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Abstract — In a fissile material, the inherent multiplicity of neutrons born through induced fissions leads 
to correlations in their detection statistics. The correlations between neutrons can be used to trace back 
some characteristics of the fissile material. This technique, known as neutron noise analysis, has applica-
tions in nuclear safeguards or waste identification. It provides a nondestructive examination method for an 
unknown fissile material. This is an example of an inverse problem where the cause is inferred from 
observations of the consequences.

However, neutron correlation measurements are often noisy because of the stochastic nature of the 
underlying processes. This makes the resolution of the inverse problem more complex since the measurements 
are strongly dependent on the material characteristics. A minor change in the material properties can lead to 
very different outputs. Such an inverse problem is said to be ill posed. For an ill-posed inverse problem, the 
inverse uncertainty quantification is crucial. Indeed, seemingly low noise in the data can lead to strong 
uncertainties in the estimation of the material properties. Moreover, the analytical framework commonly used 
to describe neutron correlations relies on strong physical assumptions, and is thus inherently biased.

This paper addresses dual goals. First, surrogate models are used to improve neutron correlation 
predictions and quantify the errors on those predictions. Then the inverse uncertainty quantification is 
performed to include the impact of measurement error alongside the residual model bias.

Keywords — Neutron noise analysis, uncertainty quantification, nuclear safeguards, supervised learning, 
Gaussian processes.  

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Neutron noise analysis describes a set of methods 
that aims to identify a fissile material based on observa-
tions of neutron correlations in the multiplying medium.1 

These methods can have applications in nuclear safe-
guards, criticality accident detections, or waste 
identification.2 Neutron correlations can be described 
analytically within a simplified framework known as the 
point model approximation.3 This model can be used to 
solve an inverse problem and evaluate characteristics of

the medium, such as its prompt multiplication. However, 
the point model relies on strong physical assumptions, 
which leads to a systematic error in the predictions. The 
bias introduced by the point model is often disregarded, 
and the uncertainty quantification of neutron noise tech-
niques is not often considered.

The objective of this paper is to provide a robust 
inverse uncertainty quantification method that accounts 
for the bias introduced by the point model. The inverse 
problem is solved with a Bayesian approach as is done 
in several works in stochastic neutronics.4,5 Surrogate 
models are then used to replace and generalize the point 
model. The surrogate models are based on Gaussian*E-mail: paul.lartaud@polytechnique.edu
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processes,6 which are a flexible nonparametric regres-
sion tool. The surrogate models provide better predic-
tions of neutron correlations and are computationally 
cheap to call. On top of this, they also yield covariances 
of the predictions. The predicted covariances can be 
introduced into the Bayesian resolution of the inverse 
problem to include the model uncertainties into the 
estimation of the posterior distribution of the input 
parameters. From the results obtained, the method pre-
sented in this paper is able to significantly improve 
neutron noise techniques while simultaneously provid-
ing a robust inverse uncertainty quantification.

This paper provides a brief description of the point 
model and presents a summary of Gaussian process 
regression (GPR) and its extension to multi-output pro-
blems. Then the general methodology is presented and 
tested on two different examples extracted from neutron 
multiplicity experiments.

II. POINT MODEL FRAMEWORK

In this section, a brief introduction to the point model 
approximation in neutron noise theory is presented.

II.A. Neutron Correlations

In a fissile material, one neutron can induce a fission, 
leading to the birth of more neutrons and so on. This 
process creates correlations between the neutrons. The 
successive fissions can be described as branching pro-
cesses, where each fission event is a node in a fission 
chain leading to the creation of more branches.

Let us consider a setup with a fissile material and 
a neutron detector. At some point, two neutron detec-
tions can be recorded simultaneously in the detector, or 
more specifically, within the same time gate of temporal 
size T . This simultaneous double detection can either be 
accidental if the neutrons are independent, or correlated 
if they are not. Two neutrons are correlated if and only if 
they belong to the same fission chain. With this criter-
ion, it is possible to make a distinction between true 
correlated double detections and accidental double 
detections. Neutron noise techniques study the occur-
rence of true correlated double and triple detections in 
the detectors.

II.B. Point Model Assumptions

The following assumptions are made in the point 
model framework:

1. The medium is infinite, homogeneous, isotropic, 
and subcritical.

2. Only fission and capture reactions occur in the 
material. They are governed, respectively, by the macro-
scopic cross sections Σf and Σc.

3. Neutrons are monoenergetic.

4. The source is either a spontaneous fission 
source, an Öα; nÜ source, or a mix of the two.

5. Neutrons are detected by a neutron capture such 
that the total macroscopic capture cross section can be 
written Σc à Σd á Σp where Σd is the detection cross 
section and Σp is the parasitic capture cross section.

These assumptions largely simplify the description of 
neutron correlations. An analytical description of neutron 
correlations is possible in this framework. The derivation of 
the point model equations is not provided here. Depending 
on the inputs and outputs considered, the point model 
equations can be found under different forms. Most of the 
time, Böhnel equations are used, but in this paper the 
Feynman/Furuhashi framework is studied instead.

II.C. Böhnel Equations

Böhnel equations establish a link between the mate-
rial characteristics and neutron correlations. The outputs 
investigated are the single count rate C1, the correlated 
double-detection count rate C2, and the correlated triple- 
detection count rate C3.

The point model equations depend on the distribution 
of neutron multiplicity in induced and spontaneous fis-
sions. The average number of neutrons produced per 
induced fissions is denoted ν. The second- and third- 
order factorial moments of the multiplicity distribution 
ν2 à νÖν� 1Ü and ν3 à νÖν� 1ÜÖν� 2Ü are introduced. 
The average number of neutrons for spontaneous fissions 
νs and the factorial moments for spontaneous fissions ν2s 
and ν3s are defined similarly.

The input parameters in the Böhnel framework are 
the leakage multiplication ML, the leakage efficiency εL 
defined as the number of counts per nonfissioning neu-
trons, and the fission source intensity QF, which is the 
number of spontaneous fission source events per second. 
Finally, the alpha ratio αR à νsQF

Qα 
is the ratio of source 

neutrons produced by spontaneous fissions over the num-
ber of neutrons produced by Öα; nÜ.

Based on the assumptions described in the previous 
sections, the point model equations can be derived as
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and

A detailed derivation of the equations can be found in 
Ref. 7.

II.D. Feynman Equations

In the Feynman/Furuhashi framework,8 the inputs 
considered are the prompt multiplication factor kp, the 
detector efficiency (or Feynman efficiency) εF defined as 
the number of counts per induced fissions, the source 
intensity S defined as the number of source events (spon-
taneous fission or Öα; nÜ reaction) per second, and 
xs à Ö1á αRÜ�1, which is the ratio of source neutrons 
produced per spontaneous fissions over the total number 
of source neutrons.

The Diven factors of second and third order D2 and 
D3 for induced fissions are also introduced. They are 
defined as the second- and third-order reduced factorial 
moments of the multiplicity distribution,

and

The Diven factors for the spontaneous fission multiplicity 
D2s and D3s are defined similarly.

The outputs of the Feynman model are the average 
count rate R and the second and third asymptotic 
Feynman moment Y1 and X1.

The second- and third-order Feynman moments YÖTÜ
and X ÖTÜ are defined for a given size T of a detection 
window as 

and

where N2CÖTÜ and N3CÖTÜ are, respectively, the average 
number of double and triple correlated detections in 
a time window of size T , and N1ÖTÜ is the average 
number of counts per time window. In this formalism, 
the average count rate is the average number of counts 
divided by the time width. It does not depend on T :

The Feynman moments depend on the size of the time 
window considered. However, for T large, YÖTÜ [respec-
tively, X ÖTÜ] converges toward an asymptotic value Y1
[respectively, X1]. Indeed, in a subcritical medium, the 
fission chains have a limited lifetime. For T much larger 
than the average fission chain lifetime, all the true corre-
lations are encapsulated in the detection window. Thus, 
the Feynman moments reach an asymptotic value.

Based on the Böhnel equations, the equations for the 
Feynman/Furuhashi framework can be derived. The 
prompt reactivity ρ à kp�1

kp
< 0 is introduced as

and

II.E. Limitations

The point model framework is based on strong phy-
sical assumptions. It is expected to yield biased
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predictions, especially in cases where strong heterogene-
ities are present in the medium.

A simple geometry is created to highlight this bias. 
Let us consider a metallic Pu spherical shell containing 
94:0 at. % of 239Pu and 6:0 at. % of 240Pu, with at. % 
referring to the atomic percentage of the isotope in the 
material. The shell has a density of 19:6040 g·cm�3 with 
an internal and external diameter, respectively, of 7:014 
and 12:208 cm. The internal region is void. The fissile 
region is surrounded by a borated polyethylene layer with 
a density of 1:00 g·cm�3 and 5:8 at. % of boron carbide 
B4C, and a thickness of 3:024 cm.

The average count rate and the Feynman moments are 
evaluated based on the method described later in Sec. IV.B. 
Similarly, the input parameters θ à Ökp; εF ; S; xsÜ are 
recorded. Then, the point model predictions for the inputs 
θ are compared to the measured values of ÖR; Y1;X1Ü. The 
results are summarized in Table I.

The point model does provide significant bias for all 
three outputs. The most prominent error is the error on 
the count rate R because this is the least noisy output. 
Consequently, in the inverse problem resolution, a bias on 
R is more penalizing than a bias on X1, which is sig-
nificantly noisier and thus has a larger associated 
variance.

The large biases observed in the point model impact 
the inference of the input parameters in the inverse pro-
blem. For such ill-posed problems, this bias can lead to 
significant errors in the estimation of θ. For that reason, 
one of the objectives of this paper is to build a surrogate 
model able to improve predictions of ÖR;Y1;X1Ü. The 
surrogate model should also include an estimation of the 
uncertainty of the predictions in order to include the 
residual model bias in the resolution of the inverse 
problem.

III. BUILDING A SURROGATE MODEL

Our objective is to replace the point model with 
a surrogate model. The surrogate model should be able

to provide better predictions than the point model. For 
this purpose, more input parameters were considered 
when building the surrogate model in order to account 
for the neutron spectrum and parasitic absorption or leak-
age, which are not considered in the point model. 
A metric of the quality of the predictions is also expected 
from the surrogate model. Namely, the goal is to be able 
to provide a mean prediction for the output vector 
ÖR;Y1;X1Ü with its associated covariance.

The covariance predictions are meant to be used 
directly in the Monte Carlo Markov chain (MCMC) 
methods to sample the posterior distribution of the 
input vector θ [that may be θ à Ökp; εF ; S; xsÜ or that 
may include more input parameters]. The aim is to 
include the model uncertainty in the model parameters. 
In this work, Gaussian processes are used as surrogate 
models.

III.A. Scalar Gaussian Processes

III.A.1. Introductory Concepts

Gaussian process regression is a nonparametric 
Bayesian regression method. It is a flexible tool for 
regression that is able to quantify uncertainties in the 
predictions. In this section, a brief description of GPR 
is given. This is not meant to be a thorough guideline but 
rather an introduction for beginners.

Definition III.1

A Gaussian process is a collection of random vari-
ables, such that any finite subset follows a multivariate 
normal distribution. The distribution of a Gaussian pro-
cess is completely defined by its mean function mÖ � Ü and 
covariance function kÖ � ; � Ü. The Gaussian process for-
malizes the concept of distributions over functions.

Let us first consider scalar Gaussian processes with 
one real output and multidimensional inputs. The input 
dimension is I . If f is a Gaussian process with mean m 
and covariance function k, it is denoted as

Assuming a Gaussian process model f ,GP mÖxÜ; kÖx; x0ÜÖ Ü
with scalar outputs, one can draw samples of the distribu-
tion of functions evaluated over N input points represented 
by the matrix X à ÖXiÜiN 2 R N⇥I . This sample vector 
f 2 R N follows a multivariate normal distribution,

TABLE I 

Point Model Bias for a Test Case with a Strong Heterogeneous 
Configuration 

R Y1 X1

MCNP6 data 15 120 1:39 5:52
Point model 16 260 1:29 4:88
Relative error (%) 7:5 7:2 11:6
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where mÖXÜ 2 R N is the mean vector and KÖX;XÜ 2 R N⇥N 

is the covariance matrix defined by KÖX;XÜi;j à kÖXi;XjÜ
for i; j  N.

III.A.2. Predictions with Gaussian Processes

Let us consider a Gaussian process 
f ,GP mÖxÜ; kÖx; x0ÜÖ Ü. Let X 2 R N⇥I and y 2 R N be, 
respectively, N training inputs and outputs. Similarly, let 
X0 2 R N 0⇥I and y0 2 R N 0 be, respectively, N 0 test inputs 
and outputs.

Given the properties of Gaussian processes, the joint 
distribution of training and test outputs is

The conditional distribution of the test outputs f 0 given X, 
X0, and y can then be obtained:

and

where KÖX;X0ÜÖ Üi;j à KÖX0;XÜT
⇣ ⌘

i;j
à KÖXi;X 0jÜ for 

1  i  N and 1  j  N 0.
This conditional distribution provides a way to pre-

dict the mean output from given input points X0 as well as 
the covariance. The main interest of GPR for our applica-
tion is its ability to quantify the uncertainty of the 
predictions.

For most situations, the available outputs often dis-
play noisy values such that observations are given by y à
f ÖXÜ á ε with ε,N Ö0; σ2

obsINÜ, where IN refers to the 
identity matrix. The noise is assumed Gaussian and inde-
pendent identically distributed. The covariance function 
is modified by adding a white noise kernel,

where δ is the Kronecker symbol. Equation (13) holds if 
KÖX;XÜ is replaced by KÖX;XÜ á σ2

noiseIN. Similarly, 
σ2

noiseIN 0 is added to KÖX0;X0Ü to predict the measurement 
noise.

Predictions with Gaussian processes require the 
inverse of Kσ à KÖX;XÜ á σ2

noiseIN . This inverse is 
obtained by a Cholesky decomposition that has good 
numerical stability properties. However, the matrix 
inversion has a complexity OÖN3Ü. This is why GPR 
does not scale well with very large data sets. In this 
case, the data set size is around 1000, which is suffi-
ciently low to have acceptable training times. Exact 
GPR can be carried out.

III.A.3. Choice of Covariance Functions

The covariance function defines the regularity of the 
functions sampled from the Gaussian process. Different 
families of covariance functions exist and are used 
depending on the expected shape of the function to be 
learned. In this work, the radial basis function (RBF) (or 
squared-exponential) kernels and Matérn covariance ker-
nels are used.

Definition III.2

Let x and x0 2 R I . The anisotropic squared- 
exponential covariance function kSE is a covariance func-
tion defined by

where the parameters lp are the correlation lengths for 
each input dimension p. The kernel is said to be isotropic 
if lp is independent of p.

Squared-exponential covariance functions are infi-
nitely differentiable. As a result, the corresponding 
Gaussian processes produce very smooth functions. The 
realizations of a Gaussian process with squared- 
exponential covariance and mean zero are (almost surely) 
infinitely differentiable.

Definition III.3

Let x and x0 2 RI . Let ν 2 Rá. The Matérn class of 
anisotropic covariance functions kMat;ν is defined by
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where Kν is the modified Bessel function and ΓÖνÜ is the 
gamma function.

The Matérn functions are a broad class of covar-
iance functions parametrized by ν, which defines the 
regularity of the covariance kernel. When ν! á1, 
the covariance function approaches the squared 
exponential

The realizations of a Gaussian process with covariance func-
tion kMat;ν and mean zero are (almost surely) n-differentiable 
for n < ν. The larger ν, the smoother the Gaussian process.

The Matérn covariances can be expressed as 
a product of an exponential and a polynomial of order n 
for ν à ná 1=2.

The Matérn and squared-exponential covariance 
functions are widely used in GPR. Since the functions 
to be learned are quite smooth here, Matérn 5/2 func-
tions are chosen in the GPRs. This class of covariance 
functions has been shown to provide the best perfor-
mance for GPR for this work. Matérn 3/2 and squared- 
exponential kernels were also tested, but provided lower 
performance.

III.A.4. Selection of Hyperparameters

In order to provide reasonable predictions for regres-
sion or classification problems, a Gaussian process has to 
be trained. The goal of the training phase is to choose the 
best parameters in the covariance kernels based on the 
training data.

The common practice for selecting the hyperparameters is 
to find the values that maximize the marginal likelihood 
pÖyjXÜ. The marginal likelihood refers to the probability of 
the observations y integrated over all the possible function 
values f drawn from the Gaussian process. It is defined by

From previous equations, fjX,N Ö0;KÖX;XÜÜ and 
yjf,N Öf; σ2IN Ü. The log-marginal likelihood is thus 
given by

with Kσ à KÖX;XÜ á σ2
noiseIN . The notation jAj, where A 

is a square matrix, refers to the determinant of the matrix 
A. The log-marginal likelihood is optimized using com-
mon optimization algorithms. In our case, the limited 
memory Broyden-Fletcher-Goldfarb-Shannon algorithm 
for bound constraint (also known as L-BFGS-B) is 
used.9 The optimization algorithm is restarted 10 times 
with different initial values for the hyperparameters. The 
optimal set of hyperparameters chosen is the one that 
provides the highest log-marginal likelihood of the 10 
iterations. With this approach, the risk of being stuck in 
a local optimum is reduced. Once the optimal set of 
hyperparameters is found, predictions can be made 
using Eq. (13).

III.B. Multi-Output Gaussian Processes

The framework described in the previous paragraphs 
assumes that the outputs are one dimensional. However, 
in this study the outputs to be predicted are vectors 
ÖR;Y1;X1Ü with dimension D à 3. For multi-output pre-
dictions, specific methods are required. Throughout the 
next paragraphs, the notations are extended for the multi- 
output case. Namely, the outputs for the training set and 
the test set are now in the matrix form y 2 R N⇥D 

and y0 2 R N 0⇥D.

III.B.1. Independent Scalar Gaussian Processes

A first trivial approach is to train one Gaussian 
process for each output dimension. The Gaussian pro-
cesses are trained independently from one another. This 
method was used in a first approach in this work though it 
has some strong flaws. Independent training of the 
Gaussian processes means that the correlations between 
the outputs are not taken into account during the training 
phase; some information is lost.

More importantly, since the Gaussian processes are 
trained independently, the outputs must be assumed inde-
pendent, which means that one can only predict the 
variances of each output, but not the full covariance 
matrix. The objective of our method is to provide 
improved mean predictions, but also the full covariance 
of the predicted outputs in order to include it into the 
inverse problem resolution.
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Thus, the goal is to build a multi-output Gaussian 
process model able to provide nondiagonal covariance 
predictions. In this work specifically, the outputs are 
strongly correlated with one another, which makes this 
objective all the more important. Building a covariance 
kernel for a multidimensional Gaussian process is non-
trivial since the covariance function has to remain posi-
tive definite. Several methods were investigated.

III.B.2. Linear Model of Coregionalization

In order to build a multi-output covariance kernel, one 
possible method is to start off with independent scalar 
Gaussian processes and mix them with a transition matrix. 
The matrix must be chosen to guarantee a positive definite 
covariance kernel.10 With this approach, it is possible to 
correlate the output channels while maintaining a positive 
definite covariance kernel. A brief description of this 
method is presented in the next paragraphs.

Let us consider Q independent scalar Gaussian pro-
cesses. For simplicity, only zero-mean Gaussian pro-
cesses are considered:

These are called latent Gaussian processes. Now let us 
consider a real mixing matrix W 2 RD⇥Q. Let fd be the 
output for channel d. It is obtained by the matrix product 
of W and the vector of latent Gaussian processes,

The covariance between two sets of inputs X 2 R N⇥I and 
X0 2 R N 0⇥I for two channels d and d0 can be calculated as

It is possible to flatten the multi-output vectors into 
a one-dimensional column,

Now the covariance matrix can be written as a DN ⇥
DN 0 matrix using the Kronecker product ⌦ as

where W�;q is the q’th column of the matrix W and KqÖX;X0Ü
is the covariance matrix obtained for kernel kq applied to the 
input sets X and X0 . This defines a covariance kernel for the 
multi-output Gaussian process, where 

KLMCÖX;X0ÜÖ ÜÖÖd�1ÜNái;Öd0�1ÜN 0áj à Cov fdÖXiÜ; fd0â ÖX 0jÜ
⇤

for d; d0  D, i  N and j  N 0. 

The matrix inversion now has a complexity of 
O D3N3� �

. Thus, the multi-output Gaussian processes are 
much more costly due to the size of the covariance matrix. 
For a large output dimension, approximation methods such as 
the sparse variational Gaussian process could be used.11 In 
this work, the complexity remains reasonable and exact GPR 
can be carried out. With this method, it is possible to build 
a multi-output Gaussian process able to provide the full 
covariance matrix of the predictions.

III.B.3. Convolutional Gaussian Processes

Similarly, one can build convolutional Gaussian pro-
cesses by mixing the latent Gaussian processes with 
a convolution product instead of a matrix multiplication.12 

The output for channel d is built by the following relation:

where the functions Gd;q represent filters in the convolu-
tion kernel.

Let Gd;q be a Gaussian filter with covariance P�1
d , 

a positive definite matrix. Then the density Gd;qÖxÜ is the 
density of a Gaussian random variable N Ö0;P�1

d Ü with 
a multiplicative constant Sd;q.

Let us consider the inputs X à ÖXiÜiN 2 R N⇥I and 
X0 à ÖX 0jÜjN 0 2 R N 0⇥I . Let kq be the squared-exponential 
covariance function corresponding to the q-th latent 
Gaussian process, with q  Q. It is written in a matrix 
form with Λq à diagÖl�2

p;qÜpI 2 R I⇥I , a diagonal matrix 
containing the squared inverse correlation lengths l�2

p;q of 
the q-th latent Gaussian process for each input dimension 
p  I. The kernel kq also has a variance parameter Vq. Let
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us look at the covariance between Xi for i  N and X 0j 
for j  N 0:

The convolution product in the expression of the covar-
iance becomes tractable,

with Cd;d0;q à P�1
d á P�1

d0 á Λ�1
q . It is possible to define 

the full covariance matrix as

where Kd;d0;qÖX;X0Ü à Kd;d0;qÖXi;X 0jÜ
� �

iN ; jN 0 is 
given by

On top of this, a white noise kernel is added for each of 
the output channels.

For convolutional Gaussian processes, the number of 
hyperparameters to optimize is much larger than for 
independent processes since the coefficients of the 
matrices Pd and Λq and the scalar Sd;q have to be learned. 
To simplify the training process, the Gaussian filters are 
chosen with diagonal covariance matrices Pd . This 
reduces drastically the number of hyperparameters. The 
main flaw of these convolutional Gaussian processes is 
that they might provide functions that are too smooth due 
to the convolutional product with Gaussian filters and the 
use of RBF kernels.

III.C. Bias Learning

Instead of learning directly the Feynman moments 
and the average count rate, it is possible to learn the 
disparities between the point model and the simulated 
data. This idea is adapted from Ref. 13 where the low- 
fidelity code is the point model and the high-fidelity code 
is MCNP6 (or a real experiment):

where fPMÖθÜ are the point model predictions for input 
θ and fGP is the Gaussian process to be trained. Since 
the training data are not necessarily positive in this 
case, the Box-Cox transform cannot be used. Instead, 
the data are preprocessed using the Yeo-Johnson 
transform.14

However, the point model equations require neutron 
multiplicity values Öν;D2;D3; νs;D2s;D3sÜ for induced and 
spontaneous fissions. For predictions, one does not have 
information on the neutron multiplicity parameters. Two 
solutions could be considered. Either the nuclear multi-
plicity parameters are included in the inputs of the forward 
model, which increases the dimension of the input space to 
13, or the nuclear multiplicity parameters are taken as the 
average over the training cases. However, this drastically 
limits the generalization of the surrogate model, especially 
if other fissile isotopes are considered. For simplicity pur-
poses, the second approach is used here.

To account for systematic biases caused by the point 
model approximations, one can introduce 
a hyperparameter ρ 2 IR and define a Gaussian process 
fGP by weighting the contribution of the point model 
predictions with ρ,

The training of the Gaussian process works similarly, 
except ρ is identified as an hyperparameter to be tuned 
by maximizing the marginal log-likelihood.

For the multi-output case, one can either take ρ 2 IR 
as a scalar or ρ 2 R D as a vector and each of its compo-
nent is weighting one output channel. The second 
approach is more flexible, but introduces more hyper-
parameters. It is preferred in this work since the addi-
tional computational cost is not prohibitive.

Overall, many different approaches have been pre-
sented for multi-output GPR. These methods are all 
implemented and their performances are evaluated in 
Sec. IV.C.2.
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IV. GENERAL METHOD

IV.A. Extension of the Point Model

The first objective is to extend the point model using 
surrogate models based on Gaussian processes. For this 
purpose, the input space needs to be extended to include 
more input parameters and to describe more accurately 
the underlying physical processes.

First of all, the energy spectrum of the neutrons must 
be accounted for. Based on the two-group description 
commonly used in reactor physics, the spectral ratio Φ 
is introduced. It is defined as the ratio of thermal flux 
over fast flux, taken in the surrounding medium of the 
object studied:

Next, parasitic absorptions should be included in the 
model description. In the point model, only the fissile 
material is considered, while in practice, neutron capture 
occurs in the moderating material as well (if any) or in 
the reflectors. In order to account for this, a new input 
parameter εA is defined as the ratio of absorptions outside 
the fissile material over induced fissions:

Finally, the leakage is monitored by the ratio of outward 
over inward neutron current at the outermost layer of the 
MCNP6 model. In the training cases, this current ratio is 
taken at the concrete walls surrounding the object,

Overall, the input space is now seven-dimensional (7-D) with 
input parameters θ à kp; εF ; S; xs; εA;Φ; Jratio

� �
. The 

MCMC sampling is more difficult since the dimension is 
higher. However, the additional parameters will be con-
strained using a simplified MCNP6 geometry that can be 
run quickly.

IV.B. Creating the Data Set

Sufficient training data must be fed to the surrogate 
models to construct efficient forward models. The training 
data were created using analog three-dimensional (3-D) 
Monte Carlo simulations with the code MCNP6 (Ref. 15).

The unknown object to be identified was a spherical 
fissile medium containing 239Pu and 240Pu and an inner void 
region of unknown diameter. It is surrounded by borated 
polyethylene, which serves as a moderator and a parasitic 
absorber. The object was placed in air at atmospheric pres-
sure. The neutron detector consisted of a cylindrical tube of 
3He with CO2 acting as a quench gas and a cylindrical 
external shell of polyethylene used to slow down the incom-
ing neutrons. The geometry was surrounded by a concrete 
layer modeling the walls of the room.

The size, density, and composition of the different 
regions were changed for each simulation. The fraction of 
boron in the borated polyethylene was changed for each 
case, and simulations were also performed without boron 
at all. The volumic source term was a mix of 
a spontaneous fission source and an Öα; nÜ source located 
uniformly in the fissile region. The ratio of spontaneous 
fissions over Öα; nÜ reactions was randomly changed for 
each training case in order to explore all the possible xs.

The prompt multiplication factor kp was obtained 
with a criticality calculation with 20 inactive cycles and 
100 active cycles. The other parameters in the vector θ 
were obtained by tally measurements. The complete 
training set had a total of 1125 cases.

The intrinsic physics of fission processes is not 
described. The neutron multiplicity distribution was mod-
eled by the Terrel distribution.16

For each simulation, the Feynman moments and the 
average count rate must be evaluated. All the neutron 
captures occurring in the detector were recorded in 
a time list file using the PTRAC command in MCNP6. 
This file was then postprocessed to extract the Feynman 
moments. Since only the duration between the beginning 
of the neutron history and the time of detection was 
recorded in MCNP6, the birth times of the source neu-
trons must be sampled in the postprocessing step. The 
source, whether it was a spontaneous fission source, an 
Öα; nÜ source, or a mix of both, was assumed to follow 
Poisson statistics with intensity S. Then the birth instants 
of the source neutrons were defined by drawing samples 
from these Poisson statistics.

Based on the time list file obtained after the post-
processing step, two main methods were used to evaluate 
the Feynman moments. They are described in the next 
paragraphs.

IV.B.1. Sequential Binning

In sequential binning, the numerical experiment is 
split into W time windows of size T . In each window i,
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the number of counts niÖTÜ is recorded. From this, the 
simple moments of the detection statistics Mp can be 
estimated,

In the derivation of the point model equations, it can be 
seen that the Feynman moments are directly linked to the 
simple moments by the following relations:

and

And thus, estimators of the Feynman moments can be 
obtained by replacing the simple moments by their esti-
mators cMp in the previous equations.

While the average count rate R is independent of 
the size of the time window T, the Feynman moments 
are not. Once they are obtained for a given T , the 
same protocol can be repeated while merging n � 1 
windows together to obtain estimators of YÖnTÜ
and X ÖnTÜ.

Since the outputs of interest are the asymptotic 
Feynman moments Y1 and X1, T should be large enough 
to reach the asymptotic state. However, the choice of 
a larger T leads to less time windows W , and thus more 
noisy data due to accidental correlations. A compromise 
had to be made for the choice of T between asymptoticity 
and noise. A time gate width of T1 à 3 ms was used in 
this work.

The sequential binning method can be used for 
numerical or practical experiments as long as a time list 
file is available. In this work, it was used to mimic the 
practical evaluation of Feynman moments. All simulated 
data y from which the posterior distribution pÖθjyÜ is 
inferred were thus obtained using sequential binning. 
However, when sequential binning is used to obtain train-
ing data for the surrogate models, the inherent noise in 
the simulated data caused by accidental correlations

reduces the performance of the surrogate models. Thus, 
another method was used to evaluate the Feynman 
moments for that specific task.

IV.B.2. Filtered Triggered Binning

The filtered triggered binning method allows for 
filtering out accidental correlations using the knowledge 
provided by the numerical simulation. In this method, 
time windows are opened whenever a neutron is detected, 
and the history number of this neutron is kept in memory. 
For a given detection, the history number of the neutron 
is written in the time list file alongside the detection time. 
Then the detections are recorded in the window if and 
only if the history number of the detected neutron is the 
same as the history number of the neutron that triggered 
the opening of the window. This means that only the 
correlated detections are recorded. An illustration of the 
method is shown in Fig. 1.

For a given window i, the recorded number of counts 
is ni;trÖTÜ. The average number of double and triple 
counts, which are coincidentally the second and third 
binomial moments of the detection distribution, can then 
be obtained by the following estimators:

where Ndec is the total number of detections, and thus the 
total number of triggered windows. The Feynman 
moments can then be evaluated by

and

Filtered triggered binning is able to filter out the 
noise in the data, but is only applicable because numer-
ical simulations are used and the history number of the 
neutron is known. For a practical measurement, only 
sequential binning can be used. For this reason, filtered 
triggered binning was only used to create the training set 
for the surrogate models. Some inherent noise remained
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due to the stochastic nature of the MCNP6 simulations. 
These stochastic uncertainties were included in the 
Gaussian process covariance predictions.

Once the surrogate models were trained, the inverse 
problem was solved with data obtained by sequential 
binning in order to mimic the experimental data. Using 
filtered triggered binning data as training was a way to 
reduce the intrinsic noise in the data set and improve the 
training of the surrogate models.

IV.C. Training the Surrogate Models

IV.C.1. Data Set Preprocessing

Before training the surrogate models, the data set 
needed to be preprocessed to improve the training perfor-
mance. With the noise introduced by accidental correla-
tions, the Feynman moments obtained for low kp < 0:6 
can become negative. These irregular data were removed 
from the data set.

Then, since the data distribution is far from Gaussian, 
a Box-Cox transform was applied.17 The Box-Cox trans-
form is a nonlinear transformation whose goal is to 
reshape the distribution into a standard normal distribu-
tion N 0; IÖ Ü. It requires positive data,

The parameter λ is fitted to match a standard normal 
distribution by maximizing a log-likelihood between the 
data and the standard normal distribution.

IV.C.2. Gaussian Process Performance Comparison

Before training, the data set was split into a training set 
and a test set of the same size. The training set contained 
around 560 cases. Different metrics were used to evaluate

the performance on the test set. The mean absolute error 
(MAE), mean squared error (MSE), and mean absolute 
percentage error (MAPE) are used here. Let yd;j be the j’th 
test output for the output channel d, corresponding to inputs 
θj for j  N 0. Let fdÖθjÜ be the mean surrogate model pre-
diction for inputs θj and for the output channel d. Then for 
the output channel d the metrics are defined by

and

The robustness of the uncertainty quantification was also 
investigated. The coverage probability in the estimated 2σ 
confidence interval is provided. It is defined as the ratio of test 
outputs lying inside the 2σ confidence interval predicted by 
the surrogate model. The theoretical value should be 95:45%.

In the first approach, the Gaussian processes were used 
to learn directly the observations ÖR;Y1;X1Ü. The methods 
investigated were the multi-output independent Gaussian 
processes, the linear model of coregionalization (LMC), 
and the convolutional Gaussian processes described in 
Sec. III.B. Their performance is displayed in Table II.

The convolutional Gaussian processes did not pro-
vide satisfactory predictions. This is likely linked to the 
use of Gaussian filters and covariance kernels that hinder 
the Gaussian process in accurately modeling the data.

Fig. 1. Illustration of the filtered triggered binning method. 

1938 LARTAUD et al. · INVERSE UNCERTAINTY QUANTIFICATION

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 197 · AUGUST 2023



Because of their poor performance, convolutional 
Gaussian processes are not studied in the next paragraphs.

On the other hand, both linear coregionalization Gaus- 
sian processes and independent Gaussian processes provided 
satisfactory mean predictions and one-dimensional (1-D) 
coverage probability. However, the independent Gaussian 
processes were expected to yield poor predictions for the two- 
dimensional (2-D) confidence ellipses. Thus, the coverage 
probability for the 2-D confidence ellipses were also investi-
gated. Figure 2 displays the coverage probability for each 
couple of outputs and for the different surrogate models built. 
The coverage probability is shown for different levels of 
confidence.

From Fig. 2, one can see that using independent 
Gaussian processes for the output channels did not yield 
robust covariance predictions. Besides, convolutional 
Gaussian processes tended to overestimate the variance 
regardless of the confidence levels required. On the other 
hand, LMC provided robust covariance predictions with 
two or three latent Gaussian processes.

Overall, linear coregionalization Gaussian pro-
cesses provided excellent predictions for the average 
count rate and the Feynman moments with robust 
covariance predictions. For this particular case, LMC 
with two latent Gaussian processes was the best- 
performing surrogate model, though its performance

TABLE II 

Performance of the Gaussian Process (GP) Surrogate Models on the Test Set 

Independent GPs MAE MSE MAPE Coverage probability 
(2σ)

Count rate 1:98⇥ 102 1:10⇥ 105 0:95% 95:3%
Second Feynman 2:93⇥ 10�2 3:84⇥ 10�3 2:56% 94:2%
Third Feynman 1:25⇥ 100 4:71⇥ 101 9:67% 93:9%
LMC with two latent GPs MAE MSE MAPE Coverage probability 

(2σ)
Count rate 2:24⇥ 102 1:18⇥ 105 1:11% 92:2%
Second Feynman 3:77⇥ 10�2 1:01⇥ 10�2 2:85% 94:0%
Third Feynman 1:19⇥ 100 4:25⇥ 101 9:73% 94:6%
LMC with three latent GPs MAE MSE MAPE Coverage probability 

(2σ)
Count rate 2:20⇥ 102 1:09⇥ 105 1:10% 93:3%
Second Feynman 3:85⇥ 10�2 9:22⇥ 10�3 3:08% 90:5%
Third Feynman 1:33⇥ 100 5:96⇥ 101 10:0% 92:3%
Convolutional GPs MAE MSE MAPE Coverage probability 

(2σ)
Count rate 1:77⇥ 103 4:86⇥ 107 5:25% 98:4%
Second Feynman 4:62⇥ 10�1 8:26⇥ 100 7:76% 97:9%
Third Feynman 4:10⇥ 101 1:34⇥ 105 18:3% 97:7%

Fig. 2. Two-dimensional coverage probability for different levels of confidence obtained for the surrogate models: (red) LMC 
with two and (blue) three latent Gaussian processes, (green) convolutional Gaussian process, and (yellow) independent Gaussian 
processes. 
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was comparable to the LMC with three latent 
Gaussian processes.

In the second approach, the Gaussian processes 
learned the disparities with the point model, first with 
fixed bias ρ à 1 (Table III) and then with nonfixed ρ 
(Table IV). One can see that for all the surrogate models 
considered, the bias learning yielded overall better per-
formance. Fixing ρ à 1 appears to be the best performing 
method. When ρ was not fixed, the optimization step was 
made more difficult due to the three additional para-
meters (for multi-output Gaussian processes), which can 
in turn impact the performance of the surrogate model.

Overall, this study showed that LMC with two or 
three latent Gaussian processes was able to provide 
robust surrogate models with good prediction perfor-
mance. The surrogate models can be further improved 
by learning the bias with the point model instead of 
directly learning the outputs ÖR;Y1;X1Ü. For the rest of 
this work, the surrogate model used is the LMC Gaussian 
process with two latent Gaussian processes.

IV.C.3. Sensitivity Analysis

Once the Gaussian processes were trained, 
a sensitivity analysis could be performed to evaluate the 
impact of the additional parameters ÖεA;Φ; JratioÜ. The 
objective was to understand whether or not the additional 
parameters affected the predictions.

The sensitivity analysis was done by evaluating the 
Sobol indices of total order ST ;p for input p. Let X be 
a random variable of dimension I representing the inputs, 
and Y a scalar output random variable. The input coordinates

are assumed independent. Let X�p à
ÖX1; :::; Xp�1; Xpá1; :::; XIÜ be the vector of input variables 
without the p’th coordinate. Then the total order Sobol index 
for dimension p is given by the relative fraction of the 
variance explained by the interaction of the p’th coordinate 
with all the other inputs:

The Sobol indices can be estimated with Monte Carlo 
estimators by the pick-freeze method.18

The total order Sobol indices are shown in Table V. As 
expected, the main input of importance was kp for the Feynman 
moments and S played a significant role in the evaluation of the 
count rate R, while having very limited influence on the 
Feynman moments. One can observe that each of the additional 
inputs had an impact on at least one of the outputs that are 
similar to xs. Thus, the additional inputs were indeed significant 
in the evaluation of the outputs, though their respective impacts 
were much more limited than for Ökp; εF ; SÜ.

IV.D. Adaptive MCMC

The sampling of the posterior distribution pÖθjyÜ of 
the parameter θ given simulated data y can be conducted 
directly with Bayes’ theorem by choosing a fine mesh of 
the parameter space and by evaluating the likelihood in 
every point of the mesh. In the framework of the point 
model, the likelihood can be directly calculated, how-
ever this method is very cumbersome because it requires 
a fine discretization of the four-dimensional parameter

TABLE III 

Performance of the Bias Learning Gaussian Processes (GPs) with ρ à 1 on the Test Set 

Independent GPs MAE MSE MAPE Coverage probability 
(2σ)

Count rate 2:02⇥ 102 1:31⇥ 105 0:83% 95:7%
Second Feynman 5:88⇥ 10�2 1:05⇥ 10�1 2:78% 93:1%
Third Feynman 1:06⇥ 100 3:93⇥ 101 8:95% 94:2%
LMC with two latent GPs MAE MSE MAPE Coverage probability 

(2σ)
Count rate 2:05⇥ 102 1:14⇥ 105 0:94% 93:9%
Second Feynman 3:52⇥ 10�2 7:93⇥ 10�3 2:74% 93:9%
Third Feynman 1:08⇥ 100 3:42⇥ 101 8:51% 94:8%
LMC with three latent GPs MAE MSE MAPE Coverage probability 

(2σ)
Count rate 2:06⇥ 102 1:13⇥ 104 0:96% 93:1%
Second Feynman 3:30⇥ 10�2 7:47⇥ 10�3 2:54% 93:1%
Third Feynman 1:07⇥ 100 3:61⇥ 101 8:63% 96:0%
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space. It becomes even more difficult to implement as 
the number of dimensions increases. Working with the 
surrogate models instead of the point model would 
require the discretization of a 7-D space, which is very 
costly in terms of memory and running time.

An alternative way of sampling the posterior distri-
bution is to use the MCMC methods. The MCMC meth-
ods allow for creating random samples whose empirical 
distributions converge toward the target distribution. 
Besides, they only require knowledge of the target den-
sity within a multiplicative constant.

Markov chains are stochastic processes where one 
state only depends on the previous state. A Markov 
chain is said to be ergodic for a distribution π if the 
expectation of a function with respect to this distribu-
tion (assuming it exists) can be approximated by the 
empirical average of this function on the states of the 
chain.

More specifically, let X be a random variable follow-
ing a law π. Let ÖXiÜi2IN be an ergodic Markov chain for 
the distribution π. Then for any function f such 

that Eπâjf jä à
Ö

X
jf ÖxÜjπÖdxÜ < á1,

The goal of the MCMC algorithms is to build an ergodic 
Markov chain for a given target distribution. For this 
work, the target distribution to sample was the posterior 
distribution of the input parameters given some observa-
tions pÖθjyÜ. The ergodic property allowed for estimating 
different quantities of interest for the distribution, such as 
its mean, its variance, all the moments, the quantiles, the 
probabilities of being in a given interval, and so on.

TABLE IV 

Performance of the Bias Learning Gaussian Processes (GPs) with ρfi1 on the Test Set 

Independent GPs MAE MSE MAPE Coverage 
probability (2σ)

ρ

Count rate 2:00⇥ 102 1:17⇥ 105 0:93% 93:0% 1:038
Second Feynman 3:44⇥ 10�2 8:23⇥ 10�3 2:38% 95:8% 0:950
Third Feynman 9:23⇥ 10�1 2:74⇥ 101 9:19% 95:7% 0:964
LMC with two latent GPs MAE MSE MAPE Coverage 

probability (2σ)
ρ

Count rate 2:08⇥ 102 1:27⇥ 105 0:96% 92:6% 1:022
Second Feynman 3:34⇥ 10�2 6:83⇥ 10�3 2:65% 94:2% 0:962
Third Feynman 1:12⇥ 100 4:09⇥ 101 8:44% 95:4% 0:923
LMC with three latent GPs MAE MSE MAPE Coverage 

probability (2σ)
ρ

Count rate 2:08⇥ 102 1:22⇥ 105 0:96% 92:2% 1:032
Second Feynman 3:83⇥ 10�2 8:51⇥ 10�3 3:11% 91:8% 0:941
Third Feynman 1:18⇥ 100 4:56⇥ 101 8:70% 94:0% 0:964

TABLE V 

Total Order Sobol Indices Estimated with Pick-Freeze Method with 10 000 Monte Carlo Samples 

Total Order Sobol R Y1 X1

kp 3:72⇥ 10�1 6:99⇥ 10�1 8:16⇥ 10�1

εF 6:44⇥ 10�1 4:54⇥ 10�1 5:21⇥ 10�1

S 1:00⇥ 10�1 1:48⇥ 10�4 3:02⇥ 10�4

xs 4:30⇥ 10�3 2:82⇥ 10�3 1:39⇥ 10�3

εA 5:59⇥ 10�4 5:25⇥ 10�4 1:30⇥ 10�3

Φ 2:29⇥ 10�5 1:39⇥ 10�3 3:22⇥ 10�3

Jratio 4:55⇥ 10�3 2:00⇥ 10�4 4:03⇥ 10�4
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IV.D.1. Adaptive Metropolis

One of the simplest MCMC algorithms is the 
Metropolis-Hastings algorithm.19,20 Its goal is to create 
an ergodic Markov chain whose invariant distribution is 
the target distribution π.

The Metropolis-Hastings algorithm is robust, but has 
some limitations in the case of very degenerate target 
distributions as is the case in this work. A degenerate 
distribution is a distribution whose support lies mainly on 
a subspace (or a manifold) of the parameter space, whose 
dimension is strictly lower. It can be, for example, a curve 
or a plane in the 7-D parameter space. This definition of 
degeneracy is not rigorous. More precisely, a degenerate 
distribution is rigorously defined as a distribution whose 
support has a Lebesgue measure equal to zero. However, 
the notion of degeneracy is considered in this work as 
a practical limitation to MCMC methods and not as 
a formal mathematical definition.

In such a case, since the support of the distribution is 
thin, most of the candidate points in Metropolis-Hastings 
tend to miss the support and be rejected, and conse-
quently, the acceptance rate is close to 0. If the proposal 
covariance is adjusted to reach a higher acceptance rate, 
the distribution is not properly sampled and the chain 
stays around the same spot. One way to correct this is 
to adapt the covariance matrix of the proposal distribution 
in order to draw candidate points closer to the support of 
the distribution. The Adaptive Metropolis (AM) algo-
rithm presented in this section is more thoroughly 
detailed in Ref. 21.

Let π be the target distribution and θ0 the initial point 
of the chain. In Metropolis-Hastings, at each iteration n �
1 a candidate point is sampled with a proposal distribu-
tion bθn,qÖ�jθn�1Ü,N θn�1; CÖ Ü, where the proposal cov-
ariance C is usually chosen diagonal. The idea of the AM 
algorithm is to adapt the covariance of the proposal by 
estimating the empirical covariance of the previously 
accepted points of the chain. In this method, the proposal 
distribution is of the form bθn,N θn�1; Cn�1Ö Ü, but the 
covariance is modified at each step to match the empirical 
covariance of the points of the chain,

with θn à 1
ná1
Pn

ià0
θi. The scalar s is a scaling parameter that 

needs to be tuned to reach the desired acceptance rate.

The direct calculation of the empirical covariance is 
cumbersome when the chain becomes long. A recursive 
formula is preferred to evaluate Cn and θn:

and

These recursive formulas help speed up the calculation of 
the covariance. In practice, it is advised to add a small 
term of the form 2 Id with 2 > 0 in order to guarantee 
the matrix stays positive definite. Indeed, numerical 
approximations can lead to a degenerate covariance 
matrix, which can be problematic for the sampling of 
the candidate points.

The acceptance rate of the candidate points in the 
MCMC methods is a key factor to monitor. For 
Metropolis-Hastings, it was shown that the optimal 
acceptance rate was roughly 0:234 in high dimension.22 

The scaling factor of the proposal covariance must be 
tuned in order to reach an acceptance rate close to this 
value. A naïve search for a good scaling factor can be 
performed, but it is also possible to dynamically change 
the scaling factor to reach a target acceptance rate. One 
solution explored in Ref. 21 is to multiply the covariance 
at each step by a factor rn defined as

where αtarget is the target acceptance rate and αn is the 
current acceptance rate. This method is implemented in 
the AM algorithm in our work.

The adaptation of the covariance matrix is not started 
directly from the beginning, but rather after a certain 
number of accepted points n0 is reached in order to 
make sure the empirical covariance is calculated on 
enough points. n0 was set at 500 in our case.

The AM algorithm is shown in Algorithm 1. It can be 
shown that the AM algorithm retains the ergodic property.23

The AM algorithm is more suited to degenerate prob-
ability distributions as the proposal distribution aligns 
with the distribution support and the candidate points 
are closer to the target distribution.
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A variant of this algorithm is the Adaptive 
Proposal24 where the covariance adaptation is per-
formed locally using the H previous points instead of 
all the previous points. However, for this method the 
invariant measure is biased with respect to the target 
distribution. For this reason, the AM algorithm was 
used.

IV.D.2. Coupling MCMC and Surrogate Model Predictions

The forward model used to predict the outputs y for 
given inputs θ is found in the evaluation of the posterior 
density pÖθjyÜ in the AM algorithm when evaluating the 
acceptance probability αÖbθ; θnÜ.

Let us consider N independent observations, with 
each including the count rate and the second and third 
Feynman moments y à ÖyiÜiN à ÖÖR; Y1;X1ÜiÜiN . 
Using Bayes’ theorem, the posterior can be written as 
the product of a prior distribution pÖθÜ and a likelihood 
LÖyjθÜ, which is the probability distribution of the obser-
vations y given the inputs θ:

It is assumed the N independent observations are given 
by y à f ÖθÜ á ε, where f is a forward model used to 
predict the outputs and ε,N 0;CobsÖ Ü. The forward 
model can be, for example, the analytical point model 
or a Gaussian process surrogate model. Then the accep-
tance probability in MCMC can be easily evaluated since 
the likelihood is Gaussian and the observations y à
ÖyiÜ1iN are independent,

This requires knowing the covariance of the noise 
Cobs. This covariance is not simply a diagonal matrix 
because the three output channels are strongly 
correlated. The covariance could be estimated simply 
by taking the empirical covariance of the observa-
tions; however, this is not very efficient because the 
number of independent observations is typically 
around 10.

Instead, a bootstrap method was used to evaluate this 
covariance matrix.25 The number of bootstrap samples

Algorithm 1: Adaptive Metropolis
Result: Sampling of the target distribution π
Choose the chain starting point θ0 and desired length K;
Set the start of adaptation n0

while Chain length < K do
Generate candidate bθ from proposal distribution q bθjθn

⇣ ⌘
;

Evaluate the acceptance probability α θ̂; θn

⇣ ⌘
à min 1 π θ̂Ö Üq θnjθ̂Ö Ü

π θnÖ Üq θ̂jθnÖ Ü

⇢ �
;

Generate u,U 0; 1â ä from a uniform distribution on [0, 1];

if α bθ; θn

⇣ ⌘
> u then

Add bθ to the chain θná1 à bθ
if Number of iterations � n0 then

Adapt the proposal covariance with equation 53;

else

Keep the same proposal covariance

end

else

Add θn to the chain θná1 à θn;

end

end
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was set to 10 000. The outputs were strongly correlated as 
expected with CorrÖY1;X1Ü ’ 0:9, for example. Hence 
the target density was known within a multiplicative con-
stant. The MCMC sampling can now be performed using 
either the point model or a surrogate model for better 
predictions.

However, even though surrogate models based on 
GPR do perform better than the point model for pre-
dicting the outputs, they also come with uncertainties 
in their predictions. In order to have a robust uncer-
tainty quantification method, these model uncertainties 
must be accounted for in the posterior distribution 
sampling.

In order to include the model uncertainties, the 
likelihood is modified. It is assumed that the model 
errors and the noise errors of the data are independent. 
Thus, the statistical model for a Gaussian process sur-
rogate model can be rewritten as y à f ÖθÜ á εmodelÖθÜ á
εnoise where the noise is εnoise,N 0;CobsÖ Ü and the 
model error is εmodelÖθÜ,N 0;Cov f ÖθÜâ äÖ Ü. f ÖθÜ is the 
mean prediction of the Gaussian process and 
Cov f ÖθÜâ ä is the covariance prediction of the Gaussian 
process at input point θ.

Since the model error and noise are assumed inde-
pendent, the likelihood can be modified to include the 
model error.26 However, the simulated data are not inde-
pendent anymore since they are all linked by the same 
model error εmodelÖθÜ.

The residuals RÖθÜ à yi � f ÖθÜ
⇣ ⌘

iN
2 RDN and the 

total covariance CtotÖθÜ 2 R DN⇥DN are introduced,

The model error can be included in the MCMC sampling 
by the mean of a modified likelihood,

The evaluation of the likelihood is more cumbersome 
now since a matrix inversion and a determinant calcula-
tion must be performed at each iteration in MCMC, yet 
this is still manageable for low output dimensions. This 
new likelihood does include the model uncertainty in the

sampling of the posterior distribution pÖθjyÜ. It is used 
with the AM algorithm to sample the posterior distribu-
tion. In the next section, this method is used on a test case 
from the International Criticality Safety Benchmark 
Evaluation Project (ICSBEP) Handbook.

V. APPLICATION TO THE BERYLLIUM-REFLECTED 
PLUTONIUM SPHERE ICSBEP BENCHMARKS

The method presented in this paper was tested on two 
examples. The first one was taken from the ICSBEP 
Handbook27 and the second one was based on the same 
fissile object with a different moderating material. 
Simplified descriptions of the two cases were built into 
MCNP6 and used to simulate neutron correlation data. 
From this, the posterior distribution of the parameters θ 
was sampled and compared to the MCNP6 values.

V.A. MCNP6 Modeling

V.A.1. Copper-Reflected Plutonium Sphere

The first example was taken from the set of experi-
ments FUND-NCERC-PU-HE3-MULT-003 of the 
ICSBEP Handbook, experiment no. 1. The experiment 
is a measurement of neutron correlations on the beryl-
lium-reflected plutonium (BERP) sphere, a metallic Pu 
sphere with a mean diameter of 7:5876 cm and an aver-
age density of 19:6039 g·cm�3. The sphere is surrounded 
by a SS-304 cladding consisting of two hemispheres. For 
simplicity, the hemispheres are modeled as a single sphe-
rical shell of SS-304 with an inner and outer diameter of 
7:65556 and 7:71652 cm, respectively. The sphere is 
surrounded by a single layer of a spherical shell of copper 
reflector with an inner and outer diameter of 7:7978 and 
10:1600 cm, respectively.

An aluminum structure supports the BERP ball. 
However, to simplify the MCNP6 model, this structure 
was not included. The expected prompt multiplication 
factor evaluated should be slightly lower than for the 
practical experiment due to the absence of the reflections 
on the support structure.

In the experiment, two NOMAD detectors were placed 
on each side of the BERP ball. In the simplified model, only 
one detector was modeled. The detectors have no influence on 
each other, as shown in the benchmark. The NOMAD detec-
tors consisted of a series of 15 3He tubes with active dimen-
sions of 2:46⇥ 38:1 cm set in a polyethylene moderating 
block. This design was simplified in the model used in this 
work. The detectors were replaced by a single cylindrical 3He
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tube. The diameter of the tube was chosen to have the same 
active volume as for the real experiment. The diameter of the 
tube was thus 9:52 cm. Similarly, the thickness of the poly-
ethylene was set to 5:00 cm. This was chosen to have the 
same total polyethylene mass as in the experiment.

The detector region was filled with a mixture of 3He 
with 2 at. % of CO2 acting as a quench gas, where at. % 
refers to the atomic percentage of an element. The pres-
sure was set to 10:13 bars.

The source intensity was chosen in the postprocessing 
step for the sampling of the neutron birth instants. The source 
intensity was chosen to be S = 132 582 events·s−1 and 
with xs à 0:969.

The detector efficiency, the second Feynman moment 
YÖTÜ, and the prompt multiplication estimated by the neutron 
correlation observations were also provided.28 The time gate 
width was set to T à 2048 μs in the benchmark. These values 
were compared to the ones obtained with the simplified 
MCNP6 model built to create our own Feynman observa-
tions. The second Feynman, as well as kp and εF , are shown in 
Table VI with their respective standard deviations.

Overall, the simplified MCNP6 model built was 
close to the benchmark model and the experiment. 
Some disparities arose due to the simplifications made. 
They can be linked to the removal of the aluminum 
support plate, for example. Our goal here was not neces-
sarily to exactly retrieve the benchmark results but rather 
to show the improvements brought by the method pre-
sented in this paper with an application to a well- 
documented experiment.

V.A.2. Polyethylene-Reflected BERP Sphere

In the training set, the fissile material was sur-
rounded by borated polyethylene, and thus, the cop-
per-reflected example displayed some disparities with 
the actual training examples. These disparities might 
bring a bias in the posterior distribution of θ. For this 
reason, a second example was tested, this time with 
the BERP ball surrounded by polyethylene. This 
example was taken from Ref. 29. The methodology 
was similar.

The polyethylene shell had an internal and external 
diameter of 7:798 and 15:418 cm and a density of 
0:95 g·cm�3. The fissile object was unchanged, and thus, 
the source intensity was the same, S = 132 582 events·s−1.

The benchmark does not provide the prompt multi-
plication factor or the detector efficiency. The values 
obtained with the MCNP6 model were kp à 0:8967⌃
0:0004 and εF à 0:0118⌃ 0:0001. The second Feynman 
moment for T à 2048 μs is YexpÖTÜ à 0:75⌃ 0:05, 
which is close to the value obtained with the simplified 
model used YMCNPÖTÜ à 0:814⌃ 0:014.

As in the previous case, small disparities were 
observed between the experiment and the simplified 
MCNP6 model used in this work.

V.B. Posterior Distribution Sampling

The two cases described previously were used to create 
neutron correlation observations from which the posterior 
distribution pÖθjyÜ was sampled with the AM algorithm.

V.B.1. Sampling with the Point Model

The first approach was to use only the point model as 
a forward model. The likelihood is then given by 
Eq. (56). This method does not provide a way to quantify 
the bias of the point model. Only the observation covar-
iance Cobs is added into the MCMC sampling.

The data were simulated by running 10 independent 
MCNP6 simulations, with 2⇥ 106 neutron histories for 
each. The Feynman moments were evaluated using the 
sequential binning method described in Sec. IV.B.1. The 
time gate width was set to T1 à 3 ms.

The AM algorithm was used to sample the posterior 
distribution. The sampling was performed over 5⇥ 106 

iterations parallelized on five CPUs. The total running 
time of MCMC was 5 min. The first 2000 iterations were 
not recorded in the chain in order to make sure the chain 
had reached its stationary distribution. This is called the 
burn-in phase. The target acceptance rate was set to 0:12, 
which is lower than the usual 0:234 because the target 
distribution was very degenerate and far from a regular

TABLE VI 

Comparison Between the ICSBEP Experiment and the Simplified MCNP6 Model for the Copper-Reflected BERP Ball 

YÖTÜ kp εF

Experiment 0:339⌃ 0:008 0:8306⌃ 0:0009 0:0216
Simplified MCNP6 0:39⌃ 0:01 0:8279⌃ 0:002 0:0182⌃ 0:0002
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Gaussian target. The covariance adaption was started 
after 5000 iterations to ensure enough points were 
recorded in the chain so that the empirical covariance 
was not too degenerate. A regularization term was 
added to the proposal covariance to avoid reaching non-
positive definite matrix because of numerical instabilities.

The prior pÖθÜ for θ à kp; εF ; S; xs
� �

was set to 
a uniform distribution on a broad domain D,

The choice of the prior should be noninformative. This 
prior does not assume good prior knowledge of the input 
parameters. An even broader domain could be used, but 
this would require more training cases to completely 
cover the prior domain. Since exact GPR is used in this 
work, the prior domain is kept small enough even though 
this means the prior is not completely noninformative.

One could also use Jeffreys prior,30 which is 
a noninformative prior designed to be invariant under 
reparameterization of the forward model. In the point 
model framework, Jeffreys prior is analytically tractable. 
However, it has been shown in a previous work that the 
effect of the prior for the MCMC sampling does not 
affect significantly the posterior distribution as long as 
enough observations are provided.31

The maximum a posteriori θmap obtained was not 
really close to the real values:

The 2-D marginal densities for Ökp; εF ; SÜ are shown in 
Fig. 3. One can see that the real values of the parameters 
lie far outside the actual posterior distribution. This is

a consequence of the bias of the point model that is not 
accounted for in this method.

The same calculations were performed for the poly-
ethylene case. The 2-D marginal densities are displayed 
in Fig. 4. The maximum a posteriori θpoly itself does not 
provide good predictions once again:

For the polyethylene case, the real values lie closer to the 
sampled posterior distribution. Indeed, with the polyethy-
lene, the neutrons were thermalized such that the assump-
tion of monoenergetic neutrons is more reasonable than 
for the copper-reflected case.

Overall, the posterior distribution sampling with only 
the point model as a forward model did not provide 
robust uncertainty quantification nor a reliable prediction 
on the input parameters θ. This can be improved by using 
the surrogate models.

V.B.2. Prior Constraints on the Domain

In order to improve the sampling of the posterior 
distribution, the surrogate model was coupled to the 
MCMC sampling, as described in Sec. IV.D.2.

The input parameter space is now 7-D, which makes 
the MCMC sampling much more difficult. To counter-
balance the higher dimension, more restrictive bounds 
were placed on the prior.

The parameters of interest are mainly 
Ökp; εF ; S; xsÜ. The three additional parameters have 
less impact on the predictions. They can be con-
strained either by direct practical measurement or by 
numerical simulations with MCNP6. In this work, 
a few 1-D MCNP6 calculations were run to estimate 
these parameters. For each simulation, the parameters

Fig. 3. Two-dimensional marginal densities of the posterior distribution sampled by MCMC with only the point model for the 
copper-reflected sphere. 
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were evaluated by tally measurements. It was assumed 
the external diameter of the fissile region was known 
and fixed. This information can be obtained by γ 
spectroscopy, for example. The internal diameter was 
changed for each simulation.

The sizes of the 1-D spherical regions were chosen 
to preserve the total mass compared to the 3-D model. 
Since the detector was all around the fissile object, 
a correction based on the real solid angle Ω of the 
detector as seen by the fissile region was applied. Only 
Ω=4π neutrons were actually recorded in the 3He 
detector.

The bounds for the uniform prior for ÖεA;Φ; JratioÜ
were then chosen as the minimal and maximal values 
obtained in the 1-D simulations. The prior pÖθÜ was 
a uniform distribution on the extended domain Dext,

V.B.3 Surrogate Model Sampling

The surrogate model used was the bias learning lin-
ear coregionalization Gaussian process with two latent 
processes and nonfixed ρfi1. This surrogate model dis-
played the best performance, though it was comparable to 
the other LMC surrogate models. The posterior distribu-
tion sampling was performed similarly as in Sec. V.B.1. 
The MCMC sampling was done over 5⇥ 106 iterations 
once again, with a total running time of 40 min. The 
running time was slightly longer since the modified like-
lihood evaluation in Eq. (58) was more computationally 
demanding.

The marginal densities for the copper- and polyethy-
lene-reflected Pu sphere are displayed, respectively, in 
Figs. 5 and 6. The maxima a posteriori for the copper 
θcu and the polyethylene θpoly are also given as

Fig. 5. Two-dimensional marginal densities of the posterior distribution sampled with the bias learning LMC2 surrogate model 
for the copper-reflected case. 

Fig. 4. Two-dimensional marginal densities of the posterior distribution sampled by MCMC with only the point model for the 
polyethylene-reflected sphere. 
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and

The posterior distributions sampled were much broader 
because the model error was now included. For both 
cases, the theoretical points were in the distribution sup-
port. The maxima a posteriori were slightly more precise 
than in Sec. V.B.1, but do not provide precise predictions 
on their own. The estimation of xs was especially difficult.

The training cases used a polyethylene moderator 
around the sphere, which means that the copper-reflected 
case differed from the training set used. Yet the real values 
were within the support of the distribution. The surrogate 
models were flexible enough to provide reasonable predic-
tions on cases different from the training set.

The methodology presented in this paper allows for 
a robust inverse uncertainty quantification while being 
flexible in its use. As remarked previously, the posterior 
distributions were quite broad due to the significant 
model errors in the surrogate models (of course, another 
reason is the rather limited amount of information given 
by the neutron correlation observations considered in the 
test cases). The global performance of the method for 
a given data set could be improved by reducing the 
model error. This could be achieved by using more 
involved surrogate modeling approaches as we discuss 
in the next section. This would allow for obtaining 
narrower posterior distributions for real-world applica-
tions in nuclear safeguards or waste identification, for 
example.

V.C. Further Improvements

The surrogate models described in this paper are 
based on homoscedastic Gaussian processes. The white

noise kernel added to account for the noise in the training 
data was assumed constant over the whole range of data. 
However, from the observations made in this work, the 
noise increased with kp.

In Fig. 7, the log-residuals (in absolute value) of the 
GPR are plotted as a function of kp for the test case. The 
residuals appear to be larger for large kp. Figure 7 illustrates 
the heteroscedastic nature of the data used in this work.

In order to improve this methodology, heteroscedas-
tic Gaussian processes could be created. For example, 
one can assume the variance in the training follows 
a parametric trend σ2

noiseÖxÜ à fβÖxÜ. Then the parameters 
β can be included in the hyperparameters selection 
described in Sec. III.A.4. Other methods use a second 
Gaussian process as a surrogate model for the noise 
variance itself.32

The methodology is also compatible with other types 
of surrogate models as long as they are able to provide 
covariance predictions. Other supervised learning techni-
ques could be applied to this problem. In this paper, the 
choice of the surrogate model was motivated by the 
simplicity and the flexibility of GPR, but more complex 
techniques could improve the posterior distribution 
sampling.

In this paper, the objective was not to model real- 
world measurements as accurately as possible, but rather 
to build a methodology able to solve the inverse problem 
and provide robust uncertainties on the predictions. In 
order to apply this methodology to real-world measure-
ment, one would require better performance from the 
surrogate models. This could be achieved by adding 
inputs for the description of the energy spectrum or the 
slowing-down process. Besides, the surrogate models 
could benefit from a more detailed description of the 
fission dynamics, as is done with the fission models 
FREYA and FIFRELIN, for example.33

Fig. 6. Two-dimensional marginal densities of the posterior distribution sampled with the bias learning LMC2 surrogate model 
for the polyethylene-reflected case. 
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VI. CONCLUSION

Overall, the methodology presented in this paper 
provides a framework for robust uncertainty quantifica-
tion in neutron noise analysis. The extension of the point 
model with the help of surrogate models based on 
Gaussian processes allows for better predictions in the 
forward model and more consistent uncertainty quantifi-
cation in the inverse problem resolution.

The application to the two test cases highlighted the 
robustness of the method for uncertainty quantification. 
Yet, the trained surrogate models still suffered from large 
variances, which hindered the precise estimation of fissile 
mass based on neutron correlation observations. Two 
lines of work were identified to improve the practical 
application of this methodology to real-world problems 
in nuclear safeguards or waste drum identification. First 
of all, the surrogate models could be improved with the 
help of heteroscedastic Gaussian processes or other 
supervised learning techniques. On the other hand, one 
could also provide more information to the surrogate 
models to accurately model realistic neutron correlation 
measurements, such as better descriptions of slowing- 
down processes and fission dynamics.

Despite the possible improvements aforementioned, 
the methodology presented in this paper allows for robust 
uncertainty quantification for inverse problem resolution

in nuclear safeguards, coupled with affordable computa-
tional resources, while improving the standard approach 
based on the analytical point model description.
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