
International Journal for Uncertainty Quantification, 14(1):43–60 (2024)

A BAYESIAN NEURAL NETWORK APPROACH TO
MULTI-FIDELITY SURROGATE MODELING
Baptiste Kerleguer,1,2,∗ Claire Cannamela,1 & Josselin Garnier2

1Commissariat à l’Énergie Atomique et aus Energies Alternatives (CEA), DAM, DIF, Arpajon,
France

2Centre de Mathématiques Appliquées, Ecole Polytechnique, Institut Polytechnique de Paris,
91128 Palaiseau Cedex, France

*Address all correspondence to: Baptiste Kerleguer, CEA, DAM, DIF, F-91297, Arpajon, France,
E-mail: baptiste.kerleguer@polytechnique.edu

Original Manuscript Submitted: 6/3/2022; Final Draft Received: 4/2/2023

This paper deals with surrogate modeling of a computer code output in a hierarchical multi-fidelity context, i.e., when
the output can be evaluated at different levels of accuracy and computational cost. Using observations of the output at
low- and high-fidelity levels, we propose a method that combines Gaussian process (GP) regression and the Bayesian
neural network (BNN), called the GPBNN method. The low-fidelity output is treated as a single-fidelity code using
classical GP regression. The high-fidelity output is approximated by a BNN that incorporates, in addition to the high-
fidelity observations, well-chosen realizations of the low-fidelity output emulator. The predictive uncertainty of the
final surrogate model is then quantified by a complete characterization of the uncertainties of the different models and
their interaction. The GPBNN is compared to most of the multi-fidelity regression methods allowing one to quantify
the prediction uncertainty.

KEY WORDS: multi-fidelity, surrogate modeling, Bayesian neural network, Gaussian process regression

1. INTRODUCTION

We consider the situation in which two levels of code that simulate the same system have different costs and accu-
racies. This framework is called hierarchical multi-fidelity. We want to build a surrogate model of the most accurate
and most costly code level, also called the high-fidelity code. The underlying motivation is to carry out an uncertainty
propagation study or a sensitivity analysis that require many calls; therefore, the substitution of the high-fidelity code
by a surrogate model with quantified prediction uncertainty is necessary. To build the surrogate, a small numberNH

of high-fidelity code outputs and a large numberNL of low-fidelity code outputs are given. In some applications we
may haveNL À NH , but this paper will focus onNL > NH and the context of small data. Then, the low-fidelity
surrogate model uncertainty must be taken into account.

A well-known method to build a surrogate model with uncertainty quantification is Gaussian process (GP) regres-
sion, GP 1F in this paper. This method has become popular in computer experiments [1,2] and now allows scaling up
in the number of learning points [3]. The emergence of multi-fidelity codes (codes that can be run at different levels
of accuracy and cost) has motivated the introduction of new GP regression approaches. The first one was the Gaussian
process auto-regressive or AR(1) scheme proposed by [4]. The form of the AR(1) model expresses a simple and linear
relationship between the codes and it follows from a Markov property [5]. This method is used in [6] for optimization.
This approach has been improved by [7] with the decoupling of the recursive estimation of the hyper-parameters of
the different code levels. In the following, the recursive AR(1) model is called the AR(1) model because the results
do not change and only the computation time is reduced. The Deep GP method introduced in [8] makes it possible
to adapt the approach to cases in which the relationships between the code levels are nonlinear. An improvement has
been further made by adding to the covariance function of the high-fidelity GP proposed by [8] a linear kernel in
[9]. Multi-fidelity GP regression has been used in several fields, as illustrated in [10,11]. Multi-fidelity polynomial

2152–5080/24/$35.00 © 2024 by Begell House, Inc. www.begellhouse.com 43

44 Kerleguer, Cannamela, & Garnier

chaos expension (MF-PCE) can also be exploited as in [12] for multi-fidelity regression. MF-PCE is mainly used for
sensitivity analysis (see [13]), but shows its limitations for surrogate modeling in terms of uncertainty quantification.

Recent improvements in the implementation of neural networks have motivated research on multi-fidelity neural
networks [14]. In [15], Li et al. combined a fully connected neural network (NN) and a linear system for the inter-
actions between codes. The low-fidelity surrogate model was built using a fully connected NN, see [16] for a direct
application. In order to quantify the prediction deviations and to evaluate the reliability of the prediction, the NNs
have been improved to become Bayesian neural networks (BNNs) [17]. The multi-fidelity model has been improved
by using a BNN for high-fidelity modeling in [18].

In this paper, this method will be called Meng, Babaee, and Karniadakis (MBK). The method in [18] offers op-
tions for single-fidelity active learning and is more general for multi-fidelity modeling. The disadvantages of methods
using NNs are the nonprediction of the model uncertainties and the difficult optimization of the hyperparameters in a
small data context. These disadvantages can be overcome by the use of BNNs. The ability of a BNN for uncertainty
quantification is explained in [19].

The purpose of this paper is to present a method competing in terms of prediction with the methods of multi-
fidelity regression, AR(1) model, Deep GP, and MBK. We also aim to improve the quantification of uncertainties in
the nonlinear case for all these methods. Because not all the proposed methods give Gaussian processes as outputs,
the uncertainties have to be quantified in an appropriate way through prediction intervals. An approach combining
two methods, GP regression and a BNN, is proposed in this paper. We use a Gauss-Hermite quadrature-based method
to transfer the low-fidelity GP, a posteriori law to the high-fidelity BNN. We compared the properties and results of
our strategy with the ones of these methods. For evaluation, we examine our surrogate model approach with two-level
multi-fidelity benchmark functions and a simulation example. The results demonstrate that the method presented in
this paper is easier to train and more accurate than any other multi-fidelity neural network-based method. Moreover,
the method is more flexible compared to other GP-based methods, and it gives reliable estimations of the predictive
uncertainties.

In this paper, we propose to split the multi-fidelity surrogate modeling problem into two regression problems.
The first problem is the single-fidelity regression for the low-fidelity code. The second problem is the regression for
the high-fidelity code knowing the predictions and the predictive uncertainties of the low-fidelity surrogate model.
GP regression allows prediction with quantified uncertainty for the low-fidelity code, which is important to minimize
the predictive error and to quantify the predictive uncertainty of the surrogate model of the high-fidelity code. As in
[18], we want to use a BNN for the regression knowing the low-fidelity prediction. The contribution we propose is
an original strategy to transfer the low-fidelity predictive uncertainties to the BNN. For that we take well-chosen real-
izations of the predictor of the low-fidelity code by a quasi-Monte Carlo method based on Gauss-Hermite quadrature
nodes, and we give them as inputs of the BNN in addition to the high-fidelity code inputs. A predictor is obtained by
a weighted average of the BNN outputs corresponding to the different realizations. The predictive variance can also
be assessed with the same sample.

The paper is organized as follows. Section 2 presents different methods to build single-fidelity surrogate models.
The complete multi-fidelity method is presented in Section 3. The specific interaction between GP regression and
a BNN is explained in Section 4, and Section 5 shows numerical results. Based on these results, the interest of the
method is discussed in Section 6.

2. BACKGROUND: REGRESSION WITH UNCERTAINTY QUANTIFICATION

In this section, classical surrogate modeling methods with uncertainty quantification are presented. The GP regression
method is presented in Section 2.1. The BNN method is presented in Section 2.2. Here, we want to predict the scalar
outputy = f(x), with y ∈ IR, of a computer code with inputx ∈ IRd from the data set(xi, yi)N

i=1 with yi = f(xi).

2.1 Gaussian Process Regression

GP regression can be used to emulate a computer code with uncertainty quantification [1]. The prior output model as
a function of the inputx is a Gaussian processY (x) with meanµ(x) and stationary covariance functionC(x, x′).

International Journal for Uncertainty Quantification

Muti-Fidelity Surrogate Model with GP-BNN 45

Consequently, the posterior distribution of the outputY (x) givenY (x1) = y1, . . . , Y (xN) = yN is Gaussian with
mean, as follows:

µ?(x) = µ(x) + r(x)T C−1(y − µ) (1)

and covariance
C?(x,x′) = C(x,x′)− r(x)T C−1r(x′) (2)

with the vectorr(x) = (C(x,x1), . . . , C(x, xN))T , the matrixC defined byCi,j = C(xi, xj), the vectorµ =
(µ(x1), . . . , µ(xN))T , and the vectory = (y1, . . . , yN)T . The covariance function is chosen within a parametric
family of kernels, whose parameters are fitted by maximizing the log marginal likelihood of the data (see [1], Chap-
ter 2.2). For practical applications, the implementation of Algorithm 2.1 in [1] can be used.

2.2 Bayesian Neural Network

Neural networks have been used to emulate unknown functions based on data [20], and in particular, computer codes
[21]. Our goal, however, is also to quantify the uncertainty of the emulation. A BNN makes it possible to quantify
predictive uncertainties. Here, we present the BNN structure and the priors for the parameters.

A BNN with one hidden layer. LetNl be the number of neurons in the hidden layer is presented. The output of
the first layer is

y1 = Φ(w1x + b1) (3)

wherex ∈ IRd is the input vector of the BNN,b1 ∈ IRNl is the bias vector,w1 ∈ IRNl×d is the weight matrix, and
y1 ∈ IRNl is the output of the hidden layer. The functionΦ : IRNl → IRNl is of the formΦ(b) = (φ(bj))Nl

j=1, where
the activation functionφ can be a hyperbolic tangent or ReLU, for instance. The second (and last) layer is fully linear,
as follows:

BNN(x) = wT
2 y1 + b2 (4)

wherew2 ∈ IRNn is the weight matrix,b2 ∈ IR is the bias vector, and BNN(x) ∈ IR is the scalar output of the BNN
at pointx.

We use a Bayesian framework similar to the one presented in [22]. Letθ denote the parameter vector of the
BNN, which isθ = (wi, bi)i=1,2. The probability distribution function (pdf) of the output givenx andθ is

p(y|x,θ, σ) =
1√
2πσ

exp
(
− (y − BNNθ(x))2

2σ2

)
(5)

whereσ2 is the variance of the random noise added to account for the fact that the neural network is an approximation.
BNNθ(x) is the output of the neural network with parameterθ at pointx.

Here, we choose a prior distribution for(θ,σ) that is classic in the field of BNNs ([22], Part 5). The prior laws
of the parameters(wi, bi)i=1,2 are as follows:

wi ∼ N (
0, σ2

wi
I
)
, bi ∼ N (

0, σ2
bi

I
)
, i = 1, 2 (6)

whereσw,b1,2
are the prior standard deviations. The prior forσ is the standard GaussianN (0, 1) (assuming the

functionf has been normalized to be of the order 1). All parameters are assumed to be independent.
Applying Bayes’ theorem, the posterior pdf of(θ, σ) given the dataD = (xi, yi)N

i=1 is

p(θ,σ|D) =
N∏

i=1

p(yi|xi, θ,σ)p(θ, σ) (7)

up to a multiplicative constant, wherep(θ,σ) is the prior distribution ofθ, σ described earlier. The posterior distri-
bution of the output atx has pdf, as follows:

p(y|x,D) =
∫∫

p(y|x,θ,σ)p(θ, σ|D)dθdσ (8)

Volume 14, Issue 1, 2024

46 Kerleguer, Cannamela, & Garnier

and the two first moments are

Epost[Y] =
∫∫

BNNθ(x)p(θ, σ|D)dθdσ (9)

Epost
[
Y 2

]
=

∫∫ (
BNNθ(x)2 + σ2

)
p(θ,σ|D)dθdσ (10)

Contrarily to GP regression, the prediction of a BNN cannot be expressed analytically as shown by Eq. (8), but
there exist efficient sampling methods. To sample the posterior distribution of the BNN output, we need to sample the
posterior distribution of(θ,σ). In this paper the No-U-Turn Sampler (NUTS), which is a Hamiltonian Monte Carlo
(HMC) method, is used to sample the posterior distribution of(θ,σ) [23]. By Eqs. (9) and (10), the estimated mean
f̃ and variancẽV of the output at pointx are

f̃(x) =
1

Nv

Nv∑

i=1

BNNθi(x) (11)

Ṽ (x) =
1

Nv

Nv∑

i=1

[
BNNθi(x)− f̃(x)

]2
+

1
Nv

Nv∑

i=1

σ2
i (12)

where the(θi,σi)Nv

i=1 is the HMC sample of(θ, σ) with its posterior distribution.
Here we study the sampling algorithm for the posterior law. The Markov Chain Monte Carlo method aims at

generating the terms of an ergodic Markov chain(Xn)n∈IN whose invariant measure is the target law with density
p(x), which is known up to a multiplicative constant. This Markov chain is specially constructed for this purpose, in
the sense that its transition kernel is defined such thatp is its unique invariant probability. There are several possible
variations of this principle, such as the Metropolis-Hastings algorithm (see [24], Section 6.3.2 and [25]).

The Metropolis-Hastings algorithm is as follows. We give ourselves a starting pointx0 and an exploration law,
i.e., a family(q(x′,x))x∈IRd of probability densities onIRd parametrized byx′ ∈ IRd that are easily simulated. We
assume that we have simulated thenth term of the chainXn.

1. We make a propositionX ′
n+1 drawn according to the density lawq(Xn, ·).

2. We calculate the acceptance ratea(Xn, X ′
n+1) = min(1, ρ(Xn, X ′

n+1)) with

ρ(xn, x′n+1) =
p(x′n+1)q(x

′
n+1, xn)

p(xn)q(xn,x′n+1)
(13)

3. We drawUn+1 ∼ U(0, 1).

4. We put

Xn+1 =
{

X ′
n+1 if Un+1 ≤ a(Xn, X ′

n+1)
Xn if Un+1 > a(Xn, X ′

n+1)
(14)

Note that we only need to knowp up to a multiplicative constant to be able to implement the algorithm according
to Eq. (13). In the case whereq is symmetricalq(x′, x) = q(x,x′), the acceptance rate is simply min[1, p(X ′

n+1)
/p(Xn)]. We have a symmetricalq, in particular when the exploration law is Gaussian;(q(x′,x))x∈Rd is the density
of the lawN (x′,σ2I) with σ2 to be calibrated in order to have an acceptance rate that is neither too high (which
means that we do not explore enough) nor too low (which means that we reject the proposition too often because it is
too far). Usually, we calibrateσ2 during the simulation to observe a constant acceptance rate of the order of 1/4, for
more details see [26].

The HMC algorithm is a special instance of the Metropolis-Hastings algorithm, because the exploration law
q(x′, x) is determined by a Hamiltonian dynamic, in which the potential energy depends on the target densityp.
This model is proposed in [27]. One algorithm that is efficient for HMC on the NUTS, which is used in this paper to
sample the posterior distribution of(θ,σ), see [23].

International Journal for Uncertainty Quantification

Muti-Fidelity Surrogate Model with GP-BNN 47

3. COMBINING GP REGRESSION AND BNN

From now on, we consider a multi-fidelity framework with two levels of code, highfH and lowfL fidelity, as in [4].
The input isx ∈ IRd and the outputs of both computer code levelsfL(x) andfH(x) are scalar. We have access toNL

low-fidelity points andNH high-fidelity points, withNH < NL. In this paper, we focus on the small data framework
where the low-fidelity code is not perfectly known. Under such circumstances it remains uncertainty in the low-
fidelity surrogate model. IfNH ¿ NL, the situation would be different and we could assume that the low-fidelity
emulator is perfect.

We therefore have two surrogate modeling tools: GP regression and the BNN. To do multi-fidelity with nonlinear
interactions, the standard methods use combinations of regression methods. With our two methods we can make four
combinations: GP-GP also called Deep GP in [8,9], the GP-BNN method proposed in our paper, BNN-GP, and BNN-
BNN. The Deep GP model will be compared to the proposed method in all examples of the paper. The BNN-BNN
method would be extremely expensive and very close to the full NN methods by adding the predictive uncertainty.
The logic behind our choice of GP-BNN over BNN-GP is as follows: if we assume that the low-fidelity code is
simpler than the high-fidelity code, then it must be approximated by a simpler model. GP regression is a surrogate
model easier to obtain, and it gives a Gaussian output distribution that can be sampled easily. Whereas BNN is more
complex to construct and allows for more general output distributions to be emulated.

The code output to estimate isfH with the help of low- and high-fidelity points. As the low-fidelity codefL is
not completely known, a regression method with uncertainty quantification, GP regression, is used to emulate it, as
in Section 2.1. The output of the low-fidelity GP is then integrated into the input to a BNN, described in Section 2.2,
to predictfH .

The low-fidelity surrogate model is a GPYL(x) built from NL low-fidelity data points(xL,i, fL(xL,i)) ∈ IRd×
IR. The optimization of the hyper-parameters of the GP is carried out in the construction of the surrogate model. The
GP is characterized by a predictive meanµL(x) and a predictive covarianceCL(x, x′).

To connect the GP with the BNN, the simplest way is to concatenatex andµL(x) (the best low-fidelity predictor)
as input to the BNN. However, this does not take into account the predictive uncertainty. Consequently, we may want
to addCL(x, x) or

√
CL(x, x) to the input vector of the BNN. The idea is that the BNN could learn from the low-

fidelity GP, more than from its predictive mean only, in order to give reliable predictions of the high-fidelity code with
quantified uncertainties. We show that the idea is fruitful and can be pushed even further.

We investigated three methods to combine the two surrogate models and transfer the posterior distribution of
the low-fidelity emulator to the high-fidelity one. We demonstrate in Section 5 that the best solution is the so-called
Gauss-Hermite method.

4. TRANSFER METHODS

The two learning sets areDL = {(xL
i , fL(xL

i)), i = 1, . . . , NL} andDH = {(xH
i , fH(xH

i)), i = 1, . . . , NH} with
typically NH < NL, and we do not need to assume that the sets{xL

i , i = 1, . . . , NL} and{xH
i , i = 1, . . . , NH}

are nested. The low-fidelity model is emulated using GP regression, as a consequence the result is formulated as a
posterior distribution givenDL that has the form of a Gaussian law.

Proposition 1. The posterior distribution ofYL(x) knowingDL is the Gaussian distribution with meanµL(x) and
varianceσ2

L(x) of the form (1-2). We denote its pdf byp(yL|DL,x).

Proof. The proof is given in [1] (see Chapter 2.2) (prediction with noise free observations).

The posterior distribution of the high-fidelity code given the low-fidelity learning setDL and the high-fidelity
learning setDH may have different forms depending on the input of the BNN.

4.1 Mean-Standard Deviation Method and Quantiles Method

In the Mean-Standard deviation method, called the Mean-Std method, we give as input to the BNN the pointx and
the information usually available at the output of a GP regression, i.e., the predictive mean and standard deviation of
the low-fidelity emulator at the pointx.

Volume 14, Issue 1, 2024

48 Kerleguer, Cannamela, & Garnier

In this method, the input of the BNN, whose output gives the prediction of the high-fidelity code atx, is xBNN =
(x,µL,σL). The idea is that the BNN input consists of the inputx of the code and of the mean and standard deviation
of the posterior distribution of the low-fidelity emulator atx. The high-fidelity emulator is modeled as follows:

YH(x) = BNNθ(x,µL(x), σL(x)) + σε (15)

with ε ∼ N (0, 1). We use the learning setDH
MS =

{(
xH

i ,µL(xH
i), σL(xH

i), fH(xH
i)

)
, i = 1, . . . , NH} to train the

BNN and get the posterior distribution of(θ, σ). Note thatDH
MS can be deduced fromDL andDH .

Proposition 2. The posterior distribution ofYH(x) knowingDL andDH
MS has pdf

p
(
yH |x,DH

MS ,DL
)

=
∫∫

1√
2πσ

exp
[
− (yH − BNNθ(x, µL(x),σL(x)))2

2σ2

]
p(θ, σ|DH

MS)dσdθ (16)

with p(θ,σ|DH
MS) the posterior pdf of the hyper-parameters of the BNN.

Proof. Let p(yH |θ,σ,x,DL) be the probability density function (pdf) ofYH(x) given by Eq. (15). This pdf can be
written as follows:

p(yH |θ, σ,x,DL) =
1√
2πσ

exp
[
− (yH − BNNθ(x,µL(x),σL(x)))2

2σ2

]

The law of total probability gives that:

p
(
yH |x,DH

MS ,DL
)

=
∫∫

p(yH |θ, σ,x,DL)p(θ, σ|DH
MS)dσdθ

=
∫∫

1√
2πσ

exp
[
− (yH − BNNθ(x, µL(x),σL(x)))2

2σ2

]
p(θ, σ|DH

MS)dσdθ

Corollary 1.
The mean and variance of the posterior distribution ofYH(x) knowingDH

MS andDL is as follows:

µH(x) =
∫∫

BNNθ(x,µL(x),σL(x))p(θ,σ|DH
MS)dσdθ (17)

and

CH(x) =
∫∫ (

BNNθ(x, µL(x),σL(x))2 + σ2
)
p(θ,σ|DH

MS)dσdθ (18)

Proof. By the definition of the mean and variance, we get

µH(x) =
∫

yHp
(
yH |x,DH

MS ,DL
)
dyH

CH(x) =
∫

(yH − µH(x))2p
(
yH |x,DH

MS ,DL
)
dyH

We replace by the expressions given in Proposition 2.

µH(x) =
∫

yH

∫∫
1√
2πσ

exp
[
− (yH − BNNθ(x, µL(x),σL(x)))2

2σ2

]
p(θ, σ|DH

MS)dσdθdyH

which gives Eq. (17). For the variance,

CH(x) =
∫

(yH − µH(x))2
∫∫

1√
2πσ

exp
[
− (yH − BNNθ(x,µL(x),σL(x)))2

2σ2

]
p(θ,σ|DH

MS)dσdθdyH

which gives Eq. (18).

International Journal for Uncertainty Quantification

Muti-Fidelity Surrogate Model with GP-BNN 49

Corollary 2.
GivenDL andDH

MS , given a sample(θi,σi)Nv

i=1 of the posterior distribution of(θ, σ)

µ̃H(x) =
1

Nv

Nv∑

i=1

BNNθi(x, µL(x), σL(x)) (19)

and

C̃H(x) =
1

Nv

Nv∑

i=1

(
BNNθi

(x, µL(x),σL(x))2 + σ2
i

)− µ̃H(x)2 (20)

are consistent estimators ofµH(x) andCH(x).

The estimators need samples of the posterior distribution of(θ, σ). By the HMC method (NUTS), we get a
sample of the hyperparameters(θj , σj) with the posterior distribution of the high-fidelity model. It is possible to
construct a similar method, called the quantiles method, which takes as input the quantiles instead of the standard
deviation. The quantiles method consists of giving the mean and two quantiles of the low-fidelity GP emulator as
input to the BNN. Assuming we want to have the high-fidelity output uncertainty at levelα%, we take theα/2% and
the(1− α/2)% quantiles. The expression of the BNN input vector isxBNN = (x,µL, QL,α/2, QL,(1−α/2)) and the
high-fidelity learning set is

DH
Q :

{(
(xH

i ,µL(xL
i), QL,α/2(xH

i), QL,(1−α/2)(xH
i)), fH(xH

i)
)
, i = 1, · · · , NH

}

This method is very similar to the Mean-Std method and only the BNN input changes. The estimators of the mean
and variance have the same form.

4.2 Gauss-Hermite Quadrature

In this section, we transfer the information about the posterior distribution of the low-fidelity emulator by a sampling
method. The GP posterior distribution is one-dimensional and Gaussian for each value ofx. Therefore, a deterministic
method for sampling is preferable in order to limit the number of calls to the BNN. In the following, this method is
called the GPBNN. We propose to sample the Gaussian distribution by a quasi Monte Carlo method usingS Gauss-
Hermite quadrature nodes ([28], Chapter 3). This method has been chosen because it gives the best interpolation of
a Gaussian distribution. The samplesf̃L,j(x), with j = 1, . . . , S, of the GP posterior distribution are constructed
using the rootszS,j of the physicists’ version of the Hermite polynomialsHS(x) = (−1)Sex2

∂S
x e−x2

, S ∈ N. For
each inputx the GP posterior law has meanµL(x) and varianceCL(x,x). We sampleS times the low-fidelity
GP posterior law by using the Gauss-Hermite quadrature illustrated at Fig. 1. Therefore, thejth realization in the
Gauss-Hermite quadrature formula is

f̃L,j(x) = µL(x) + zS,j

√
2
√

CL(x,x) (21)

and the associated weight ispS,j = 2S−1S!/S2H2
S−1(zS,j), for j = 1, . . . , S. The learning set of the BNN is

DH
GH :

[(
(xH

i ,µL(xH
i),σL(xH

i)), fH(xH
i)

)
, i = 1, · · · , NH

]
. The GP covariance can be viewed in Fig. 1 as a

difference between theS realizations of the GP posterior law. The low-fidelity uncertainty prediction is taken into
account in BNN input parameters. Thus, the high-fidelity emulator is modeled as follows:

YH(x) =
S∑

j=1

pS,jBNNθ(x, f̃L,j(x)) + σε (22)

with ε ∼ N (0, 1) andf̃L,j(x) is given by Eq. (21).

Volume 14, Issue 1, 2024

50 Kerleguer, Cannamela, & Garnier

j 1 2 3 4 5
zS=5,j –2.02 –0.96 0 0.96 2.02
pS=5, j 0.020 0.394 0.945 0.394 0.020

FIG. 1: Illustration of a Gauss-Hermite quadrature for a GP. The left curve shows the posterior law of the GP. In solid line, we
have the low-fidelity function to approach which we observe the points. The dashed line shows the mean of the GP and the dotted
line shows theI95% the prediction interval. The right curve shows the GP with the realisations of the Gauss-Hermite quadrature
for S = 5. The intensities of the lines are linear with the weight of the quadrature. The table gives the approximated values of the
roots and weights for the Gauss-Hermite quadratureS = 5.

Proposition 3. The posterior distribution ofYH(x) knowingDH
GH andDL is

p
(
yH |x,DH

GH ,DL
)

=
∫∫

1√
2πσ

exp


− 1

2σ2


yH −

S∑

j=1

pS,jBNNθ(x, f̃L,j)




2

p(θ,σ|DH

RS)dσdθ (23)

with p(θ,σ|DH
GH) the posterior distribution of the hyper-parameters of the BNN.f̃L,j is given by Eq.(21).

Corollary 3.
The posterior mean ofYH(x) is

µH(x) =
∫∫ 


S∑

j=1

pS,jBNNθ(x, f̃L,j)


p(θ, σ|DH

GH)dσdθ (24)

The posterior variance ofYH(x) is

CH(x) =
∫∫







S∑

j=1

pS,jBNNθ(x, f̃L,j)




2

+ σ2


p(θ,σ|DH

GH)dσdθ− µ2
H(x) (25)

The expression of̃fL,j is given by Eq. (21).

Corollary 4.
GivenDL andDH

GH , given a sample(θi,σi)
Nv

i=1 of the posterior distribution of(θ,σ)

µ̃H(x) =
1

Nv

Nv∑

i=1

S∑

j=1

pS,jBNNθi
(x, f̃L,j(x)) (26)

International Journal for Uncertainty Quantification

Muti-Fidelity Surrogate Model with GP-BNN 51

and

C̃H(x) =
1

Nv

Nv∑

i=1




S∑

j=1

pS,jBNNθi(x, f̃L,j(x))




2

+
1

Nv

Nv∑

i=1

σ2
i − µ̃2

H(x) (27)

are consistent estimators of the mean and variance in Corollary 3.

Note that this sampling method is different from the quantiles method (even forS = 3 andα ≈ 0.110). Indeed,
in the quantiles method the input of the BNN contains the mean and quantiles of the low-fidelity code predictor;
whereas, the Gauss-Hermite method is a sampling method in which the input of the BNN contains only one sample
of the low-fidelity code predictor and the predictor is a weighted average of the BNN.

The sample(θi,σi) of the posterior distribution of(θ, σ) can be obtained by the HMC method (NUTS). The
choice ofS is a trade-off between a large value that is computationally costly and a small value that does not prop-
agate the uncertainty appropriately.S = 2 is the smallest admissible value regarding the information that should be
transferred. At first glance, a large value ofS could be expected to be the best choice in the point of view of the
predictive accuracy. However, a too large value ofS degrades the accuracy of the predictive mean estimation. This is
due to large variations of̃fL,i(x) for large values ofS. Interesting values turn out to be between 3 and 10, depending
on the quality of the low-fidelity emulator, as discussed in Section 5. Figure 2 is a graphical representation of the
GPBNN method.

The value ofNv is chosen large enough so that the estimators in Eqs. (26) and (27) have converged. As shown in
the analysis of Section 5,Nv = 500is sufficient.

We could expect the computational cost of the GPBNN method to be expensive. The number of operations
needed to compute an iteration of the HMC optimization is proportional toS × Nv × NH . BecauseS andNH are
small in our context, the computational cost of one realization of the BNN is actually low. Thus, optimization of the
hyperparameters is feasible forNH . 100.

5. EXPERIMENTS

In this section, we present two analytic examples and a simulated one. The first one is a one-dimensional (1D)
function, and we consider that the low-fidelity function may be unknown in a certain subdomain. The second one is a
two-dimensional (2D) function with noise. Finally, we test the strategy on a more complex double pendulum system.
All the numerical experiments are carried out on a laptop (of 2017, Dell precision with Intel Core i7) using only a
CPU and the running time never exceeds 2 h.

5.1 1D Function Approximation

The low- and high-fidelity functions are

x

...

...
µ̃H (x)

C̃H (x)

GP

BNN

High-fidelity

Low-fidelity

S

pS,1

pS,Sf̃ L(x) ~ GP

f̃ L,1 (x)

f̃ L,S (x)

FIG. 2: Schematic of the multi-fidelity Gauss-Hermite model. The input is a pointx. The output consists of a predictive mean
µ̃H(x) and a predictive variancẽCH(x).

Volume 14, Issue 1, 2024

52 Kerleguer, Cannamela, & Garnier

fL(x) = sin 8πx, fH(x) =
(
x−

√
2
)
f2

L(x) (28)

with x ∈ [0, 1], wherefH is the high-fidelity function (code) andfL the low-fidelity function (code). A graphical
representation of these functions is given in Fig. 3. These functions have been introduced in [8] and are well estimated
with a Deep GP and a quadratic form of the covariance. In this example, we assume that we have access to a lot of low-
fidelity data,NL = 100, while the high-fidelity data is small,NH = 20. We also consider situations in which there is
a segment̄I ⊂ [0, 1], where we do not have access tofL(x). The learning set for the high-fidelity code is obtained by
partitioning[0, 1] into NH segments with equal lengths and then by choosing independently one point randomly on
each segment with uniform distribution. The learning set for the low-fidelity code is obtained by partitioning[0, 1]\Ī
into NL segments with equal length and then by choosing independently one point randomly on each segment with
uniform distribution. The test set is composed ofNT = 1000independent points following a random uniform law on
[0, 1].

We denote by
(
x

(i)
T , fH(x(i)

T)
)

i=1,...,NT

the test set. The error is evaluated by

Q2
T = 1−

∑NT

i=1

[
µ̃H(x(i)

T)− fH(x(i)
T)

]2

NTVT(fH)
(29)

with VT(fH) = (1/NT)
∑NT

i=1

[
fH

(
x

(i)
T

)
− (1/NT)

∑NT

j=1 fH

(
x

(j)
T

)]2
. A highly predictive model gives aQ2

T close

to 1, while a less predictive model has a smallerQ2
T. The coverage probability CPα is defined as the probability for

the actual value of the function to be within the prediction interval with confidence levelα of the surrogate model, as
follows:

CPα =
1

NT

NT∑

i=1

1
fH

(
x

(i)
T

)
∈Iα

(
x

(i)
T

) (30)

where1 is the indicator function andIα(x) the prediction interval at pointx with confidence levelα. The mean
predictive interval width MPIWα is the average width of the prediction intervals:

MPIWα =
1

NT

NT∑

i=1

∣∣∣Iα

(
x

(i)
T

)∣∣∣ (31)

whereIα(x) is the prediction interval at pointx with confidence levelα and|Iα(x)| is the length of the prediction
intervalIα(x). The prediction uncertainty of the surrogate model is well characterized when CPα is close toα. The
prediction uncertainty of the surrogate model is small when MPIWα is small.

FIG. 3: Low-fidelity function on the left and high-fidelity function on the right. We can see that the range of variation is smaller
for the high-fidelity function and its frequency is two times higher than low-fidelity function.

International Journal for Uncertainty Quantification

Muti-Fidelity Surrogate Model with GP-BNN 53

For the GPBNN method, we obtain the intervalIα(x) by samplingNv realizations of the posterior distribution
of the random processYH(x) described in Section 4. The intervalIα(x) is the smallest interval that contains the
fractionα of the realizations(yj)Nv

j=1 of YH(x). For the GP 1F model and the AR(1) model, the prediction interval is
centered at the predictive mean and its half-length isq1−α/2 times the predictive standard deviation, whereq1−α/2 is
the1−α/2-quantile of the standard Gaussian law, because the posterior distributions are Gaussian. For the Deep GP
model, the prediction interval is obtained by Monte Carlo sampling of the posterior distribution (with 1000 samples).

We use GP regression with zero mean function and tensorized Matérn 5/2 covariance function for the low-fidelity
GP regression. The implementation we use is from [29]. The optimization for GP regression gives a correlation length
of 0.108. For this example, we chooseNn = 30 neurons, and we use the ReLU function as activation function and
the BNN implementation proposed in [30]. The sample size of the posterior distribution of the BNN parameter(θ, σ)
is Nv = 500(see Fig. 4).

Low-fidelity surrogate models of different accuracies are considered to understand how our strategy behaves
under low-fidelity uncertainty. This is done by considering that low-fidelity data points are only accessible in[0, 1]\Ī.
We have thus chosen to study three cases: (i) a very good low-fidelity emulator withĪ = ∅ (for which theQ2

l→l

of the low-fidelity emulator is 0.99, withQ2
l→l the Q2 of the low-fidelity model for low-fidelity prediction), (ii) a

good emulator with̄I = [1/3, 2/3] (Q2
l→l = 0.98), and (iii) a poor emulator with̄I = [3/4, 1] (Q2

l→l = 0.84).
The objective of these different sets is to have more or less accurate low-fidelity models to cover different learning
configurations in order to test the model in different configurations.

Table 1 compares for these examples the different techniques, proposed in Section 4, forĪ = ∅. All methods
have the same efficiency in terms ofQ2

T. The uncertainties of the predictions are overestimated for all methods. How-
ever, the Gauss-Hermite method has the best CPα and the best uncertainty interval (i.e., the smallest mean predictive
interval width MPIWα). The quantiles and mean-Std methods also have reasonable CPα, but their uncertainty inter-
vals are larger. This leads us to use the Gauss-Hermite method. However, we note that all methods overestimated the
prediction interval. We believe this is due to the high regularity of the function to be predicted.

In Fig. 5, we report the performances of the GPBNN method as functions ofS between 1 and 12 for different
Ī. ForS = 1, the uncertainty is underestimated and the accuracy of the prediction is not optimal, which shows that
it is important to exploit the uncertainty predicted by the low-fidelity model. For2 ≤ S ≤ 5, the prediction is good,
the error is constant, and theQ2

T is maximal, as seen in Fig. 5(a). Figure 5(b) shows that the coverage probability is
acceptable for2≤ S ≤ 7. Finally, the MPIW80% on Fig. 5(c) is minimal for3≤ S ≤ 7. The best value ofS is in [2,
5], depending on the accuracy of the low-fidelity emulator. IncreasingS should increase the size of the training set.

 (a) (b) (c)

FIG. 4: ErrorQ2
T, coverage probability at 80% and MPIW80% as functions ofNv for Ī = ∅. (a)Q2

T , (b) CP80%, and (c) MPIW80%.

TABLE 1: Error Q2
T , coverage probability CPα and

mean predictive interval width MPIWα for α = 80%
and for different methods of sampling. HereĪ = ∅

Q2
T CPα MPIW α

Gauss-HermiteS = 5 0.99 0.88 0.083
Mean-Std 0.99 0.97 0.095
Quantiles 0.99 0.90 0.105

Volume 14, Issue 1, 2024

54 Kerleguer, Cannamela, & Garnier

(a) (b)

(c)

FIG. 5: ErrorQ2
T, coverage probability at 80% and MPIW80% as functions ofS

It is therefore expected that the largerS is, the more accurate the model will be. But forS > 7, we have realizations
out of the 95% prediction interval. The linkage between internal BNN nonlinearities and realizations outside the 95%
prediction interval tends to degrade the prediction of the high-fidelity model. In this case, we hypothesize that the
BNN poorly learns the low probability values.

We carried out a study on the best value ofNv. We thought that the best value would be the largest possible.
Therefore, we tested for values ofNv ranging from 1 to 1000 for̄I = ∅. For values ofNv > 200, the performance is
identical as a function ofNv. For values< 200, a greater variability was found. We choose to useNv = 500to have
a sufficient margin. In Fig. 4, we averaged the estimators for five independent training sets.

We now compare our GPBNN method with other state-of-the-art methods. The single-fidelity GP method used
to emulate the high-fidelity code from theNH high-fidelity points is called GP 1F. We use the implementation in
[29]. The multi-fidelity GP regression with autoregressive form introduced by [4] and improved by [7] is called
autoregressive model AR(1). The method proposed in both [8,9] is called Deep GP, we use the implementation
from [8] and the covariance given in [9], Eq. (11). The method from [18] is called the MBK method, which is the
combination of a fully connected NN for low-fidelity regression and BNN for high fidelity. We implemented it using
[30]. The methods that require the minimal assumptions on the functionsfL andfH are the GPBNN and MBK
methods. This is the reason why they are the two methods that are compared in Fig. 6.

First, the output laws for the MBK method and for the GPBNN, presented in Fig. 6, are different. For the MBK
method, the posterior law is associated to the high-fidelity BNN knowing both the high-fidelity data and the low-
fidelity model. Unlike the MBK method, the GBBNN method’s output law represents the posterior law knowing
high-fidelity points and the posterior distribution of the low-fidelity model built from theNL low-fidelity points. In
Fig. 6,S = 5 because, as previously discussed, this value seems to be the best value when the low-fidelity code is not
so accurate.

The presented techniques for multi-fidelity regression are compared in Tables 2–4. The GP 1F model, and the
multi-fidelity AR(1) model do not have good predictive properties. For the GP 1F model it is due to the lack of
high-fidelity data, and for the AR(1) model, it is due to the strongly nonlinear relationship between the code levels.
The three other methods perform almost perfectly whenĪ = ∅. The Deep GP is outstanding when̄I = ∅, but
the interaction between the codes (a quadratic form) is given exactly in the covariance structure, which is a strong

International Journal for Uncertainty Quantification

Muti-Fidelity Surrogate Model with GP-BNN 55

(a) (b)

(c)

FIG. 6: Comparison between the MBK method (in blue dashed line) and the GPBNN method withS = 5 (in green dashed-dotted
line) for the estimation of the functionfH Eq. (28) (in red solid line). The high-fidelity data points are in red. The light colored
lines (blue and green) plot the predictive intervals. The uncertainty interval is given by theI80%(x). (a) Ī = ∅, (b) Ī = [1/3, 2/3],
and (c)Ī = [3/4, 1]. See online version for color.

TABLE 2: Q2
T for different methods and segmentsĪ of missing low-fidelity values.

HereS = 5

Ī GP 1F AR(1) Deep GP MBK GPBNN

∅ 0.12 –0.29 0.99 0.99 0.99

[1/3, 2/3] 0.13 –0.34 0.98 0.90 0.98

[3/4, 1] 0.12 –0.29 0.90 0.51 0.93

TABLE 3: Coverage probability CPα for α = 80% and for different methods and
segments̄I of missing low-fidelity values. HereS = 5

Ī GP 1F AR(1) Deep GP MBK GPBNN

∅ 0.82 0.82 0.99 0.76 0.88

[1/3, 2/3] 0.78 0.79 0.60 0.84 0.83

[3/4, 1] 0.78 0.82 0.62 0.86 0.78

Volume 14, Issue 1, 2024

56 Kerleguer, Cannamela, & Garnier

TABLE 4: Mean predictive interval width MPIWα for α = 80% and for
different methods and segmentsĪ of missing low-fidelity values. HereS = 5

Ī GP 1F AR(1) Deep GP MBK GPBNN
∅ 0.44 0.55 0.002 0.037 0.083

[1/3, 2/3] 0.42 0.45 0.010 0.36 0.082
[3/4, 1] 0.44 0.45 0.097 0.31 0.084

assumption in Deep GP that is hard to verify in practical applications. WhenĪ is nonempty, the MBK method gives
less accurate predictions because the method assumes strong knowledge of the low-fidelity code level. However,
its uncertainty interval seems realistic for this example although too large. The Deep GP has reasonable errors but
Tables 3 and 4 show that the predictive uncertainty of the Deep GP method does not fit the actual uncertainty of the
prediction (it has poor coverage probability, either too large or too small). The GPBNN method has the smallest error
(bestQ2

T), and it is predicting its accuracy precisely (it has good and nominal coverage probability; here,S = 5) and
the predictive variance and prediction interval width are small compared to the other methods: The GP 1F and AR(1)
models have reasonable coverage probabilities but large mean predictive interval widths. For this simple illustrative
example, the GPBNN method seems to be the most suitable method.

5.2 2D Function Approximation

The Currin function is a two-dimensional function, withx ∈ [0, 1]2. This function is commonly used to simulate
computer experiments [9]. The high- and low-fidelity functions are

fH(x) =
[
1− exp

(
− 1

2x2

)]
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
(32)

fL(x) =
1
4
[fH(x1 + δ, x2 + δ) + fH(x1 + δ, max(0, x2 − δ))]

+
1
4
[fH(x1 − δ, x2 + δ) + fH(x1 − δ, max(0, x2 − δ))]

(33)

with x = [x1, x2] andδ the filter parameter. In [9], we haveδ = 0.05, and this gives very small differences between
the two functions, and the prediction of the high-fidelity function by the low-fidelity one hasQ2

l→h = 0.98. In the
following, we setδ = 0.1 and thenQ2

l→h = 0.87. An additive Gaussian noise is added to the low-fidelity code. The
noise has a zero mean and a variance equal to the empirical variance of the signal 0.08.

In this example we also consider that the low-fidelity code is costly and we only have a small number of low-
fidelity points:NL = 25 andNH = 15. The high- and low-fidelity points are chosen by maximin Latin hyper-
cube sampling (LHS). The test set is composed of 1000 independent points following a random uniform law on
[0, 1]2.

The kernel used for GP regression low fidelity is a Matérn 5/2 covariance function. The predictive error for the
GP regressor of the low-fidelity model isQ2 = 0.91 using a nugget effect in the Gaussian process regression. The
BNN is defined withNl = 40neurons, and the mean and variance are evaluated by Eqs. (26) and (27) withNv = 500.
Nl could be chosen arbitrarily, but the fact that we were in a small data context led us to choose a small value. It is
possible to use cross-validation to chooseNl, but the computer cost here would be prohibitive. The previous example
discussed in Section 5.1 suggests choosingS between 3 and 5 for the low-fidelity surrogate model sampling. In
this example, due to the large low-fidelity error, the model needs a large value ofS to account appropriately for the
uncertainty and we chooseS = 5.

All methods are compared in Table 5. The GPBNN model in this example seems to be accurate in terms ofQ2
T

and in uncertainty quantification. It is much better than the GP 1F model (single-fidelity GP model built with the high-
fidelity data). We presume that it is due to the lack of high-fidelity data. AR(1) model gives better but not satisfying
results. This is expected due to the nonlinearity between codes. The results of the Deep GP and MBK methods are

International Journal for Uncertainty Quantification

Muti-Fidelity Surrogate Model with GP-BNN 57

TABLE 5: Comparison of the multi-fidelity methods on the CURRIN
function viaQ2

T, CP80% and MPIW80%

GP 1F AR(1) Deep GP MBK GPBNN
Q2

T 0.73 0.80 0.29 0.27 0.88
CP80% 0.68 0.80 0.62 0.57 0.80

MPIW80% 0.5 1.0 0.13 1.9 0.51

worse than the one of the GP 1F in error and in uncertainty. For the Deep GP, this can be understood by the fact that
the covariance is not well adapted, see [9]. And for the MBK, the lack of points leads to a very poor optimization of
the hyperparameters.

5.3 Double Pendulum

The double pendulum system can be seen as a dual-oscillator cluster, see Fig. 7. The system is presented in [31]. The
inputs of the system are of dimension 5, including(k,M, θ, θ̇, y0). The output is of dimension 1, it is the maximum
along the axisy of the position of the massm in the first 10 s. We have two codes: (i) the high-fidelity code numerically
solves Newton’s equation and (ii) the low-fidelity code simplifies the equation, by linearization for small angles of
the pendulum motion, and solves the system. Our goal is to build a surrogate model of the high-fidelity code using
NL = 100andNH = 20, with maximin LHS sampling. The input parameters are the massM ∈ [10, 12], the spring
stiffnessk ∈ [1, 1.4], the initial angle of the pendulumθ0 ∈ [π/4, π/3], the initial derivativeθ̇0 ∈ [0, 1/10], and the
initial position of the massy0 ∈ [0, 0.2]. The fixed parameters arėy0 = 0, the gravitational accelerationg = 9.81,
the length of the penduluml = 2, and its massm = 0.5. The output is the maximum in time of the amplitude of the
massm. The error is computed on a test set, different for each learning set, of 64 samples uniformly distributed on
the input space. To evaluate each model, we use five independent learning and test sets.

The GP regression on low fidelity is performed without trend with a Matérn 5/2 as kernel, and the hyperparam-
eters are estimated with maximum likelihood, using [29]. TheQ2 [given in Eq. (29)] for the low-fidelity surrogate
model for the GP is 0.98. The model is efficient to predict the low-fidelity code output, but the prediction inter-
val is underevaluated with a coverage probability interval of 69% and mean predictive interval width of 0.041. The
BNN is defined with the number of neuronsNl = 30. The BNN is one hidden layer fully connected with Gaus-
sian priors for weights and bias, as described in Section 2.2. Therefore, the number of parameters in the BNN is
Nl × d + 2×Nl + 1 = 211. We estimate the posterior distribution of the weights and bias using the HMC algorithm
with NUTS. This relatively small number of parameters allows one to use Pyro’s NUTS algorithm (see [30]) with
standard parameters. The number of estimation samples for mean and prediction intervals isNv = 500. The high-
fidelity code output is model by GPBNN. A Gauss-Hermite sample sizeS = 5 is chosen according to the results of
Section 5.1.

The results are presented in Table 6. The prediction of the MBK method is not accurate compared to all the
other methods. We think this is due to the small data set regarding the dimension of the BNN’s input. However, the
uncertainty of prediction is still accurate even if the uncertainty interval is large compared to the other methods (i.e.,
the coverage probability is close to the target value). This result is very surprising for us in regard to the poor quality

FIG. 7: Illustration of the double pendulum

Volume 14, Issue 1, 2024

58 Kerleguer, Cannamela, & Garnier

TABLE 6: Comparison of the multi-fidelity methods on the pendulum
example viaQ2

T, CP80%, and MPIW80%

GP 1F AR(1) Deep GP MBK GPBNN
Q2

T 0.93 0.94 0.95 0.54 0.95
CP80% 0.81 0.78 0.62 0.88 0.80

MPIW80% 0.154 0.146 0.069 0.859 0.101

of the low-fidelity model, which has aQ2
l→l of 0.7. The Deep GP model shares the best predictive error with the

GPBNN. The single fidelity and the AR(1) models display slightly larger errors. The CP80% values are in the target
area for GP1F and AR(1), but they are associated with large prediction intervals. The Deep GP clearly underestimates
the uncertainty of its predictions. The CP80% value is good for the GPBNN and close to the target value. Moreover, the
uncertainty interval is the smallest of all methods. On this real-life example, the GPBNN is competitively compared
to other state-of-the-art methods.

6. CONCLUSION

Our main focus in this paper was to give the Gaussian process regression posterior distribution of a low-fidelity
model as input to a Bayesian neural network for multi-fidelity regression. Different methods are proposed and studied
to transfer the uncertain predictions of the low-fidelity emulator to the high-fidelity one, which is crucial to obtain
minimal predictive errors and accurate predictive uncertainty quantification. The Gauss-Hermite quadrature method
is shown to significantly improve the predictive properties of the BNN. The conducted experiments show that the
GPBNN method is able to process noisy and real-life problems. Moreover, the comparison to some state-of-the-art
methods for multi-fidelity surrogate model highlight the precision in prediction and in uncertainty quantification.

It is possible to extend the GPBNN method to a hierarchical multi-fidelity framework with more than two levels
of codes sorted by increasing accuracy. The natural approach is to consider the output of a low-fidelity metamodel
as an input to the next metamodel. The problem that arises from this naive extension is that the input sample size
increases from one metamodel to the other one. To solve this problem, two different methods can be considered. For
simplicity, let us consider the case of three code levels. The first method is to consider that the metamodel for the
lowest fidelity level carries no uncertainty. The low-fidelity metamodel prediction is then added to the low-fidelity
inputs of a GPBNN modeling the two highest fidelity code levels. The second method consists of approximating
the mid-fidelity output uncertainty of the BNN as Gaussian. This means modeling the system by one GP for the
low-fidelity level and two different BNNs for the other fidelity levels. It becomes possible, with the Gaussian approx-
imation, to use less expensive sampling methods, such as the Gauss-Hermite quadrature. Of course, other methods
could be considered to control the sample size. We also anticipate that the GPBNN method could be extended beyond
the hierarchical case of a sequence of simulators ranked from lowest to highest fidelity. Indeed, it should be possible
to deal with a general Markov case in which the different fidelity levels are connected via a directed acyclic graph
[32].

The interest of combining the regression method for multi-fidelity surrogate modeling is not to be proved, but
this paper adds the heterogeneity of models for multi-fidelity modeling. To be able to combine heterogeneous models
into one model and to consider the uncertainty between them is one of the keys to adapt the multi-fidelity surrogate
model to a real-life regression problem.

The number of elements in the learning set is not a problem any more, thanks to [3]. This approach could be used
for the GP part of the GPBNN. With more time in the training, the BNN part will be able to deal with many points,
even if this ability is less critical becauseNL À NH . Consequently, the GPBNN can be extended in order to tackle
larger data sets.

Existing autoregressive models and Deep GP can only be used for low-dimensional outputs. We wish to ex-
tend the method to high-dimensional outputs. Dimension reduction techniques have already been used as principal
component analysis or autoencoder, as well as tensorized covariance methods [31] that remain to be extended to the

International Journal for Uncertainty Quantification

Muti-Fidelity Surrogate Model with GP-BNN 59

multi-fidelity context. However, neural networks are known to adapt to high-dimensional outputs. We should further
investigate how to build multi-fidelity surrogate models with functional input/output in the context of small data. The
ability to construct models that are tractable for high-dimensional input and output is key for further research.

REFERENCES

1. Williams, C.K. and Rasmussen, C.E.,Gaussian Processes for Machine Learning, Cambridge, MA: MIT Press, 2006.

2. Santner, T.J., Williams, B.J., Notz, W., and Williams, B.J.,The Design and Analysis of Computer Experiments, New York,
NY: Springer, 2003.

3. Rullière, D., Durrande, N., Bachoc, F., and Chevalier, C., Nested Kriging Predictions for Datasets with a Large Number of
Observations,Stat. Comput., 28(4):849–867, 2018.

4. Kennedy, M. and O’Hagan, A., Predicting the Output from a Complex Computer Code when Fast Approximations Are Avail-
able,Biometrika, 87(1):1–13, 03 2000.

5. O’Hagan, A., A Markov Property for Covariance Structures,Stat. Res. Rep., 98(13):510, 1998.

6. Forrester, A.I., Śobester, A., and Keane, A.J., Multi-Fidelity Optimization via Surrogate Modelling,Proc. R. Soc. A,
463(2088):3251–3269, 2007.

7. Le Gratiet, L. and Garnier, J., Recursive Co-Kriging Model for Design of Computer Experiments with Multiple Levels of
Fidelity, Int. J. Uncertainty Quantif., 4(5):364–386, 2014.

8. Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N.D., and Karniadakis, G.E., Nonlinear Information Fusion Algorithms
for Data-Efficient Multi-Fidelity Modelling,Proc. R. Soc. A, 473(2198):20160751, 2017.

9. Cutajar, K., Pullin, M., Damianou, A., Lawrence, N., and González, J., Deep Gaussian Processes for Multi-Fidelity Modeling,
Stat. Mach. Learn., arXiv:1903.07320v1, 2019.

10. Song, J., Chen, Y., and Yue, Y., A General Framework for Multi-Fidelity Bayesian Optimization with Gaussian Processes,
Proc. of 22nd In. Conf. on Artificial Intelligence and Statistics, PMLR, Okinawa, Japan, pp. 3158–3167, 2019.

11. Pilania, G., Gubernatis, J.E., and Lookman, T., Multi-Fidelity Machine Learning Models for Accurate Bandgap Predictions
of Solids,Comput. Mater. Sci., 129:156–163, 2017.

12. Ng, L.W.T. and Eldred, M., Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochas-
tic Collocation, Proc. of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. 20th
AIAA/ASME/AHS Adaptive Structures Conf. 14th AIAA, Honolulu, HI, p. 1852, 2012.

13. Palar, P.S., Zuhal, L.R., Shimoyama, K., and Tsuchiya, T., Global Sensitivity Analysis via Multi-Fidelity Polynomial Chaos
Expansion,Reliab. Eng. Syst. Saf., 170:175–190, 2018.

14. Li, S., Xing, W., Kirby, R., and Zhe, S., Multi-Fidelity Bayesian Optimization via Deep Neural Networks, inAdvances in
Neural Information Processing Systems, Vol. 33, Curran Associates, Inc., pp. 8521–8531, 2020.

15. Meng, X. and Karniadakis, G.E., A Composite Neural Network That Learns from Multi-Fidelity Data: Application to Function
Approximation and Inverse PDE Problems,J. Comput. Phys., 401:109020, 2020.

16. Zhang, X., Xie, F., Ji, T., Zhu, Z., and Zheng, Y., Multi-Fidelity Deep Neural Network Surrogate Model for Aerodynamic
Shape Optimization,Comput. Methods Appl. Mech. Eng., 373:113485, 2021.

17. MacKay, D.J., A Practical Bayesian Framework for Backpropagation Networks,Neural Comput., 4(3):448–472, 1992.

18. Meng, X., Babaee, H., and Karniadakis, G.E., Multi-Fidelity Bayesian Neural Network: Algorithms and Applications,Com-
put. Sci. Mach. Learn., arXiv:2012.13294, 2020.

19. Kabir, H.M.D., Khosravi, A., Hosen, M.A., and Nahavandi, S., Neural Network-Based Uncertainty Quantification: A Survey
of Methodologies and Applications,IEEE Access, 6:36218–36234, 2018.

20. Cigizoglu, H.K. and Alp, M., Generalized Regression Neural Network in Modelling River Sediment Yield,Adv. Eng. Software,
37(2):63–68, 2006.

21. Tripathy, R.K. and Bilionis, I., Deep UQ: Learning Deep Neural Network Surrogate Models for High Dimensional Uncertainty
Quantification,J. Comput. Phys., 375:565–588, 2018.

22. Jospin, L.V., Buntine, W., Boussaid, F., Laga, H., and Bennamoun, M., Hands-On Bayesian Neural Networks—A Tutorial for
Deep Learning Users,Comput. Sci. Mach. Learn., arXiv:2007.06823, 2020.

Volume 14, Issue 1, 2024

60 Kerleguer, Cannamela, & Garnier

23. Hoffman, M.D. and Gelman, A., The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.,J.
Mach. Learn. Res., 15(1):1593–1623, 2014.

24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equation of State Calculations by Fast
Computing Machines,J. Chem. Phys., 21(6):1087–1091, 1953.

25. Robert, C.P.,The Bayesian Choice, New York: Springer, 2004.

26. Roberts, G.O., Gelman, A., and Gilks, W.R., Weak Convergence and Optimal Scaling of Random Walk Metropolis Algo-
rithms,Ann. Appl. Probab., 7(1):110–120, 1997.

27. Duane, S., Kennedy, A.D., Pendleton, B.J., and Roweth, D., Hybrid Monte Carlo,Phys. Lett. B, 195(2):216–222, 1987.

28. Gautschi, W.,Numerical Differentiation and Integration, New York: Springer, pp. 159–251, 2012.

29. GPy, GPy: A Gaussian Process Framework in Python, from http://github.com/SheffieldML/GPy, 2012.

30. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P.A., Horsfall, P., and
Goodman, N.D., Pyro: Deep Universal Probabilistic Programming,J. Mach. Learn. Res., 20(1):973–978, 2019.

31. Perrin, G., Adaptive Calibration of a Computer Code with Time-Series Output,Reliab. Eng. Syst. Safety, 196:106728, 2020.

32. Ji, Y., Mak, S., Soeder, D., Paquet, J., and Bass, S.A., A Graphical Multi-Fidelity Gaussian Process Model, with Application
to Emulation of Expensive Computer Simulations,Stat. Methodol., arXiv:2108.00306, 2021.

International Journal for Uncertainty Quantification

