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Abstract

Since their first introduction, score-based diffusion models (SDMs) have been suc-
cessfully applied to solve a variety of linear inverse problems in finite-dimensional
vector spaces due to their ability to efficiently approximate the posterior distribution.
However, using SDMs for inverse problems in infinite-dimensional function spaces
has only been addressed recently and by learning the unconditional score. While
this approach has some advantages, depending on the specific inverse problem at
hand, in order to sample from the conditional distribution it needs to incorporate the
information from the observed data with a proximal optimization step, solving an
optimization problem numerous times. This may not be feasible in inverse problems
with computationally costly forward operators. To address these limitations, in this
work we propose a method to learn the posterior distribution in infinite-dimensional
Bayesian linear inverse problems using amortized conditional SDMs. In particular,
we prove that the conditional denoising estimator is a consistent estimator of the
conditional score in infinite dimensions. We show that the extension of SDMs to
the conditional setting requires some care because the conditional score typically
blows up for small times contrarily to the unconditional score. We also discuss the
robustness of the learned distribution against perturbations of the observations. We
conclude by presenting numerical examples that validate our approach and provide
additional insights.

1 Introduction

Inverse problems seek to estimate unknown parameters using noisy observations or measurements.
One of the main challenges is that they are often ill-posed. A problem is ill-posed if there are no
solutions, or there are many (two or more) solutions, or the solution is unstable in relation to small
errors in the observations [15]. A common approach to transform the original ill-posed problem
into a well-posed one is to formulate it as a least-squares optimization problem that minimizes
the difference between observed and predicted data. However, minimization of the data misfit
alone negatively impacts the quality of the obtained solution due to the presence of noise in the
data and the inherent nullspace of the forward operator [3, 18]. Casting the inverse problem into
a Bayesian probabilistic framework allows, instead, for a full characterization of all the possible
solutions [27, 41, 43]. The Bayesian approach consists of putting a prior probability distribution
describing uncertainty in the parameters of interest, and finding the posterior distribution over these
parameters [23]. The prior must be chosen appropriately in order to mitigate the ill-posedness of the
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problem and facilitate computation of the posterior. By adopting the Bayesian formulation, rather
than finding one single solution to the inverse problem (e.g., the MAP estimator [6]), a distribution
of solutions—the posterior—is finally obtained, whose samples are consistent with the observed
data. The posterior distribution can then be sampled to extract statistical information that allows for
uncertainty quantification [42].

Over the past few years, deep learning-based methods have been successfully applied to analyze
linear inverse problems in a Bayesian fashion. In particular, recently introduced score-based diffusion
models (SDMs) [39] have become increasingly popular, due to their ability of producing approxi-
mating samples from the posterior distribution [20, 40]. An SDM consists of a diffusion process,
which gradually perturbs the data distribution toward a tractable distribution according to a prescribed
stochastic differential equation (SDE) by progressively injecting Gaussian noise, and a generative
model, which entails a denoising process defined by approximating the time-reversal of the diffusion.
Crucially, the denoising stage is also a diffusion process [1] whose drift depends on the logarithmic
gradients of the noised data densities, i.e. the scores, which are estimated by [39] using a neural
network. Among the advantages SDMs have over other deep generative models is that they produce
GANs-level sample quality without suffering from training instabilities [10, 14, 39] and are not
affected by mode-collapse as normalizing flows [26]. Additionally, and most importantly to the scope
of this work, SDMs have demonstrated superior performance in a variety of inverse problems, such
as image inpainting [38, 39], image colorization [39], compressing sensing, and medical imaging
[19, 40].

In the aforementioned cases, SDMs have been applied by assuming that the data distribution of
interest is supported on a finite-dimensional vector space. However, in inverse problems governed
by partial differential equations (PDEs) the unknown parameters to be estimated are functions, e.g.,
coefficient functions, boundary and initial conditions, or source functions. A straightforward solution
may be to discretize the infinite-dimensional input and output function spaces into finite-dimensional
vectors, and apply SDMs to learn the posterior. However, theoretical studies of current DMs suggest
that performance guarantees do not generalize well on increasing dimensions [7, 9, 33]. This is
precisely why Stuart’s guiding principle to study a Bayesian inverse problem for functions—“avoid
discretization until the last possible moment” [41]—is critical to the use of SDMs.

Motivated by Stuart’s principle, in this work we define a conditional score in the infinite-dimensional
setting, a critical step for studying Bayesian inverse problems directly in function spaces through
SDMs. In particular, we show that using this newly defined score as a reverse drift of the diffusion
process yields a generative stage that samples, under specified conditions, from the correct target
conditional distribution. We carry out the analysis by focusing on two cases: the case of a Gaussian
prior measure and the case of a general class of priors given as a density with respect to a Gaussian
measure. Studying the model for a Gaussian prior measure provides illuminating insight, not only
because it yields an analytic formula of the score, but also because it gives a full characterization of
SDMs in the infinite-dimensional setting, showing under which conditions we are sampling from the
correct target conditional distribution and how fast the reverse SDE converges to it. It also serves as
a guide for the analysis in the case of a general class of prior measures. Finally, we conclude this
work by conducting, in Section 6, an experiment which demonstrates the applicability of our SDM,
specifically its ability to approximate non-Gaussian multi-modal distributions, a challenging task that
poses difficulties for quite many generative models [2].

1.1 Related works

Our work is primarily motivated by Stuart [41]’s comprehensive mathematical theory for studying
PDE-governed inverse problems in a Bayesian fashion [41]. In particular, we are interested in the
infinite-dimensional analysis [23, 25], which emphasizes the importance of analyzing PDE-governed
inverse problems directly in function space before discretization.

Our paper builds upon a rich and ever expanding body of theoretical and applied works dedicated
to SDMs. Song et al. [39] defined SDMs integrating both score-based (Hyvärinen and Dayan [17];
Song and Ermon [38]) and diffusion (Sohl-Dickstein et al. [37]; Ho et al. [16]) models into a single
continuous-time framework based on stochastic differential equations. The generative stage in SDMs
is based on a result from Anderson [1] proving that the denoising process is also a diffusion process
whose drift depends on the scores. This result holds only in vector spaces, which explains the
difficulties to extend SDMs to function spaces. Initially, there have been attempts to project the input
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functions into a finite-dimensional feature space and then apply SDMs (Dupont et al. [11]; Phillips
et al. [32]). However, these approaches are not discretization-independent. It is only very recently
that SDMs have been directly studied in function spaces, specifically infinite-dimensional Hilbert
spaces. Kerrigan et al. [21] generalized diffusion models to operate directly in function spaces, but
they did not consider the time-continuous limit based on SDEs (Song et al. [39]). Lim et al. [29]
generalized score matching for trace-class noise corruptions that live in the Hilbert space of the data.
However, as Kerrigan et al. [21], they did not investigate the connection to the forward and backward
SDEs as Song et al. [39] did in finite dimensions. Two recent works, Pidstrigach et al. [33] and
Franzese et al. [13], finally established such connection. In particular, Franzese et al. [13] used results
from infinite-dimensional SDEs theory (Föllmer and Wakolbinger [12]; Millet et al. [31]) close to
Anderson [1].

Among the mentioned works, Pidstrigach et al. [33] is the closest to ours. We adopt their formalism
to establish theoretical guarantees for sampling from the conditional distribution. Another crucial
contribution comes from Batzolis et al. [5], as we build upon their proof to show that the score can
be estimated by using a conditional denoising score matching objective [44, 38]. A key element
in Pidstrigach et al. [33], emphasized also in our analysis, is to obtain an estimate on the expected
square norm of the score that needs to be uniform in time. We explicitly compute the expected square
norm of the conditional score in the case of a Gaussian prior measure, which shows that a uniform
in time estimate is not always true for the conditional score. We provide a set of conditions to be
satisfied to ensure a uniform in time estimate for a general class of prior measures. Pidstrigach et al.
[33] also proposed a way to perform conditional sampling, building upon the one introduced by Song
et al. [40] in a finite-dimensional setting. Their algorithm incorporates the observed data into the
unconditional sampling process via a proximal optimization step to generate intermediate samples
that are consistent with the measuring acquisition process. In this way, Pidstrigach et al. [33] avoided
defining the conditional score. While successful, their method is primarily heuristic. Furthermore,
its computational efficiency depends on the specific inverse problem at hand—the algorithm solves
an optimization problem at each time step of the diffusion process, for each sampling procedure. In
contrast, we can prove, under a set of conditions, that our method samples from the target conditional
distribution, and does so by learning an amortized version of the conditional score. This addresses a
critical gap in the existing literature, as the other approach using infinite-dimensional SDMs focuses
on data-specific inference. Amortized methods can be a preferred option in Bayesian inverse problems
[4, 22, 24, 34–36], as they reduce inference computational costs by incurring an offline initial training
cost for a deep neural network that is capable of approximating the posterior distribution for unseen
observed data, provided that we have access to a set of data pairs that adequately represent the
underlying joint distribution.

1.2 Main contributions

The main contribution of this work is the analysis of conditional SDMs in infinite-dimensional Hilbert
spaces. More specifically,
1) We introduce the conditional score in an infinite-dimensional setting (Section 3).
2) We provide a comprehensive analysis of the forward-reverse conditional SDE framework in the
case of a Gaussian prior measure. We explicitly compute the expected square norm of the conditional
score, which shows that a uniform in time estimate is not always true for the conditional score. We
prove that as long as we start from the invariant distribution of the diffusion process, the reverse SDE
converges to the target distribution exponentially fast (Section 4).
3) We provide a set of conditions to be satisfied to ensure a uniform in time estimate for a general
class of prior measures. Under these conditions, the conditional score—used as a reverse drift of the
diffusion process in SDMs—yields a generative stage that samples from the correct target conditional
distribution (Section 5).
4) We prove that the conditional score can be estimated via a conditional denoising score matching
objective in infinite dimensions (Section 5).

2 Background

Here, we review the definition of unconditional score-based diffusion models (SDMs) in infinite-
dimensional Hilbert spaces proposed by Pidstrigach et al. [33], as we will adopt the same formalism
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to define SDMs for conditional settings. We refer to Appendix A for a brief introduction to key tools
of probability theory in function spaces.

Let µdata be the target measure, supported on a separable Hilbert space (H, ⟨·, ·⟩). Consider a forward
infinite-dimensional diffusion process {Xt}t=T

t=0 for continuous time variable t ∈ [0, T ], where X0

is the starting variable and Xt its perturbation at time t. The diffusion process is defined by the
following SDE:

dXt = −1

2
Xtdt+

√
CdWt, (1)

where C is a fixed trace class, positive-definite, symmetric covariance operator from C : H → H and
Wt is a Wiener process on H . Here and throughout the paper, the initial conditions and the driving
Wiener processes in (1) are assumed independent.

The forward SDE evolves X0 ∼ µ0 towards the Gaussian measure N (0, C) as t→ ∞. The goal of
score-based diffusion models is to convert the SDE in (1) to a generative model by first sampling
XT ∼ N (0, C), and then running the correspondent reverse-time SDE. In the finite-dimensional
case, Song et al. [39] show that the reverse-time SDE requires the knowledge of the score function
∇ log pt(Xt), where pt(Xt) is the density of the marginal distributions of Xt (from now on denoted
Pt) with respect to the Lebesgue measure. In infinite-dimensional Hilbert spaces, there is no natural
analogue of the Lebesgue measure (for additional details, see [8]) and the density is thus no longer
well defined. However, Pidstrigach et al. [33, Lemma 1] notice that, in the finite-dimensional setting
where H = RD, the score can be expressed as follows:

C∇H log pt(x) = −(1− e−t)−1
(
x− e−t/2E[X0|Xt = x]

)
, (2)

for t > 0. Since the right-hand side of the expression above is also well-defined in infinite dimensions,
Pidstrigach et al. [33] formally define the score as follows:
Definition 1. In the infinite-dimensional setting, the score or reverse drift is defined by

S(t, x) := −(1− e−t)−1
(
x− e−t/2E[X0|Xt = x]

)
. (3)

Assuming that the expected square norm of the score is uniformly bounded in time, Pidstrigach et al.
[33, Theorem 1] shows that the following SDE

dZt =
1

2
Ztdt+ S(T − t, Zt)dt+

√
CdWt, Z0 ∼ PT , (4)

is the time-reversal of (1) and the distribution of ZT is thus equal to µ0, proving that the forward-
reverse SDE framework of Song et al. [39] generalizes to the infinite-dimensional setting. The reverse
SDE requires the knowledge of this newly defined score, and one approach for estimating it is,
similarly to [39], by using the denoising score matching loss [44]

E
[∥∥S̃(t,Xt) + (1− e−t)−1(Xt − e−t/2X0)

∥∥2] , (5)

where S̃(t,Xt) is typically approximated by training a neural network.

3 The conditional score in infinite dimensions

Analogous to the score function relative to the unconditional SDM in infinite dimensions, we now
define the score corresponding to the reverse drift of an SDE when conditioned on observations. We
consider a setting where X0 is an H-valued random variable and H is an infinite-dimensional Hilbert
space. Denote by

Y = AX0 +B (6)
a noisy observation given by n linear measurements, where the measurement acquisition process is
represented by a linear operator A : H → Rn, and B ∼ N (0, CB) represents the noise, with CB a
n×n nonnegative matrix. Within a Bayesian probabilistic framework, solving (6) amounts to putting
an appropriately chosen prior probability distribution µ0 on X0, and sampling from the conditional
distribution of X0 given Y = y.

To the best of our knowledge, the only existing algorithm which performs conditional sampling using
infinite-dimensional diffusion models on Hilbert spaces is based on the work of Song et al. [40].
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The idea, adapted to infinite dimensions by Pidstrigach et al. [33], is to incorporate the observations
into the unconditional sampling process of the SDM via a proximal optimization step to generate
intermediate samples that are consistent with the measuring acquisition process.

Our method relies instead on utilizing the score of infinite-dimensional SDMs conditioned on observed
data, which we introduce in this work. We begin by defining the conditional score, by first noticing
that, in finite dimensions, we have the following lemma:
Lemma 1. In the finite-dimensional setting where H = RD, we can express the conditional score
function as

C∇x log pt(x|y) = −(1− e−t)−1
(
x− e−t/2E [X0|Y = y,Xt = x]

)
, (7)

for t > 0.

Since the right-hand side of (7) is well-defined in infinite dimensions, by following the same line of
thought of Pidstrigach et al. [33] we formally define the score as follows:
Definition 2. In the infinite-dimensional setting, the conditional score is defined by

S(t, x, y) = −(1− e−t)−1
(
x− e−t/2E [X0|Y = y,Xt = x]

)
. (8)

Remark 1. It is possible to define the conditional score in infinite-dimensional Hilbert spaces by
resorting to the results of [12, 31], see Appendix C.1.

For Definition 2 to make sense, we need to show that if we use (8) as the drift of the time-reversal of
the SDE in (1) conditioned on y, then it will sample the correct conditional distribution of X0 given
Y = y in infinite dimensions. In the next sections, we will carry out the analysis by focusing on two
cases: the case of a Gaussian prior measure N (0, Cµ), and the case where the prior of X0 is given as
a density with respect to a Gaussian measure, i.e.,

X0 ∼ µ0,
dµ0

dµ
(x0) =

e−Φ(x0)

Eµ[e−Φ(X0)]
, µ = N (0, Cµ), (9)

where Cµ is positive and trace class and Φ is bounded with Eµ[∥Cµ∇HΦ(X0)∥2] < +∞.

4 Analysis of the forward-reverse conditional SDE framework for a Gaussian
prior measure

We begin our analysis of the forward-reverse conditional SDE framework by examining the case
where the prior ofX0 is a Gaussian measure. This case provides illuminating insight, not only because
it is possible to get an analytic formula of the score, but also because it offers a full characterization
of SDMs in the infinite-dimensional setting, showing under which conditions we are sampling from
the correct target conditional distribution and how fast the reverse SDE converges to it. We also
show that the conditional score can have a singular behavior at small times when the observations are
noiseless, in contrast with the unconditional score under similar hypotheses.

We assume that Φ = 0 in (9). All distributions in play are Gaussian:

X0 ∼ N
(
0, Cµ

)
, (10)

Xt|X0 ∼ N
(
e−t/2X0, (1− e−t)C

)
, (11)

X0|Y ∼ N
(
MoY,Co

)
, (12)

Xt|Y ∼ N
(
e−t/2MoY, e

−tCo + (1− e−t)C
)
, (13)

where

Mo = CµA
∗(ACµA

∗ + CB)
−1, Co = Cµ − CµA

∗(ACµA
∗ + CB)

−1ACµ. (14)

By Mercer theorem [30], there exist (µj) and an orthonormal basis (vj) in H such that µj ≥ 0 and
Cµvj = µjvj ∀j. As we have assumed that Cµ is trace class, we have

∑
j µj < +∞. We assume

that the functions vj are eigenfunctions of C and we denote by λj the corresponding eigenvalues.
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We assume an observational model corresponding to observing a finite-dimensional subspace of H
spanned by vη(1), · · · , vη(n) corresponding to gk = vη(k), k = 1, . . . , n, where gj ∈ H is such that
(Af)j = ⟨gj , f⟩. We denote I(n) = {η(1), . . . , η(n)}. We assume moreover CB = σ2

BIn.

Let Zt be the solution of reverse-time SDE:

dZt =
1

2
Ztdt+ S(T − t, Zt, y)dt+

√
CdWt, Z0 ∼ XT |Y = y. (15)

We want to show that the reverse SDE we have just formulated in (15) indeed constitutes a reversal
of the stochastic dynamics from the forward SDE in (1) conditioned on y.

To this aim, we will need the following lemma:

Lemma 2. We define Z(j) = ⟨vj , Z⟩, p(j) = λj/µj for all j. We also define y(j) = yη(j) for
j ∈ I(n) and y(j) = 0 otherwise, and q(j) = µj/σ

2
B for j ∈ I(n) and q(j) = 0 otherwise. Then we

can write for all j

dZ
(j)
t = µ(x,j)(T − t)Z

(j)
t dt+ µ(y,j)(T − t)y(j)dt+

√
λjdW

(j), (16)

with W (j) independent and identically distributed standard Brownian motions,

µ(x,j)(t) =
1

2
− etp(j)(1 + q(j))

1 + (et − 1)p(j)(1 + q(j))
, µ(y,j)(t) =

et/2p(j)q(j)

1 + (et − 1)p(j)(1 + q(j))
. (17)

Proof. The proof is a Gaussian calculation. It relies on computing ⟨S, vj⟩, which yields an analytic
formula. See Appendix B.

Lemma 2 enables us to discuss when we are sampling from the correct target conditional distribution
X0|Y ∼ N

(
MoY,Co

)
. We can make a few remarks:

1) In the limit T → ∞, we get µ(x,j)(T − t) → −1/2 and µ(y,j)(T − t) → 0.
2) If j /∈ I(n) then we have the same mode dynamics as in the unconditional case. Thus we
sample from the correct target distribution if T is large or if we start from Z

(j)
0 ∼ N (0,Σ

(j)
0 ) for

Σ
(j)
0 = µje

−T + λj(1− e−T ), which is the distribution of X(j)
T = ⟨XT , vj⟩ given Y = y.

3) If j ∈ I(n) and we start from Z
(j)
0 ∼ N (z̄

(j)
0 ,Σ

(j)
0 ), then we find Z(j)

T ∼ N
(
z̄
(j)
T ,Σ

(j)
T ) with

Σ
(j)
T = Σ

(j)
0

(
eT

(1 + (eT − 1)p(j)(1 + q(j)))2

)
+

µj

1 + q(j)

(
1− 1

(1 + (eT − 1)p(j)(1 + qj)))

)
,

(18)

z̄
(j)
T =

z̄
(j)
0 eT/2

1 + (eT − 1)p(j)(1 + q(j))
+
y(j)q(j)

1 + q(j)

(
1− 1

1 + (eT − 1)p(j)(1 + q(j))

)
. (19)

The distribution of X(j)
0 = ⟨X0, vj⟩ given Y = y is N (y(j)q(j)/(1 + q(j)), µj/(1 + q(j)). As

z̄
(j)
T → y(j)q(j)/(1 + q(j)) and Σ

(j)
T → µj/(1 + q(j)) as T → +∞, this shows that we sample from

the exact target distribution (the one of X0 given Y = y) for T large.
4) If we start the reverse-time SDE from the correct model

z̄
(j)
0 =

e−T/2y(j)q(j)

1 + q(j)
, Σ

(j)
0 =

µje
−T

1 + q(j)
+ λj(1− e−T ), (20)

then indeed Z(j)
T ∼ N (y(j)q(j)/(1 + q(j)), µj/(1 + q(j))). This shows that, for any T , ZT has the

same distribution as X0 given Y = y, which is the exact target distribution. We can show similarly
that ZT−t has the same distribution as Xt given Y = y for any t ∈ [0, T ].
5) In the case that σB = 0 so that we observe the mode values perfectly for j ∈ I(n), then

µ(x,j)(t) =
1

2
− et

et − 1
, µ(y,j)(t) =

et/2

et − 1
, (21)

and indeed limt↑T Z
(j)
t = y(j) a.s. Indeed the t−1 singularity at the origin drives the process to the

origin like in the Brownian bridge.
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Our analysis shows that, as long as we start from the invariant distribution of the diffusion process, we
are able to sample from the correct target conditional distribution and that happens exponentially fast.
This proves that the score of Definition (2) is the reverse drift of the SDE in (15). Additionally, the
analysis shows that the score is uniformly bounded, except when there is no noise in the observations,
blowing up near t = 0.

Remark 2. Note that, for q(j) = 0, we obtain the unconditional model:

dZ
(j)
t = µ(j)(T − t)Z

(j)
t dt+

√
λjdW

(j), with µ(j)(t) =
1

2
− etp(j)

1 + (et − 1)p(j)
. (22)

If C = Cµ, the square expectation of the norm and the Lipschitz constant of the score are uniformly
bounded in time: supj,t∈[0,T ] |µ(j)(t)| = 1/2.

Proposition 1. The score is S(t, x, y) =
∑

j S
(j)
G (t, ⟨x, vj⟩ , y(j))vj , S

(j)
G (t, x(j), y(j)) =(

µ(x,j)(T − t)− 1/2
)
x(j) + µ(y,j)(T − t)y(j) and it satisfies

E[∥S(t,Xt, y)∥2H |Y = y] =
∑
j

et(1 + q(j))

1 + (et − 1)p(j)(1 + q(j))

λ2j
µj
. (23)

Proof. The proof is a Gaussian calculation given in Appendix B.

In the unconditional setting, we have E[∥S(t,Xt)∥2H ] =
∑

j
et

1+(et−1)p(j)

λ2
j

µj
which is equal to

∑
j λj

when C = Cµ. It is indeed uniformly bounded in time.
In the conditional and noiseless setting (σB = 0), we have E[∥S(t,Xt, y)∥2H |Y = y] =∑

j ̸∈I(n)
et

1+(et−1)p(j)

λ2
j

µj
+
∑

j∈I(n)
λj

1−e−t , which blows up as 1/t as t → 0. This result shows
that the extension of the score-based diffusion models to the conditional setting is not trivial.

5 Well-posedness for the reverse SDE for a general class of prior measures

We are now ready to consider the case of a general class of prior measures given as a density with
respect to a Gaussian measure. The analysis of this case resembles the one of Pidstrigach et al. [33]
for the unconditional setting. The main challenge is the singularity of the score for small times,
an event that in the Gaussian case was observed in the noiseless setting. We will provide a set of
conditions to be satisfied by Φ in (9), so that the conditional score is bounded uniformly in time. The
existence of this bound is needed to make sense of the forward-reverse conditional SDE, and to prove
the accuracy and stability of the conditional sampling.

We start the analysis by recalling that, in the infinite-dimensional case, the conditional score is (8). It
is easy to get a first estimate:

E[∥S(t,Xt, y)∥2H |Y = y] ≤ (1− e−t)−1Tr(C). (24)

The proof follows from Jensen inequality and the law of total expectation, see Appendix C. Note that
(24) is indeed an upper bound of (23) since Tr(C) =

∑
j λj .

Note that the bound (24) is also valid for the unconditional score S(t, x) = −(1 − e−t)−1
(
x −

e−t/2E[X0|Xt = x]
)
. We can observe that the upper bound (24) blows up in the limit of small times.

We can make a few comments:
1) The bound (24) is convenient for positive times, but the use of Jensen’s inequality results in a very
crude bound for small times. As shown in the previous section, we know that there exists a bound
(22) for the unconditional score in the Gaussian case that is uniform in time.
2) The singular behavior as 1/t at small time t is, however, not artificial. Such a behavior is needed in
order to drive the state to the deterministic initial condition when there are exact observations. This
behavior has been exhibited by (21) and (23) in the Gaussian case when σB = 0. This indicates that
the following assumption (25) is not trivial in the conditional setting.

For Definition 2 to make sense in the more general case where the prior of X0 is given as a density
with respect to a Gaussian measure, we will need to make the following assumption.
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Assumption 1. For any y ∈ Rn, we have

sup
t∈[0,T ]

E
[
∥S(t,Xt, y)∥2H |Y = y

]
<∞. (25)

We are now ready to state the analogous result to Pidstrigach et al. [33, Theorem 1].
Proposition 2. Under Assumption 1, the solution of the reverse-time SDE

dZt =
1

2
Ztdt+ S(T − t, Zt, y)dt+

√
CdWt, Z0 ∼ XT |Y = y, (26)

satisfies ZT ∼ X0|Y = y.

Proof. Given Assumption 1, the proof follows the same steps as the one given in [33] for the
unconditional score. See Appendix C for the full proof.

Assumption 1 is satisfied under some appropriate conditions. We give in the following proposition
one such set of conditions. It shows that it is possible to get an upper bound in (24) that is uniform in
time provided some additional conditions are fulfilled.
Proposition 3. We assume that the conditional version of Cµ in (9) and C in (1) have the same basis
of eigenfunctions (vj) and we define X(j)

t = ⟨Xt, vj⟩ and S(j)(t, x, y) = ⟨S(t, x, y), vj⟩ so that in
(1) S(t, x, y) =

∑
j S

(j)(t, x, y)vj . We assume an observational model as described in Section 4 and
that the p(j)(1 + q(j)) are uniformly bounded with respect to j and that C is of trace class. We make
a modified version of assumption in (9) as follows. We assume that 1) the conditional distribution
of X0 given Y = y is absolutely continuous with respect to the Gaussian measure µ with a Radon-
Nikodym derivative proportional to exp(−Φ(x0, y)); 2) we have Φ(x0, y) =

∑
j Φ

(j)(x
(j)
0 , y),

x
(j)
0 = ⟨x0, vj⟩; 3) for ψ(j)(x(j), y) = exp(−Φ(j)(x(j), y)) we have

1

K
≤ |ψ(j)(x(j), y)| ≤ K, |ψ(j)(x(j), y)− ψ(j)(x(j)

′
, y)| ≤ L|x(j)

′
− x(j)|, (27)

where K and L do not depend on j. Then Assumption 1 holds true.

Proof. The proof is given in Appendix C.

To use the new score function of Definition 2 for sampling from the posterior, we need to define
a way to estimate it. In other words, we need to define a loss function over which the difference
between the true score and a neural network sθ(t, xt, y) is minimized in θ. A natural choice for the
loss function is

Et∼U(0,T ),xt,y∼L(Xt,Y )

[
∥S(t, xt, y)− sθ(t, xt, y)∥2H

]
, (28)

however it cannot be minimized directly since we do not have access to the ground truth conditional
score S(t, xt, y). Therefore, in practice, a different objective has to be used. Batzolis et al. [5] proved
that, in finite dimensions, a denoising score matching loss can be used:

Et∼U(0,T ),x0,y∼L(X0,Y ),xt∼L(Xt|X0=x0)

[
∥C∇xt

ln p(xt|x0)− sθ(t, xt, y)∥2
]
. (29)

This expression involves only ∇xt
log p(xt|x0) which can be computed analytically from the transi-

tion kernel of the forward diffusion process, also in infinite dimensions. In the following proposition,
we build on the arguments of Batzolis et al. [5] and provide a proof that the conditional denoising
estimator is a consistent estimator of the conditional score in infinite dimensions.
Proposition 4. Under Assumption 1, the minimizer in θ of

Ex0,y∼L(X0,Y ),xt∼L(Xt|X0=x0)

[
∥ − (1− e−t)−1(xt − e−t/2x0)− sθ(t, xt, y)∥2H

]
(30)

is the same as the minimizer of

Ext,y∼L(Xt,Y )

[
∥S(t, xt, y)− sθ(t, xt, y)∥2H

]
. (31)

The same result holds if we add t ∼ U(0, T ) in the expectations.

Proof. The proof combines some of the arguments of Batzolis et al. [5] and steps of the proof of
Lemma 2 in [33], see Appendix C.

Remark 3. A statement of robustness can be written as in [33, Theorem 2].
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6 Numerical experiment

We have presented theoretical results on the amortized learning of infinite-dimensional conditional
distributions using SDMs. To put this theory into practice, we propose a stylized example where we
learn to sample from a non-Gaussian, multi-modal conditional distribution. Our goal is to showcase
the ability of the presented learning framework to capture nontrivial conditional distributions.

To enable learning in function spaces, we parameterize the conditional score sθ(t, xt, y) using
discretization-invariant Fourier neural operators [FNOs; 28]. This parameterization enables mapping
input triplets (t, xt, y) to the score conditioned on y at time t. Once trained—by minimizing the
objective function in equation (29) with respect to θ—we use the FNO as an approximation to
the conditional score to sample new realizations of the conditional distribution by simulating the
reverse-time SDE in equation (15). Our implementation is based on Li et al. [28] and includes a
fully-connected lifting layer, five Fourier neural layers, and a final layer that maps the lifted domain
back to the desired shape of the conditional score. We refer to Appendix D for more information
about the architecture.

Inspired by Phillips et al. [32], we use the relation y = ax20 + ε with ε ∼ Γ(1, 2) and a ∼ U{−1, 1}
evaluated on a uniformly sampled grid of 25 evaluation points in [−3, 3] to create joint training
pairs x0, y ∼ L(X0, Y ). We draw 105 training pairs and train the FNO over 200 epochs with a
batchsize of 512 using an initial learning rate of 10−3, decaying to 5× 10−4 over the epochs with
a power-law rate of −1/3. The results are summarized in Figure 1. By juxtaposing the true and
predicted conditional samples in the top row we can confirm that we are able to learn this bi-modal,
non-Gaussian conditional distribution. We further investigate the accuracy of the learned conditional
distribution by comparing two one dimensional slices of the conditional distribution (see bottom
row). While here we focused on a low-dimensional problem, we argue our choice of architecture and
training framework (cf. equation 29) have the potential to be applied to larger-scale problems.

Figure 1: Conditional sampling verification. Top row illustrates the true function samples from the
conditional distribution (left) and samples via the score-based model (right). Bottom row indicates
pointwise marginals for two different points.

7 Conclusions

This is a foundational paper. Our analysis shows that conditional SDMs can be applied to define
a discretization-invariant method that is able to perform conditional sampling directly on infinite-
dimensional Hilbert spaces. Note that the method we propose in this work is data-driven, with the
exception of the data pairs used to learn the score, that are informed by the measurement acquisition
process, and uses Fourier neural operators [FNOs; 28] for obtaining (amortized) approximations of
the score.
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A Probability measures on infinite-dimensional Hilbert spaces

In this section, we briefly present some fundamental notions related to probability measures on
infinite-dimensional spaces, specifically separable Hilbert spaces (H, ⟨·, ·⟩). There is abundant
literature on the subject. For more details we refer to Da Prato [8], Kerrigan et al. [21], Pidstrigach
et al. [33], Stuart [41] and references therein.

A.1 Gaussian measures on Hilbert spaces

Definition 3. Let (Ω,F ,P) be a probability space. A measurable function X : Ω → H is called
a Gaussian random element (GRE) if for any h ∈ H , the random variable ⟨h,X⟩ has a scalar
Gaussian distribution.

Every GRE X has a mean element m ∈ H defined by

m =

∫
Ω

X(ω)dP(ω),

and a linear covariance operator C : H → H defined by

Ch =

∫
Ω

⟨h,X(ω)⟩X(ω)dP(ω)− ⟨m,h⟩m, ∀h ∈ H.

We denote X ∼ N (m,C) for a GRE in H with mean element m and covariance operator C. It
can be shown that the covariance operator of a GRE is trace class, positive-definite and symmetric.
Conversely, for any trace class, positive-definite and symmetric linear operator C : H → H and
every m ∈ H , there exists a GRE with X ∼ N (m,C). This leads us to the following definition:
Definition 4. If X is a GRE, the pushforward of P through X , denoted by PX , is called a Gaussian
probability measure on H . We will write PX = N (m,C).

Let X ∼ N (m,C). We can make a few remarks:
1) For any h ∈ H , we have ⟨h,X⟩ ∼ N (⟨h,m⟩, ⟨Ch, h⟩).
2)C is compact. By Mercer theorem [30] there exists (λj) and an orthonormal basis of eigenfunctions
(vj) such that λj ≥ 0 and Cvj = λjvj∀j. We consider the infinite-dimensional case in which λj > 0
∀j.
3) Suppose m = 0 (we call the Gaussian measure of X centered). The expected square norm of X is
given by

E[∥X∥2H ] = E

 ∞∑
j=1

⟨vj , X⟩2
 =

∞∑
j=1

⟨Cvj , vj⟩ =
∞∑
j=1

λj =

∞∑
j=1

Tr(C),

which is finite since C is trace class.

A.2 Absolutely continuous measures and the Feldman-Hajek theorem

Here we introduce the notion of absolute continuity for measures.
Definition 5. Let µ and ν be two probability measures on H equipped with its Borel σ-algebra
B(H). Measure µ is absolutely continuous with respect to ν (we write µ ≪ ν) if µ(Σ) = 0 for all
Σ ∈ B(H) such that ν(Σ) = 0.
Definition 6. If µ≪ ν and ν ≪ µ then µ and ν are said to be equivalent and we write µ ∼ ν. If µ
and ν are concentrated on disjoint sets then they are called singular; in this case we write µ ⊥ ν.

Another notion that will be used throughout the paper is the Radon-Nikodym derivative.
Theorem 1. Let µ and ν be two measures on (H,B(H)) and ν be σ-finite. If µ ≪ ν, then there
exists a ν-measurable function f on H such that

µ(A′) =

∫
A′
fdν, ∀A′ ∈ B(H).

Furthermore, f is unique ν-a.e. and is called the Radon-Nikodym derivative of µ with respect to ν. It
is denoted by dµ/dν.
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Remark 4. In the paper, we will sometimes refer to f as the density of µ with respect to ν.

We are finally able to state the Feldman-Hajek theorem in its general form.
Theorem 2. The following statements hold.

1. Gaussian measures µ = N (m1, C1), ν = N (m2, C2) are either singular or equivalent.

2. They are equivalent if and only if the following conditions hold:

(i) ν and µ have the same Cameron-Martin space H0 = C
1/2
1 (H) = C

1/2
2 (H).

(ii) m1 −m2 ∈ H0.
(iii) The operator (C−1/2

1 C
1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I is a Hilbert-Schmidt operator on the

closure H0.

3. If µ and ν are equivalent and C1 = C2 = C, then ν-a.s. the Radon-Nikodym derivative
dµ/dν is given by

dµ

dν
(h) = eΨ(h),

where Ψ(h) = ⟨C−1/2(m1 −m2), C
−1/2(h−m2)⟩ − 1

2∥C
−1/2(m1 −m2)∥2H∀h ∈ H .

A.3 Bayes’ theorem for inverse problems

Let H and K be separable Hilbert spaces, equipped with the Borel σ-algebra, and A : H → K a
measurable mapping. We want to solve the inverse problem of finding X from Y , where

Y = A(X) +B

andB ∈ K denotes the noise. We adopt a Bayesian approach to this problem. We let (X,Y ) ∈ H×K
be a random variable and compute X|Y . We first specify (X,Y ) as follows:
1) Prior: X ∼ µ0 measure on H .
2) Noise: B ∼ η0 measure on K, with B independent from X .

The random variable Y |X is then distributed according to the measure ηx, the translate of η0 by
A(X). We assume that ηx ≪ η0. Thus for some potential Ψ : H ×K → R,

dηx
dη0

(y) = e−Ψ(x,y).

The potential Ψ(·, y) satisfying the above formula is often termed the negative log likelihood of the
problem. Now define ν0 to be the product measure ν0 = µ0 × η0. We can finally state the following
infinite-dimensional analogue of the Bayes’ theorem.
Theorem 3. Assume that Ψ : H ×K → R is ν0-measurable and define

Z(y) =

∫
e−Ψ(x,y)dµ0.

Then
dµ0(·|Y = y)

dµ0
(x) =

1

Z(y)
e−Ψ(x,y),

where µ0(·|Y = y) is the conditional distribution of X given Y = y.

B Proofs of Section 4

B.1 Proofs of Lemma 2 and Proposition 1

We assume that Cµ in (9) and C in (1) have the same basis of eigenfunctions (vj) and that Cµvj =

µjvj , Cvj = λjvj ∀j. We defineX(j)
t = ⟨Xt, vj⟩, y(j) = ⟨y, vj⟩ and S(j)(t, x, y) = ⟨S(t, x, y), vj⟩

so that in (1) S(t, x, y) =
∑

j S
(j)(t, x, y)vj . We assume j ∈ I(n) so that we consider a mode

corresponding to an observation. We then have

dX
(j)
t = −1

2
X

(j)
t dt+

√
λ(j)dW

(j)
t ,
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withW (j) standard Brownian motions which are independent for the different modes j. Note also that
with Cµ and C having the same basis of eigenfunctions the system of modes is diagonalized so that
the X(j)

t processes are independent with respect to mode j, both for the observed and un-observed
modes. Thus we have

X
(j)
0 =

√
µjη

(j)
0 , Y (j) = X

(j)
0 + σBη

(j)
1 , X

(j)
t = X

(j)
0 e−t/2 +

√
λj(1− e−t)η

(j)
2 ,

for η(j)i independent standard Gaussian random variables. We then seek

x
(j,y)
0 = E[X(j)

0 | Xt = x, Y = y] = E[X(j)
0 | X(j)

t = x(j), Y (j) = y(j)],

which in this Gaussian setting is the L2 projection of X(j)
0 onto X(j)

t and Y (j). Thus we can write
x
(j,y)
0 = ax(j) + by(j) with (a, b) solving

E[(aX(j)
t + bY (j) −X

(j)
0 )Y (j)] = 0, E[(aX(j)

t + bY (j) −X
(j)
0 )X

(j)
t ] = 0,

which gives

a =
et/2

1 + (et − 1)p(j)(1 + q(j))
, b =

p(j)q(j)(et − 1)

1 + (et − 1)p(j)(1 + q(j))
,

for p(j) = λj/µj , q
(j) = µ(j)/σ2.

We then get in view of (8)

S(j)(t, x, y) = −
(

etp(j)(1 + q(j))

1 + (et − 1)p(j)(1 + q(j))

)
x(j) +

(
et/2p(j)q(j)

1 + (et − 1)p(j)(1 + q(j))

)
y(j). (32)

Note that with some abuse of notation we then have

S(j)(t, x, y) = S(j)(t, x(j), y(j)),

which is important since then also the time reversed system diagonalizes. We remark that for an
unobserved mode we get by a similar, but easier, calculation

S(j)(t, x, y) = −
(

etp(j)

1 + (et − 1)p(j)

)
x(j),

which simply corresponds to setting σB = ∞ in (32).

Consider next E[S(j)(t, x, y)2]. Note first that

E[X(j)
t | Y = y] =

(
q(j)e−t/2

1 + q(j)

)
y(j),

Var[X
(j)
t | Y = y] = e−tVar[X

(j)
t | Y = y] + λj(1− e−t)

= (1 + (et − 1)p(j)(1 + q(j)))

(
µje

−t

1 + q(j)

)
.

We can then easily check that the score is conditionally centered E[S(j)(t,Xt, Y ) | Y = y] = 0 and
we then get

E[(S(j)(t,Xt, Y ))2 | Y = y] =

(
etp(j)(1 + q(j))

1 + (et − 1)p(j)(1 + q(j))

)2

Var[X
(j)
t | Y = y]

=
etµj(p

(j))2(1 + q(j))

1 + (et − 1)p(j)(1 + q(j))
,

which gives Proposition 1 upon summing over the mode index j, where we define q(j) = 0 for the
unobserved modes.
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C Proofs of Section 5

C.1 Discussion about an alternative approach

The following lemma is a complementary result related to Remark 1. It shows that we can actually
derive the expression of the score from the results contained in Millet et al. [31]. The result is
powerful, but requires the verification of technical conditions.

Lemma 3. Under the conditions stated in Proposition 3 the score is defined by

S(x, y, t) = −(1− e−t)−1
(
x− e−t/2E [X0|Xt = x, Y = y]

)
(33)

and the time reversed diffusion takes the form in (15).

Proof. Define

X(j) = ⟨vj , X⟩ for Cvj = λjvj .

Then

dX(j) = −1

2
X(j)dt+

√
λjdW

(j) for W (j) = ⟨vj ,W ⟩, (34)

and where we assume that C is of trace class. This is then an infinite dimensional system of the type
considered in Millet et al. [31]. We proceed to verify some conditions stated in Millet et al. [31]:
(i) the coefficients of the system (34) satisfy standard growth and Lipschitz continuity conditions
(assumption (H1, H4) satisfied); (ii) the coefficients depend on finitely many coordinates (assumption
(H2) satisfied); the system is time independent and diagonal (assumption (H5) satisfied). Moreover
define x̌(j) = (x1, · · · , xj−1, xj+1, · · · ), then the law of X(j)

t given X̌(j)
t has for t > 0 density

pt(x
(j)|X̌(j)

t = x̌(j), Y = y) with respect to Lebesgue measure and so that for t0 > 0 and each j:∫ T

t0
E[|∂x(j) log(pt(x

(j))|Y = y)dt <∞. Then it follows from Theorems 3.1 and 4.3 in Millet et al.
[31] that the time reversed problem is associated with the well-posed martingale problem defined by
the coefficients in (15) for the score being:

⟨vj , S(x, y, t)⟩ =
λj

∂
∂xj

(
pt(x

(j)|X̌(j)
t = x̌(j), Y = y)

)
pt(x(j)|X̌(j)

t = x̌(j), Y = y)
,

with the convention that the right hand side is null on the set {pt(x(j)|X̌(j)
t = x̌(j), Y = y) = 0}.

It then follows for t > 0

⟨vj , S(x, y, t)⟩

=

∫
R
dµ0(x

(j)
0 |X̌(j)

t = x̌(j), Y = y)
λj

∂
∂xj

(
pt(x

(j)|X̌(j)
t = x̌(j), X

(j)
0 = x

(j)
0 , Y = y)

)
pt(x(j)|X̌(j)

t = x̌(j), Y = y)
.

We then get

⟨vj , S(x, y, t)⟩ = −
∫
R
dµ0(x

(j)
0 |X̌(j)

t = x̌(j), Y = y)

×

(
xj − e−t/2x

(j)
0

1− e−t

) (
pt(x

(j)|X̌(j)
t = x̌(j), X

(j)
0 = x

(j)
0 , Y = y)

)
pt(x(j)|X̌(j)

t = x̌(j), Y = y)

= −
∫
R
dµ0(x

(j)
0 |Xt = x, Y = y)

(
xj − e−t/2x

(j)
0

1− e−t

)
.
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C.2 A preliminary lemma

The following lemma is the equivalent of [33, Lemma 3]. It is used in the forthcoming proof of
Proposition 2.

Lemma 4. In the finite-dimensional setting x ∈ RD, we have for any 0 ≤ s ≤ t ≤ T :

∇ log pt,y(xt) = e(t−s)/2Ey

[
∇ log ps,y(Xs)|Xt = xt

]
,

where Ey is the expectation with respect to the distribution of X0 and W given Y = y and pt,y is the
pdf of Xt under this distribution.

Proof. We can write

pt,y(xt) =

∫
RD

ps,y(xs)pt|s,y(xt|xs)dxs,

where pt|s,y(·|xs) is the pdf ofXt given Y = y andXs = xs. It is, in fact, equal to the pdf ofXt given
Xs = xs, which is the pdf of the multivariate Gaussian distribution with mean exp(−(t− s)/2)xs
and covariance (1− exp(−(t− s)))C. Therefore

pt,y(xt) =

∫
RD

ps,y(xs)pt|s(xt|xs)dxs.

We can then deduce that

∇pt,y(xt) =
1

(2π)D/2(1− e−(t−s))1/2 det(C)1/2

∫
RD

dxsps,y(xs)

×∇xt
exp

(
− 1

2(1− e−(t−s))
(xt − exp(−(t− s)/2)xs)

TC−1(xt − exp(−(t− s)/2)xs)
)

= − e(t−s)/2

(2π)D/2(1− e−(t−s))1/2 det(C)1/2

∫
RD

dxsps,y(xs)

×∇xs
exp

(
− 1

2(1− e−(t−s))
(xt − exp(−(t− s)/2)xs)

TC−1(xt − exp(−(t− s)/2)xs)
)

=
e(t−s)/2

(2π)D/2(1− e−(t−s))1/2 det(C)1/2

∫
RD

dxs∇xs

(
ps,y(xs)

)
× exp

(
− 1

2(1− e−(t−s))
(xt − exp(−(t− s)/2)xs)

TC−1(xt − exp(−(t− s)/2)xs)
)

= e(t−s)/2

∫
RD

dxs∇xs

(
ps,y(xs)

)
pt|s(xt|xs),

which gives

∇pt,y(xt) = e(t−s)/2

∫
RD

pt|s(xt|xs)ps,y(xs)∇ log ps,y(xs)dxs.

Using again that pt|s,y(·|xs) = pt|s(·|xs) and pt|s,y(xt|xs) =
p(s,t),y(xs,xt)

ps,y(xs)
, we get

∇pt,y(xt) = e(t−s)/2

∫
RD

pt|s,y(xt|xs)ps,y(xs)∇ log ps,y(xs)dxs

= e(t−s)/2

∫
RD

p(s,t),y(xs, xt)∇ log ps,y(xs)dxs.

Since ∇ log pt,y(xt) =
∇pt,y(xt)
pt,y(xt)

and ps|t,y(xs|xt) =
p(s,t),y(xs,xt)

pt,y(xt)
we get that

∇ log pt,y(xt) = e(t−s)/2

∫
RD

ps|t,y(xs|xt)∇ log ps,y(xs)dxs

= e(t−s)/2Ey

[
∇ log ps,y(Xs)|Xt = xt].
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C.3 Proof of Proposition 2

The proof adapts the one of [33] to the conditional setting. The only difference is that the expectation
is Ey , which affects the distribution of X0 but not the one of W . Moreover, Lemma 4 shows that the
key to the proof (the reverse-time martingale property of the finite-dimensional score) is still valid.
Here Ey is the expectation with respect to the distribution of X0 and W given Y = y.

To prove Proposition 2, we are left to show that the solution of the reverse-time SDE

dZt =
1

2
Ztdt+ S(T − t, Zt, y)dt+

√
CWt, Z0 ∼ XT |Y = y (35)

satisfies ZT ∼ X0|Y = y. We recall that Xt is the solution to the SDE

dXt = −1

2
Xtdt+

√
CdWt, X0 ∼ µ0.

We first notice that Xt is given by the following stochastic convolution:

Xt = e−t/2X0 +

∫ t

0

e−(t−s)/2
√
CdWs.

For PD the orthogonal projection on the subspace of H spanned by v1, . . . , vD (the eigenfunctions
of C), XD

t = PD(Xt) are solutions to

dXD
t = −1

2
XD

t dt+
√
(CD)dWD

t ,

where
CD = PDCPD, WD

t = PDWt.

We define XD:M
t = XM

t −XD
t . Then

XD:M
t = e−t/2XD:M

0 +

∫ t

0

e−(t−s)/2
√

(CD:M )dWD:M
s ,

where the superscript D :M indicates the projection onto span{vD+1, . . . , vM}. It holds that

Ey

[
sup
t≤T

∥XD:M
t ∥2H

]
≤ 2e−tEy[∥XD:∞

0 ∥2H ] + 2(1− e−t)

∞∑
i=D+1

λi → 0

as D → ∞, where we used Doob’s L2 inequality to bound the stochastic integral. Therefore (XN
t )

is a Cauchy sequence and converges to Xt in L2(Py). Consequently, the distribution of XN
t given

Y = y converges to the distribution of Xt given Y = y as N → +∞.

Recall that
S(t,Xt, y) = −(1− e−t)−1Ey[Xt − e−t/2X0 | Xt],

and recall that
CD∇ log pDt,y(X

1:D
t ) = −(1− e−t)−1PDEy[Xt − e−t/2X0 | X1:D

t ].

In particular, due to the tower property of the conditional expectations,

CD∇ log pDt,y(X
1:D
t ) = Ey[S(t,Xt, y) | X1:D

t ].

Since, by Assumption 1,
Ey[∥S(t,Xt, y)∥2H ] <∞,

the quantities Ey[Xt − e−t/2X0 | X1:D
t ] are bounded in L2(Py) and will converge to the limit,

Ey[S(t,Xt, y) | Xt] = S(t,Xt, y), by the Martingale convergence theorem. We get rid of the
projection PD by

(1− e−t)Ey[∥CD∇ log pDt,y(X
1:D
t )− S(t,Xt, y)∥2H ]

= Ey[∥PDEy[Xt − e−t/2X0 | X1:D
t ]− Ey[Xt − e−t/2X0 | Xt]∥2H ]

≤ Ey[∥Ey[Xt − e−t/2X0 | X1:D
t ]− Ey[Xt − e−t/2X0 | Xt]∥2H ]

+ Ey[∥(I − PD)Ey[Xt − e−t/2X0 | X1:D
t ]∥2H ]

≤ Ey[∥E[Xt − e−t/2X0 | X1:D
t ]− Ey[Xt − e−t/2X0 | Xt]∥2H ]

+ Ey[∥(I − PD)(Xt − e−t/2X0)∥2H ].
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The first term vanishes due to our previous discussion. The second term vanishes since

Ey[∥(I − PD)(Xt − e−t/2X0)∥2H ] = Ey[∥(I − PD)

∫ t

0

e−(t−s)/2
√
CdWs∥2H ]

= E[∥(I − PD)

∫ t

0

e−(t−s)/2
√
CdWs∥2H ]

= (1− e−t)

∞∑
i=D+1

λj → 0

as D → ∞.

We now make use of the fact that ∇ log pDt,y is a square-integrable Martingale in the reverse-time di-
rection by Lemma 4. We therefore get a sequence of continuous L2-bounded Martingales converging
to a stochastic process. Since the space of continuous L2-bounded martingale is closed and pointwise
convergence translates to uniform convergence, we get that S is a L2-bounded martingale, with the
convergence of of CD∇ log pDt,y to S being uniform in time.

We have that

ZD
t − ZD

0 − 1

2

∫ t

0

Zsds−
∫ t

0

CD∇ log pDs,y(Zs) =
√
CWD

t .

Since all the terms on the left-hand side converge in L2, uniformly in t, so does the right-hand
side. Using again the closedness of the spaces of Martingales and Levy’s characterization of Wiener
process, we find that

√
CWD

t converges to
√
CWt. Therefore

Zt = Z0 +
1

2
Zsds+

∫ t

0

S(t, Zt, y) +
√
CWD

t .

Therefore, Zt is indeed a solution to (35) and ZT ∼ X0|Y = y. Using uniqueness of the solution we
then conclude that this holds for any solution Zt.

C.4 Proof of (24)

E[∥S(t,Xt, y)∥2H |Y = y] = (1− e−t)−2E[∥E[Xt − e−t/2X0|Y = y,Xt]∥2H |Y = y]

= (1− e−t)−2E[∥E[
∫ t

0

e−(t−s)/2
√
CdWs|Y = y,Xt]∥2H |Y = y]

≤ (1− e−t)−2E[E[∥
∫ t

0

e−(t−s)/2
√
CdWs∥2H |Y = y,Xt]|Y = y]

= (1− e−t)−2E[∥
∫ t

0

e−(t−s)/2
√
CdWs∥2H |Y = y]

= (1− e−t)−2E[∥
∫ t

0

e−(t−s)/2
√
CdWs∥2H ]

= (1− e−t)−1Tr(C).

C.5 Proof of Proposition 3

Note that with the assumptions in Proposition 3 with Cµ and C having the same basis of eigenfunc-
tions and the separability assumption on the Radon-Nikodym derivative for the modes, the system
for the modes again diagonalizes. However, in this case the (conditional) distribution for X(j)

0 is
non-Gaussian in general and the change of measure with repect to the Gaussian measure characterized
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by ψ(j)(x(j), y). We let the superscript g denote the Gaussian case with ψ ≡ 1, then we have:

S(j)(t, x, y)

= −(1− e−t)−1
(
x(j) − e−t/2E[X(j)

0 |Xt = x, Y = y]
)

= −(1− e−t)−1

x(j) − e−t/2

∫
R
x0

µ(j,g)

x0,x
(j)
t |y

(x0, x
(j))ψ(j)(x0, y)

µ
(j)

x
(j)
t |y

(x(j))

 dx0


= (1− e−t)−1

e−t/2

∫
R
x0

µ(j,g)

x0,x
(j)
t |y

(x0 + x(j)et/2, x(j))ψ(j)(x0 + x(j)et/2, y)

µ
(j)

x
(j)
t |y

(x(j))

 dx0


= S

(j)
G (t, x, y)T (j)(t, x(j), y) + R̃(j)(t, x(j), y),

for S(j)
G the mode score in the Gaussian case given in (32) and with

T (j)(t, x(j), y) =

µ(j,g)

x
(j)
t |y

(x(j))ψ(j)(x(j)et/2, y)

µ
(j)

x
(j)
t |y

(x(j))

 ,

R̃(j)(t, x(j), y) = (1− e−t)−1e−t/2

×
∫
R
x0

µ(j,g)

x0,x
(j)
t |y

(x0 + x(j)et/2, x(j))
(
ψ(j)(x0 + x(j)et/2, y)− ψ(j)(x(j)et/2, y)

)
µ
x
(j)
t |y(x

(j))

 dx0.

We have for ϕλ the centered Gaussian density at second moment λ

T (j)(t, x(j), y) =

∫
R ϕλ(j)

t
(x(j) − ve−t/2)ϕ

µ
(j)
y
(v − x

(j)
y )dv∫

R ϕλ(j)
t
(x(j) − ve−t/2)ϕ

µ
(j)
y
(v − x

(j)
y )ψ(j)(v, y)/ψ(j)(x(j)et/2, y)dv

,

for λ(j)t = λj(1 − e−t), µ
(j)
y = µj/(1 + q(j)) and x(j)y = y(j)q(j)/(1 + q(j)) for y(j) = ⟨y, vj⟩.

Here x(j)y , µ
(j)
y are repectively the mean and variance of X(j)

0 given y and where we used the
parameterization set forth in Section B.1. We then have

|T (j)(t, x(j), y)| ≤ K2, lim
t↓0

T (j)(t, x(j)y) = 1.

We moreover have

|R̃(j)(t, x(j), y)| ≤ e−t/2(1− e−t)−1L

 ∫
R x

2
0ϕλ(j)

t
(x(j) − x0e

−t/2)ϕ
µ
(j)
y
(x0 − x

(j)
y )dx0∫

R ϕλ(j)
t
(x(j) − ve−t/2)ϕ

µ
(j)
y
(v − x

(j)
y )ψ(j)(v, y)dv


≤ e−t/2(1− e−t)−1LK

∫R x20ϕλ(j)
t
(x(j) − x0e

−t/2)ϕ
µ
(j)
y
(x0 − x

(j)
y )dx0∫

R ϕλ(j)
t
(x(j) − ve−t/2)ϕ

µ
(j)
y
(v − x

(j)
y )dv

 .

We then find

lim sup
t↓0

|R̃(j)(t, x(j), y)| ≤ λ(j)LK,

and, moreover

|R̃(j)(t, x(j), y)| ≤

λjLKe
t/2

(
1

1 + (et − 1)p(j)(1 + q(j))
+ λj

(x
(j)
y − x(j)et/2)2

(µ
(j)
y )2

(et − 1)

(1 + (et − 1)p(j)(1 + q(j)))2

)
.

Consider in the Gaussian case in (23) a mode so that p(j)(1 + q(j)) ↑ ∞ and λj fixed, then the
contribution of this mode to the score norm blows up in the small time limit. The situation with
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p(j)(1 + q(j)) ↑ ∞ would happen for instance in a limit of perfect mode observation so that σB ↓ 0
and thus q(j) ↑ ∞. Indeed in the limit of small (conditional) target mode variabilty relative to
the diffusion noise parameter the score drift becomes large for small time to drive the mode to the
conditional target distribution. We here thus assume p(j)(1+ q(j)) is uniformly bounded with respect
to mode (j index), moreover, that C is of trace class. We then find that Assumption 1 is satisfied with
the following bound

sup
t∈[0,T ]

E
[
∥S(t,Xt, y)∥2H |Y = y

]
≤ 2

∑
j

λje
T

(
K4p(j)(1 + q(j)) + 2λje

T (LK)2
(
1 + 3

(
p(j)(1 + q(j))(eT − 1)

)4)) .

We remark that in the case that we do not have a uniform bound on the p(j)(1 + q(j))’s it follows
from (24) that the rate of divergence of the square score norm is at most t−1 as t ↓ 0 with C of trace
class.

C.6 Proof of Proposition 4

We start from (31):

Ext,y∼L(Xt,Y )

[
∥S(t, xt, y)− sθ(t, xt, y)∥2H

]
= Ext,y∼L(Xt,Y )

[
∥S(t, xt, y)∥2H

]
+ Ext,y∼L(Xt,Y )

[
∥sθ(t, xt, y)∥2H

]
− 2Ext,y∼L(Xt,Y )

[
⟨S(t, xt, y), sθ(t, xt, y)⟩

]
.

From Definition 1 we have

Ext,y∼L(Xt,Y )

[
⟨S(t, xt, y), sθ(t, xt, y)⟩

]
= −(1− e−t)−1Ext,y∼L(Xt,Y )

[ 〈
xt − e−t/2Ex0∼L(X0|Xt=xt,Y=y)[x0], sθ(t, xt, y)

〉 ]
= −(1− e−t)−1Ext,y∼L(Xt,Y )

[
Ex0∼L(X0|Xt=xt,Y=y)

[ 〈
xt − e−t/2x0, sθ(t, xt, y)

〉 ]]
= −(1− e−t)−1E(x0,xt,y)∼L(X0,Xt,Y )

[ 〈
xt − e−t/2x0, sθ(t, xt, y)

〉 ]
.

We obtain that

Ext,y∼L(Xt,Y )

[
∥S(t, xt, y)− sθ(t, xt, y)∥2H

]
= B + E(x0,xt,y)∼L(X0,Xt,Y )

[
∥ − (1− e−t)−1(xt − e−t/2x0)− sθ(t, xt, y)∥2H

]
,

with

B = Ext,y∼L(Xt,Y )

[
∥S(t, xt, y)∥2H

]
− E(x0,xt)∼L(X0,Xt)

[
∥(1− e−t)−1(xt − e−t/2x0)∥2H

]
that does not depend on θ. Since L(Xt|X0 = x0, Y = y) = L(Xt|X0 = x0) we finally get that

Ext,y∼L(Xt,Y )

[
∥S(t, xt, y)− sθ(t, xt, y)∥2H

]
= B + Ex0,y∼L(X0,Y ),xt∼L(Xt|X0=x0)

[
∥ − (1− e−t)−1(xt − e−t/2x0)− sθ(t, xt, y)∥2H

]
.

D Numerical experiment details

In this section, we provide additional details regarding our numerical experiment. As mentioned
in the main text, we synthesized a conditional distribution using the relation y = ax20 + ε, where
ε ∼ Γ(1, 2) and a ∼ U{−1, 1}. Here, Γ refers to the Gamma distribution, and U{−1, 1} denotes the
uniform distribution over the set {−1, 1}. Subsequently, we used our approach to approximate the
conditional distribution of y given x. The hyperparameters described in the main text were selected
by comparing the validation loss over 1024 samples. The training process takes approximately 15
minutes on a GeForce RTX 2080 Ti GPU device. Regarding the diffusion process, we followed the
approach outlined in Ho et al. [16] and employed standard Gaussian noise with linearly increasing
variance for the forward process, which was discretized into 500 timesteps. The initial Gaussian
noise variance was set to 10−4 and linearly increased over the timesteps until it reached 2× 10−2.
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