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A PIECEWISE DETERMINISTIC MARKOV PROCESS APPROACH
MODELING A DRY FRICTION PROBLEM WITH NOISE*

JOSSELIN GARNIER\dagger , ZIYU LU\ddagger , AND LAURENT MERTZ\S 

Abstract. Understanding and predicting the dynamical properties of systems involving dry
friction is a major concern in physics and engineering. It abounds in many mechanical processes, from
the sound produced by a violin to the screeching of chalk on a blackboard to human infant crawling
dynamics and friction-based locomotion of a multitude of living organisms (snakes, bacteria, scallops)
to the displacement of mechanical structures (building, bridges, nuclear plants, massive industrial
infrastructures) under earthquakes and beyond. Surprisingly, even for low-dimensional systems, the
modeling of dry friction in the presence of random forcing has not been elucidated. In this paper,
we propose a piecewise deterministic Markov process approach modeling a system with dry friction
including different coefficients for the static and dynamic forces. In this mathematical framework, we
derive the corresponding Kolmogorov equations to compute statistical quantities of interest related
to the distributions of the static (sticked) and dynamic phases. We show ergodicity and provide a
representation formula of the stationary measure using independent identically distributed portions of
the trajectory (excursions). We also obtain deterministic characterizations of the Laplace transforms
of the probability density functions of the durations of the static and dynamic phases. In particular,
the analysis of the power spectral density of the velocity reveals a critical value of the noise correlation
time below which the correlations of the dynamic behaviors coincide with those of the white noise
limit. The existence of such a critical value was already mentioned in the physical literature [Geffert
and Just, Phys. Rev. E, 95 (2017), 062111].
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1. Introduction. Modeling dry friction is a major concern in physics and en-
gineering. Indeed, it is estimated that 20\% of the world's total energy consumption
is used to overcome friction [24]. The present work is motivated by the study of the
probability distribution of the response of a dry friction model subjected to a certain
type of random forces. To understand the problem, the simplest way is to consider the
one-dimensional displacement U of an object (with unit mass) lying on a motionless
surface; see Figure 1.1. The velocity is denoted by V , and thus \.U = V . Newton's law
implies \.V + \BbbF = b, where \BbbF is the force of dry friction and b represents all the other
external and internal forces. It is important to emphasize that the force \BbbF cannot be
expressed in terms of a standard function. Below a certain threshold for the applied
forces | b| \leq \mu s and when V = 0, the object remains at rest so that we may have V = 0
in a nonempty time interval (static phase). Otherwise when | b| >\mu s or V \not = 0 it moves
(dynamic phase). Here \mu s > 0 is called static friction coefficient. In static phase, a
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DRY FRICTION PROBLEM WITH NOISE 1393

Fig. 1.1. Dynamic (left) and static (right) phases. \BbbF represents the friction force in response
to the applied forces b to the object (shaded area) lying on a motionless surface (dotted line).

necessary condition for equilibrium is therefore \BbbF = b. In dynamic phase, the force
\BbbF opposes the motion, and Coulomb's law implies | \BbbF | = \mu d, where \mu d > 0 is called
dynamic friction coefficient. We will assume that b has the form of an internal forcing
described by a well-behaved function b(X,V ), where X is an external forcing that can
be random. Here b is real valued, but its domain is \BbbR d+1, d \geq 1. Indeed X can be
multivariate, for instance a d-dimensional Ornstein--Uhlenbeck process (see examples
in the third section of [15]). In this way, the equation of motion becomes

(1.1) \.V + \BbbF = b(X,V ).

The predictive power of dry friction models that appear in the engineering or physics
literature is generally not supported by a mathematical analysis justifying the well-
posedness of the models. Surprisingly, there is no general mathematical framework
for modeling dry friction where \mu d \leq \mu s.

Nonetheless, in some cases, it is possible to justify the well-posedness of the
model with an ad hoc mathematical analysis. We have in mind the case where
\mu d = \mu s = \mu (in this case we drop the subscript notation ``s"" or ``d"") and X is
a real-valued deterministic continuous function or X is the continuous solution of a
one-dimensional stochastic differential equation. Under such circumstances, the model
is well-posed in terms of a differential inclusion (also called multivalued differential
equation) [9, 30, 35] as follows

(1.2) \.V + \partial \varphi (V )\ni b(X,V ),

where b(x, v) = b(v) + x, b(v) is a Lipschitz function, \varphi (v) = \mu | v| , and \partial \varphi (v) is the
subdifferential operator (in the sense of Moreau and Rockafellar [23, 31, 33])

(1.3) \partial \varphi (v) =

\biggl\{ 
\{ \mu sign(v)\} if v \not = 0,
[ - \mu ,\mu ] if v= 0.

When X = \.W is a white noise (formal time derivative of a real-valued Wiener process
W ) the framework of stochastic differential inclusions can be used to define the so-
lution [32]. Numerical techniques to simulate such dry friction systems are proposed
in [1, 7, 12]. Moreover, we also have in mind the case where \mu d < \mu s and X is a
continuous function for which the framework of differential inclusions does not allow
us to formulate a well-posed problem [2], but an extended variational inequality (EVI)
approach can then be used to resolve this issue [5].

1.1. Review of related literature oriented toward applications. A model
similar to (1.1) is studied in [34] where the forcing is deterministic and harmonic (sinu-
soidal external force). The author proposes an exact solution for the dynamic phase.
As mentioned by the author, this type of model can be used to describe beating-type
motions which may occur in turbine blades in the presence of aerodynamical forces.
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1394 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

In [5], the EVI framework is rather general as it covers a Lipschitz drift with (at most)
linear growth and any continuous in time forcing. In particular, it covers [34]. The
theory is applied to a real structure with real data where the objective is to estimate
both the static and dynamic friction coefficients associated with a single bearing point
of a bridge. The references below discuss models where static friction and dynamic
friction coefficients are identical. A slight extension of (1.1) can be used for modeling
biolocomotion strategies which are of practical interest in robotics (biomimetism). In
[36], the authors consider a system consisting of two bodies at rest on a flat surface
and joined by a controllable linkage. The forces are described by Coulomb friction.
They demonstrate that friction-based locomotion with one degree of freedom is pos-
sible. The references below are relevant to soft matter physics, and, in contrast with
the references above, they involve random forces. In [21], the authors investigate ex-
perimentally and by simulation the behavior of small objects on a surface subjected
to noise and gravity bias. The object velocity is modeled by the same equation as
(1.2) except that X is replaced by a noise of the form

\surd 
K \.W +\=\gamma , K > 0, \=\gamma \in \BbbR . Their

main results are the following. They show experimentally and by simulation that
the variance of the object displacement grows linearly with time (here the slope is
called diffusivity) and the stationary average drift velocity can be fitted with a single
master curve \sim \alpha (1 + \beta /K) - 1 for some \alpha ,\beta > 0 covering any angle of inclination of
the support. Moreover, their experimental study reveals that the diffusivity scales as
\sim K1.61 which is not too far off from their simulation predicting a scaling \sim K1.74. In
[3], the authors propose a path integral approach to derive analytical expressions for
the transition probability of the object's velocity and the stationary distribution of
the work done on the object due to the external force (white noise). From the latter
distribution, they obtain a fluctuation relation for the mechanical work fluctuations.
In [20], the authors investigate experimentally the stochastic behavior of a small solid
object on a solid support subject to nonlinear friction when the forces are a combina-
tion of a Gaussian white noise and an external constant bias related to gravity. The
two models in their paper are written in terms of nonsmooth Langevin equations.
Both equations can be mathematically formulated using differential inclusions. The
first equation has the same structure as (1.2). However, the difference resides in the
random force which is essentially the time derivative of a drifted Brownian motion.
Nonetheless, such a dynamics can be obtained from our model when the relaxation
time goes to zero. Their second equation can be formulated using a differential inclu-
sion with an oblique subgradient [32]. Inspired by their previous works, they further
explore experimentally how rolling of a sphere is affected by Coulomb friction and
noise in [22]. They propose a model which is similar to (1.2). The main difference
is that the dry friction force is multiplied by a term depending on the noise strength
and the velocity. This multiplicative factor models the transition from nonlinear to
linear friction. In [28], the formal Fokker--Planck equation for both velocity and dis-
placement has been studied. Details on the analysis of the corresponding spectra
are reported. In [4], the formal Fokker--Planck equation for the velocity has been
studied. In [19], the authors propose a minimal model for a motor where energy is
extracted from an equilibrium bath and dissipated only through Coulomb friction.
Their model consists of a wheel rotating with an angular velocity around a fixed axis.
The wheel is immersed in a fluid and is subject to collision with molecules, viscous
drag, and Coulomb friction torque. The equation of motion has the same dimension
and structure as (1.2). The random force is a ``kick"" noise which can be seen as the
time derivative of a Markov jump process. In [17], the closest reference to our present
work, the authors consider the case of pure dry friction (1.2) with \mu d = \mu s = 1 and
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DRY FRICTION PROBLEM WITH NOISE 1395

b(x, v) = x and replace the term \partial \varphi (v) by a smoother term \sigma \epsilon (v) = tanh(v/\epsilon ). In this
way, they investigate the equation \.V + \sigma \epsilon (V ) = X, where X is a Gaussian process

with mean zero and covariance function \BbbE [X(t)X(s)] = 1
2\tau exp( - 

| t - s| 
\tau ). Then, they

apply the unified colored noise approximation (UCNA), previously developed by Jung
and H\"anggi [25], to obtain an approximate expression of the stationary probability
density function (pdf) of the process V for any fixed \epsilon > 0. They then take a formal
limit as \epsilon \rightarrow 0 to obtain a formula for the probability of sticking (the mass of the
singular part of the pdf at V = 0). This analytic approximation works rather well
for small values of \tau but fails for values of order one. It provides, however, valuable
insights into the underlying stochastic dynamics. The approach that we propose in
this paper is different and has more rigorous theoretical foundations.

1.2. Our contribution: A piecewise deterministic Markov process ap-
proach. In this paper, we propose a piecewise deterministic Markov process (PDMP)
approach to model dry friction as informally presented in (1.1). We consider the case
where X takes real values; for higher dimensions the idea remains the same but it is
not discussed in this manuscript. In this approach (1) the external forcing X takes
discrete values and it is assumed to be a Markov jump process; (2) given the stepwise
constant trajectory X, the velocity V satisfies (1.1). In this way, the process satisfies
a well-posed problem. In this regard, we obtain a solid mathematical framework for
deriving the Kolmogorov equations, shown in section 2, and related tools to compute
statistical quantities of interest.

In the case where \mu d = \mu s = \mu , we show in Proposition 2.1 that the aforementioned
process converges in distribution towards the solution of the differential inclusion (1.2)
driven by the continuous solution of a stochastic differential equation as the step size
in X goes to 0.

The introduction of the PDMP framework makes it possible to obtain relevant re-
sults about the dry friction problem with noise. We obtain the general representation
formulas (3.17) and (4.1) for the stationary distribution of the dry friction process.
The first one makes it possible to compute relevant quantities by solving Kolmogorov
equations, while the second one makes it possible to estimate the same quantities by
an efficient Monte Carlo method. We compute dynamical properties in section 4, such
as the power spectral density of the velocity and the distributions of the durations of
the sticking and sliding periods.

2. A semidiscrete Markov process approach model for dry friction.
Ideally we would like to consider an external forcing that is a colored noise Xt, that
is itself a solution of a stochastic differential equation

(2.1) \.X = - \tau  - 1X +
\surd 
2\tau  - 1 \.W,

where \.Wt is a white noise and \tau > 0 is the noise correlation time. The infinitesimal
generator Q of the continuous Markov process Xt has the form

(2.2) \forall f twice differentiable function, Qf = \tau  - 2f \prime \prime  - \tau  - 1xf \prime .

The process Xt is stationary and ergodic, and its invariant probability distribution is
the normal distribution with density g(x) =

\surd 
\tau e - \tau x2/2/

\surd 
2\pi . As \tau \rightarrow 0, X behaves

like
\surd 
2 \.W .

In this section, we propose an approximation of X by a pure jump process X\delta ,
where \delta > 0 is a small number. The state space of X\delta is denoted by S\delta = \delta \BbbZ \cap 
[ - L\delta 

X ,L
\delta 
X ], with L\delta 

X \rightarrow +\infty and \delta L\delta 
X \rightarrow 0 as \delta \rightarrow 0. Thus, for any \delta > 0, it is a finite

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1396 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

Fig. 2.1. Moving directions of (X\delta , V \delta ) when xN > \mu s > \mu d and b(v) =  - v (so that vmax =
xN  - \mu d). Dynamic phase: Away from the black points \{ (xi,0), i =  - k\mu s , . . . , k\mu s\} , (X\delta , V \delta ) can
move continuously upward and downward, respectively, and by jumps along the x-axis. Static phase:
At the black points \{ (xi,0), i= - k\mu s , . . . , k\mu s\} , (X\delta , V \delta ) moves only by jumps along the x-axis.

set of equally \delta -spaced points denoted by \{ x - N , . . . , xN\} with x\pm N = \pm \delta [L\delta 
X\delta 

 - 1].
We denote the cardinality of S\delta by 2N + 1, N = [L\delta 

X\delta 
 - 1]. We denote by k\mu \mathrm{s}

the
index such that xk\mu \mathrm{s}

\leq \mu s and xk\mu \mathrm{s}+1 > \mu s. We also have \{ xi, | i| \leq k\mu \mathrm{s}\} \subset [ - \mu s, \mu s],
and if | i| > k\mu \mathrm{s} , then | xi| > \mu s. The process X\delta is a jump Markov process with the
infinitesimal generator

(2.3) Q\delta f(x) = 2\tau  - 2\delta  - 2 (\alpha (x)f(x+ \delta ) - f(x) + (1 - \alpha (x))f(x - \delta )) ,

where (assuming \tau \delta L\delta 
X < 2)

(2.4) \alpha (x) =

\left\{   
1
2

\bigl( 
1 - \tau \delta x

2

\bigr) 
if | x| <N\delta ,

0 if x=N\delta ,
1 if x= - N\delta .

In this context, replacing Xt by X
\delta 
t , the pure (i.e., when \mu s = \mu d = \mu and \varphi (v) = \mu | v| )

dry friction model is replaced by

(2.5) \.V \delta + \partial \varphi (V \delta )\ni X\delta + b(V \delta ),

where b(v) is a Lipschitz function. A motion illustration is shown in Figure 2.1.
It is worth mentioning that (2.5) does not cover the case \mu s > \mu d. In the latter,

the formulation of the dynamics does not involve any subdifferential operator. See
Remark 2.2.

The process (X\delta 
t , V

\delta 
t ) is well defined as a c\`adl\`ag (right continuous with left limits

[8]) process on S\delta \times \BbbR . It is also possible to interpret the semidiscrete Markov process
(X\delta 

t , V
\delta 
t ) in terms of a PDMP, and this is the main idea of this paper. The theory

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DRY FRICTION PROBLEM WITH NOISE 1397

developed for PDMPs then makes it possible to write Kolmogorov equations and
use dedicated tools and results. We introduce the process \bfitZ \delta 

t = (X\delta 
t , Y

\delta 
t , V

\delta 
t ), where

(X\delta 
t , V

\delta 
t ) is the process defined here above by (2.3)--(2.5) and we have added the

marker Y \delta 
t =\Theta (X\delta 

t , V
\delta 
t ), with

(2.6) \Theta (x, v) =

\left\{   1 if v > 0 or if v= 0, x+ b(0)>\mu s,
 - 1 if v < 0 or if v= 0, x+ b(0)< - \mu s,
0 if v= 0, x+ b(0)\in [ - \mu s, \mu s].

Then (X\delta 
t , Y

\delta 
t ) is a jump Markov process which takes values in the finite space S\delta \times 

\{  - 1,0,1\} and which has c\`adl\`ag trajectories, V \delta 
t is a real-valued continuous process,

and (X\delta 
t , Y

\delta 
t , V

\delta 
t ) is a Markov process, more exactly a PDMP, whose infinitesimal

generator is given below. The introduction of the marker Y \delta 
t makes it possible to

adopt the formalism of PDMPs, with smooth flows for the continuous process V \delta 
t and

jumps of the mode (X\delta 
t , Y

\delta 
t ) that occur at random times (when X\delta 

t jumps) and at
deterministic times when the process hits the boundaries of the state space described
below (when V \delta 

t reaches 0 the dynamics for V \delta 
t changes).

When \mu d = \mu s = \mu we can establish the connection between this semidiscrete
Markov process and the continuous process solution of (2.1)--(1.2). Such a result in
the case \mu s > \mu d is beyond the scope of this paper as the limit system is not clear in
this case.

Proposition 2.1. If \mu d = \mu s = \mu and b is Lipschitz, then the random processes
(X\delta 

t , V
\delta 
t ) converge in distribution in the space of the c\`adl\`ag functions to the Markov

process (Xt, Vt) which is solution of (2.1)--(1.2).

Proof. This proposition can be proved in two steps: one first shows that (X\delta 
t )

converges to (Xt) as \delta \rightarrow 0 by standard diffusion approximation theory, and then one
shows that the mapping from (X\delta 

t ) to (V \delta 
t ) through (2.5) is continuous. The detailed

proof is in Appendix A.

Remark 2.2. An essential ingredient of the proof is the continuity of the mapping
X\delta \rightarrow V \delta through (2.5). When \mu d <\mu s, the way to define the mapping does not rely
on a monotone maximal multivalued operator [9] (replacing \partial \varphi ). Such a mapping
can be defined using an EVI approach [5]; however, it is not continuous in general
(shown below). This explains why convergence of the system holds only for \mu d = \mu s.
In the EVI framework, for any continuous function x(\cdot ), the mapping produces a
function v(\cdot ) for which the phases \.v \pm \mu dsign(v) = x+ b(v) and | x+ b(0)| \leq \mu s occur
when \pm v > 0 and v = 0, respectively, on nonempty time intervals. To see that
such a mapping x \mapsto \rightarrow v(x) is not continuous in general, we consider, for instance,
b(v) = 0 and v(0) = 0. If \forall t \geq 0, x(t) = \mu s, then \forall t \geq 0, v(t) = 0, whereas if
\forall t \geq 0, x\epsilon (t) = \mu s + (\epsilon  - t)1t\in [0,\epsilon ], then \forall t \geq 0, v\epsilon (t) = (\mu s  - \mu d)t+ \epsilon (\epsilon \wedge t)

\bigl( 
1 - t\wedge \epsilon 

2

\bigr) 
.

Therefore it is clear that lim
\epsilon \rightarrow 0

\| x - x\epsilon \| = 0 but lim
\epsilon \rightarrow 0

\| v  - v\epsilon \| = (\mu s  - \mu d)T , where \| \cdot \| 
is the max norm on [0, T ].

The state space of the process \bfitZ \delta is

(2.7) E =
\bigcup 

(x,y)\in \BbbS \delta 
Ex,y, Ex,y = \{ (x, y)\} \times Hx,y,

where \BbbS \delta = \{ x - N , . . . , x - k\mu \mathrm{s} - 1\} \times \{  - 1,1\} \cup \{ x - k\mu \mathrm{s}
, . . . , xk\mu \mathrm{s}

\} \times \{  - 1,0,1\} \cup 
\{ xk\mu \mathrm{s}+1, . . . , xN\} \times \{  - 1,1\} , Hx,y = ( - \infty ,0) if (x, y) \in \{ x - k\mu \mathrm{s}

, . . . , xN\} \times \{  - 1\} , Hx,y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1398 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

= (0,+\infty ) if (x, y) \in \{ x - N , . . . , xk\mu \mathrm{s}
\} \times \{ 1\} , and Hx,y = \BbbR otherwise. Let \scrE denote

the class of measurable sets in E:

(2.8) \scrE = \sigma 
\bigl( 
Ax,y, Ax,y \in \scrE x,y, (x, y)\in \BbbS \delta 

\bigr) 
,

where \scrE x,y denotes the Borel sets of Ex,y.
The Markov evolution of \bfitZ \delta is determined by the following objects:
1) the real-valued and smooth functions B(\bfitz ), \bfitz = (x, y, v), are given by

(2.9)
B(x, - 1, v) = \mu d + x+ b(v), B(x,0, v) = 0, B(x,1, v) = - \mu d + x+ b(v),

2) the function v \mapsto \rightarrow b(v) is Lipschitz continuous and satisfies b( - v) = - b(v) (in
particular b(0) = 0), the function v \in [0,+\infty ) \mapsto \rightarrow b(v) is decreasing from 0 to
 - \infty (we may think for instance that b(v) = - v),

3) the constant rate function is \Lambda = 2\tau  - 2\delta  - 2,
4) the probability transition measure \scrQ : \scrE \times E \rightarrow [0,1] is discrete because V \delta 

does not jump: \scrQ f(x, y, v) =
\sum 

(x\prime ,y\prime )\in \BbbS \delta \scrQ ((x\prime , y\prime , v); (x, y, v))f(x\prime , y\prime , v), and
it is given by

\forall y \in \{  - 1,1\} , \forall x\in \{ x - N , . . . , x - k\mu \mathrm{s} - 1\} , \scrQ 
\bigl( 
(x, - 1,0); (x, y,0)) = 1,(2.10a)

\forall y \in \{  - 1,1\} , \forall x\in \{ xk\mu \mathrm{s}+1, . . . , xN\} , \scrQ 
\bigl( 
(x,1,0); (x, y,0)) = 1,(2.10b)

\forall y \in \{  - 1,1\} , \forall x\in \{ x - k\mu \mathrm{s}
, . . . , xk\mu \mathrm{s}

\} , \scrQ 
\bigl( 
(x,0,0); (x, y,0)) = 1,(2.10c)

\forall x\in \{ x - k\mu \mathrm{s}+1, . . . , xk\mu \mathrm{s} - 1\} , \scrQ 
\bigl( 
(x+ \delta ,0,0); (x,0,0)) = \alpha (x),(2.10d)

\forall x\in \{ x - k\mu \mathrm{s}+1, . . . , xk\mu \mathrm{s} - 1\} , \scrQ 
\bigl( 
(x - \delta ,0,0); (x,0,0)) = 1 - \alpha (x),(2.10e)

\scrQ 
\bigl( 
(x - k\mu \mathrm{s}+1,0,0); (x - k\mu \mathrm{s}

,0,0)) = \alpha (x - k\mu \mathrm{s}
),(2.10f)

\scrQ 
\bigl( 
(xk\mu \mathrm{s} - 1,0,0); (xk\mu \mathrm{s}

,0,0)) = 1 - \alpha (xk\mu \mathrm{s}
),(2.10g)

\scrQ 
\bigl( 
(x - k\mu \mathrm{s} - 1, - 1,0); (x - k\mu \mathrm{s}

,0,0)) = 1 - \alpha (x - k\mu \mathrm{s}
),(2.10h)

\scrQ 
\bigl( 
(xk\mu \mathrm{s}+1,1,0); (xk\mu \mathrm{s}

,0,0)) = \alpha (xk\mu \mathrm{s}
),(2.10i)

\forall (x, y, v)\in E, v \not = 0, \scrQ 
\bigl( 
(x+ \delta , y, v); (x, y, v)) = \alpha (x),(2.10j)

\forall (x, y, v)\in E, v \not = 0, \scrQ 
\bigl( 
(x - \delta , y, v); (x, y, v)) = 1 - \alpha (x).(2.10k)

In (2.10) the first three lines (a-c) describe the jumps of the modes when the
process \bfitZ \delta reaches the boundaries of the domain \partial E:

(2.11) \partial E = \{ x - k\mu \mathrm{s}
, . . . , xN\} \times \{  - 1\} \times \{ 0\} 

\bigcup 
\{ x - N , . . . , xk\mu \mathrm{s}

\} \times \{ 1\} \times \{ 0\} .

When the process \bfitZ \delta reaches (xk, - 1,0) for k \in \{ k\mu \mathrm{s}
+1, . . . ,N\} , it jumps to (xk,1,0).

When the process \bfitZ \delta reaches (xk, - 1,0) for k \in \{  - k\mu \mathrm{s}
, . . . , k\mu \mathrm{s}

\} , it jumps to (xk,0,0).
These jumps represent the transitions from the dynamic phase with negative velocity
(mode y =  - 1) to the dynamic phase with positive velocity (mode y = 1) and to
the static phase (mode y = 0). Similarly, when the process \bfitZ \delta reaches (xk,1,0) for
k \in \{  - N, . . . , - k\mu \mathrm{s} - 1\} , it jumps to (xk, - 1,0). When the process \bfitZ \delta reaches (xk,1,0)
for k \in \{  - k\mu \mathrm{s} , . . . , k\mu \mathrm{s}\} , it jumps to (xk,0,0). These jumps represent the transitions
from the dynamic phase with positive velocity (mode y = 1) to the dynamic phase
with negative velocity (mode y= - 1) and to the static phase (mode y= 0).

The following lines (d-k) describe the jumps of the modes that are triggered
by the random clock of the driving noise X\delta 

t . The lines (d-g) describe the jumps from
the static phase to itself, the lines (h-i) describe the jumps from the static phase to
the dynamic phase, and the lines (j-k) describe the jumps from the dynamic phase
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DRY FRICTION PROBLEM WITH NOISE 1399

to itself. Note in particular that lines (h-i) describe how the process at the border of
the static domain at (x\pm k\mu \mathrm{s}

,0,0) can escape the static domain by a jump of X\delta 
t which

allows the process to pull itself out of the sticked phase.
We denote vmax = inf\{ v \geq 0, b(v) + xN  - \mu d \leq 0\} . We denote by \Phi x,y(t, v) the

flow solution of

(2.12) \partial t\Phi x,y(t, v) =B(x, y,\Phi x,y(t, v)), \Phi x,y(t= 0, v) = v.

For \bfitz = (x, y, v) \in E, we denote by T \ast (\bfitz ) the hitting time of the boundary \partial Hx,y by
\Phi x,y(t, v). If Hx,y = \BbbR , then T \ast (\bfitz ) = +\infty ; otherwise, \partial Hx,y = \{ 0\} , and this happens
only if \bfitz \in \{ x - k\mu \mathrm{s}

, . . . , xN\} \times \{  - 1\} \times ( - \infty ,0)\cup \{ x - N , . . . , xk\mu \mathrm{s}
\} \times \{ 1\} \times (0,+\infty ). For

such a \bfitz :

(2.13) T \ast (\bfitz ) = inf
\bigl\{ 
t > 0,\Phi x,y(t, v) = 0

\bigr\} 
,

with the convention inf \emptyset =+\infty . If b(v) = - v, then the flow \Phi x,y(t, v) has an explicit
expression, and we have

T \ast (\bfitz ) =

\left\{   
 - log x - \mu \mathrm{d}

x - \mu \mathrm{d} - v if v > 0, x - \mu d < 0,

 - log x+\mu \mathrm{d}

x+\mu \mathrm{d} - v if v < 0, x+ \mu d > 0,

+\infty , otherwise.

For any \bfitz \in E, we define the survivor function F\bfitz :

(2.14) F\bfitz (t) = 1( - \infty ,0)(t) + exp( - \Lambda t)1[0,T\ast (\bfitz ))(t).

The Markov process \bfitZ \delta starting from \bfitz 0 = (x0, y0, v0)\in E is defined as follows.
(1) Generate a random variable T1 such that \BbbP (T1 > t) = F\bfitz 0

(t). Generate a random
variable \bfitz 1 = (x1, y1, v1) with distribution \scrQ (\cdot ;x0, y0,\Phi x0,y0

(T1, v0)). The trajectory
of \bfitZ \delta 

t for t\in [0, T1] is given by

(2.15) \bfitZ \delta 
t =

\biggl\{ 
(x0, y0,\Phi x0,y0

(t, v0)) if 0\leq t < T1,
(x1, y1, v1) if t= T1.

(2) Starting from \bfitZ \delta 
T1

= \bfitz 1, generate the next interjump time T2  - T1 such that
\BbbP (T2  - T1 > t) = F\bfitz 1

(t) and the postjump location \bfitz 2 = (x2, y2, v2) has distribution
\scrQ (\cdot ;x1, y1,\Phi x1,y1(T2  - T1, v1)). The trajectory of \bfitZ \delta 

t for t\in [T1, T2] is given by

(2.16) \bfitZ \delta 
t =

\biggl\{ 
(x1, y1,\Phi x1,y1

(t - T1, v1)) if T1 \leq t < T2,
(x2, y2, v2) if t= T2.

(3) Iterate. This gives a piecewise deterministic trajectory \bfitZ \delta 
t with jump times Tj ,

j \geqslant 1.
The process \bfitZ \delta 

t = (X\delta 
t , Y

\delta 
t , V

\delta 
t ) is a PDMP as introduced by [10] and (X\delta 

t , V
\delta 
t )

follows the random dynamics (2.3)--(2.5), only when \mu s = \mu d. We can then use the
theory and simulation methods developed for PDMPs described in [10, 11]. Two
pseudocodes summarizing the simulation method are shown in Algorithm 1 and 2.

The Markov process \bfitZ \delta 
t is irreducible on E\prime , with

(2.17)

E\prime = S\delta \times \{  - 1\} \times [ - vmax,0]
\bigcup 
S\delta \times \{ 1\} \times [0,+vmax]

\bigcup 
\{ x - k\mu \mathrm{s}

, . . . , xk\mu \mathrm{s}
\} \times \{ 0\} \times \{ 0\} .

More exactly, starting from any (x, y, v) \in E, the Markov process \bfitZ \delta 
t reaches E\prime in

finite time, and it remains in E\prime after that time.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

6/
23

 to
 1

69
.2

34
.1

4.
12

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1400 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

Algorithm 1 PDMP simulation for dry friction.

Algorithm 2 Simulation of a jump from (x, y, v)

The domain of the generator \scrL of the process \bfitZ \delta 
t contains the functions f that

are smooth and bounded in v and that satisfy the boundary condition:

(2.18) \forall \bfitz = (x, y, v)\in \partial E, f(\bfitz ) =
\sum 

(x\prime ,y\prime )\in \BbbS \delta 
f(x\prime , y\prime , v)\scrQ ((x\prime , y\prime , v);\bfitz ).

For those functions we have [10, Theorem 5.5]

\scrL f(\bfitz ) =B(\bfitz )\partial vf(\bfitz ) + \Lambda 
\sum 

(x\prime ,y\prime )\in \BbbS \delta 
[f(x\prime , y\prime , v) - f(\bfitz )]\scrQ ((x\prime , y\prime , v);\bfitz ).(2.19)

More exactly, the domain of the generator consists of the functions f that satisfy the
continuity condition: for all \bfitz = (x, y, v)\in E,

t \mapsto \rightarrow f(x, y,\Phi x,y(t, v)) is absolutely continuous for t\in [0, T \ast (\bfitz )),

an integrability condition (fulfilled when f is bounded), and the boundary condi-
tion (2.18) [10, Theorem 5.5]. The boundary condition (2.18) can be written more
explicitly as

(2.20)

\biggl\{ 
f(x, - 1,0) = f(x,0,0) = f(x,1,0) \forall x\in \{ x - k\mu \mathrm{s}

, . . . , xk\mu \mathrm{s}
\} ,

f(x, - 1,0) = f(x,1,0) \forall x\in \{ x - N , . . . , x - k\mu \mathrm{s} - 1\} \cup \{ xk\mu \mathrm{s}+1, . . . , xN\} .

As a consequence, for a smooth and bounded function f(\bfitz ) that satisfies (2.20),
we have

(2.21) \BbbE [f(\bfitZ \delta 
t )| \bfitZ 

\delta 
0 = \bfitz ] = F (0,\bfitz ; t),
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DRY FRICTION PROBLEM WITH NOISE 1401

where (s,\bfitz ) \mapsto \rightarrow F (s,\bfitz ; t) is the solution of the backward Kolmogorov equation

(2.22) \partial sF +\scrL F = 0 inE for s\in (0, t),

with the boundary condition (2.18) on \partial E for s \in (0, t), and the terminal condition
F (s= t,\bfitz ; t) = f(\bfitz ).

3. Ergodicity and stationary state. Given f a function in the domain of \scrL ,
we consider the function

(3.1) u\lambda (x, y, v;f) =\BbbE (x,y,v)

\Bigl[ \int \infty 

0

e - \lambda sf(X\delta 
s , Y

\delta 
s , V

\delta 
s )ds

\Bigr] 
.

From the theory of Markov processes [10, 14], it satisfies the equation

(3.2) \lambda u\lambda  - \scrL u\lambda = f in E.

Let us introduce the stopping times

\^\tau n = inf
\bigl\{ 
t\geq \tau n - 1, V

\delta 
t = 0 and | X\delta 

t | \leq \mu s

\bigr\} 
, n\geq 1,(3.3)

\tau n = inf
\bigl\{ 
t\geq \^\tau n, (X

\delta 
t , Y

\delta 
t , V

\delta 
t )\in \{ s - , s+\} 

\bigr\} 
, n\geq 1,(3.4)

where s\pm = (\pm xk\mu \mathrm{s}+1,\pm 1,0) and \tau 0 = 0. The two points s\pm are the two possible
exit points of the static phase. For n \geq 1, the stopping times \^\tau n and \tau n represent,
respectively, the entry and exit times of the nth static phases which are defined as
the time intervals when (X\delta 

t , Y
\delta 
t , V

\delta 
t ) \in D0, D0 = \{ (xk,0,0), k =  - k\mu \mathrm{s}

, . . . , k\mu \mathrm{s}
\} . The

recurrence and ergodicity of the Markov process is a consequence of the following
proposition (see Appendix B for the proof).

Proposition 3.1. We have \BbbE s+ [\tau 1]<\infty .

We propose below a representation formula for the stationary measure of the
process (X\delta 

t , Y
\delta 
t , V

\delta 
t ) that is based on the functions h\pm \lambda and w\lambda that are defined by

h\pm \lambda (x, y, v) =\BbbE (x,y,v)

\bigl[ 
e - \lambda \tau 11\{ (X\delta 

\tau 1
,Y \delta 

\tau 1
,V \delta 

\tau 1
)=s\pm \} 

\bigr] 
,(3.5)

w\lambda (x, y, v;f) =\BbbE (x,y,v)

\biggl[ \int \tau 1

0

e - \lambda sf(X\delta 
s , Y

\delta 
s , V

\delta 
s )ds

\biggr] 
,(3.6)

where f is a bounded function. The functions h\pm \lambda and w\lambda can be computed as ex-
plained in the following proposition.

Proposition 3.2. Let us introduce two absorbing states s\prime \pm and a modified kernel
\scrL \prime such that

(3.7) \scrL \prime f(\bfitz ) =B(\bfitz )\partial vf(\bfitz ) + \Lambda 
\sum 

(x\prime ,y\prime )\in \BbbS \delta 
[f(x\prime , y\prime , v) - f(\bfitz )]\scrQ ((x\prime , y\prime , v);\bfitz )

for all \bfitz \in E\setminus \{ (x - k\mu \mathrm{s}
,0,0), (xk\mu \mathrm{s}

,0,0)\} , \scrL \prime f(s\prime \pm ) = 0, and

\scrL \prime f
\bigl( 
(xk\mu s

,0,0)
\bigr) 
= \alpha (xk\mu s

)
\bigl[ 
f(s\prime +) - f

\bigl( 
(xk\mu s

,0,0)
\bigr) \bigr] 

+
\bigl( 
1 - \alpha (xk\mu s

)
\bigr) \bigl[ 
f
\bigl( 
(xk\mu s - 1,0,0)

\bigr) 
 - f
\bigl( 
(xk\mu s

,0,0)
\bigr) \bigr] 
,(3.8)

\scrL \prime f
\bigl( 
(x - k\mu s

,0,0)
\bigr) 
= \alpha (x - k\mu s

)
\bigl[ 
f
\bigl( 
(x - k\mu s+1,0,0)

\bigr) 
 - f
\bigl( 
(x - k\mu s

,0,0)
\bigr) \bigr] 

+
\bigl( 
1 - \alpha (x - k\mu s

)
\bigr) \bigl[ 
f(s\prime  - ) - f

\bigl( 
(x - k\mu s

,0,0)
\bigr) \bigr] 
.(3.9)
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1402 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

The functions h\pm \lambda and w\lambda (\cdot ;f) defined by (3.5) and (3.6) satisfy

\lambda h+\lambda  - \scrL \prime h+\lambda = 0 in E, h+\lambda (s
\prime 
+) = 1, h+\lambda (s

\prime 
 - ) = 0,(3.10)

\lambda h - \lambda  - \scrL \prime h - \lambda = 0 in E, h - \lambda (s
\prime 
+) = 0, h - \lambda (s

\prime 
 - ) = 1,(3.11)

and

(3.12) \lambda w\lambda (\cdot ;f) - \scrL \prime w\lambda (\cdot ;f) = f in E, w\lambda (s
\prime 
\pm ;f) = 0.

Proof. A trajectory of (X\delta , Y \delta , V \delta ) can reach s+ by different ways. Indeed, just
before the time at which s+ is reached, the process can be in a static phase at the point
(xk\mu \mathrm{s}

,0,0) (and it jumps from the static phase to the dynamic phase) or else it can be
in a dynamic phase at (xk\mu \mathrm{s}+1, - 1, v), v < 0, and it jumps to s+ when V \delta 

t reaches 0.
This comment motivates the introduction of the two absorbing states s\prime \pm . The Markov
process (X\delta ,\prime , Y \delta ,\prime , V \delta ,\prime ) with the modified kernel \scrL \prime follows the same dynamics as the
original process (X\delta , Y \delta , V \delta ), except for one aspect: when the original process is at
(xk\mu \mathrm{s}

,0,0) (resp., (x - k\mu \mathrm{s}
,0,0)) and jumps to the east (resp., to the west), it jumps

to s+ (resp., s - ); when the modified process is at (xk\mu \mathrm{s}
,0,0) (resp., (x - k\mu \mathrm{s}

,0,0)) and
jumps to the east (resp., to the west), it jumps to s\prime + (resp., s\prime  - ) and does not move
anymore. As a consequence, we have for any (x, y, v)\in E:

h\pm \lambda (x, y, v) =\BbbE (x,y,v)

\bigl[ 
e - \lambda \tau \prime 

11(X\delta ,\prime 
\tau \prime 
1
,Y \delta ,\prime 

\tau \prime 
1
,V \delta ,\prime 

\tau \prime 
1
)=s\prime \pm 

\bigr] 
,(3.13)

w\lambda (x, y, v;f) =\BbbE (x,y,v)

\Biggl[ \int \tau \prime 
1

0

e - \lambda sf(X\delta ,\prime 
s , Y \delta ,\prime 

s , V \delta ,\prime 
s )ds

\Biggr] 
,(3.14)

where

\tau \prime 1 = inf
\bigl\{ 
t\geq 0, (X\delta ,\prime 

t , Y \delta ,\prime 
t , V \delta ,\prime 

t )\in \{ s\prime  - , s\prime +\} 
\bigr\} 
,

and the statement of the proposition follows immediately.

The function w\lambda (\cdot ; 1) is w\lambda (\cdot ;f) when f = 1. The following proposition is inspired
from [6] and is proved in Appendix C.

Proposition 3.3. We have the representation formula

u\lambda (x, y, v;f) =w\lambda (x, y, v;f) - \pi \lambda (f)w\lambda (x, y, v; 1)

+ \mu \lambda (f)
\bigl( 
h+\lambda (x, y, v) - h - \lambda (x, y, v)

\bigr) 
+
\pi \lambda (f)

\lambda 
(3.15)

for all (x, y, v)\in E, where

(3.16) \pi \lambda (f) =
w\lambda (s+;f) +w\lambda (s - ;f)

2w\lambda (s+; 1)
and \mu \lambda (f) =

w\lambda (s+;f) - w\lambda (s - ;f)

2(1 - h+\lambda (s+) + h - \lambda (s+))
.

We have the following characterization for the stationary distribution of the process
(X\delta 

t , Y
\delta 
t , V

\delta 
t ):

(3.17) \pi (f) = lim
\lambda \rightarrow 0

\lambda u\lambda (x, y, v;f) =
w0(s+;f) +w0(s - ;f)

2w0(s+; 1)

for any bounded function f .
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DRY FRICTION PROBLEM WITH NOISE 1403

4. Dynamical properties.

4.1. Excursions. The random variables (\tau n+1 - \tau n)n\geqslant 0 are integrable, indepen-
dent and identically distributed. This follows from the strong Markov property, from
the fact that \tau 1 is integrable under \BbbP s+ (we have \tau 0 = 0 a.s. under \BbbP s+), and from
the symmetry of the system which implies that the distributions of \tau 1 starting from
s+ and from s - are identical.

For any bounded (in fact, \pi -integrable) function f , \pi (f) can be computed by
(3.17). By ergodicity we also have

(4.1) \pi (f) =
1

\BbbE s+ [\tau 1]
\BbbE s+

\biggl[ \int \tau 1

0

feven(X
\delta 
s , Y

\delta 
s , V

\delta 
s )ds

\biggr] 
,

with feven(x, y, v) = (f(x, y, v) + f( - x, - y, - v))/2. Indeed, on the one hand, by
symmetry of the system ( - X\delta 

t , - Y \delta 
t , - V \delta 

t ) has the same stationary distribution as
(X\delta 

t , Y
\delta 
t , V

\delta 
t ). Therefore, if f is odd, then \pi (f) = 0 (this follows also from (3.17)

since w0(s - , f) = w0(s+, f( - \cdot )) = w0(s+, - f) =  - w0(s+, f) when f is odd). On the
other hand, denoting \varepsilon n = sgn(X\delta 

\tau n), the strong Markov property implies that the
excursions (\varepsilon nX

\delta 
\tau n+t, \varepsilon nY

\delta 
\tau n+t, \varepsilon nV

\delta 
\tau n+t)t\in [0,\tau n+1 - \tau n] are independent and identically

distributed with the distribution of (X\delta 
t , Y

\delta 
t , V

\delta 
t )t\in [0,\tau 1] starting from s+. Therefore,

if f is even, then \pi (f) = 1
\BbbE s+

[\tau 1]
\BbbE s+

\bigl[ \int \tau 1
0
f(X\delta 

s , Y
\delta 
s , V

\delta 
s )ds

\bigr] 
.

4.2. Power spectral density. The power spectral density (PSD) of the process
V \delta 
t can be defined as [29]

(4.2) Sv(\omega ) = lim
T\rightarrow \infty 

1

T
Sv,T (\omega ), where Sv,T (\omega ) =\BbbE \pi 

\left[  \bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

0

V \delta 
t exp( - \bfiti \omega t)dt

\bigm| \bigm| \bigm| \bigm| \bigm| 
2
\right]  .

We have

(4.3) Sv(\omega ) = 2Re
\bigl( 
\pi 
\bigl( 
v \^\phi (\omega ,x, y, v)

\bigr) \bigr) 
,

where \^\phi is the solution of

(\bfiti \omega  - \scrL )\^\phi = v inE.(4.4)

Remark. For \omega = 0 the solution is unique up to an additive constant which does
not play any role in the evaluation of Sv(\omega ).

Proof. We have Sv,T (\omega ) =
\int T

0

\int T

0
\BbbE \pi [V

\delta 
t V

\delta 
t\prime ] cos(\omega (t - t\prime ))dtdt\prime . Using the station-

arity \BbbE \pi [V
\delta 
t V

\delta 
t\prime ] =\BbbE \pi [V

\delta 
| t - t\prime | V

\delta 
0 ], we find Sv,T (\omega ) = 2

\int T

0
(T - t)\BbbE \pi [V

\delta 
t V

\delta 
0 ] cos(\omega t)dt. Us-

ing Lebesgue's dominated convergence theorem and the integrability of t \mapsto \rightarrow \BbbE \pi [V
\delta 
t V

\delta 
0 ]

(see Appendix D), we get

lim
T\rightarrow +\infty 

1

T
Sv,T (\omega ) = Sv(\omega ) = 2

\int +\infty 

0

\BbbE \pi [V
\delta 
0 V

\delta 
t ] cos(\omega t)dt.

We can write \BbbE \pi [V
\delta 
0 V

\delta 
t ] = \BbbE \pi [V

\delta 
0 \BbbE [V \delta 

t | X\delta 
0 , Y

\delta 
0 , V

\delta 
0 ]] = \pi (v\phi (t, x, y, v)), where

\phi (t, x, y, v) =\BbbE [V \delta 
t | X\delta 

0 = x,Y \delta 
0 = y,V \delta 

0 = v] is the solution of

(\partial t  - \scrL )\phi = 0 inE, t > 0, \phi (t= 0, v, y, x) = v.

The function \^\phi (\omega ,x, y, v) =
\int \infty 
0
\phi (t, x, y, v) exp( - \bfiti \omega t)dt satisfies (4.4) because\int +\infty 

0
\partial t\phi (t, x, y, v) exp( - \bfiti \omega t)dt =  - \phi (t = 0, x, y, v) + \bfiti \omega \^\phi (\omega ,x, y, v). We then get

(4.3).
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1404 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

4.3. Probability of sticking. We are interested in the probability of sticking,
that is, the empirical proportion of time spent in the sticking phase:

(4.5) lim
T\rightarrow +\infty 

1

T

\int T

0

1D0(X\delta 
t , Y

\delta 
t , V

\delta 
t )dt,

where D0 = \{ (xk,0,0), k = - k\mu \mathrm{s}
, . . . , k\mu \mathrm{s}

\} . By ergodicity the limit (4.5) exists almost
surely, is deterministic, and its value is independent of the starting point (X\delta 

0 , Y
\delta 
0 , V

\delta 
0 )

and given by

(4.6) Pstick =
\BbbE s+

\bigl[ 
\tau 1  - \^\tau 1

\bigr] 
\BbbE s+

\bigl[ 
\tau 1
\bigr] = 1 - 

\BbbE s+

\bigl[ 
\^\tau 1
\bigr] 

\BbbE s+

\bigl[ 
\tau 1
\bigr] .

This number can be evaluated as follows.

Proposition 4.1. Let \^R(x, y, v), \v R(x, y, v), (x, y, v) \in E, and R(x), x \in 
\{ x - k\mu \mathrm{s} - 1, . . . , xk\mu \mathrm{s}+1\} , be the solutions of

\scrL \^R= - 1 in E\setminus D0, \^R= 0 in D0,(4.7)

\scrL \v R= - 1 in E\setminus \{ (x\pm k\mu s
,0,0)\} , \v R(x\pm k\mu s

,0,0) = 0,(4.8)

Q\delta R= - 1 in \{ x - k\mu s
, . . . , xk\mu s

\} , R(x\pm (k\mu +1)) = 0.(4.9)

Then we have \BbbE s+ [\^\tau 1] =
\^R(s+), \BbbE s+ [\tau 1] =

\v R(s+) +R(xk\mu \mathrm{s}
), and

(4.10) Pstick = 1 - 
\^R(s+)

\v R(s+) +R(xk\mu \mathrm{s}
)
.

Note that we also have \BbbE s+ [\^\tau 1] = w0(s+,1E\setminus D0) and \BbbE s+ [\tau 1] = w0(s+,1) =
w0(s+,1E\setminus D0) +w0(s+,1D0), where w0 has been introduced in (3.6), so that we can
also write

(4.11) Pstick = 1 - 
w0(s+,1E\setminus D0)

w0(s+,1E\setminus D0) +w0(s+,1D0)
=

w0(s+,1D0)

w0(s+,1E\setminus D0) +w0(s+,1D0)
.

Proof. We introduce

\v \tau 1 = inf
\bigl\{ 
t\geq 0, V \delta 

t = 0 and X\delta 
t \in \{  - xk\mu \mathrm{s}

, xk\mu \mathrm{s}
\} 
\bigr\} 
.

We have \BbbE (x,y,v)[\^\tau 1] = \^R(x, y, v) for any (x, y, v) \in E\setminus D0, \BbbE (x,y,v)[\v \tau 1] = \v R(x, y, v) for
any (x, y, v) \in E, and \BbbE (x,0,0)[\tau 1] = R(x) for any x \in \{ x - k\mu \mathrm{s}

, . . . , xk\mu \mathrm{s}
\} . Moreover, by

the strong Markov property,

\BbbE s+

\bigl[ 
\tau 1
\bigr] 
=\BbbE s+

\bigl[ 
\v \tau 1
\bigr] 
+\BbbE s+

\bigl[ 
\BbbE [\tau 1  - \v \tau 1| \v \tau 1]

\bigr] 
=\BbbE s+

\bigl[ 
\v \tau 1
\bigr] 
+\BbbE (xk\mu \mathrm{s}

,0,0)[\tau 1]\BbbP s+

\bigl( 
X\delta 

\v \tau 1 = xk\mu \mathrm{s}

\bigr) 
+\BbbE (x - k\mu \mathrm{s}

,0,0)[\tau 1]\BbbP s+

\bigl( 
X\delta 

\v \tau 1 = x - k\mu \mathrm{s}

\bigr) 
.

By symmetry of the system we have \BbbE (x - k\mu \mathrm{s}
,0,0)[\tau 1] =\BbbE (xk\mu \mathrm{s}

,0,0)[\tau 1], so that \BbbE s+ [\tau 1] =
\BbbE s+ [\v \tau 1] +\BbbE (xk\mu \mathrm{s}

,0,0)[\tau 1], and we get

\BbbE s+

\bigl[ 
\tau 1
\bigr] 
= \v R(s+) +R(xk\mu \mathrm{s}

),

which completes the proof of the proposition.
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DRY FRICTION PROBLEM WITH NOISE 1405

4.4. Distributions of sticking and sliding periods. The dynamics of the
system consists of an alternate sequence of sticking periods and sliding (dynamic)
periods. Each sliding period starts from s\pm , and the system is symmetric for the
transform (x, y, v)\rightarrow ( - x, - y, - v). As a result the Laplace transform of the distribu-
tion of the duration of a sticking period is

(4.12) Fstick(\lambda ) =\BbbE s+

\bigl[ 
e - \lambda (\tau 1 - \^\tau 1)

\bigr] 
.

This Laplace transform can be evaluated as follows.

Proposition 4.2. For | k| \leq k\mu \mathrm{s}
and \lambda > 0, let \^Pk(x, y, v), (x, y, v) \in E, and

F\lambda (x), x\in \{ x - k\mu \mathrm{s} - 1, . . . , xk\mu \mathrm{s}+1\} be the solutions of

\scrL \^Pk = 0 in E\setminus D0, \^Pk(xk,0,0) = 1, \^Pk = 0 in D0\setminus \{ (xk,0,0)\} ,(4.13)

\lambda F\lambda  - Q\delta F\lambda = 0 in \{ x - k\mu s
, . . . , xk\mu s

\} , F\lambda (x\pm (k\mu s+1)) = 1.(4.14)

Then we have \BbbP s+(X
\delta 
\^\tau 1

= xk) = \^Pk(s+) for any k \in \{  - k\mu \mathrm{s} , . . . , k\mu \mathrm{s}\} , \BbbE (x,0,0)[e
 - \lambda \tau 1 ] =

F\lambda (x) for any x\in \{ x - k\mu \mathrm{s}
, . . . , xk\mu \mathrm{s}

\} and \lambda > 0, and

(4.15) Fstick(\lambda ) =

k\mu \mathrm{s}\sum 
k= - k\mu \mathrm{s}

F\lambda (xk) \^Pk(s+).

Proof. This is a consequence of the strong Markov property:

Fstick(\lambda ) =\BbbE s+

\bigl[ 
\BbbE [e - \lambda (\tau 1 - \^\tau 1)| \^\tau 1,X\delta 

\^\tau 1 ]
\bigr] 
=

k\mu \mathrm{s}\sum 
k= - k\mu \mathrm{s}

\BbbP s+

\bigl( 
X\delta 

\^\tau 1 = xk
\bigr) 
\BbbE (xk,0,0)

\bigl[ 
e - \lambda \tau 1

\bigr] 
.

Similarly the Laplace transform of the distribution of the duration of a sliding
period is

(4.16) Fslide(\lambda ) =\BbbE s+

\bigl[ 
e - \lambda \^\tau 1

\bigr] 
,

and it can be expressed as follows.

Proposition 4.3. For \lambda > 0, let G\lambda (x, y, v), (x, y, v)\in E be the solution of

(4.17) \lambda G\lambda  - \scrL G\lambda = 0 in E\setminus D0 , G\lambda = 1 in D0 .

Then we have

(4.18) Fslide(\lambda ) =G\lambda (s+).

From (3.6) we also have

w\lambda (s+,1E\setminus D0) =\BbbE s+

\biggl[ \int \tau 1

0

e - \lambda s1E\setminus D0(X\delta 
s , Y

\delta 
s , V

\delta 
s )ds

\biggr] 
=\BbbE s+

\Biggl[ \int \^\tau 1

0

e - \lambda sds

\Biggr] 
=

1

\lambda 

\bigl( 
1 - \BbbE s+

\bigl[ 
e - \lambda \^\tau 1

\bigr] \bigr) 
,(4.19)

so that we get Fslide(\lambda ) = 1 - \lambda w\lambda (s+,1E\setminus D0).
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1406 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

5. Numerics. In this section, we are interested in the numerical computation
of the following statistics under the stationary measure:

(5.1) S1 = Pstick, S2 =\BbbE \pi [(V
\delta 
t )

2], S3 = \BbbP \pi 

\bigl( 
| X\delta 

t | \leq \mu s

\bigr) 
.

We use two different methods. The first method is probabilistic and relies on the
representation formula (4.1) of Si in terms of the excursions \{ (X\delta 

s , Y
\delta 
s , V

\delta 
s ), s\in [0, \tau 1]\} 

starting from s+. S
1 (resp., S2 and S3) has the form (4.1) with f(x, v) = 1\{ v=0,| x| \leq \mu \mathrm{s}\} 

(resp., f(x, v) = v2 and f(x, v) = 1\{ | x| \leq \mu \mathrm{s}\} ). The second method is deterministic and
consists in solving (3.2) with f in the right-hand side, and we look for \lambda u\lambda (f) for
small \lambda .

5.1. The probabilistic method: Simulation of the excursions of
(\bfitX \bfitdelta 

\bfits , \bfitY 
\bfitdelta 
\bfits , \bfitV \bfitdelta 

\bfits ) on [0, \bfittau 1]. We generate a large number, say M , of independent and
identically distributed (i.i.d.) versions of the excursions \{ (X\delta 

s , Y
\delta 
s , V

\delta 
s ), s \in [0, \tau 1]\} ,

where (X\delta 
0 , Y

\delta 
0 , V

\delta 
0 ) = s+. From this family of excursions, we construct M i.i.d. ver-

sions \{ \bfitxi (i)\} Mi=1 of

(5.2) \bfitxi = (\xi 1, \xi 2)
T =

\biggl( \int \tau 1

0

f(X\delta 
s , V

\delta 
s )ds, \tau 1

\biggr) T

,

whose empirical mean and covariance are denoted by \^\bfitxi 
(M)

and \^C(M), respectively:

(5.3) \^\bfitxi 
(M)

=
1

M

M\sum 
i=1

\bfitxi (i), \^C(M) =
1

M

M\sum 
i=1

\bfitxi (i)(\bfitxi (i))T  - \^\bfitxi 
(M)

(\^\bfitxi 
(M)

)T .

From the central limit theorem, we have the convergence in distribution of \^\bfitxi 
(M)

:

(5.4)
\surd 
M
\Bigl( 
\^\bfitxi 
(M)

 - \BbbE [\bfitxi ]
\Bigr) 

M\rightarrow +\infty  - \rightarrow \scrN 
\bigl( 
0\BbbR 2 ,C

\bigr) 
,

where C=\BbbE [\bfitxi \bfitxi T ] - \BbbE [\bfitxi ]\BbbE [\bfitxi ]T . By the delta method, we get
(5.5)
\surd 
M

\Biggl( 
\^\xi 
(M)
1

\^\xi 
(M)
2

 - \BbbE [\xi 1]
\BbbE [\xi 2]

\Biggr) 
M\rightarrow +\infty  - \rightarrow \scrN (0, \sigma 2), \sigma 2 =

\biggl( 
1/\BbbE [\xi 2]

 - \BbbE [\xi 1]/\BbbE [\xi 2]2
\biggr) T

C

\biggl( 
1/\BbbE [\xi 2]

 - \BbbE [\xi 1]/\BbbE [\xi 2]2
\biggr) 
.

By Slutsky's theorem,

\surd 
M

\^\sigma (M)

\Biggl( 
\^\xi 
(M)
1

\^\xi 
(M)
2

 - \BbbE [\xi 1]
\BbbE [\xi 2]

\Biggr) 
M\rightarrow +\infty  - \rightarrow \scrN (0,1),(5.6)

(\^\sigma M )2 =

\Biggl( 
1/\^\xi 

(M)
2

 - \^\xi 
(M)
1 /(\^\xi 

(M)
2 )2

\Biggr) T

\^CM

\Biggl( 
1/\^\xi 

(M)
2

 - \^\xi 
(M)
1 /(\^\xi 

(M)
2 )2

\Biggr) 
.

We can deduce from this convergence in distribution an asymptotic 95\% confidence
interval for \BbbE [\xi 1]/\BbbE [\xi 2] (which is the quantity of interest by (4.1)):

(5.7) \BbbP 

\Biggl( 
\BbbE [\xi 1]
\BbbE [\xi 2]

\in 

\Biggl( 
\^\xi 
(M)
1

\^\xi 
(M)
2

 - 1.96\^\sigma (M)M - 1
2 ,

\^\xi 
(M)
1

\^\xi 
(M)
2

+ 1.96\^\sigma (M)M - 1
2

\Biggr) \Biggr) 
M\rightarrow +\infty  - \rightarrow 0.95.
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DRY FRICTION PROBLEM WITH NOISE 1407

Note that

\xi 1 =
\sum 

0\leq i\leq i\tau 1 - 1

\int Ti+1

Ti

f(X\delta 
Ti
,\Phi X\delta 

Ti
,Y \delta 

Ti

(s - Ti, V
\delta 
Ti
))ds

+

\int \tau 1

Ti\tau 1

f(X\delta 
Ti\tau 1

,\Phi X\delta 
Ti\tau 1

,Y \delta 
Ti\tau 1

(s - Ti\tau 1 , V
\delta 
Ti\tau 1

))ds,(5.8)

where i\tau 1 = max\{ i, Ti \leq \tau 1\} . If f does not depend on v, then the formula above
becomes simple:\int \tau 1

0

f(X\delta 
s )ds=

\sum 
0\leq i\leq i\tau 1 - 1

f(X\delta 
Ti
)(Ti+1  - Ti) + f(X\delta 

Ti\tau 1
)(\tau 1  - Ti\tau 1 ).(5.9)

With the particular choice of f(x, v) = 1\{ v=0, | x| \leq \mu \mathrm{s}\} , the formula remains simple as
well:

\int \tau 1

0

f(X\delta 
s , V

\delta 
s )ds=

\sum 
0\leq i\leq i\tau 1 - 1

f(X\delta 
Ti
, V \delta 

Ti
)(Ti+1  - Ti) + f(X\delta 

Ti\tau 1
, V \delta 

Ti\tau 1
)(\tau 1  - Ti\tau 1 ).

(5.10)

When f(x, v) = v2, then it becomes slightly more complicated:\int \tau 1

0

f(X\delta 
s , V

\delta 
s )ds=

\sum 
0\leq i\leq i\tau 1 - 1

\int Ti+1

Ti

\bigl( 
\Phi X\delta 

Ti
,Y \delta 

Ti

(s - Ti, V
\delta 
Ti
)
\bigr) 2
ds1\{ | X\delta 

Ti
| =1\} 

+

\int \tau 1

Ti\tau 1

\bigl( 
\Phi X\delta 

Ti\tau 1

,Y \delta 
Ti\tau 1

(s - Ti\tau 1 , V
\delta 
Ti\tau 1

)
\bigr) 2
ds1\{ | Y \delta 

Ti\tau 1

| =1\} .(5.11)

If b(v) =  - v, then each of the integrals in the right-hand side can be computed
explicitly: \int \tau 1

0

f(X\delta 
s , V

\delta 
s )ds=

\sum 
0\leq i\leq i\tau 1 - 1

\Psi (Ti, Ti+1;X
\delta 
Ti
, Y \delta 

Ti
, V \delta 

Ti
)1\{ | Y \delta 

Ti
| =1\} 

+\Psi (Ti\tau 1 , \tau 1;X
\delta 
Ti\tau 1

, Y \delta 
Ti\tau 1

, V \delta 
Ti\tau 1

)1\{ | X\delta 
Ti\tau 1

| =1\} ,(5.12)

with \Psi (\theta , \theta \prime ;x, y, v) = (\theta \prime  - \theta )(x  - y\mu d)
2 + 0.5(v  - x + y\mu d)

2(1  - e - 2(\theta \prime  - \theta )) + 2(x  - 
y\mu d)(v  - x+ y\mu d)(1 - e - (\theta \prime  - \theta )). In Figure 5.1, an estimation of the three quantities
Si as functions of \delta is presented together with the error bars using the probabilistic
method and the formulas above.

5.2. The deterministic method: Discretization in the v-axis of the \lambda -
problem. To numerically approximate the solution of (3.2), we use a finite difference
scheme where only the v-axis is discretized. We consider a two-dimensional grid, for
any p\in \BbbN  \star , with I = 2N + 1 and J = 2Np+ 1,

(5.13) \scrG p =

\biggl\{ 
(xi, vj) =

\biggl( 
(i - N  - 1)\delta , (j  - Np - 1)

\delta 

p

\biggr) 
, 1\leq i\leq I, 1\leq j \leq J

\biggr\} 
.

The number of points in the grid \scrG p is Np = (2N + 1)(2Np + 1) \sim 4N2p as N \rightarrow 
\infty . The numerical approximation of u\lambda (xi,\Theta (xi, vj), vj) is denoted by uij , and the
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D
ow

nl
oa

de
d 

07
/1

6/
23

 to
 1

69
.2

34
.1

4.
12

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1408 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

Fig. 5.1. Monte Carlo estimations of Pstick,\BbbE [V \delta 2],\BbbP (| X\delta | \leq \mu s) versus \delta (taking values 2 - j ,
j = 1, . . . ,5) based on N = 106 simulated excursions of (X\delta , Y \delta , V \delta ). Here \mu s = 1 and b(v) =  - v
In the subfigure for Pstick, the four curves from bottom to top correspond to \mu d = 1

4
, 1

2
, 3

4
, and 1,

respectively, whereas in the subfigure for \BbbE [V \delta 2] the order is reversed. In the subfigure for \BbbP (| X\delta | \leq 
\mu s), the red segments represent the numerical results associated with finding the invariant measure
of X\delta in the left kernel of Q\delta and then computing the targeted statistics. The asymptotic 95\%
confidence intervals are represented by two solid lines around the estimated results.

corresponding vector collecting the unknowns is \bfitu . We also use the notation fij
for f(xi,\Theta (xi, vj), vj) and \bfitf for the corresponding vector. We use a standard finite
difference scheme in the v direction: when j \not =Np+ 1 (vj \not = 0) or | i - N  - 1| >k\mu \mathrm{s}

(5.14) \lambda uij  - (K\bfitu )ij  - (J\bfitu )ij = fij ,

otherwise when j =Np+ 1 (vj = 0) and | i - N  - 1| \leq k\mu \mathrm{s}

(5.15) \lambda uij  - (J\bfitu )ij = fij ,

with (J\bfitu )ij = 2\tau  - 2\delta  - 2(\alpha iui+1j  - uij + (1 - \alpha i)ui - 1j), \alpha i = \alpha (xi), and

(5.16) (K\bfitu )ij = pmax(0,Bij)

\biggl( 
uij+1  - uij

\delta 

\biggr) 
+ pmin(0,Bij)

\biggl( 
uij  - uij - 1

\delta 

\biggr) 
,

with Bij =B(xi,\Theta (xi, vj), vj). This results in a linear system to be solved of the form
(\lambda I - M)\bfitu = \bfitf , where both I and M are Np \times Np sparse matrices, I is the identity
matrix, and M is a sparse matrix with at most five nonzero entries per row. The
computational time spent to find \bfitu corresponds essentially to the LU factorization of
the matrix \lambda I - M associated with the system (5.14)--(5.15). We employ the MATLAB
procedure lu(.) which seeks five invertible matrices L,U,P,Q,D, where L aud U are,
respectively, lower and upper triangular such that \lambda I - M=DP - 1LUQ - 1. As shown
in Figure 5.2, for p large enough we recover the results of the probabilistic approach
of subsection 5.1.

Empirical convergence rate w.r.t. p. If the finite difference scheme (5.14)--(5.15)
is of order \kappa , then \| up  - u\| \leq Cp - \kappa , where C is independent of p. Moreover, if there
exists an \epsilon > 0 such that \| up - u\| =Cp - \kappa +O(p - \kappa  - \epsilon ), then \| u2p - up\| \| up - u

p
2 \|  - 1 \approx 

2\kappa + O(p - \epsilon ). With such a relation in mind, we test the convergence of the finite
difference scheme by considering \kappa (p) = log2

\bigl( 
\| u2p  - up\| \| up  - u

p
2 \|  - 1

\bigr) 
. In Table 5.1,

we present a set of empirical estimations of \kappa (p) in two cases. The data indicate that
\kappa (p)\sim 1.

5.3. Discussion.
PSD. We discuss the \tau dependence of the PSD of the velocity V \delta and the corre-

sponding line width (from which we obtain the correlation time). We rely on numerical
investigation since explicit expressions are not known. We calculate the PSD of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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DRY FRICTION PROBLEM WITH NOISE 1409

Fig. 5.2. Case \mu d = 0.25\mu s with b(v) =  - v. Approximations of Pstick,\BbbE [V \delta 2],\BbbP (| X\delta | \leq 1)
versus 2 \leq p \leq 29 for several values of \delta (from 2 - 1 halved successively until 2 - 6). The p-axis is
represented in the scale of log base 2. In red (the limit case in p), the Monte Carlo result (plotted
in Figure 5.1) is shown for comparison. In blue (the limit case in p), the theoretical value is plotted
when available.

Table 5.1
Computation of \kappa (p) when \delta = 2 - 1 (top) \delta = 2 - 2 (bottom) The method is empirically of order 1.

Here b(v) = - v.

\delta = 2 - 1 \kappa (64) \kappa (128) \kappa (256) \kappa (512)

S1 0.881 0.939 0.976 0.997

S2 0.997 0.999 0.996 0.986

S3 0.997 0.999 1.002 1.010

\delta = 2 - 2 \kappa (64) \kappa (128) \kappa (256) \kappa (512)

S1 0.865 0.941 0.995 0.988
S2 0.995 0.996 0.992 0.998

S3 0.994 1.000 1.010 1.001

velocity V \delta by solving (4.3) and (4.4). The Monte Carlo method is used for verifi-
cation (with T = 103 and 104 sample paths). Figure 5.3 and Figure 5.4 (right) show
numerical results of the PSD for different values of \mu d, \delta and \tau . For each value of
\mu d, when \tau goes below 0.25 the curves with three different values of \delta become in-
distinguishable. This indicates that for \delta small enough (\leq 0.25), the main driving
parameter becomes \tau . Since the PSDs have well-defined central peaks at \omega = 0, we
consider the full width at half maximum (FWHM) \Delta \omega to define the correlation time
of the system denoted by tcorr = 1/\Delta \omega . Figure 5.4 (left) plots the correlation times
of the process V \delta as functions of \tau in the four cases \mu d\mu s

 - 1 = 1
4 ,

1
2 ,

3
4 ,1. This indi-

cates that, for \tau \leq 0.125, the correlation time becomes constant (when \tau is small,
we may think that the driving process X behaves like a white noise; we then recover
the observation that the correlation time essentially coincides with the value of the
white-noise limit as long as \tau < 0.1 [17]). In the same figure, in the black squares on
the left, we observe the correlation time of the process V \delta for \mu d = \mu s and b(v) = 0.
Again, this indicates that, for \tau \leq 0.125, it becomes constant.

Durations of excursions, static and dynamic phases. As shown in Figure 5.5, we
observe two different behaviors for the pdf fslide of the dynamic phase duration. When
\mu d <\mu s, fslide vanishes at 0 and is very close to 0 in its neighborhood. This indicates
the absence of short dynamic phases. When \mu d = \mu s, fslide vanishes at 0 but increases
very fast. This indicates the presence of dramatically short dynamic phases. In all
cases, the pdf fstick of the static phase duration is positive around 0 and fstick(0

+) is
a finite positive number for fixed \delta . This indicates the presence of short static phases.
Finally, the behavior of the excursion is essentially inherited from the behavior of
the dynamic phase. In Figure 5.6, we plot the Laplace transform of the duration of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 5.3. Double logarithmic plot of the PSD of the process V δ for τ “ 2´i, i “ 0, 1, 2 on each
subfigure. The subfigures appear in the following order from left to right: µd “ 1

4
, 1
2
, 1 (µs “ 1) and

from top to bottom: δ “ 2´j , j “ 0, 1, 2. Deterministic results (obtained by solving (4.3) and (4.4))
are in black dots and Monte Carlo simulation results are in gray. Here bpx, vq “ x´ v.

of the system denoted by tcorr fi 1{∆ω. Figure 5.4 plots the correlation times of the
process V δ as functions of τ in the four cases µdµs

´1 “ 1
4 ,

1
2 ,

3
4 , 1. This indicates that

for τ ď 0.125, the correlation time becomes constant (when τ is small, we may think
that the driving process X behaves like a white noise; we then recover the observation
that the correlation time essentially coincides with the value of the white-noise limit
as long as τ ă 0.1 [17]). In the same figure, in the black squares on the left, we
observe the correlation time of the process V δ for µd “ µs and bpx, vq “ x. Again,
this indicates that for τ ď 0.125, it becomes constant.

Durations of excursions, static and dynamique phases. As shown in Figure 5.5,
we observe two different behaviors for the pdf fslide of the dynamic phase duration.
When µd ă µs, fslide vanishes at 0 and is very close to 0 in its neighborhood. This
indicates the absence of short dynamic phases. When µd “ µs, fslide vanishes at
0 but increases very fast. This indicates the presence of dramatically short dynamic
phases. In all cases, the pdf fstick of the static phase duration is positive around 0 and
fstickp0`q is a finite positive number for fixed δ. This indicates the presence of short
static phases. Finally, the behavior of the excursion is essentially inherited from the
behavior of the dynamic phase. In Figure 5.6, we plot the Laplace transform of the
duration of the dynamic phase obtained by the probabilistic (Monte Carlo) method
and by the deterministic (Kolmogorov) method resulting from Proposition 4.3. This
shows again that both methods give the same results.

Fig. 5.3. Double logarithmic plot of the PSD of the process V \delta for \tau = 2 - i, i = 0,1,2 on each
subfigure. The subfigures appear in the following order from left to right: \mu d = 1

4
, 1
2
,1 (\mu s = 1) and

from top to bottom: \delta = 2 - j , j = 0,1,2. Deterministic results (obtained by solving (4.3) and (4.4))
are in black dots, and Monte Carlo simulation results are in gray. Here b(v) = - v.
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Fig. 5.4. Left: Correlation time of the process V δ w.r.t. noise correlation time τ for δ “ 2´2,
µs “ 1, and bpx, vq “ x´ v. The results have been computed with the deterministic method. Right:
Double logarithmic plot of the PSD of the process V δ for τ “ 2´i, i “ 0, 1, 2, µd “ µs “ 1, and
δ “ 2´2 with bpx, vq “ x. The black dots, resp. the gray lines, come from the deterministic method,
resp. the Monte Carlo method.
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Fig. 5.5. Numerical pdf of the duration of the static phase fstick (red), duration of the dynamic
phase fslide (blue) and duration of an excursion (black). Each curve corresponds to a δ which takes
the values 2´4 (dotted line) and 2´5 (solid line). The pdf are numerically determined by Monte
Carlo simulations involving 107 excursions.

10´1 100 101

10´3

10´2

10´1

100

λ

F
sl

id
e
pλ
q

µd “ 1
µd “ 0.75
µd “ 0.5
µd “ 0.25

Fig. 5.6. Laplace transform Fslidepλq of the dynamic duration. The black dots result from the
deterministic method whereas the gray lines from the Monte Carlo method. Here δ “ 1, τ “ 1, µs “ 1.

Comments on the cases µd ă µs. Using Monte Carlo and Kolmogorov methods,
we can estimate fstickp0`q (shown in Table 5.2) and fslidep0`q. For µd “ 0.25, 0.5
and 0.75 and for δ “ 2´k, k “ 3, . . . , 6, the computed numbers are positive and finite.
Both methods agree qualitatively. In addition, we observe that the calculated values
are multiplied by two when the parameter δ is divided by two. It seems to indicate
that fstickp0`q Ò 8 as δ Ó 0. Besides, both methods indicate that fslidep0`q “ 0.
Furthermore the empirical histograms from the MC method reveal that fslide vanishes

Fig. 5.4. Left: Correlation time of the process V \delta w.r.t. noise correlation time \tau for \delta = 2 - 2,
\mu s = 1, and b(v) =  - v (i.e., b(x, v) = x  - v) or b(v) = 0 (i.e., b(x, v) = x) The results have been
computed with the deterministic method. Right: Double logarithmic plot of the PSD of the process
V \delta for \tau = 2 - i, i= 0,1,2, \mu d = \mu s = 1, and \delta = 2 - 2 with b(v) = 0 (i.e., b(x, v) = x) The black dots
(resp., the gray lines) come from the deterministic method (resp., the Monte Carlo method).

the dynamic phase obtained by the probabilistic (Monte Carlo) method and by the
deterministic (Kolmogorov) method resulting from Proposition 4.3. This shows again
that both methods give the same results.

Comments on the cases \mu d < \mu s. Using Monte Carlo and Kolmogorov methods,
we can estimate fstick(0

+) (shown in Table 5.2) and fslide(0
+). For \mu d = 0.25,0.5
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DRY FRICTION PROBLEM WITH NOISE 1411

Fig. 5.5. Numerical pdf of the duration of the static phase fstick (red), duration of the dynamic
phase fslide (blue), and duration of an excursion (black). Each curve corresponds to a \delta which takes
the values 2 - 4 (dotted line) and 2 - 5 (solid line). The pdf are numerically determined by Monte
Carlo simulations involving 107 excursions. Here b(v) = - v.
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Fig. 5.6. Laplace transform Fslide(\lambda ) of the dynamic duration. The black dots result from the
deterministic method, whereas the gray lines from the Monte Carlo method. Here \delta = 1, \tau = 1, \mu s = 1,
b(v) = - v.

Table 5.2
Estimation of fstick(0

+) using Kolmogorov (left numbers) and Monte Carlo (right numbers)
methods. Here b(v) = - v.

μdμs
1

δ
2 3 2 4 2 5

0.25 5.32/6.73 10.83/10.51 21.81/20.94
0.50 2.20/2.78 4.26/4.10 8.36/7.98
0.75 0.68/0.89 1.24/1.17 2.36/2.27
1.00 0.17/0.18 0.41/0.76 1.12/9.20

and 0.75 and for \delta = 2 - k, k = 3, . . . ,6, the computed numbers are positive and finite.
Both methods agree qualitatively. In addition, we observe that the calculated values
are multiplied by two when the parameter \delta is divided by two. It seems to indicate
that fstick(0

+) \uparrow \infty as \delta \downarrow 0. Besides, both methods indicate that fslide(0
+) = 0.

Furthermore the empirical histograms from the Monte Carlo method reveal that fslide
vanishes in the neighborhood of 0.

Comments on the case \mu d = \mu s. Using the Kolmogorov method, we can estimate
fstick(0

+) (shown in the last row of Table 5.2) for \delta = 2 - k, k= 3, . . . ,6, the computed
numbers are positive and finite but they do not agree very well with the Monte Carlo
method. This may be due to the fact that the slope of fstick is significantly steep in
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1412 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

the neighborhood of 0. We can notice that the Monte Carlo value overestimates the
value given by the discretized Kolmogorov equations. With the Kolmogorov method,
we also show that fslide(0

+) = 0 but the convergence is rather slow in finding the limit
of \lambda Fslide(\lambda ) as \lambda \rightarrow +\infty . With the Monte Carlo method, it is difficult to capture this
value directly. For each \delta = 2 - k, k= 3, . . . ,6, the empirical histograms from the Monte
Carlo method indicate that fslide(t) > 0 in the neighborhood of 0 and fslide(t) \downarrow 0 as
t \downarrow 0+.

Comment on our memory limit. The numerical results reported on this work have
been performed on a MacBook Air (13-inch, mid 2013) with the following characterics:
Processor 1.3GHz Intel Core i5, Memory 8GB 1600 MHz DDR3, Graphics Intel HD
Graphics 5000 1536 MB. With such a memory limit, the size of the matrix M must
remain below 107 \times 107.

A data-learning heuristic to go beyond our memory limit: Extrapolation of our
results. Below, we use the notation S[i](k, l) for the estimation of Si defined by (5.1)
using the deterministic method, where p= 2k and \delta = 2 - l. As shown in Figure 5.2, due
to memory limit, we cannot evaluate S[i](k, l) when (k, l)\in \=U= \{ 7\leq k\leq 9\} \times \{ 5\} \cup \{ 5\leq 
k \leq 9\} \times \{ 6\} . We can only evaluate them when (k, l) \in U = \{ 1 \leq k \leq 9\} \times \{ 1 \leq l \leq 
4\} \cup \{ 1\leq k\leq 6\} \times \{ 5\} \cup \{ 1\leq k\leq 4\} \times \{ 6\} . Nonetheless, we can cook up an extrapolation
approach to estimate the missing data on \=U where we keep the notation S[i](k, l). To
compute S[i](k, l) on \=U, we assume that the error trends observed when \delta is large or
p small remain the same as when \delta is small and p large. Our heuristics starts from
this observation:

S[i](k, l) = S[i](k, l - 1) +RV (k, l)
\Bigl( 
S[i](k, l - 1) - S[i](k, l - 2)

\Bigr) 
,(5.17)

S[i](k, l) = S[i](k - 1, l) +RH(k, l)
\Bigl( 
S[i](k - 1, l) - S[i](k - 2, l)

\Bigr) 
,(5.18)

with
(5.19)

RV (k, l) =
S[i](k, l) - S[i](k, l - 1)

S[i](k, l - 1) - S[i](k, l - 2)
and RH(k, l) =

S[i](k, l) - S[i](k - 1, l)

S[i](k - 1, l) - S[i](k - 2, l)
.

Clearly, RV (k, l) and RH(k, l) are unknown since they depend on S[i](k, l), the tar-
geted unknown quantity. However, we have an idea of the error trend and then our
heuristics consists in the following natural approximation RV (k, l)\approx RV (k, l - 1) and
RV (k, l)\approx RV (k - 1, l). Then, we define

S
[i]
V (k, l) = S[i](k, l - 1) +RV (k, l - 1)

\Bigl( 
S[i](k, l - 1) - S[i](k, l - 2)

\Bigr) 
,(5.20)

S
[i]
H (k, l) = S[i](k - 1, l) +RH(k - 1, l)

\Bigl( 
S[i](k - 1, l) - S[i](k - 2, l)

\Bigr) 
,(5.21)

and finally

(5.22) S[i](k, l) =
1

2

\Bigl( 
S
[i]
V (k, l) + S

[i]
H (k, l)

\Bigr) 
.

In this way, this heuristical definition of S[i](k, l) requires six values: S[i](k - j, l) and
S[i](k, l  - j), j = 1,2,3. Starting from the data on U, we can propagate this data-
learning scheme on \=U. In Table 5.3, we present our results which show the stability
of the extrapolation procedure.

6. Conclusions and perspectives. In this work, we tackle the problem of mod-
eling stochastic dry friction including different coefficients for the static and dynamic
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DRY FRICTION PROBLEM WITH NOISE 1413

Table 5.3
Computation of S[i](k, l) with our heuristics on \=U. The first row lists the elements of \=U. The

values in parenthesis are shown for comparison and have been obtained with different methods, Monte
Carlo in the S[1] row and (stationary) Kolmogorov equation for X in the S[2] row. b(v) = - v.

(7,5) (8,5) (9,5) (5,6) (6,6) (7,6) (8,6) (9,6)

S[1] 0.1291 0.1294 0.1295 (0.1302) 0.1239 0.1244 0.1249 0.1254 0.1258 (0.1257)

S[2] 0.6886 0.6893 0.6896 (0.6980) 0.6803 0.6835 0.6850 0.6855 0.6857 (0.6850)

forces by proposing a PDMP approach. Here the external forcing takes discrete val-
ues and it is assumed to be a Markov jump process depending on a small parameter.
We show ergodicity and provide a representation formula of the stationary measure.
We also obtain a characterization of the Laplace transforms of the probability den-
sity functions of the durations of the static and dynamic phases. Moreover, when
the aforementioned parameter vanishes and when the two coefficients of static and
dynamic forces are identical, we show that the PDMP converges in distribution to
the solution of a well-known dry friction model. This model is subjected to a col-
ored noise (an Ornstein--Uhlenbeck process) and its definition involves a differential
inclusion formalism. This bridges the gap between our approach and existing well-
posed continuous models when the coefficients for the static and dynamic forces are
identical. As a future work, it should be possible to consider the extension of the
PDMP approach to higher dimensions and more realistic systems such as randomly
driven moveable rigid bodies in frictional contact with rigid obstacles or mechanical
systems of rigid bodies as inspired by [13, 26]. It would also be of interest to develop
numerical simulation and stochastic control methods for these systems by combining
existing techniques such as Lagrange multipliers in the same spirit as [27] and [18].

Appendix A. Proof of Proposition 2.1. This is a diffusion approximation
result.

First, the process X\delta 
t is Markov with the generator Q\delta f(x) = 2\delta  - 2\tau  - 1(\alpha (x)f(x+

\delta )+\alpha  \star (x)f(x - \delta ) - f(x)), and it converges in distribution in the space of the c\`adl\`ag
functions to the diffusion process with generator Q. Indeed Q\delta f(x) = Qf(x) + o(1)
for any smooth test function f and Q= \tau  - 2\partial 2x - \tau  - 1x\partial x is the infinitesimal generator
of Xt [14, Chapter 12].

Second the map X\delta \mapsto \rightarrow V \delta from the space of the c\`adl\`ag functions to the space of
the continuous functions, with v solution of \.V \delta +\partial \varphi (V \delta )\ni X\delta +b(V \delta ), is continuous.
We now present the proof of this statement (formulated in Proposition A.3).

Notation and assumption. The set of (real valued) right continous left limit
(c\`adl\`ag) functions on [0, T ] is denoted by D[0, T ]. The set of continuous functions
on [0, T ] is denoted by C[0, T ]. Clearly C[0, T ] \subset D[0, T ]. We consider b : \BbbR \rightarrow \BbbR a
Lipschitz function of Lipschitz constant Lb > 0, \xi \in \BbbR and \varphi (v) = \mu | v| , \mu > 0.

Converging sequence in the J1 topology [8]. We say that a sequence of functions
\{ wn\} \in D[0, T ] converges towards a function w \in D[0, T ] in the sense of J1 topology if
there exists a sequence of increasing homeomorphims \{ \lambda n\} on [0, T ] such that \lambda n(0) =
0, \lambda n(T ) = T and

(A.1) (a) lim
n\rightarrow \infty 

sup
0\leq t\leq T

| \lambda n(t) - t| = 0 and (b) lim
n\rightarrow \infty 

sup
0\leq t\leq T

| wn(\lambda n(t)) - w(t)| = 0.
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1414 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

Preliminary: Case of a differential equation with a c\`adl\`ag function at
the rhs. Let w \in D[0, T ] and \xi \in \BbbR . Consider the following problem:

(A.2)

\Biggl\{ 
find a function v(w)\in C[0, T ] satisfying

\forall t\geq 0, vt(w) = \xi +
\int t

0
b(vs(w))ds+

\int t

0
w(s)ds.

Proposition A.1. There exists a unique solution to the problem (A.2). As a
consequence, the mapping v which associates w to v(w) from D[0, T ] to C[0, T ] is well
defined. Moreover, v is continous with respect to the J1 topology on D[0, T ] in the
sense that if a sequence of functions wn \in D[0, T ] converges to a function w \in D[0, T ]
as n\rightarrow \infty , then v(wn) converges to v(w) as n\rightarrow \infty in C[0, T ].

Proof. Part 1. The existence of a solution can be obtained by Picard's iteration.
First define \forall t\geq 0, v0t (w)\equiv \xi , and then

\forall n\geq 0, \forall t\geq 0, vn+1
t (w) = \xi +

\int t

0

b(vns (w))ds+

\int t

0

w(s)ds.

The sequence \{ vn(w)\} is composed of continuous functions. Since b is Lipschitz it
converges uniformly on [0, T ]. The limit is denoted by v(w), and it satisfies (A.2).
Part 2. If v(w) and \~v(w) are two solutions of (A.2), then we must have

sup
0\leq r\leq t

| vr(w) - \~vr(w)| \leq Lb

\int t

0

sup
0\leq r\leq s

| vr(w) - \~vr(w)| ds,

which implies, by Gronwall's lemma, that v(w) = \~v(w) in C[0, T ]. Part 3. Let \{ wn\} 
be a sequence of functions in D[0, T ] converging towards a function w \in D[0, T ] in the
J1 topology. Since \forall t\geq 0,

vt(wn) = \xi +

\int t

0

b(vs(wn))ds+

\int t

0

wn(s)ds and vt(w) = \xi +

\int t

0

b(vs(w))ds+

\int t

0

w(s)ds,

we have

sup
0\leq r\leq t

| vr(w) - vr(wn)| \leq Lb

\int t

0

sup
0\leq r\leq s

| vr(w) - vr(wn)| ds+
\int t

0

| w(s) - wn(s)| ds.

The latter implies using Gronwall's lemma that

sup
0\leq r\leq T

| vr(w) - vr(wn)| \leq exp(LbT )

\int T

0

| w(s) - wn(s)| ds.

Finally, we verity that \int T

0

| w(s) - wn(s)| ds\rightarrow 0 as n\rightarrow \infty .

Indeed
\int T

0
| w(s)  - wn(s)| ds \leq An + Bn, where An =

\int T

0
| w(s)  - w(\lambda  - 1

n (s))| ds,
Bn =

\int T

0
| w(\lambda  - 1

n (s)) - wn(s)| ds, and \lambda n is a sequence of increasing homeomorphims
associated to the convergence of wn in the J1 sense. We have Bn \leq \| w - wn \circ \lambda n\| \infty T
which shows that lim

n\rightarrow \infty 
Bn = 0 by (A.1b). We also have w(\lambda  - 1

n (s)) \rightarrow w(s) at any

point of continuity of w, that is to say, almost surely (with respect to the Lebesgue
measure over [0, T ]), and w(s) - w(\lambda  - 1

n (s)) is bounded by 2\| w\| \infty , so that An \rightarrow 0 by
dominated convergence.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

6/
23

 to
 1

69
.2

34
.1

4.
12

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



DRY FRICTION PROBLEM WITH NOISE 1415

Case of a differential inclusion with a c\`adl\`ag function at the right-hand
side. Let w \in D[0, T ] and \xi \in \BbbR . Consider the following problem:

(A.3)

\Biggl\{ 
find a function v(w)\in C[0, T ] satisfying

\forall t\geq 0, vt(w) +\Delta t(w) = \xi +
\int t

0
b(vs(w))ds+

\int t

0
w(s)ds,

where \Delta (w)\in H1(0, T ) and with the notation \delta (w) = \.\Delta (w)

\forall \zeta \in C[0, T ],\forall 0\leq t < t+ h\leq T,\int t+h

t

(\delta s(w)(\zeta (s) - vs(w)) +\varphi (vs(w)))ds\leq 
\int t+h

t

\varphi (\zeta (s))ds.

The conditions in (A.3) are encoded in the differential inclusion notation

\.v+ \partial \varphi (v)\ni b(v) +w.

Remark A.2. The mathematical problem which consists in finding a continuous
and a.e. differentiable function v(.) satisfying (A.3) is well posed. Its solution de-
scribes the velocity of an object subject to Coulomb friction when \mu = \mu d = \mu s. Indeed,
when v = 0 on a nonempty time interval, then \.v = 0 and necessarily | b(v) + w| \leq \mu .
It is a static phase for v. If \pm v > 0 (which occurs on nonempty time interval), then
\.v \pm \mu = b. It is a dynamic phase for v. The multivalued operator \partial \varphi governs the
phase transitions at which loss of differentiability of v may occur. These two phases
correspond to those mentioned for describing dry friction in the introduction above
(1.1). For any t\geq 0, the multivalued operator \partial \varphi applied to v(t) is the set of subslopes
of \varphi in v(t)

\partial \varphi (v(t)) = \{ q\in \BbbR , \forall \zeta \in \BbbR , q(\zeta  - v(t)) +\varphi (v(t))\leq \varphi (\zeta )\} .

Therefore, it is possible to formulate (A.3) under the form of a variational inequality

\forall a.e. t\geq 0, \forall \zeta \in \BbbR , ( \.v(t) - b(v(t)) - w(t))(\zeta  - v(t)) +\varphi (v(t))\leq \varphi (\zeta );

here the role of \zeta is to act as a real valued test parameter. Furthermore, as \.v(.)\in L2
loc

is only defined a.e., it is convenient to work with an integrated version on arbitrary
small intervals. In this case, the test parameter \zeta becomes a real valued continuous
test function.

Proposition A.3. There exists a unique solution to the problem (A.3). As a
consequence, the mapping v which associates w to v(w) from D[0, T ] to C[0, T ] is well
defined. Moreover, v is continous with respect to the J1 topology on D[0, T ].

Proof. Part 1. The proof follows the steps of the one of [16, Proposition C.1]
which addresses the same problem when w \in C[0, T ]. We recall the essential steps.
For any p we denote by \varphi p the Moreau--Yosida regularization of \varphi ,

\varphi p(v) =

\Biggl\{ 
| v|  - 1

2p , | v| > 1
p ,

p v2

2 , | v| \leq 1
p ,

and we consider the penalized problem

\forall t\geq 0, vpt (w) +

\int t

0

\varphi \prime 
p(v

p
s (w))ds= \xi +

\int t

0

b(vps (w))ds+

\int t

0

w(s)ds.
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1416 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

From Proposition A.1, this ODE has a unique solution vp(w) \in C[0, T ]. It can be
shown that \{ vp(w)\} is a Cauchy sequence in C[0, T ] and

sup
0\leq t\leq T

| vpt (w) - vqt (w)| 2 \leq 
\biggl( 
1

p
+

1

q

\biggr) 
CT ,

where the constant CT depends only on the Lipschitz constant of b, T , and \mu . It is a
consequence of the property supp\geq 1 supv\in \BbbR | \varphi \prime 

p(v)| = \mu . Thus the limit v(w) \in C[0, T ]
exists and satisfies

sup
0\leq t\leq T

| vpt (w) - vt(w)| \leq 

\sqrt{} 
CT

p
.

It can then be shown that v(w) satisfies the conditions in (A.3).
Part 2. Assume wn \in D[0, T ] converges to a function w \in D[0, T ] as n\rightarrow \infty . We

want to show that then v(wn) converges to v(w) as n\rightarrow \infty in C[0, T ]. We can write

sup
0\leq t\leq T

| vt(wn) - vt(w)| \leq sup
0\leq t\leq T

| vt(wn) - vpt (wn)| + sup
0\leq t\leq T

| vpt (wn) - vpt (w)| 

+ sup
0\leq t\leq T

| vpt (w) - vt(w)| .

Let \varepsilon > 0. For p large enough we have

sup
0\leq t\leq T

| vpt (w) - vt(w)| \leq 
\varepsilon 

3
and sup

n
sup

0\leq t\leq T
| vt(wn) - vpt (wn)| \leq 

\varepsilon 

3
.

Finally for n\geq np large enough

sup
0\leq t\leq T

| vpt (wn) - vpt (w)| \leq 
\varepsilon 

3
,

which completes the proof of the proposition.

Appendix B. Proof of Proposition 3.1. We want to establish that \tau 1 is
integrable, \BbbE s+ [\tau 1] < +\infty (which also proves by symmetry that \BbbE s - [\tau 1] = \BbbE s+ [\tau 1] <
+\infty ).

The process V \delta 
t is bounded by max(| V \delta 

0 | , vmax).
Step 1. Let \~\tau 1 = inf\{ t > 0, V \delta 

t = 0\} . We have

C\~\tau := sup
x\in \{ xk\mu \mathrm{s}+1,...,xN\} 

\BbbE (x,1,0)[\~\tau 1]<+\infty .

By symmetry we have \BbbE (x, - 1,0)[\~\tau 1] = \BbbE ( - x,1,0)[\~\tau 1] for x \in \{ x - N , . . . , x - k\mu \mathrm{s} - 1\} , and
therefore supx\in \{ x - N ,...,x - k\mu \mathrm{s} - 1\} \BbbE (x, - 1,0)[\~\tau 1] =C\~\tau .

Proof. If X\delta 
0 \in \{ xk\mu \mathrm{s}+1, . . . , xN\} , V \delta 

0 = 0 and t < \~\tau 1, then 0 \leq V \delta 
t =

\int t

0
[ - \mu d +

b(X\delta 
s , V

\delta 
s )]ds \leq  - \mu dt+

\int t

0
X\delta 

sds. Therefore, for any x \in \{ xk\mu \mathrm{s}+1, . . . , xN\} and t > 0,
we have

\BbbP (x,1,0)

\bigl( 
\~\tau 1 > t

\bigr) 
= \BbbP (x,1,0)

\bigl( 
\~\tau 1 > t, V

\delta 
t \geq 0

\bigr) 
\leq \BbbP (x,1,0)

\biggl( \int t

0

X\delta 
sds\geq \mu dt

\biggr) 
\leq \mu d

 - 4t - 4\BbbE x

\Biggl[ \biggl( \int t

0

X\delta 
sds

\biggr) 4
\Biggr] 
.
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DRY FRICTION PROBLEM WITH NOISE 1417

By the ergodic properties of (X\delta 
t ), we have t - 2\BbbE x[(

\int t

0
X\delta 

sds)
4]

t\rightarrow +\infty  - \rightarrow 
6(
\int +\infty 
0

\BbbE s[X
\delta 
0X

\delta 
s ]ds)

2 which is finite (where \BbbE s is the expectation under the
stationary distribution of the process X\delta 

t ). This shows that there exists C\mu \mathrm{d}
> 0 such

that, for all t > 0,

sup
x\in \{ xk\mu \mathrm{s}+1,...,xN\} 

\BbbP (x,1,0)

\bigl( 
\~\tau 1 > t

\bigr) 
\leq C\mu \mathrm{d}

1 + t2
,

which gives the desired result.
Step 2. We have

Cp := inf
x\in \{ xk\mu \mathrm{s}+1,...,xN\} 

\BbbP (x,1,0)

\bigl( 
X\delta 

\~\tau 1 \in \{  - xk\mu \mathrm{s}
, . . . , xk\mu \mathrm{s}

\} 
\bigr) 
> 0.

Proof. For simplicity we give the proof in the case b(v) =  - v. Let kd be the
largest index such that xk\mathrm{d}

< \mu d. We here denote by \theta j the times between two
random jumps of the process X\delta and by Xj \in \{  - \delta , \delta \} the jump amplitudes. For
k \in \{ k\mu \mathrm{s}

+ 1, . . . ,N\} , we consider Bk = \{ \theta 1 + \cdot \cdot \cdot + \theta k - k\mathrm{d}
< 1, Xk - k\mathrm{d}

= \cdot \cdot \cdot = X1 =
 - \delta , \theta k - k\mathrm{d}+1 > (xk  - \mu d)/(\mu d  - xk\mathrm{d}

)\} . This corresponds to a trajectory that goes
northwest from (xk,1,0) up to the line (xk\mathrm{d}

,1,\ast ) in time less than 1 and then goes
south until reaching (xk\mathrm{d}

,1,0) which triggers a deterministic jump to (xk\mathrm{d}
,0,0). We

have \BbbP (xk,1,0)(Bk) > 0 and \BbbP (xk,1,0)(X
\delta 
\~\tau 1

\in \{ x - k\mu \mathrm{s}
, . . . , xk\mu \mathrm{s}

\} ) \geq \BbbP (xk,1,0)(Bk) > 0,
which gives the desired result after taking infk\in \{ k\mu \mathrm{s}+1,...,N\} .

Step 3. We have

C\^\tau := sup
x\in \{ xk\mu \mathrm{s}+1,...,xN\} 

\BbbE (x,1,0)[\^\tau 1]<+\infty .

By symmetry we have \BbbE (x, - 1,0)[\^\tau 1] = \BbbE ( - x,1,0)[\^\tau 1] for x \in \{ x - N , . . . , x - k\mu \mathrm{s} - 1\} , and
therefore supx\in \{ x - N ,...,x - k\mu \mathrm{s} - 1\} \BbbE (x, - 1,0)[\^\tau 1] =C\^\tau .

Proof. Using the strong Markov property, we have for x\in \{ xk\mu \mathrm{s}+1, . . . , xN\} :

\BbbE (x,1,0)[\^\tau 1] =\BbbE (x,1,0)

\bigl[ 
\^\tau 11X\delta 

\~\tau 1
\in \{  - xk\mu \mathrm{s}

,...,xk\mu \mathrm{s}
\} 
\bigr] 
+\BbbE (x,1,0)

\bigl[ 
\^\tau 11X\delta 

\~\tau 1
\not \in \{  - xk\mu \mathrm{s}

,...,xk\mu \mathrm{s}
\} 
\bigr] 

=\BbbE (x,1,0)

\bigl[ 
\~\tau 11X\delta 

\~\tau 1
\in \{  - xk\mu \mathrm{s}

,...,xk\mu \mathrm{s}
\} 
\bigr] 

+\BbbE (x,1,0)

\bigl[ 
(\^\tau 1  - \~\tau 1 + \~\tau 1)1X\delta 

\~\tau 1
\not \in \{  - xk\mu \mathrm{s}

,...,xk\mu \mathrm{s}
\} 
\bigr] 

=\BbbE (x,1,0)

\bigl[ 
\~\tau 1
\bigr] 
+\BbbE (x,1,0)

\bigl[ 
(\^\tau 1  - \~\tau 1)1X\delta 

\~\tau 1
\not \in \{  - xk\mu \mathrm{s}

,...,xk\mu \mathrm{s}
\} 
\bigr] 

=\BbbE (x,1,0)

\bigl[ 
\~\tau 1
\bigr] 
+

\sum 
\~x\in \{ xk\mu \mathrm{s}+1,...,xN\} 

\BbbE (\~x,1,0)

\bigl[ 
\^\tau 1
\bigr] 
\BbbP (x,1,0)

\bigl( 
X\delta 

\~\tau 1 = \~x
\bigr) 

+
\sum 

\~x\in \{ x - N ,...,x - k\mu \mathrm{s} - 1\} 

\BbbE (\~x, - 1,0)

\bigl[ 
\^\tau 1
\bigr] 
\BbbP (x,1,0)

\bigl( 
X\delta 

\~\tau 1 = \~x
\bigr) 

\leq C\~\tau + sup
\~x\in \{ xk\mu \mathrm{s}+1,...,xN\} 

\BbbE (\~x,1,0)

\bigl[ 
\^\tau 1
\bigr] 
(1 - Cp);

hence supx\in \{ xk\mu \mathrm{s}+1,...,xN\} \BbbE (x,1,0)[\^\tau 1]\leq C\~\tau /Cp.
Step 4. We have

C\tau := sup
x\in \{ xk\mu \mathrm{s}+1,...,xN\} 

\BbbE (x,1,0)[\tau 1]<+\infty .

By symmetry we have \BbbE (x, - 1,0)[\tau 1] = \BbbE ( - x,1,0)[\tau 1] for x \in \{ x - N , . . . , x - k\mu \mathrm{s} - 1\} , and
therefore supx\in \{ x - N ,...,x - k\mu \mathrm{s} - 1\} \BbbE (x, - 1,0)[\tau 1] =C\tau .
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1418 JOSSELIN GARNIER, ZIYU LU, AND LAURENT MERTZ

Proof. Using the strong Markov property, we have for x\in \{ xk\mu \mathrm{s}+1, . . . , xN\} :

\BbbE (x,1,0)[\tau 1] =\BbbE (x,1,0)[\^\tau 1] +\BbbE (x,1,0)[\tau 1  - \^\tau 1]\leq C\^\tau + sup
\^x\in \{  - xk\mu \mathrm{s}

,...,xk\mu \mathrm{s}
\} 
\BbbE (\^x,0,0)[\v \tau 1],

where \v \tau 1 = inf\{ t > 0, X\delta 
t \in \{ x - k\mu \mathrm{s} - 1, xk\mu \mathrm{s}+1\} \} . Since the process X\delta 

t is ergodic, we
have \BbbE (\^x,0,0)[\v \tau 1]<+\infty for all \^x\in \{  - xk\mu \mathrm{s}

, . . . , xk\mu \mathrm{s}
\} .

Appendix C. Proof of Proposition 3.3. We introduce an auxiliary Markov
process (X\epsilon 

t , Y
\epsilon 
t , V

\epsilon 
t ) that depends on an additional time parameter \epsilon > 0:

\bullet From s\prime \pm the process (X\epsilon 
t , Y

\epsilon 
t , V

\epsilon 
t ) moves to s\pm = \pm (xk\mu \mathrm{s}+1,1,0) with proba-

bility one. The exponential time of jump has mean \epsilon \tau 2\delta 2.
\bullet From (xk\mu \mathrm{s}

,0,0) the process (X\epsilon 
t , Y

\epsilon 
t , V

\epsilon 
t ) moves to s\prime + with probability \alpha (k\mu \mathrm{s}

)
and to (xk\mu \mathrm{s} - 1,0,0) with probability 1 - \alpha (k\mu \mathrm{s}). The exponential time of jump
has mean \tau 2\delta 2.

\bullet From (x - k\mu \mathrm{s}
,0,0) the process (X\epsilon 

t , Y
\epsilon 
t , V

\epsilon 
t ) moves to s\prime  - with probability 1 - 

\alpha ( - k\mu \mathrm{s}
) and to (x - k\mu \mathrm{s}+1,0,0) with probability \alpha ( - k\mu \mathrm{s}

). The exponential
time of jump has mean \tau 2\delta 2.

\bullet Otherwise the random dynamics of (X\epsilon 
t , Y

\epsilon 
t , V

\epsilon 
t ) is the one of (X\delta 

t , Y
\delta 
t , V

\delta 
t ).

In this context, the generator \scrL \epsilon of (X\epsilon 
t , Y

\epsilon 
t , V

\epsilon 
t ) is

(\scrL \epsilon \varphi )(\bfitz ) = (\scrL \prime \varphi )(\bfitz ) for \bfitz \in E, (\scrL \epsilon \varphi )(s\prime \pm ) =
\varphi (s\pm ) - \varphi (s\prime \pm )

\epsilon \tau 2\delta 2
.

Given f a bounded function, we consider the function

u\epsilon \lambda (x, y, v;f) =\BbbE (x,y,v)

\biggl[ \int \infty 

0

e - \lambda sf(X\epsilon 
s , Y

\epsilon 
s , V

\epsilon 
s )ds

\biggr] 
which satisfies the equation

(C.1) \lambda u\epsilon \lambda  - \scrL \epsilon u\epsilon \lambda = f in E \cup \{ s\prime \pm \} .

We want to establish the representation formula (3.15). The function f is arbi-
trary and can be decomposed as a sum of two functions: one symmetric fs =

1
2 (f+f\circ \gamma )

and one antisymmetric fa = 1
2 (f  - f \circ \gamma ), where \forall (x, y, v) \in E, \gamma (x, y, v) =  - (x, y, v)

and \gamma (s\prime \pm ) = s\prime \mp . We first show that we have the representation formula

u\epsilon \lambda (x, y, v;f) =w\lambda (x, y, v;f) - \nu \epsilon \lambda (f)w\lambda (x, y, v; 1)

+ \mu \epsilon 
\lambda (f)

\bigl( 
(h+\lambda (x, y, v) - h - \lambda (x, y, v)

\bigr) 
+
\pi \epsilon 
\lambda (f)

\lambda 
,

where

\pi \epsilon 
\lambda (f) =

w\lambda (s+;f) +w\lambda (s - ;f) + \epsilon \tau 2\delta 2(f(s+) + f(s - ))

2w\lambda (s+; 1) + 2\epsilon \tau 2\delta 2
,

\mu \epsilon 
\lambda (f) =

w\lambda (s+;f) - w\lambda (s - ;f) + \epsilon \tau 2\delta 2(f(s+) - f(s - ))

2(1 - h+\lambda (s+) + h - \lambda (s+) + \epsilon \tau 2\delta 2)
.

We split the proof into two parts.
Step 1. Assume f is symmetric. We have

\pi \epsilon 
\lambda (f) =

w\lambda (s+, f) + \epsilon \tau 2\delta 2f(s\prime +)

w\lambda (s+,1) + \epsilon \tau 2\delta 2
,(C.2)

u\epsilon \lambda (x, y, v;f) =w\lambda (x, y, v;f) + \pi \epsilon 
\lambda (f)

\Bigl( 1
\lambda 
 - w\lambda (x, y, v; 1)

\Bigr) 
.(C.3)
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DRY FRICTION PROBLEM WITH NOISE 1419

Proof of Step 1. By linearity of the operator \scrL \prime , it is clear that w\lambda (\cdot ;f) +
\pi \epsilon 
\lambda (f)

\bigl( 
1
\lambda  - w\lambda (\cdot ; 1)

\bigr) 
satisfies (C.1) in E. Moreover, by definition of the constant \pi \epsilon 

\lambda (f)
and by linearity of the operator \scrL \epsilon , the equation is also satisfied in \{ s\prime \pm \} . Since \lambda > 0,
the solution of (C.1) is unique, and thus (C.3) is shown.

Step 2. Assume f is antisymmetric. We have

\mu \epsilon 
\lambda (f) =

w\lambda (s+, f) + \epsilon \tau 2\delta 2f(s\prime +)

1 - h+\lambda (s+) + h - \lambda (s+) + \epsilon \tau 2\delta 2
,

u\epsilon \lambda (x, y, v;f) =w\lambda (x, y, v;f) + \mu \epsilon 
\lambda (f)

\bigl( 
h+\lambda (x, y, v) - h - \lambda (x, y, v)

\bigr) 
.

Proof of Step 2. The proof follows the same logic to what is done in Step 1 except
that we replace the function w\lambda (\cdot ;f)+\pi \epsilon 

\lambda (f)
\bigl( 
1
\lambda  - w\lambda (\cdot ; 1)

\bigr) 
by w\lambda (\cdot ;f)+\mu \epsilon 

\lambda (f)(h
+
\lambda  - h

 - 
\lambda )

and the constant \pi \epsilon 
\lambda (f) by \mu 

\epsilon 
\lambda (f).

Step 3. To treat the general case of f , we collect what was done in the two
previous steps:

u\epsilon \lambda (\cdot ;f) = u\epsilon \lambda (\cdot ;fs) + u\epsilon \lambda (\cdot ;fa)

=w\lambda (\cdot ;fs) + \pi \epsilon 
\lambda (fs)

\Bigl( 1
\lambda 
 - w\lambda (\cdot ; 1)

\Bigr) 
+w\lambda (\cdot ;fa) + \mu \epsilon 

\lambda (fa)
\bigl( 
h+\lambda  - h - \lambda 

\bigr) 
=w\lambda (\cdot ;f) + \pi \epsilon 

\lambda (f)
\Bigl( 1
\lambda 
 - w\lambda (\cdot ; 1)

\Bigr) 
+ \mu \epsilon 

\lambda (f)
\bigl( 
h+\lambda  - h - \lambda 

\bigr) 
.

We finally get the representation formula (3.15) from the fact that

u\epsilon \lambda (x, y, v;f)\rightarrow u\lambda (x, y, v;f) =\BbbE (x,y,v)

\biggl[ \int \infty 

0

e - \lambda sf(X\delta 
s , Y

\delta 
s , V

\delta 
s )ds

\biggr] 
as \epsilon \rightarrow 0,

and lim
\lambda \downarrow 0

\lambda u\lambda (f) = lim
\lambda \downarrow 0

lim
\epsilon \downarrow 0

\lambda u\epsilon \lambda (f).

Appendix D. Proof of the integrability of t \mapsto \rightarrow \BbbE \pi [V
\delta 
0 V

\delta 
t ]. We can decom-

pose

\BbbE \pi [V
\delta 
t V

\delta 
0 ] =\BbbE \pi [V

\delta 
t V

\delta 
0 1t\leq \tau 1 ] +\BbbE \pi [V

\delta 
t V

\delta 
0 1t>\tau 1 ].(D.1)

The first term of the right-hand side is integrable since\bigm| \bigm| \BbbE \pi [V
\delta 
t V

\delta 
0 1t\leq t\tau 1 ]

\bigm| \bigm| \leq v2max\BbbP \pi (t\leq \tau 1),

and
\int \infty 
0

\BbbP \pi (t \leq \tau 1)dt = \BbbE \pi [\tau 1] < +\infty . Denoting \psi (t) = \BbbE s+ [V
\delta 
t ] (which is such that

\BbbE s - [V
\delta 
t ] =  - \psi (t)), and using the strong Markov property, the second term of the

right-hand side of (D.1) can be written as

\BbbE \pi [V
\delta 
t V

\delta 
0 1t>\tau 1 ] =\BbbE \pi [V

\delta 
0 1t>\tau 1\psi (t - \tau 1)

\bigl( 
1\bfitZ \tau 1

=s+  - 1\bfitZ \tau 1
=s - 

\bigr) 
].

It is sufficient to show that \psi is integrable in order to complete the proof because
then \int \infty 

0

\bigm| \bigm| \BbbE \pi [V
\delta 
t V

\delta 
0 1t>\tau 1 ]

\bigm| \bigm| dt\leq vmax

\int \infty 

0

| \psi (t)| dt,

so that t \mapsto \rightarrow \BbbE \pi [V
\delta 
t V

\delta 
0 ] is integrable by (D.1).

We have, using again the strong Markov property,

\psi (t) =\BbbE s+ [V
\delta 
t 1t\leq \tau 1 ] +\BbbE s+

\bigl[ 
\psi (t - \tau 1)1t>\tau 1

\bigl( 
1\bfitZ \tau 1

=s+  - 1\bfitZ \tau 1
=s - 

\bigr) \bigr] 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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We denote \kappa (u) = \BbbE s+ [1\bfitZ \tau 1
=s+  - 1\bfitZ \tau 1

=s - | \tau 1 = u]. It satisfies | \kappa (u)| < 1 \forall u > 0
because \BbbP s+(\bfitZ \tau 1 = s+| \tau 1 = u)\in (0,1), and we have

\psi (t) =\BbbE s+ [V
\delta 
t 1t\leq \tau 1 ] +\BbbE s+

\bigl[ 
\psi (t - \tau 1)1t>\tau 1\kappa (\tau 1)

\bigr] 
.

For any T > 0,\int T

0

| \psi (t)| dt\leq 
\int T

0

\BbbE s+ [| V \delta 
t | 1t\leq \tau 1 ]dt+\BbbE s+

\Biggl[ \int (T - \tau 1)+

0

| \psi (t)| dt| \kappa (\tau 1)| 

\Biggr] 

\leq vmax

\int +\infty 

0

\BbbP s+(\tau 1 \geq t)dt+\BbbE s+ [| \kappa (\tau 1)| ]
\int T

0

| \psi (t)| dt.

Since \BbbE s+ [| \kappa (\tau 1)| ] < 1 and
\int +\infty 
0

\BbbP s+(\tau 1 \geq t)dt = \BbbE s+ [\tau 1] < \infty , this shows that \psi is
integrable: \int \infty 

0

| \psi (t)| dt\leq 
vmax\BbbE s+ [\tau 1]

1 - \BbbE s+ [| \kappa (\tau 1)| ]
.
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