑𝑥𝑗 ,

denoting 𝐳 = (𝐳𝑗 )𝐽𝑗=1, �̂� = (�̂�𝑗 )𝐽𝑗=1, and with the integrated conditional
distribution defined in Eq. (B.2).

In the Bayesian framework introduced in [12], the model parameter
is 𝛴. Let us denote 𝛼 = exp𝜇𝑟, 𝛽 =

√

𝜎2𝑟 + 𝜎2𝑦 and 𝜌 = 𝜎2𝑦∕𝛽
2. Denoting

𝜃 = (𝛼, 𝛽, 𝜌), the knowledge of 𝛴 then becomes equivalent to the one
f 𝜃 and the likelihood of Eq. (B.3) can be expressed conditionally to 𝜃
nstead of 𝛴:

𝐽 (𝐳|�̂�, 𝜃) (B.4)

=
𝐽
∏

𝑗=1
∫R

𝐼𝑗
∏

𝑖=1
𝛹 𝑧𝑖𝑗

(

𝑥 − log 𝛼

𝛽
√

1 − 𝜌

) exp
(

− (𝑥−log �̂�𝑗 )2

2(𝜎2𝜀+𝜌𝛽2)

)

√

2𝜋(𝜎2𝜀 + 𝜌𝛽2)
𝑑𝑥,

here the notation 𝛹 𝑧𝑖𝑗 (𝛾) is used to denote 𝛷(𝛾)𝑧𝑖𝑗 (1 −𝛷(𝛾))1−𝑧𝑖𝑗 .
Straub and Der Kiureghian propose the following improper prior

distribution for the parameter 𝜃:

𝜋𝑆𝐾 (𝜃) ∝
1
𝛽𝛼

exp
(

−
(log 𝛼 − 𝜇)2

2𝜎2

)

10≤𝜌≤1. (B.5)

posteriori estimations of 𝜃 are consequently generated from MCMC
ethods

(𝜃|𝐳, �̂�) ∝ 𝓁𝐽 (𝐳|�̂�, 𝜃)𝜋𝑆𝐾 (𝜃). (B.6)

B.2. Likelihood asymptotics

In this appendix, we will study the asymptotics of the likelihood
defined in (B.4) when 𝛽 ⟶ ∞. Let us first consider the substitution
𝑢 = (𝑥 − log �̂�𝑗 )∕

√

𝜎2𝜀 + 𝜌𝛽2 to express the likelihood as

𝐽 (𝐳|�̂�, 𝜃) =
𝐽
∏

𝑗=1
∫R

𝑓 𝛽
𝑗 (𝑢)𝑑𝑢,

𝑓 𝛽
𝑗 (𝑢) =

𝐼𝑗
∏

𝑖=1
𝛷(ℎ𝛽𝑗 (𝑢))

𝑧𝑖𝑗 (1 −𝛷(ℎ𝛽𝑗 (𝑢)))
1−𝑧𝑖𝑗 𝑒

− 𝑢2
2

√

2𝜋
,

with

ℎ𝛽𝑗 (𝑢) =
(𝑢 + log �̂�𝑗 )

√

𝜎2𝜀 + 𝜌𝛽2 − log 𝛼

𝛽
√

1 − 𝜌
.

This way, remembering that 0 ≤ 𝛷(1 − 𝛷) ≤ 1, an upper bound
↦ 𝑒−𝑢2∕2∕

√

2𝜋 can be found for 𝑓 𝛽
𝑗 for any 𝛽, 𝑢. It converges when

𝛽 ⟶ +∞ as follows:

lim
𝛽→∞

𝑓 𝛽
𝑗 (𝑢) =

𝐼𝐽
∏

𝑖=1
𝛹 𝑧𝑖𝑗

(

(𝑢 + log �̂�𝑗 )
√

𝜌
√

1 − 𝜌

)

𝑒−
𝑢2
2

√

2𝜋
.

This gives the following limit for the likelihood:

lim
𝛽→∞

𝓁𝐽 (𝐳|�̂�, 𝜃) (B.7)

=
𝐽
∏

𝑗=1
∫R

𝐼𝑗
∏

𝑖=1
𝛹 𝑧𝑖𝑗

(

(𝑢 + log �̂�𝑗 )
√

𝜌
√

1 − 𝜌

)

𝑒−
𝑢2
2

√

2𝜋
𝑑𝑢,

hich is a positive quantity.
14
B.3. Posterior asymptotics

By combining Eqs. (B.7), (B.6) and (B.5) we obtain the posterior
asymptotics

𝑝(𝜃|𝐳, �̂�) ∼
𝛽→∞

𝐶
𝛽
, (B.8)

with 𝐶 being a positive constant. This makes the posterior improper
w.r.t. 𝛽, with the same convergence rate as the one derived in our
framework.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.probengmech.2024.103622.
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