Inverse Problems and Imaging

Josselin Garnier (Ecole Polytechnique) https://www.josselin-garnier.org

First lecture: friday, january 12, 2024, 9:00-12:00 (ENS, room 2E30). Material on the course website.

Validation: project (notebook jupyter + oral presentation).

Sensor array imaging

• Sensor array imaging (echography in medical imaging, sonar, non-destructive testing, seismic exploration, radar, etc) has two steps:

data acquisition: an unknown medium is probed with waves; waves are emitted by a source (or a source array) and recorded by a receiver array.
data processing: the recorded signals are processed to identify the quantities of interest (reflector locations, etc).

• Example:

Ultrasound echography

- Standard imaging techniques require:
- good receivers,
- suitable conditions for wave propagation (ideally, the "target" is embedded in a homogeneous medium),
- controlled and known sources.

Sensor array imaging

- Goal: Propose and study imaging techniques that are robust with respect to:
- measurement noise,
- the complexity of the medium (heterogeneous medium),
- the control and the knowledge of the sources.
- More generally: resolution of ill-posed inverse problems.
- \hookrightarrow Introduce probabilistic and statistical techniques:
- Bayesian analysis,
- Random matrix theory,
- Spectral theory for stationary processes,
- Gaussian processes.

Application 1: Ultrasound echography in concrete

Experimental configuration

Top view of the acquisition geometry

Application 1: Ultrasound echography in concrete

Application 1: Ultrasound echography in concrete

Real configuration

Theory: Cross correlation of signals transmitted by noise sources

Numerical simulation of wave propagation with many noise sources (\circ) and two receivers at \boldsymbol{x} and \boldsymbol{y} (\blacktriangle) How to extract information from the recorded signals $u_{\boldsymbol{x}}(t)$ and $u_{\boldsymbol{y}}(t)$? These signals are just noise !

Theory: Cross correlation of signals transmitted by noise sources

Numerical simulation of wave propagation

with many noise sources (\circ) and two receivers at $m{x}$ and $m{y}$ ($m{A}$)

 \hookrightarrow Compute the cross correlation of the recorded signals $C_{\boldsymbol{x},\boldsymbol{y}}^{T}(t) = \frac{1}{T} \int_{0}^{T} u_{\boldsymbol{x}}(s) u_{\boldsymbol{y}}(s+t) ds$ and extract the travel time between the receivers at \boldsymbol{x} and \boldsymbol{y} .

Application 2: Seismic interferometry

Application 2: Seismic interferometry

An inverse problem: Velocity estimation problem

• Direct problem: Given the velocity map $c = (c(x))_{x \in \Omega}$ of the medium, compute the wavefield solution of the wave equation

$$[\partial_t^2 - c^2(x)\Delta]p^{(s)}(t,x) = f(t)\delta(x - x_s), \quad t \in \mathbb{R}, \ x \in \Omega,$$

starting from $p^{(s)}(t, x) = 0, t \ll 0$. At the locations of the receivers:

$$d_{r,s}(t) = p^{(s)}(t, x_r), \quad r, s = 1, .., N$$

 \hookrightarrow forward map

 $\mathcal{D}: c \mapsto \mathbf{d}$

where $\mathbf{d} = ((d_{r,s}(t))_{r,s=1}^N)_{t \in [t_{\min}, t_{\max}]}$, is the array response matrix.

• Inverse problem:

Given the time-resolved measurements \mathbf{d} , determine the velocity map c.

Full Waveform Inversion (FWI)

• FWI fits data with its model prediction in L^2 -norm (least-square minimization):

$$\hat{c} = \underset{c}{\operatorname{argmin}} \{ \mathcal{O}_{FWI}[c] + \operatorname{Reg}[c] \},$$

$$\mathcal{O}_{FWI}[c] = \|\mathbf{d}_{meas} - \mathcal{D}[c]\|_2^2 = \sum_{r,s=1}^N \int_{t_{\min}}^{t_{\max}} |d_{meas}(t)_{r,s} - \mathcal{D}[c](t)_{r,s}|^2 dt$$

• The objective function $\mathcal{O}_{FWI}[c]$ is not convex in c. \hookrightarrow optimization needs hard to get good initial guess.

Topography of the FWI objective function

- Probing pulse is a modulated Gaussian pulse with central frequency 6Hzand bandwidth 4Hz.
- N = 30 sensors and $N_t = 39$ time samples at interval $\tau = 0.0435$ s.
- Search velocity has two parameters: the bottom velocity and depth of the interface (the angle and top velocity are known).
- Objective function:

$$\mathcal{O}_{FWI}[c] = \|\mathbf{d}_{meas} - \mathcal{D}[c]\|_2^2$$

Main objective

- Our main objective: find a convex formulation of FWI.
- Proposed approach: Find a nonlinear mapping *R*: data d → reduced order model (ROM) A^{rom} such that minimization of ROM misfit is better for velocity estimation.
- We can think of the data to ROM mapping \mathcal{R} as a preconditioner of the forward mapping \mathcal{D}

$$c \stackrel{\mathcal{D}}{\mapsto} \mathbf{d} \stackrel{\mathcal{R}}{\mapsto} \mathbf{A}^{rom}$$

because the composition $\mathcal{R} \circ \mathcal{D}$, which gives $\mathbf{A}^{rom} = \mathcal{R}(\mathcal{D}[c])$, is easier to "invert".

Topographies of the FWI and ROM objective functions

- Search velocity has two parameters: the contrast and the depth of the interface (the angle and top velocity are known).
- FWI objective function:

$$\mathcal{O}_{FWI}[c] = \|\mathcal{D}[c] - \mathbf{d}^{meas}\|_2^2$$

• ROM objective function:

$$\mathcal{O}_{ROM}[c] = \|\mathbf{A}^{rom}[c] - \mathbf{A}^{rom,meas}\|_2^2$$