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ABSTRACT

Laser-produced plasma in inertial confinement fusion (ICF) Hohlraums are marked with density non-uniformity whose length scale can go
down to micrometers. This scale is of the order of the laser wavelength. The WKB approximation, which is classically used in radiation-
hydrodynamic codes to compute the laser trajectory, cannot correctly take into account such small-scale inhomogeneity of the plasma. Going
beyond this approximation, we predict a novel mechanism for the laser reflection. We show that an electromagnetic plane wave with wave
number k resonates with the kB ¼ 2 k Fourier component of a multimode perturbation of the background density and generates a reflected
wave. It is the first time that this reflection is considered for stationary inhomogeneous ICF plasmas, and the energy absorption is taken into
account. This mechanism, which is a form of Bragg reflection, can occur away from the critical surface and generate a drift of the location of
the laser absorption. Furthermore, this absorption will be periodically modulated with a kB wave number. The stationary Bragg reflection can
explain ongoing discrepancies between experimental and numerical data about laser trajectory and absorption in ICF Hohlraums.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0170189

I. INTRODUCTION

In indirect-drive inertial confinement fusion (ICF) experiments,
the x-ray drive around the fuel pellet must be highly symmetric. This
drive is generated by the conversion of the laser absorption at the
Hohlraum wall. As a result, the control and optimization of the laser
deposition is crucial for the success of ICF. For years, discrepancies
between experimental data and numerical simulations have pointed
out that the laser deposition is not accurately predicted by radiation-
hydrodynamic (rad-hydro) codes.1–9 Some of the proposed mecha-
nisms to explain such discrepancies are regional heat conduction
flux,8,10 cross beam energy transfer (CBET),6,11–14 and stimulated scat-
tering processes, Brillouin (SBS), and Raman (SRS).11,15,16

In ICF Hohlraums, the dynamics of the plasma is quite complex:
spatially evolving hydrodynamic phenomena such as shock waves,
ablation fronts, plasma collisions, hydrodynamic instabilities17,18 at
interfaces or turbulence19–21 superimpose with self-generated magnetic
fields, microinstabilites, and abrupt temporal changes of the internal
and radiation energies. This complexity generates a multi-scale

inhomogeneity of the plasma density and, thus, of the electronic den-
sity. Micron-scale phenomena have been recently observed in high
energy density experiments.21 Most of the rad-hydro codes rely on
ray-tracing packages to compute the laser trajectory and absorption.
These packages use the WKB approximation. As a result, the effect on
the laser trajectory of plasma index inhomogeneity, which length scale
is of the order of the laser wavelength, cannot be correctly taken into
account. In ICF standard computations, this issue is usually not con-
sidered as rad-hydro codes can only track mean flow variations with a
typical length scale of few tens of micrometers.

In this paper, we propose and study a novel mechanism that
could affect laser trajectory and absorption in ICF plasmas and explain
recent experimental observations. Some multimode spatial variations
of the background electronic density (starting from sub-micron length
scale) are assumed. Their lifetimes are supposed far greater than the
time needed by the laser to pass through as well as spatial extensions
greater than several laser wavelengths. Going beyond the WKB
approximation, we theoretically and numerically demonstrate in the
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one-dimensional (1D) geometry that a plane electromagnetic (em)
wave with wave number k self-selects and resonates with the
kB ¼ 2 k Fourier component of the electronic density profile. Wave
reflection can then occur far from the critical surface in a plasma where
small-scale inhomogeneity exists. In such a plasma, computations
show that the maximum of laser absorption moves away from the crit-
ical density. Furthermore, the influence of the energy absorption on
the wave trajectory differs from the WKB modeling. These results
could help understanding discrepancies between experiments and
numerical simulations about the implosion symmetry of ICF capsule,
or the x-ray emission maps of the laser-heatedHohlraum wall.1,7,8

The paper is organized as follows. Section II summarizes the stan-
dard derivation for wave trajectory and absorption in the WKB
approximation. Then, when no approximation is done, the resonance
of an em wave with the 2 k mode of the electronic density profile is
demonstrated as well as the generation of a reflected wave. In Sec. III,
the reflectivity of a plasma due to a small-scale inhomogeneity is esti-
mated. In Sec. IV, the full-wave solution of the wave equation is com-
puted for several profiles of the electronic density inhomogeneity in
order to support the theoretical results about the resonance and its kB
mode selection. In Sec. V, the relation with the classical Bragg reflec-
tion in Tokamak plasma, and specificities of this reflection are dis-
cussed. Then, in Sec. VI, distinction between this mechanism and
classical parametric instabilities is underlined. Section VII assesses the
existence of small-scale plasma inhomogeneity in the gold bubble of
ICF Hohlraums. In Sec. VIII, effects on the laser absorption and
plasma properties are considered. They are applied to the analysis of
an experiment. Section IX concludes this paper.

II. THEORETICAL MODELING OF LASER TRAJECTORY
AND ABSORPTION

For a 1 cm ICF under-dense plasma, the timescale of the laser
travel is sT � 3:3 10�11 s. Let us define the hydrodynamic timescale,
sH, as the time needed for the gold bubble plasma of an ICF Hohlraum
to travel 1 cm. Numerical simulations give a value for sH about several
nanoseconds. In the following, as sT � sH , the plasma is considered as
almost frozen on the timescale of the laser wave, i.e., ion motion is
neglected. The plasma is also assumed neutral, and the electronic den-
sity inhomogeneity follows the density variation. For simplicity, this sta-
tionary plasma is taken one-dimensional (1D) with the electronic
density varying in the x-direction (Fig. 1). Consider a plane em wave
propagating into this static plasma. The E field of the wave is written as

Eðx; tÞ ¼ E0eiðx0t�/ðxÞÞ ; (1)

where x0 is the laser frequency, and kðxÞ ¼ krðxÞ þ i kiðxÞ
¼ @/ðxÞ=@x is the laser wave number. Combining the Maxwell’s
equations and the momentum equation for the electrons, the coupling
between the light wave and the electron plasma can be described. The
subsequent wave equation22–24 is written as follows [for sake of sim-
plicity, the (x, t) dependency of E, and the x dependency of other varia-
bles will be dropped in the following equations]:

@2E
@x2

� 1
c2
@2E
@t2

� x2
p

c2
E

1� i
�ei
x0

¼ 0 ; (2)

where c is the light velocity in vacuum, xp is the plasma frequency,
and �ei is the electron ion collision frequency. Exact analytical solu-
tions of the wave equation are known only for a few plasma permittiv-
ity profiles. For other profiles, if the permittivity variation takes place
on a length scale much larger than the local laser wave wavelength,
kðxÞ, i.e., the permittivity is a slowly varying function, the reflection is
weak and the first geometrical optics approximation22,25 can be used
to solve Eq. (2). This approximation is equivalent to the WKB approxi-
mation. The latter implies that, whatever the function f(x) describing a
physical property, @f ðxÞ=@x kðxÞ � f ðxÞ. If the permittivity profile
varies on shorter length scale, a useful strategy has been to discretize
the plasma as a large number of thin homogeneous layers. In each
layer, the E field is written as the sum of an incoming and a reflected
plane em waves, Eðx; tÞ ¼ Ei eiðx0t�k xÞ þ Er eiðx0tþk xÞ. The transfer
matrix method25,49,50 and proper boundary conditions at the interfaces
can be used to determine the discretized E field.

In the following, we solve Eq. (2) for a slowly varying background
density profile and a superimposed arbitrary multi-scale inhomogene-
ity. The form of the solution is kept as Eq. (1), and a perturbation
method determines the function k(x) beyond theWKB approximation.
Then, a Jacobi–Anger expansion of the resulting E field shows how the
reflected wave builds from the interaction between the incoming wave
and the plasma inhomogeneity.

Introducing Eq. (1) into Eq. (2), the real and imaginary parts read

@ki
@x

� k2r þ k2i þ
x2

0

c2
1� x2

p

x2
0

1

1þ �ei
x0

� �2

0B@
1CA ¼ 0;

@kr
@x

þ 2krki þ
x2

p

c2

�ei
x0

1þ �ei
x0

� �2 ¼ 0:

8>>>>>>>>>>><>>>>>>>>>>>:
(3)

Using the WKB approximation on k(x) leads to
@kðxÞ=@x � kðxÞ2. In the framework of this approximation, Eqs. (3)
are simplified, and can be solved analytically. Furthermore, if
�ei=x0 � 1 is assumed, the following well-known expression22,51,52

for k(x) is derived:

kr ¼ k0 nr ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ne

nc

r
;

ki ¼ k0 ni ¼ � k0
2
�ei
x0

ne=ncffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ne

nc

r ;

8>>>>>>><>>>>>>>:
(4)

FIG. 1. (a) Schematic of a laser heated Hohlraum wall. (b) 1D studied configuration.
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where k0 ¼ 2p=k0; n ¼ nr þ i ni, ne, and nc are the laser wave num-
ber in vacuum, the complex index of the plasma, the electronic density,
and the critical electronic density, respectively. The latter is defined by
x2

0 ¼ 4p nc e2=me with e andme, the electron charge andmass, respec-
tively. The intensity, I, of the plane em wave is proportional to nr jEj2.
If nrðxÞ is a slow varying function, this leads to I ¼ I0 e

Ð
2 kiðxÞ dx . In

the WKB approximation, ki < 0 and I decreases along the ray path
due to the energy lost by electron–ion collisions. Equations (4) show
that the laser deposition dI/dx drastically increases as ne ! nc.
Equations (4) also show that the local wavelength of the em wave,
kðxÞ ¼ 2p=krðxÞ, increases as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� neðxÞ=nc

p
. It is usual to note

that the WKB approximation is not valid in the vicinity to nc. Let us
emphasize that, even far from nc, the WKB approximation also cannot
correctly handle the propagation of a wave in a plasma where some
length scales are of the order of k.

The response of an em wave to k-scale electronic density ripples
is now studied. The electronic density profile is written as
neðxÞ ¼ neðxÞ þ ene ðxÞ, where ne ðxÞ is a slow varying function,eneðxÞ ¼P1

p¼1 Np cos ðp Ð x0 kr ðxÞ dxÞ, with Np=ne ðxÞ � 1. The per-

turbation solution reads as k ¼ k þ ek, with k ¼ kr þ iki the WKB

solution, and ek ¼ ekr þ ieki a first order correction (ekr � kr ; eki � ki ).
The first order expansion of Eqs. (3) gives, for �ei=x0 � 1, and slowly
varying kr :

@eki
@x

� 2 kr ekr þ 2 ki eki � xp
2

c2
ene
ne

¼ 0;

@ ekr
@x

þ 2ðkr eki þ ki ekr Þ ¼ 0:

8>>>><>>>>: (5)

Seeking solutions as ekr ðxÞ ¼ KrðxÞ e�2
Ð x
0
ki ðxÞdx and ekiðxÞ

¼ KiðxÞ e�2
Ð x
0
ki ðxÞdx with ekr ð0Þ ¼ 0, the following result is found forekr ðxÞ:

ekr xð Þ ¼ xp
2

c2

"
� x
2
N2

ne
sin 2

ðx
0
kr dx

� �
þ
X
p6¼2

Np

ne

2
p2 � 4ð Þ

�

 
cos p

ðx
0
kr dx

� �
kr

�
cos 2

ðx
0
kr dx

� �
k0

!#
: (6)

Equation (6) shows that the value p¼ 2 leads to a secular term. In
comparison with this secular response, the amplitude of the other
modes is negligible for x > 1=kr ðxÞ. This means that a plane em wave
going through a plasma essentially resonates with the p¼ 2 Fourier
mode of the density inhomogeneity profile. In other words, the em
wave self-selects the kBðxÞ ¼ 2p=kBðxÞ ¼ 2=x

Ð x
0 kr ðxÞ dx mode of

the electronic density profile and interacts with it. Let us note that for
is a slowly varying kr ðxÞ; kBðxÞ � 2 kr ðxÞ. Thus, solution (6) can be
approximated as

ekr ðxÞ � �xp
2

c2
x
2
N2

ne
sinð2kr xÞ : (7)

This solution shows that, when subjected to ne inhomogeneities,
the em wave sees its wave number krðxÞ displaying increasing oscilla-
tions with x. Numerical integration of Eqs. (3) shows that the ampli-
tude of these oscillations can be such that krðxÞ reaches 0, i.e., wave
reflection, even if neðxÞ 6¼ nc.

Equation (1) can be expanded as Eðx; tÞ ¼ E0 e
Ð x

0
kiðxÞdx

� eiðx0 t�
Ð x
0
ðkr ðxÞþekr ðxÞÞdxÞ. Then, Eq. (7) leads to
E ¼ E0 eki x eiðx0 t�kr xÞ e�i z cosð2kr xÞ ei w sinð2kr xÞ (8)

with z ¼ a kr x; w ¼ a=2, and a ¼ 1
4
xp

2

kr
2
c2

N2

neðxÞ
. Using the Jacobi–Anger

expansion, e6i a sin b ¼Pþ1
m¼�1 JmðaÞe6imb, Eq. (8) gives

E ¼ E0 e
ki xfJ0ðzÞJ0ðwÞeiðx0 t�kr xÞ

þ ðJ0ðzÞJ1ðwÞ þ iJ0ðwÞJ�1ðzÞÞeiðx0 tþkr xÞ þ o:t:g; (9)

where o.t. stands for the other terms of the expansion product and rep-
resents the generation of harmonics. Equation (9) displays a counter-
propagating em plane wave which amplitude depends on N2=neðxÞ.
Thus, the modulation of krðxÞ described by Eq. (7) can be interpreted
as the signature of the superposition of the incoming wave and a
reflected one. Going beyond theWKB approximation, we have analyti-
cally demonstrated how a bulk reflection is generated within a plasma
by the direct interaction between the incoming wave and a static
small-scale multimode inhomogeneity.

Let us note that eki also displays oscillations, and the energy depo-
sition is consequently modulated (see Sec. V). This could lead to a pos-
itive feedback on the density inhomogeneity (see Sec. VIII).

III. BULK REFLECTANCE DUE TO INHOMOGENEITY
IN A STATIC PLASMA

In this section, we demonstrate a direct analogy between a wave
interacting with a multimode modulated stationary plasma and a wave
interacting with a quarter-wave stratified medium. Indeed, as seen
above, a plane em wave propagating through multimode electronic
density inhomogeneities interacts mainly with the kB mode as if the ne
profile was neðxÞ ¼ neðxÞ þ N2 cosðkB xÞ. The influence of the other
modes of the inhomogeneity is negligible. So, the reflectance of a ran-
domly inhomogeneous plasma can be emulated by a layered medium
with a sinusoidal index modulation. In such a medium, the maximum
reflectance is obtained for the kB index modulation.25–30 If the plasma
index is written as nrðxÞ ¼ nr ðxÞ þ enr cosðkBxÞ where nr is a slowly
varying function, and if the absorption is neglected, the reflectance is
written as30

R ¼ tanh2 enr pLk0
� �

; (10)

where L is the length of the plasma. If N2=ne � 1, and far from the
critical surface, the reflectance as a function of the electronic density
perturbation is approximated by

R ¼ tanh2
1
2
N2

ne

ne=ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ne=nc

p pL
k0

 !
: (11)

Equation (11) shows that the reflectance rapidly increases with
the amplitude of the electronic modulation, N2, and the length of the
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plasma, L. For example, the reflectance of a 100 lm plasma pocket at
ne=nc ¼ 0:5 with electronic density inhomogeneity such that
N2=ne ¼ 0:01 is R¼ 0.993 for a laser beam at k0 ¼ 0:35lm. This
plasma pocket will almost totally reflect the laser beam, even if far
from the critical surface. Equation (11) also shows that the reflectance
directly depends on the product N2 L. The same reflectance value as in
the previous example is obtained for a much higher, maybe unrealistic,
value of the ne inhomogeneity magnitude, N2 ¼ 0:1, and a shorter
plasma length, L ¼ 10 lm.

In Sec. IV, some of the numerical simulations will use this prop-
erty of the reflectance: in order to reduce the size of the computation
domain, and make resulting graphics more readable, high values of the
electronic density modulation will be considered. These simulations
are equivalent to others with smaller values of N2 but longer computa-
tion domains.

IV. FULL-WAVE COMPUTATIONS

In order to support the conclusions drawn from the first order
perturbative result of Sec. II, the sensitivity of an incoming em plane
wave to electronic density inhomogeneity is now studied with 1D full-
wave computations. The full-wave solution of the wave equation (2)
has been numerically computed. Following Ref. 31, the second order
Eq. (2) is split in two first order differential equations. The resulting
system is solved by a partially implicit numerical scheme. The domain
of computation is taken large enough in comparison with the domain
of interest in order to first stabilize the source wave propagation and
second to prevent any spurious reflected wave at the boundaries. The
spatial grid resolution, Dx is equal to k0=10. This numerical model has
been validated on sharp index gradients with the Fresnel’s solution
and on smooth gradients with analytic solutions. In order to check the
secular response of an incoming wave to kB inhomogeneity of the elec-
tronic density, we consider a collisionless plasma described by the
index n2r ¼ 1� 0:9 ðX2 � 1Þ2 with X ¼ ðx � 100Þ=140 for �40
� x � 100; n2r ¼ 1 for x < �40, and n2r ¼ 0:1 for x> 100. A peri-
odic source field (E0 ¼ 0:5; k0 ¼ 2; x0 ¼ p=2) is located at the nega-
tive x boundary. Thus, the em wave is emitted in vacuum, encounters
a density gradient, and reaches ne=nc ¼ 0:9. Figure 2(a) presents the
amplitude of the E field before it meets the ne gradient. Once this wave
has propagated through the latter [Fig. 2(b)], its wavelength has natu-
rally increased from k0 to k0=nr . The amplitude of E also increases
from E0 to E0=

ffiffiffiffiffi
nr

p � 0:89. This shows that no reflection of the wave
has occurred on the larger than k0 density gradient. We now consider
single mode and multimode cases for the ne spatial modulation. The
single mode modulation of n2r is written as 0:2 cosð2px=kiÞ with
k1 ¼ 0:7kB; k2 ¼ kB, and k3 ¼ 2:8kB. The multimode modulation is
the sum of the kB mode and 24 additional modes, kj, such as
0:7kB � kj � 2:8kB. This multimode case approaches a random inho-
mogeneity [see n2r in Fig. 2(d)]. The modulations are gradually added
on the nr gradient and are nullified elsewhere. At ne=nc � 0:5; Ni=ne
can reach 0.2. Such a high unrealistic value was chosen purposely since
a lower and more realistic amplitude of the modulation leads to a
larger computational domain, and unreadable Fig. 2. For ki ¼ k1 and
k3, the asymptotic solution cannot be distinguished from the result
presented in Fig. 2(b) and is not presented here. This means that the
wave propagation is unaffected by the chosen modulations. For the
k2 ¼ kB density ripples, the result is drastically different [Fig. 2(c)].
The amplitude of wave on the left of the density gradient has almost
doubled in comparison with the smooth case [Fig. 2(b)]. On the right

of the density gradient, the amplitude of E decreases to 0.39. This
means that about 80% of the incoming wave has been reflected by the
density ripples. Figure 2(d) presents the result for the multimode mod-
ulation. The reflected and transmitted E fields superimpose with the
single mode kB case. The wave propagation and reflection are unaf-
fected by the added kj modulations. As predicted by Eqs. (6) for a mul-
timode ne inhomogeneity, the em wave self-selects the mode whose
wavelength equals to kB. Let us underline that the em wave is reflected
far from nc.

V. THE STATIONARY BRAGG REFLECTION

The reflection that has been exhibited here is the Bragg’s reflec-
tion. Such reflection is the basis of the reflectometry measurements in
Tokamak plasma.32–37 For this diagnostic, a short em pulse is sent into
the plasma. This pulse is reflected by moving and very localized plasma
fluctuations meeting the Bragg resonance condition [kðxÞ ¼ kB], and
the reflected wave is analyzed. Let us quote a usual comment in the lit-
erature about reflectometry: “The scattered signal will not originate
from the critical density region … the scattering will occur where
Bragg resonance condition is satisfied.”32,34,35 As theoretically and
numerically demonstrated above, the Bragg reflection can also occur in
a stationary plasma for a plane em wave. We will denominate this
reflection, the stationary Bragg reflection (SBR). The influence of
absorption on the response of the incoming pulse to kB fluctuation is
usually not considered in reflectometry. However, this question can be

tackled by solving Eqs. (5) for eki . For �ei=x0 � 1, we obtaineki � xp
2

c2
x
2
N2
ne

cosð2kr xÞ. Using Eq. (4) for ki ; jEj2 is written as

jEj2 ¼ E2
0 e

k0 x
ne
nc

�
� �ei=x0ffiffiffiffiffiffiffiffiffiffi

1�ne =nc
p þk0x2

N2
ne

cosð2kr xÞ
�
. As the wave energy is propor-

tional to jEj2, the former expression shows that the laser deposition is
modulated by the SBR.

The previous derivations are 1D and assume that the density
inhomogeneity, the global density gradient, and the laser trajectory are

FIG. 2. 1D propagation of an em wave in an inhomogeneous plasma. Wave ampli-
tude (blue curve) as a function of x at t¼ 280 (a) and t¼ 648.75 (b)–(d). Square of
the plasma index (black curve) for no small-scale modulation (a) and (b), single
mode kB modulation (c), and multimode modulation including kB (d).
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aligned. In 2D, if we now assume that the laser makes an angle with
the direction of the density gradient, and that the inhomogeneity
remains stratified perpendicular to the density gradient with
N2=ne � 1, the analogy with a multi-layer medium indicates that the
reflection of the incoming electromagnetic wave will be specular. As
N2=ne increases, the magnitude of the wave harmonics [Eq. (9)] will
be no more negligible. We can thus infer the generation of side-
scattering lobes in specific directions. For high magnitude of inhomo-
geneity, Eqs. (3) show that kr will nonlinearly depends on ki, and thus,
the selection of wave harmonics will depend on the wave absorption.
This means that the scattering can be altered if wave absorption is
taken into account. We find again the classic result established in
reflectometry: the SBR modifies the location of the turning point of the
laser beams. We add that the absorption can alter the expected reflec-
tion directions.

VI. DISTINCTION BETWEEN THE BRAGG REFLECTION
AND BRILLOUIN/RAMAN PARAMETRIC INSTABILITIES

Reflection due to the interaction between the wave and the
plasma also occurs due to Brillouin and Raman parametric instabilities.
In these cases, a backscattered wave rises from noise level through its
amplification by the interplay between the incoming laser wave and a
specific acoustic or ionic wave. Thus, SRS and SBS are nonlinear phe-
nomena. The laser wave can be viewed as the modulator that excites
oscillators, the plasma waves.15 On the other hand, for SBR, the scat-
tered wave does not rise from noise. It simply comes from the bulk
reflection of the incoming wave on plasma inhomogeneity. This is a
linear phenomenon as no response of the plasma is needed. Should the
density inhomogeneities arise from purely hydrodynamic phenomena
such as turbulence or shock wave transit, the SBR would immediately
occur as opposed to Brillouin or Raman parametric instabilities that
would require the coupling with acoustic or ionic waves. In the SBR
case, the laser wave can be considered as an oscillator which responds
to a modulator, the inhomogeneity of the plasma at the Bragg wave-
length. As a result, the SBR can be viewed as a most simple parametric
instability.

In our modeling, we assume that the plasma is stationary, and
that the SBR arises from homogeneities at rest in the plasma reference
frame. In reality, the plasma moves and carries its homogeneities with
it. This motion will induce a small Doppler frequency shift of the
reflected wave generated by the SBR. If the SBR is generated by the
bulk turbulence of a gold bubble in an ICF Hohlraum, a permanent
blue frequency shift should be observed. If the SBR is generated near
nc, and if an ignition-type laser pulse is considered, the frequency shift
should go from blue at low laser intensity to red in the main rise of the
laser pulse (as the critical surface is pushed back). Given that the
plasma velocity in ICF Hohlraum remains on the order of 107 cm/s,
the frequency shift should remain small (Dk � 2Å for k0 ¼ 0:35lm)
in comparison with classic Brillouin frequency shift. A small value of
the frequency shift can be experimentally measured3,38 on laser facili-
ties such as the Laser MegaJoule (LMJ) or the National Ignition
Facility (NIF). Such measurements could help determine whether the
Bragg reflexion superimposes with the Brillouin instability, and what
its magnitude is.

VII. INHOMOGENEITY IN A GOLD PLASMA BUBBLE

The stationary Bragg reflexion needs small-scale density inhomo-
geneities in the plasma to occur. In this part, we assess the existence of

such density variation in the gold bubble which is created by the laser
heating of a Hohlraum. The “small” scales that we consider are of the
order of the local laser wavelength, kðxÞ, which increases with the local
electronic density. Thus, these scales can be far greater than k0.

In 2019, experiments39 were performed on the Omega EP40 laser
facility in order to study the expansion of gold plasma due to laser
heating. The wavelength of the laser beam is k0 ¼ 0:35 lm. These
experiments were designed in a 1D axi-symmetrical geometry. This
suppresses any CBET or light bending issues. The beam best focus was
targeted on the back surface of the Hohlraum. In this paper, only plain
gold wall is considered for this surface [Fig. 3(a)]. The pulse shape
started with a first picket, followed by a lower part (or trough), and
ended by a second picket [Fig. 3(b)]. This pulse mimics the foot of an
ignition pulse. The levels of SBS and SRS were very low, below the sen-
sitivity of the detectors. The profile of the laser absorption within the
gold bubble was diagnosed by time-resolved side-on x-ray images in
the 1–6 keV range. In 2021, experiments on the Omega EP facility
using similar platform and pulse shape as described above exhibited
inhomogeneous gold bubbles:41 chaotic structures within the bubble
were diagnosed by proton radiography during the second picket. The
length scale of the structures was about 100lm.

In order to understand how the gold bubble can became inhomo-
geneous, let us remark that it is subject to several hydrodynamic insta-
bilities. First, as the bubble expansion is slowed by the fill-gas, shear
flow occurs at the gas–gold interface. This interface becomes
Kelvin–Helmholtz (K–H) unstable.17 Second, as the gold bubble
expands, a density gradient is created, and @q=@x > 0, where q is the
plasma density (the laser beam comes from the negative x). The pres-
sure gradient can behave differently. Indeed, during the pickets,
numerical simulations42 show that the pressure, P, develops a local
maximum at the location of the maximum laser absorption. In this
area, the pressure gradient can become locally negative. As a result, a
Rayleigh–Taylor (RT) type instability can grow on the density gradient
where @q=@x � @P=@x < 0.43 As ablation will be at play, modes
whose wavenumber is above the cutoff wavenumber will not be
directly created by this instability. However, the nonlinear mode cou-
pling44,45 can generate high wavenumber modes, i.e., small wavelength
structures, and the bulk of the gold bubble can develop a wide spec-
trum of inhomogeneities. Seeds for these instabilities can come from
the laser imprint, the shock waves, self-generated magnetic fields, and
the ponderomotive force.

In order to estimate the order of magnitude of the smallest eddies
which could exist in the gold bubble, we now estimate the distance on
which the plasma viscosity begins to be important. Following Refs. 46

FIG. 3. Details of the 2019 experiments39 on Omega EP. (a) Sketch of the
Hohlraum. The laser enters through the laser entrance hole (LEH). (b) Laser pulse.
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and 47, this distance reads l � ð�3 L=DU3Þ1=4, where � is the kine-
matic viscosity, DU the fluctuation of the velocity, and L the size of the
large eddies. For the 2019 experiments, at t¼ 8ns, the mean flow veloc-
ity, the dynamic viscosity,48 and the density in the low density part of the
bubble are about 12:� 106 cm/s, 8:� 10�5 Pa s, and 0.0028g/cm3,
respectively. If a 1% velocity fluctuation and L � 100 lm are considered,
the scale of the smallest eddies is l � 0:19 lm. We now estimate how
long such sub-micron structures can survive to diffusion effect. The life-
time of a structure which is smoothed by diffusion is sd ¼ l2=D, whereD
is the diffusion coefficient. At t¼ 8ns, for the considered plasma,
D¼ 0.4 cm2/s.48 For l ¼ k0=2; sd ¼ 0:7 ns.

Thus, as far as the viscosity is concerned, these structures can be
considered as stationary. However, the ionic plasma inhomogeneities
will be subjected to the ponderomotive force. The timescale of the ion
motion due to this force is of the order of sion ¼ x�1

ion , where xion

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z me=ðAmpÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
ne=ncÞ

p
is the ion plasma oscillation frequency, Z

the charge number, A the mass number, and mp the proton mass. Let
us define slas ¼ N k0=ð2 cÞ, the characteristic time required for the
laser to interact with N structures, each of them k0=2 wide. At
ne=nc ¼ 0:1 in a ionized gold bubble in an ICFHohlraum, sion � 50 fs
which is the time the laser needs to interact with N � 100 structures.
This number increases for lower ne and less ionized plasma. At higher
electronic densities, the ponderomotive force will start to modify the
amplitudes Np of the perturbation spectrum, but without zeroing the
N2 component.

In conclusion, when the Bragg reflexion is considered in an
underdense gold plasma, the density inhomogeneity can be considered
as quasi-stationary. Furthermore, structures whose size is of the order
of the Bragg wavelength can exist and survive long enough to interact
with the laser beam.

VIII. POTENTIAL EFFECTS OF THE STATIONARY BRAGG
REFLECTION ON ICF PLASMAS

As small-scale inhomogeneity should exist in the gold bubble of
the here-above cited experiments, the effect of the stationary Bragg
reflection on the laser absorption profile is now studied. In the 2019
experiments, at t¼ 8 ns, the x-profile of the experimental hard x-ray
image disagrees with the numerical one. The experimental emission
profile displays a symmetrical increasing/decreasing curve [Fig. 4(a)].
In the 2D rad-hydro numerical simulations,42 as expected from stan-
dard ray-tracing package, the maximum of emission peaks near nc.
Furthermore, the experimental maximum of the laser absorption
occurs about 100lm farther from nc than predicted by the numerical

simulations. In the latter, changes of the electron conduction flux lim-
iter value, the gold equation of state, the Non Local Thermodynamic
Equilibrium model, the mesh refinement package, and the number of
rays have no significant influence on the emission profile.

In order to assess this issue, we model the plasma density as
ne=ncðxÞ ¼ ðx=0:0715Þ50; �ei=x0ðxÞ ¼ ðx=0:075Þ25 with x in cm.
These simplified profiles are obtained from the numerical results at
t¼ 8 ns. Then, inhomogeneities are added to these profiles. As demon-
strated in Secs. II and IV, it is not necessary to consider a full spectrum
for the inhomogeneities since the wave self-selects the Bragg mode. So,
inhomogeneities are added following only the Bragg resonance condi-
tion withN2=ne ¼ 0; 0:05; 0:2, and 0.5. The high and a priori unrealis-
tic values of N2=ne are purposely chosen in order to clearly illustrate
the SBR effect on the laser absorption. In order to study this effect, the
time asymptotic solution of the wave equation is computed. This com-
putation is achieved by modeling the plasma as a succession of homo-
geneous absorbing layers. Each layer is characterized by its complex
index. The E field is written as a superposition of a forward and a back-
ward propagation wave. Using the relations of continuity for E
between each layer, the Helmholtz equation for E is solved in each
layer. These computation results have been checked against dedicated
computations with the Helmholtz package of the Esther code49,50

which has been validated with analytic test cases.53 Figure 4(b) presents
the resulting averaged power which is locally lost by the wave (the
oscillating power has been averaged over a mobile spatial window) for
the chosen values of N2=ne. For N2=ne ¼ 0, the power deposition
superimposes with the calculation obtained from Eqs. (4) in the frame-
work of the WKB approximation. This means that, for the studied
unperturbed profiles, there is no wave reflection, and the laser energy
is totally absorbed before reaching the critical surface. As the magni-
tude of the inhomogeneity increases, more and more power is reflected
along the path (R ¼ 0.04, 0.37, and 0.73 for N2=ne ¼ 0.05, 0.2, and 0.5,
respectively) and the maximum of the power deposition moves away
from nc. This drift of the deposition location increases with N2=ne. As
seen in Fig. 4(b), the SBR spontaneously gives a symmetrical deposi-
tion profile for high value of N2=ne. However, such a high value
implies non-negligible backscattered energy.

Since no significant backscattered energy was measured in the
2019 experiments, a sudden occurrence of high-level inhomogeneity
seems to be ruled out to explain the discrepancies between experimen-
tal and numerical data. Consequently, we prefer to consider a low
magnitude inhomogeneity. In this case, a measurable effect on the laser
absorption location requires the integration of a small drift over several
nanoseconds. The experimental data presented in Fig. 4(a) could be
explained by the cumulative SBR effect due to low-level plasma inho-
mogeneity over several nanoseconds.

The effect of the SBR could lead to other modifications of the
plasma properties. Indeed, as the laser deposition is modulated by the
Bragg condition (see Sec. V), the subsequent ionization of the plasma
will be modulated as such. In areas where the ionization and ne modu-
lations are in phase, the latter will intensify. This mechanism can lead
to an increase in N2=ne, and thus reflection. In low to medium absorb-
ing plasma pockets, the superposition of the forward and the backward
waves will create beat waves, and transient plasma gratings54–58 will be
generated due to the ponderomotive force. This force could further
enhance the amplitude of the density inhomogeneity, leading to a posi-
tive feedback (instability) of SBR. The oscillatory speed of the electrons

FIG. 4. (a) Experimental and numerical profiles along the symmetry x axis of the
side-on x-ray signal in the energy range 1–6 keV at t¼ 8 ns for a plain wall target39

in dashed and full lines, respectively. The curves are normalized to their peak values.
(b) Absorbed wave power as a function of x for N2=ne ¼ 0; 0:05; 0:2, and 0.5.
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could become no more negligible with respect to the thermal velocity.
The electron heat conduction, and the electron–ion collision frequency
will be modified in such plasma pockets.8,10

IX. CONCLUSION

In ICF plasmas, micron-scale density inhomogeneity can develop
due to hydrodynamic instabilities or turbulence.18,21 This development
can occur within the gold bubble of an Hohlraum wall7,8,17 where the
laser is absorbed, and converted to x-rays. In rad-hydro codes, the
effects of such inhomogeneity on the laser absorption are not consid-
ered. Indeed, even if the mesh was refined enough to describe the
k-scale, the ray-tracing algorithms are based on the WKB approxima-
tion, which cannot compute the reflection due to k-scale variation of
the plasma index. Going beyond theWKB approximation, we have the-
oretically and numerically shown that the laser beam self-selects the
Bragg resonance mode in a multimode inhomogeneous ICF plasma.
Should the stationary Bragg reflection occur, the location of maximum
laser absorption would be moved toward the LEH. This laser drift
would then affect the symmetry of the x-ray emission. This reflection
differs from classical ICF parametric instabilities. Indeed, the SBR
depends on the level of density inhomogeneity which can be solely
driven by the hydrodynamics. This means that the strategies currently
used to reduce Brillouin and Raman parametric instabilities, such as
lowering the laser intensity and the density of the gas-fill, will have no
direct effect on the Bragg reflection. We have shown how the energy
deposition is modulated by the Bragg reflection. As a consequence, this
reflection can create a positive feedback on the density inhomogeneities,
leading to instability. This reflection is a good candidate to explain dis-
crepancies between experiments and numerical simulations about the
laser trajectory, x-ray emission,7 energy deposition, and heat transport.

Future works will focus on the 2D SBR with stratified and random
density inhomogeneity. New diffraction effects are expected. Sharing
experience with the Tokamak communities will be helpful. Indeed,
adapting a reflectometry code59 seems a natural first step. Particle in
cell codes are also considered. By revisiting still puzzling experimental
data,7,8 this work will clarify the contribution of the stationary Bragg
reflection to laser propagation and deposition in ICF plasmas.
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