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Abstract. We consider random wave coupling along a flat boundary in dimension three, where
the coupling is between surface and body modes and is induced by scattering by a randomly hetero-
geneous medium. In an appropriate scaling regime we obtain a system of radiative transfer equations
which are satisfied by the mean Wigner transform of the mode amplitudes. We provide a rigorous
probabilistic framework for describing solutions to this system using that it has the form of a Kol-
mogorov equation for some Markov process. We then prove statistical stability of the smoothed
Wigner transform under the Gaussian approximation. We conclude with analyzing the nonlinear
inverse problem for the radiative transfer equations and establish the unique recovery of phase and
group velocities as well as power spectral information for the medium fluctuations from the ob-
served smoothed Wigner transform. The mentioned statistical stability is essential in monitoring
applications where the realization of the random medium may change.
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1. Introduction. Radiative transfer [10] has been used for a long time to model
waves in heterogeneous media like Earth’s crust [17, 24, 27, 28], biological tissue
[2], the atmosphere and the ocean [1, 14]. The mathematical theory of radiative
transfer in open random media, which involves only body waves, is well established
[3, 4, 7, 6, 13, 22]. However, in a half space, the coupling between surface waves
propagating along a boundary and body waves propagating in the bulk medium has
remained a challenging problem [15, 18, 26, 29]. In dimension two a preliminary
approach had been applied in the context of coupled mode theory in [8] and an
analysis of the mean Wigner transform (which satisfies a form of radiative transfer
equation) was presented in [11]. Here we deal with the full three-dimensional problem
which includes diffractive effects and we analyze the statistical stability of the Wigner
transform, which makes it possible to study the associated inverse problem.

The coupling between surface and body waves is essential in understanding, for
example, seismic coda (formed by scattered waves from numerous heterogeneities).
Here, we analyze the coupling in dimension three. We consider a novel anisotropic
scaling in the random medium fluctuations and we study an associated inverse prob-
lem. Interestingly, seismograms recently acquired with SEIS on Mars show a behavior
that fits the hypotheses of our analysis about the properties of its crust [20]. The re-
sults reported in [20] suggest that i) attenuation is much weaker than scattering, ii)
the scattering properties are stratified, and iii) smooth models of heterogeneity seem
appropriate and forward scattering is dominant. This is the regime we address in
our paper, and this justifies the relevance of the inversion procedure based on the
radiative transfer model for the coda waves because multiple scattering hampers the
identification and analysis of ballistic waves in a low-attenuation, strongly scattering
medium [24].
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To describe the energy transport in the seismic coda, Margerin, Bajaras and
Campillo [18] introduced a system of radiative transfer equations for coupled surface
and body waves in a scalar approximation for a half space with a special Robin bound-
ary condition. They identified cross sections for surface-to-body and body-to-surface
waves scattering. They followed a phenomenological approach to obtain the specific
energy density of surface and body waves in a medium containing a homogeneous
distribution of point scatterers. Zeng [29] and Sato [23] have shown the importance
of each mode of wave propagation and their possible conversions, in the formation of
the seismic coda, suggesting that the scattered wave energy at different arrival times
may be dominated by different types of waves. Maeda et al. [15] made important
contributions in this regard, modelling the coda envelopes in an inhomogeneous elastic
half-space including P, SV and Rayleigh waves in the single scattering approximation.
Messaoudi et al. [21] developed a scaling limit theory for the radiative transfer equa-
tions for scalar waves in the presence of a boundary via the use of a method of images.
The results give a modification of the intensity in a domain within one wavelength of
the boundary and where the modification depends on the boundary condition.

Analytical solutions of the radiative transfer equations are known only in some
special cases. In [9] Celorio et al. used a spectral element model to numerically
validate predictions of the radiative transfer equations in a context of scalar waves,
while in Shearer and Earle [25] introduced a heuristic Monte Carlo seismic phonon
method. A seismic phonon can be identified with a packet of energy. Barajas et al. [5]
analyzed phenomenologically the phonon propagation taking a probabilistic approach
similar to the one presented by Zhang et al. [30]. They studied the typical time
a seismic phonon passes through each part of the medium, and the typical time it
spends in each mode of propagation (here, as a body or a surface wave). Accounting
for the directionality of seismic phonons was earlier introduced by Margerin et al. [19].
In our paper, we provide a rigorous probabilistic framework for describing solutions
to our system of radiative transfer equations using that this system has the form of a
Kolmogorov equation for some Markov process.

We conclude with analyzing the nonlinear inverse problem for radiative transfer
accounting for the coupling between surface and body modes and prove the unique
recovery of phase and group velocities as well as the power spectrum of the medium
fluctuations from the observed smoothed Wigner transform. The proof makes use of
an expansion of the associated albedo operator. In a follow-up paper we will give a
proof of unique recovery of the deterministic background wave speed from the phase
velocities assuming that it is piecewise constant in the boundary normal coordinate
or depth. Barajas et al. [5] considered the linearized version of this inverse problem.
We prove statistical stability of the smoothed Wigner transform which implies that
the coda is particularly amenable to time-lapse detection of small changes in the
background wave speed.

The paper is organized as follows. In Section 2 we describe the configuration of
open random waveguides and wave propagation in these. In Section 3, we introduce
the random medium fluctuations and their anisotropic scaling, and a description of
the stochastic evolution of the Fourier coefficients of the wavefield taking the form
of an Itô-Schrödinger equation. In Section 4, we introduce the Wigner transform,
its mean, and obtain the system of radiative transfer equations it satisfies. We also
present a probabilistic representation of the mean Wigner transform. In Section 5,
we establish statistical stability of the smoothed Wigner transform. In Section 6,
we introduce and analyze the transport albedo kernel associated with the system of
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radiative transfer equations, and its expansion; this expansion is used in Section 7
where we study the inverse problem for the system of radiative transfer equations.

2. Wave Propagation in Open, Random Three-dimensional Waveg-
uides. We consider the three-dimensional scalar wave equation in the half-space
R2 × (0,+∞): [

n2(x, y, z)

c2o
∂2
t −∆

]
p(t, x, y, z) = f(t, y, z)δ(x), (2.1)

for (x, y) ∈ R2, z ∈ (0,+∞), t ∈ R, with ∆ = ∂2
x + ∂2

y + ∂2
z . We assume a Dirichlet

boundary condition at the surface z = 0: p(t, x, y, z = 0) = 0. The excitation is due
to a source located in the plane x = 0. The medium is quiescent before the source
excitation: p(t, x, y, z) = 0, for t� 0.

2.1. Wave Propagation in the Ideal Waveguide. We refer to the determin-
istic case without random perturbations in the waveguide as the ideal waveguide case.
The pressure field in ideal waveguides is given by

po(t, x, y, z) =

∫ ∞
−∞

dω

2π
p̂o(ω, x, y, z)e

−iωt, (2.2)

with Fourier coefficients satisfying the Helmholtz equation[
∂2
x + ∂2

y + ∂2
z +

ω2n2
o(z)

c2o

]
p̂o(ω, x, y, z) = −f̂(ω, y, z)δ(x), (2.3)

for (x, y) ∈ R2, z ∈ (0,∞). In the ideal waveguide the index of refraction is (x, y)-
independent and equal to no(z).

Assumption 2.1. The function no(z) is such that no(0) = n0, no(z) is non-
increasing on [0, d] from n0 to n1 < n0, and no(z) = n1 for z ≥ d.

We denote k = ω/co. The spectral problem associated to the one-dimensional
Schrödinger operator

(∂2
z + k2n2

o(z))φ(z) = γφ(z)

with Dirichlet boundary condition at z = 0 has been well studied [16, 11]:
• The spectrum is of the form (−∞, n2

1k
2) ∪ {β2

N , . . . , β
2
1}.

• The N modal wavenumbers βj are positive and n2
1k

2 < β2
N < · · · < β2

1 <
n2

0k
2. We have N ≥ 1 when ω is large enough.

• The functions φj , j = 1, . . . , N , are the modes corresponding to the discrete
spectrum. They decay exponentially in z for z > d.

• The functions φγ , γ ∈ (−∞, n2
1k

2), are the modes corresponding to the con-
tinuous spectrum. They are oscillatory and bounded at infinity.

• The set of modes is complete in L2(0,+∞).
The pressure field in the ideal waveguide can be expanded as

p̂o(ω, x, y, z) =

N(ω)∑
j=1

p̂o,j(ω, x, y)φj(ω, z) +

∫ n2
1k

2

−∞
p̂o,γ(ω, x, y)φγ(ω, z)dγ, (2.4)

where the mode amplitudes satisfy the uncoupled system:[
∂2
x + ∂2

y + β2
j (ω)

]
p̂o,j = −f̂j(ω, y)δ(x), (2.5)[

∂2
x + ∂2

y + γ
]
p̂o,γ = −f̂γ(ω, y)δ(x), (2.6)

with f̂j(ω, y) =
∫∞

0
f̂(ω, y, z)φj(ω, z)dz and f̂γ(ω, y) =

∫∞
0
f̂(ω, y, z)φγ(ω, z)dz.
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Fig. 2.1. Left: Set-up in the plane y = 0. Right: profile of the perturbed index of refraction
n(x, y, z) =

√
n2
o + µn(x, y, z) as a function of z for fixed x and y. The perturbation is localized in

the region z ∈ (0, d).

2.2. Wave Propagation in Perturbed Waveguides. The pressure field in
the randomly perturbed waveguide satisfies the perturbed Helmholtz equation[

∂2
x + ∂2

y + ∂2
z +

ω2

c2o

(
n2
o(z) + µn(x, y, z)

)]
p̂(ω, x, y, z) = −f̂(ω, y, z)δ(x), (2.7)

for (x, y) ∈ R2, z ∈ (0,∞). Here µn models the perturbation of the index of
refraction. It is a random and zero-mean process. It is stationary in (x, y) and mixing
in x. It is supported in R2 × [0, d] (see Figure 2.1).

Any function can be expanded on the complete set of the eigenfunctions of the
Schrödinger operator. In particular, the solution of the perturbed Helmholtz equation
(2.7) can be expanded as the superposition of modes:

p̂(ω, x, y, z) =

N(ω)∑
j=1

p̂j(ω, x, y)φj(ω, z) +

∫ n2
1k

2

−∞
p̂γ(ω, x, y)φγ(ω, z)dγ. (2.8)

3. Medium with Anisotropic Fluctuations. We assume that the source in
(2.7) is of the form

f(t, y, z) = Gε(t)F (εy, z), (3.1)

where ε is a small dimensionless parameter defined as the ratio of the central wave-
length λo and the transverse width ro of the source. The function Gε(t) is supposed
to have carrier frequency ωo, associated to the central wavelength λo = 2πco/ωo. We
will give the hypotheses that Gε should satisfy in Section 4. The separable form (3.1)
of the source is assumed for simplicity but is not essential for the analysis. Stan-
dard diffraction theory states that this source generates a paraxial beam and that
the Rayleigh length for this beam is of the order of r2

o/λo = λo/ε
2. The Rayleigh

length can here be defined as the distance along the x axis from the beam waist (the
source plane) to the place where the beam radius (in y) is doubled by diffraction.
Therefore, we look at the wavefield p solution of (2.7) at a cross-range scale (in y) of
order O(ε−1), similar to ro, with λo being O(1) in our scaling. Moreover, we consider
a range scale (in x) of order O(ε−2), similar to the Rayleigh length (see Figure 3.1).
We rename the field in this scaling as

pε(t,X, Y, z) = p
(
t,
X

ε2
,
Y

ε
, z
)
. (3.2)

We also assume that the medium perturbation in (2.7) is of the form

µn(x, y, z) = εµ(x, εy, z). (3.3)
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The process µn is anisotropic with a vertical correlation length (in z) of the order of
the wavelength, a horizontal correlation length in x of the order of the wavelength
and a horizontal correlation length in y of the order of the beam radius. The standard
deviation (of the order of ε) of the process µn is such that the cumulative scattering
effects are of order one as ε → 0. In Appendix A we address the case when the
medium perturbation is isotropic in the two horizontal directions and of the form
(A.1). We derive there the radiative transfer equation (RTE) (A.8) that is satisfied by
the mean Wigner transform of the field (A.9) and that does not contain all the terms
that are included in the forthcoming RTE (4.4). Indeed, the anisotropy introduced
in (3.3) is exactly the one that produces a RTE in which all conversion mechanisms
between the different types of modes are of the same order, hence, it is the right model
to produce the most comprehensive and general RTE. We remark that the RTE (A.9)
can be formally derived from the RTE (4.4) by neglecting the terms that induce
conversion between different surface modes (i.e., the first term in the right-hand side
of (4.4)).

-
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Fig. 3.1. The source is located to the left and its support projected on the horizontal spatial
(surface) plane is the strip Γ−, while the transmitted field is observed as a function of time on
the set Γ+ in the horizontal plane and centered at range X/ε2 and then subsequently processed to
form the smoothed Wigner transform. The figure also illustrates the situation with an additional
measurement centered at X̃/ε2.

The Fourier transform of (3.2) is given by the scaled version of (2.8):

p̂ε(ω,X, Y, z) =

N(ω)∑
j=1

p̂εj(ω,X, Y )φj(ω, z) +

∫ n2
1k

2

−∞
p̂εγ(ω,X, Y )φγ(ω, z)dγ. (3.4)

As the wave field evolves in the range direction (x) the Fourier transformed field
changes and incorporates diffraction effects as well as mode coupling due to the ran-
dom medium fluctuations. After taking out a rapidly oscillating phase to get the
modal amplitudes the following proposition gives the description of this stochastic
evolution of the Fourier transform p̂ε.
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Proposition 3.1. Let

α̂εj(ω,X, Y ) =

√
βj(ω)

Ĝε(ω)
p̂εj(ω,X, Y ) exp(−iβj(ω)X/ε2). (3.5)

As ε → 0, α̂ε(ω,X, Y ) = (α̂εj(ω,X, Y ))Nj=1 converges weakly and in distribution to

the diffusion Markov process α̂(ω,X, Y ) = (α̂j(ω,X, Y ))Nj=1. The limit processes
α̂j(ω,X, Y ) solve the Itô-Schrödinger equations

dα̂j(ω,X, Y ) =
i

2βj(ω)
∂2
Y α̂j(ω,X, Y )dX + iα̂j(ω,X, Y ) ◦ dBj(ω,X, Y )

+

N(ω)∑
l=1,l 6=j

1√
2
α̂l(ω,X, Y ) ◦

(
idBj,l(ω,X, Y )− dB̃j,l(ω,X, Y )

)
+

1

2

(
− Λrj(ω)− iΛsj(ω) + iκj(ω)

)
α̂j(ω,X, Y )dX, (3.6)

for X > 0, starting from

α̂j(ω,X = 0, Y ) =
Fj(ω, Y )

2i
√
βj(ω)

, Fj(ω, Y ) =

∫ +∞

0

F (Y, z)φj(ω, z)dz. (3.7)

The correlated Brownian fields Bj(ω,X, Y ) are Gaussian processes that satisfy

E [Bj(ω,X, Y )] = 0, (3.8)

E [Bj(ω,X, Y )Bl(ω,X
′, Y ′)] = min{X,X ′}Rjl(ω, Y − Y ′), (3.9)

with Rjl defined by:

Rjl(ω, Y ) =
k4(ω)

4βj(ω)βl(ω)

∫ ∞
0

∫ d

0

∫ d

0

E[µ(0, 0, z)µ(x, Y, z′)]φj(ω, z)
2φl(ω, z

′)2dzdz′dx

+
k4(ω)

4βj(ω)βl(ω)

∫ ∞
0

∫ d

0

∫ d

0

E[µ(0, 0, z)µ(x,−Y, z′)]φl(ω, z)2φj(ω, z
′)2dzdz′dx.

(3.10)

The Brownian fields Bj,l(ω,X, Y ), B̃j,l(ω,X, Y ) are independent and identically

distributed for j < l and satisfy Bl,j = Bj,l, B̃l,j = −B̃j,l,

E [Bj,l(ω,X, Y )] = 0, (3.11)

E [Bj,l(ω,X, Y )Bj,l(ω,X
′, Y ′)] = min{X,X ′}Γcjl(ω, Y − Y ′), (3.12)
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where

Γcjl(ω, Y ) =
k4(ω)

4βjβl(ω)

∫ ∞
0

Rjl(ω, x, Y ) cos
(
(βl(ω)− βj(ω))x

)
dx, j 6= l, (3.13)

Γsjl(ω, Y ) =
k4(ω)

4βjβl(ω)

∫ ∞
0

Rjl(ω, x, Y ) sin
(
(βl(ω)− βj(ω))x

)
dx, j 6= l, (3.14)

Rjl(ω, x, Y ) =

∫ d

0

∫ d

0

φjφl(ω, z)E[µ(0, 0, z)µ(x, Y, z′)]φjφl(ω, z
′)dzdz′

+

∫ d

0

∫ d

0

φlφj(ω, z)E[µ(0, 0, z)µ(x,−Y, z′)]φlφj(ω, z′)dzdz′, (3.15)

Λcj(ω) =

N(ω)∑
l=1,l 6=j

Γcjl(ω, 0), (3.16)

Λrj(ω) =

∫ n2
1k

2(ω)

0

k4(ω)

4
√
γβj(ω)

∫ ∞
0

Rjγ(ω, x) cos
(
(
√
γ − βj(ω))x

)
dxdγ, (3.17)

Λsj(ω) =

N(ω)∑
l=1,l 6=j

Γsjl(ω, 0)

+

∫ n2
1k

2(ω)

0

k4(ω)

4
√
γβj(ω)

∫ ∞
0

Rjγ(ω, x) sin
(
(
√
γ − βj(ω))x

)
dxdγ,

(3.18)

κj(ω) =

∫ 0

−∞

k4(ω)

4
√
|γ|βj(ω)

∫ ∞
0

Rjγ(ω, x) cos
(
βj(ω)x

)
e−
√
|γ|xdxdγ, (3.19)

Rjγ(ω, x) =2

∫ d

0

∫ d

0

φjφγ(ω, z)E[µ(0, 0, z)µ(x, 0, z′)]φjφγ(ω, z′)dzdz′. (3.20)

The Itô-Schrödinger equations (3.6) allow us to describe moments of the wave
field and the statistics of the transmitted wave. In the case of the unperturbed
waveguide there is no coupling between the modal amplitudes and only the first term
on the right-hand side of the Itô-Schrödinger equation, the lateral Laplacian term, is
present and describes diffraction in the lateral direction. In the case of the perturbed
waveguide the terms involving the driving Brownian fields, Bj , Bj,l, B̃j,l reflect the
effects of the random medium fluctuations. Note that the driving Brownian fields are
correlated, as the modes sense the same medium, with the correlation reflecting the
correlations of the medium fluctuations when projected on products of eigenfunctions
of the one-dimensional unperturbed Schrödinger operator. The term involving Bj is
the one also seen in the scalar, open medium case [13] and gives a randomization of
the mode due to random forward and lateral scattering. The terms involving Bj,l, B̃j,l
produce a coupling between different modes due to the random perturbations in the
waveguide and are of the type seen in the two-dimensional case [11].

Proof. For a fixed frequency ω, we expand the wave field as in (2.8). Substituting
the result into (2.7) and taking into account the form (3.3) of the random medium
fluctuations, we find that the complex mode amplitudes satisfy the coupled equations
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for x 6= 0:

∂2
xp̂j + ∂2

y p̂j + β2
j p̂j = −εk2

N∑
l=1

Cj,l(x, εy)p̂l − εk2

∫ n2
1k

2

−∞
Cj,γ′(x, εy)p̂γ′dγ

′, (3.21)

for j = 1, . . . , N ,

∂2
xp̂γ + ∂2

xp̂γ + γp̂γ = −εk2
N∑
l=1

Cγ,l(x, εy)p̂l − εk2

∫ n2
1k

2

−∞
Cγ,γ′(x, εy)p̂γ′dγ

′, (3.22)

for γ ∈ (−∞, n2
1k

2), where

Cj,l(x, y) = (φj , φlµ(x, y, ·))L2 , Cj,γ′(x, y) = (φj , φγ′µ(x, y, ·))L2 ,

Cγ,l(x, y) = (φγ , φlµ(x, y, ·))L2 , Cγ,γ′(x, y) = (φγ , φγ′µ(x, y, ·))L2 ,

and (·, ·)L2 stands for the standard scalar product in L2(0,+∞). We introduce the
generalized forward-going and backward-going mode amplitudes,

{âj(x, y), b̂j(x, y), j = 1, . . . , N} and {âγ(x, y), b̂γ(x, y), γ ∈ (0, n2
1k

2)}, (3.23)

which are defined such that

p̂j(x, y) =
1√
βj

(
âj(x, y)eiβjx + b̂j(x, y)e−iβjx

)
,

∂xp̂j(x, y) =i
√
βj

(
âj(x, y)eiβjx − b̂j(x, y)e−iβjx

)
, j = 1, . . . , N (3.24)

and

p̂γ(x, y) =
1

γ1/4

(
âγ(x, y)ei

√
γx + b̂γ(x, y)e−i

√
γx
)
,

∂xp̂γ(x, y) =iγ1/4
(
âγ(x, y)ei

√
γx − b̂γ(x, y)e−i

√
γx
)
, γ ∈ (0, n2

1k
2). (3.25)

We then substitute (3.24)-(3.25) into (3.21)-(3.22) in order to obtain the coupled
system of random differential equations satisfied by the mode amplitudes in (3.23),

∂xâj =
i

2βj
∂2
y âj +

iεk2

2

N∑
l′=1

Cj,l′(x, εy)√
βl′βj

[
âl′e

i(βl′−βj)x + b̂l′e
i(−βl′−βj)x

]
+
iεk2

2

∫ n2
1k

2

0

Cj,γ′(x, εy)
4
√
γ′
√
βj

[
âγ′e

i(
√
γ′−βj)x + b̂γ′e

i(−
√
γ′−βj)x

]
dγ′

+
iεk2

2

∫ 0

−∞

Cj,γ′(x, εy)√
βj

p̂γ′e
−iβjxdγ′, (3.26)

∂xâγ =
i

2
√
γ
∂2
y âγ +

iεk2

2

N∑
l′=1

Cγ,l′(x, εy)
4
√
γ
√
βl′

[
âl′e

i(βl′−
√
γ)x + b̂l′e

i(−βl′−
√
γ)x
]

+
iεk2

2

∫ n2
1k

2

0

Cγ,γ′(x, εy)
4
√
γ′γ

[
âγ′e

i(
√
γ′−√γ)x + b̂γ′e

i(−
√
γ′−√γ)x

]
dγ′

+
iεk2

2

∫ 0

−∞

Cγ,γ′(x, εy)
4
√
γ

p̂γ′e
−i√γxdγ′. (3.27)

8



We have similar equations for b̂j and b̂γ . The evanescent mode amplitudes p̂γ , γ ∈
(−∞, 0), satisfy (3.22). We then take the scaled coordinates y = Y/ε and x = X/ε2 to

get a system for âεj(ω,X, Y ) = âj(ω,X/ε
2, Y/ε) and b̂εj(ω,X, Y ) = b̂j(ω,X/ε

2, Y/ε),
where we can use diffusion approximation results [12, Chapter 20] in a case with
rapidly oscillating phase terms. As shown in [12, Section 20.2.6], the forward scat-
tering approximation is valid in our scaling regime, that is to say, we can make the
approximation b̂εj ' 0 and b̂εγ ' 0. Indeed, for the type of medium fluctuations we con-
sider the coupling terms between the forward and backward propagating modes are
small. The coupling with the evanescent modes can be integrated out and only gives
rise to an effective deterministic phase modulation (this is the term in κj(ω) in (3.6),
see [12, Section 20.2.5]). The evolution equations for the forward mode amplitudes
âεj then take the form

∂X â
ε
j =

i

2βj
∂2
Y â

ε
j +

ik2

2ε

N∑
l′=1

Cj,l′(
X
ε2 , Y )√
βl′βj

âεl′e
i(βl′−βj) Xε2

+
ik2

2ε

∫ n2
1k

2

0

Cj,γ′(
X
ε2 , Y )

4
√
γ′
√
βj

âεγ′e
i(
√
γ′−βj) Xε2 dγ′ +

iκj
2
âεj , (3.28)

with the initial condition

âεj(ω,X = 0, Y ) =
Fj(ω, Y )Ĝε(ω)

2i
√
βj(ω)

.

This system is in a form which allows for the application of the diffusion approxi-
mation theory set forth in [12, Section 20.3.1]. This establishes the diffusion limit

for α̂εj(ω,X, Y ) = âεj(ω,X, Y )/Ĝε(ω). The Itô-Schrödinger equation (3.6) is the Itô
diffusion corresponding to this limit.

4. The Mean Wigner Transform.

4.1. The Radiative Transfer Equation Satisfied by the Mean Wigner
Transform. We first formulate the radiative transfer equation satisfied by the mean
Wigner transform of the mode amplitudes. We assume from now on that the Wigner
transform of the source function Gε(t) satisfies:

lim
ε→0

1

2π

∫
R
dω′e−iω

′tĜε
(
ω + ε2ω

′

2

)
Ĝε
(
ω − ε2

ω′

2

)
= WG(t, ω). (4.1)

The typical situation we have in mind is a partially coherent source, for instance a
zero-mean process with covariance function〈

Gε
(
t+

τ

2
)Gε(t− τ

2

)〉
= ε2 exp

(
− ε4t2

4σ2
t

− τ2

2τ2
c

− iωoτ
)
,

where 〈·〉 is the statistical average, ωo is the carrier frequency, τc the coherence time
and σt/ε

2 the duration of the source envelope. We then have

WG(t, ω) =
√

2πτc exp
(
− (ω − ωo)2τ2

c

2
− t2

4σ2
t

)
.
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Proposition 4.1. The mean Wigner transform of the jth surface mode defined
by

Wj(t, ω,X, κx, Y, κy) = lim
ε→0

1

2π

∫
R3

dω′dx′dY ′e−iω
′t−iκxx′−iκyY ′

× E
[
p̂εj
(
ω + ε2ω

′

2
, X + ε2x

′

2
, Y +

Y ′

2

)
p̂εj
(
ω − ε2

ω′

2
, X − ε2

x′

2
, Y − Y ′

2

)]
(4.2)

has the form

Wj(t, ω,X, κx, Y, κy) = Wj(t, ω,X, Y, κy)δ
(
κx − βj(ω)

)
, (4.3)

where the Wj’s satisfy the system of radiative transfer equations

∂XWj +
κy

βj(ω)
∂YWj +

1

vj(ω)
∂tWj

=
1

2π

N(ω)∑
l=1,l 6=j

∫
R

Γ̌c
jl(ω, κ

′
y)
[
Wl(κy − κ′y)−Wj(κy)]dκ′y

+
1

2π

∫
R
Řjj(ω, κ

′
y)
[
Wj(κy − κ′y)−Wj(κy)

]
dκ′y − Λrj(ω)Wj , (4.4)

starting from

Wj(t, ω,X = 0, Y, κy) =
πWG(t, ω)

2βj(ω)2

∫
R
Fj
(
ω, Y +

Y ′

2

)
Fj
(
ω, Y − Y ′

2

)
e−iκyY

′
dY ′.

(4.5)
Here

vj(ω) = 1/β′j(ω), (4.6)

Γ̌cjl(ω, κ) =

∫
R

Γcjl(ω, Y )e−iκY dY, (4.7)

Řjj(ω, κ) =

∫
R
Rjj(ω, Y )e−iκY dY. (4.8)

We note that Γ̌cjl(ω, κ) ≥ 0 and Řjj(ω, κ) ≥ 0 because they are proportional to the

power spectral densities of stationary processes in (x, Y ) (
∫
φjφl(z)µ(x, Y, z)dz and∫

φ2
j (z)µ(x, Y, z)dz, respectively).

In RTE (4.4), vj is the group velocity of the j-th surface mode, Γ̌cjl and Řjj are the

scattering cross-coefficients (Γ̌jl is the conversion rate from the l-th surface mode to
the j-th surface mode and Řjj is the conversion rate between different κy components
of the j-th surface mode), and Λrj is the extinction coefficient that takes into account
leakage from the j-th surface mode toward the body modes. The scattering and
extinction coefficients depend on the two-point statistics of the fluctuations of the
random medium.

Proof. We denote

Uεj,l(ω, ω
′, X, Y, Y ′) = âj

(
ω +

ε2ω′

2
,
X

ε2
,
Y

ε
+
Y ′

2ε

)
âl

(
ω − ε2ω′

2
,
X

ε2
,
Y

ε
− Y ′

2ε

)
,
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and similarly for Uεj,γ , etc. By expanding βj(ω± ε2ω′/2) at ω up to terms of order ε2

so as to keep all nonnegligible terms in the phases, we get that Uεj,l satisfies

∂XU
ε
j,l =

i

βj
∂Y ∂Y ′U

ε
j,l

+ i(κj − κl)Uεj,l +
ik2

2ε

N∑
l′=1

Cj,l′(
X
ε2 , Y + Y ′

2 )√
βl′βj

Uεl′,le
i(βl′−βj) Xε2 ei(β

′
l′−β

′
j)
Xω′
2

− ik2

2ε

N∑
l′=1

Cl,l′(
X
ε2 , Y −

Y ′

2 )
√
βl′βl

Uεj,l′e
i(βl−βl′ ) Xε2 ei(β

′
l′−β

′
l)
Xω′
2

+
ik2

2ε

∫ n2
1k

2

0

Cj,γ′(
X
ε2 , Y + Y ′

2 )
4
√
γ′
√
βj

Uεγ′,le
i(
√
γ′−βj) Xε2 dγ′e−iβ

′
j
Xω′
2

− ik2

2ε

∫ n2
1k

2

0

Cl,γ′(
X
ε2 , Y −

Y ′

2 )
4
√
γ′
√
βl

Uεj,γ′e
−i(
√
γ′−βl) Xε2 dγ′e−iβ

′
l
Xω′
2 ,

and we get similar equations for Uεj,γ . We introduce

V εj,l(t, ω,X, Y, Y
′) =

1

2π

∫
R
e−iω

′(t−(β′j(ω)+β′l(ω))X2 )Uεj,l(ω, ω
′, X, Y, Y ′)dω′,

and similarly for V εj,γ . These quantities satisfy

∂XV
ε
j,l +

β′j(ω) + β′l(ω)

2
∂tV

ε
j,l =

i

2βj
∂Y ∂Y ′V

ε
j,l + i(κj − κl)V εj,l

+
ik2

2ε

N∑
l′=1

Cj,l′(
X
ε2 , Y + Y ′

2 )√
βl′βj

V εl′,le
i(βl′−βj) Xε2

− ik2

2ε

N∑
l′=1

Cl,l′(
X
ε2 , Y −

Y ′

2 )
√
βl′βl

V εj,l′e
i(βl−βl′ ) Xε2

+
ik2

2ε

∫ n2
1k

2

0

Cj,γ′(
X
ε2 , Y + Y ′

2 )
4
√
γ′
√
βj

V εγ′,le
i(
√
γ′−βj) Xε2 dγ′

− ik2

2ε

∫ n2
1k

2

0

Cl,γ′(
X
ε2 , Y −

Y ′

2 )
4
√
γ′
√
βl

V εj,γ′e
−i(
√
γ′−βl) Xε2 dγ′.

The completion of the proof is as follows: We first establish a diffusion-approximation
result for V εj,l, then establish the equation satisfied by the expectation, and finally
take a Fourier transform in Y ′ to get the desired result.

From the previous proposition we can formulate the RTE satisfied by the normal
derivative of the wave field at the surface, which is the measured quantity in seismology
for instance.
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Proposition 4.2. The mean Wigner transform defined by

W(t, ω,X, κx, Y, κy) = lim
ε→0

1

2π

∫
R3

dω′dx′dY ′e−iω
′t−iκxx′−iκyY ′

× E
[
∂z p̂

ε
(
ω + ε2ω

′

2
, X + ε2x

′

2
, Y +

Y ′

2
, z = 0

)
× ∂z p̂ε

(
ω − ε2

ω′

2
, X − ε2

x′

2
, Y − Y ′

2
, z = 0

)]
= lim
ε→0

1

ε2

∫
R3

dτdx′dY ′eiωτ−iκxx
′−iκyY ′

× E
[
∂zp

ε
( t
ε2

+
τ

2
, X + ε2x

′

2
, Y +

Y ′

2
, z = 0

)
× ∂zpε

( t
ε2
− τ

2
, X − ε2x

′

2
, Y − Y ′

2
, z = 0

)]
(4.9)

has the form

W(t, ω,X, κx, Y, κy) =

N(ω)∑
j=1

∂zφ
2
j (ω, 0)Wj(t, ω,X, Y, κy)δ(κx − βj(ω)), (4.10)

where the Wj’s satisfy (4.4).

4.2. Probabilistic Representation of the Mean Wigner Transform. It
is possible to give a probabilistic representation of the mean Wigner transforms
Wj(t, ω,X, Y, κy) because (4.4) has the form of a Kolmogorov equation for a Markov
process that we describe in this subsection. This gives a mathematical background
to the phenomenological approach to the radiative transfer theory based on seismic
phonons discussed in [5, 25]. We first introduce the Markov process for a fixed ω.
i) Let (Jn,Kn)n∈N be a jump Markov process with state space {1, . . . , N(ω)}×R and
transition kernel

E[f(J1,K1)|J0 = j,K0 = κy] =
1

Λcj(ω) +Rjj(ω, 0)

× 1

2π

[∑
l 6=j

∫
R

Γ̌cjl(ω, κ
′
y)f(l, κy − κ′y)dκ′y +

∫
R
Řjj(ω, κ

′
y)f(j, κy − κ′y)dκ′y

]
,

where Λcj(ω) =
∑
l 6=j Γcjl(ω). This transition kernel describes the type of mode con-

version that can happen from a mode (j, κy). When a mode conversion happens
from (j, κy), with probability Γcjl(ω)/[Λcj(ω) + Rjj(ω, 0)] it is a mode conversion to
(l, κ′y) with l 6= j and with some κ′y 6= κy (this conversion affects both j and κy)
and with probability Rjj(ω, 0)/[Λcj(ω) + Rjj(ω, 0)] it is a mode conversion to (j, κ′y)
with κ′y 6= κy (this conversion only affects κy). In the first case, the new κ′y is
chosen randomly according to the distribution with the probability density func-
tion κ′y 7→ Γ̌cjl(ω, κ

′
y − κy)/[2πΓcjl(ω, 0)]. In the second case, the new κ′y is cho-

sen randomly according to the distribution with the probability density function
κ′y 7→ Řjj(ω, κ

′
y − κy)/[2πRjj(ω, 0)].

ii) Conditioned on (Jn,Kn)n∈N, let (Dn)n∈N be a sequence of independent exponential
random variables with parameters ΛcJn(ω) + RJnJn(ω, 0). These parameters govern
the intensity rates of the mode conversions. The probability that there is a mode
conversion from (j, κy) between X and X+δX is [Λcj(ω)+Rjj(ω, 0)]δX for small δX.
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iii) For any X ∈ [0,+∞), set (JX ,KX) = (Jn,Kn) if
∑n−1
m=0Dm ≤ X <

∑n
m=0Dm

(with the convention
∑−1
m=0Dm = 0) and introduce (YX , TX)X∈(0,+∞) as the solution

of

∂XYX = − KX

βJX (ω)
, ∂XTX = − 1

vJX (ω)
.

Then (JX ,KX , YX , TX)X∈[0,+∞) is a Markov process with infinitesimal generator

Lf(j, κy, Y, t) =
1

2π

[∑
l 6=j

∫
R

Γ̌cjl(ω, κ
′
y)[f(l, κy − κ′y)− f(j, κy)]dκ′y

+

∫
R
Řjj(ω, κ

′
y)[f(j, κy − κ′y)− f(j, κy)]dκ′y

]
− κy
βj(ω)

∂Y f −
1

vj(ω)
∂tf.

This implies that the solution u(X, j, κy, y, t) of the Kolmogorov equation ∂Xu = Lu,
u(X = 0, j, κy, y, t) = u0(j, κy, y, t), has the representation

u(X, j, κy, Y, t) = E
[
u0(JX ,KX , YX , TX)|J0 = j,K0 = κy, Y0 = Y, T0 = t

]
.

The solution of the damped Kolmogorov equation ∂Xu = Lu + Vu, with Vf(j) =
−Λrj(ω)f(j), has the representation (by the Feynman-Kac formula):

u(X, j, κy, Y, t) = E
[
u0(JX ,KX , YX , TX)

× exp
(
−
∫ X

0

ΛrJX′ (ω)dX ′
)∣∣∣J0 = j,K0 = κy, Y0 = Y, T0 = t

]
.

Accordingly, the Wigner transform solution of (4.4) can be expressed as

Wj(t, ω,X, Y, κy) = E
[
WJX (TX , ω, 0, YX ,KX)

× exp
(
−
∫ X

0

ΛrJX′ (ω)dX ′
)∣∣∣J0 = j,K0 = κy, Y0 = Y, T0 = t

]
, (4.11)

where Wj(t, ω, 0, Y, κy) is the initial Wigner transform at X = 0.
An alternative representation in which the evolution variable is t rather than X

is as follows. Replace step ii) by: Conditionally to (Jn,Kn)n∈N, let (τn)n∈N be a se-
quence of independent exponential random variables with parameters vJn(ω)[ΛcJn(ω)+
RJnJn(ω, 0)]. Replace step iii) by: For any t ∈ [0,+∞), set (Jt,Kt) = (Jn,Kn) if∑n−1
m=0 τm ≤ t <

∑n
m=0 τm and introduce (Yt, Xt)t∈(0,+∞) as the solution of

∂tYt = −KtvJt(ω)

βJt(ω)
, ∂tXt = −vJt(ω).

Then (Jt,Kt, Yt, Xt)t∈[0,+∞) is a Markov process with infinitesimal generator

Lf(j, κy, Y, x) =
vj(ω)

2π

[∑
l 6=j

∫
R

Γ̌cjl(ω, κ
′
y)[f(l, κy − κ′y)− f(j, κy)]dκ′y

+

∫
R
Řjj(ω, κ

′
y)[f(j, κy − κ′y)− f(j, κy)]dκ′y

]
− κyvj(ω)

βj(ω)
∂Y f − vj(ω)∂xf.
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The Wigner transforms can then be expressed as

Wj(t, ω,X, Y, κy) = E
[
WJt(0, ω,Xt, Yt,Kt)

× exp
(
−
∫ t

0

vJt′ (ω)ΛrJt′ (ω)dt′
)∣∣∣J0 = j,K0 = κy, Y0 = Y,X0 = X

]
,

where Wj(0, ω,X, Y, κy) is the initial Wigner transform at t = 0.

5. Statistical Stability of the Wigner Transform. The previous section
gives a complete characterization of the mean Wigner transform (4.9) of the normal
derivative of the wave field at the surface. The normal derivative of the wave field is
indeed the quantity that can be measured in the experimental configuration in which
receivers can only be deployed at the surface. From these measurements it is possible
to compute the Wigner transform defined by

W ε(t, ω,X, κx, Y, κy) =
1

2π

∫
R3

dω′dx′dY ′e−iω
′t−iκxx′−iκyY ′

× ∂z p̂ε
(
ω + ε2ω

′

2
, X + ε2x

′

2
, Y +

Y ′

2
, z = 0

)
∂z p̂ε

(
ω − ε2

ω′

2
, X − ε2

x′

2
, Y − Y ′

2
, z = 0

)
.

(5.1)

We cannot, however, compute the mean Wigner transform, which is an average over
the possible realizations of the random medium, because only one realization of the
random medium is available. In this section, we show that a smoothed version of the
Wigner transform (see Eq. (5.2)) is statistically stable, in the sense that its typical
value for one realization is close to its expectation. This means that the smoothed
Wigner transform can be measured and it can be related to quantities that are char-
acteristic of the medium by the radiative transfer equation. This gives the right
framework to solve a well-posed inverse problem in order to estimate the medium.

We remark that the mean Wigner transform (4.9) is the limit expectation of the
Wigner transform (5.1). However this quantity is practically difficult to compute
because of the three improper integrals over ω′, x′ and Y ′, and it is not statistically
stable in the sense that its standard deviation is large compared to its expectation

(which is shown below). Let us define ψ(s) = 1√
2π

exp(− s
2

2 ) and choose positive

smoothing parameters Ωs, Xs, Ys, Ts,Kxs,Kys. We can then introduce the smoothed
Wigner transform

Ws(t, ω,X, κx, Y, κy) = lim
ε→0

√
2π

∫
R6

dω′dx′dY ′dω′′dx′′dY ′′e−iω
′′t−iκxx′′−iκyY ′′

× ∂z p̂ε
(
ω + ε2ω′ + ε2ω

′′

2
, X + ε2x′ + ε2x

′′

2
, Y + Y ′ +

Y ′′

2
, z = 0

)
× ∂z p̂ε

(
ω + ε2ω′ − ε2

ω′′

2
, X + ε2x′ − ε2

x′′

2
, Y + Y ′ − Y ′′

2
, z = 0

)
× ψ(ω′′Ts)

1

Ωs
ψ
( ω′

Ωs

) 1

Xs
ψ
( x′
Xs

)
ψ(x′′Kxs)

1

Ys
ψ
(Y ′
Ys

)
ψ(Y ′′Kys). (5.2)

We note that the domains of the integrals are essentially bounded by the cut-off
function ψ so the overall integral becomes tractable. Using the general relation∫

R
dτ ′e−iητ

′ 1

τs
ψ
(τ − τ ′

τs

)
= e−iητ

√
2πψ(ητs),
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we get the equivalent representation

Ws(t, ω,X, κx, Y, κy) =

lim
ε→0

∫
R6

dt′dω′dX ′dκ′xdY
′dκ′yW

ε(t′, ω′, X ′, κ′x, Y
′, κ′y)

1

Ts
ψ
( t− t′
Ts

) 1

ε2Ωs
ψ
(ω − ω′
ε2Ωs

)
× 1

ε2Xs
ψ
(X −X ′
ε2Xs

) 1

Kxs
ψ
(κx − κ′x

Kxs

) 1

Ys
ψ
(Y − Y ′

Ys

) 1

Kys
ψ
(κy − κ′y

Kys

)
, (5.3)

which shows that (5.2) is indeed a smoothed version of the Wigner transform (5.1),
with smoothing in all variables (t, ω,X, κx, Y, κy). The smoothing is carried out by a
convolution with a Gaussian kernel with width (Ts, ε

2Ωs, ε
2Xs,Kxs, Ys,Kys).

Proposition 5.1. We have

E[Ws(t, ω,X, κx, Y, κy)] =

N(ω)∑
j=1

∫
R3

Wj(t
′, ω,X, Y ′, κ′y)

1

Ts
ψ
( t− t′
Ts

) 1

Ys
ψ
(Y − Y ′

Ys

) 1

Kys
ψ
(κy − κ′y

Kys

)
dt′dκ′ydY

′

× 1

Kxs
ψ
(κx − βj(ω)

Kxs

)
∂zφj(ω, 0)2. (5.4)

Using the Gaussian approximation (more exactly, using Isserlis’ formula to compute
the fourth-order moments of the wave field in terms of the second-order moments)
and considering that Xs is large enough so that |βj(ω)− βl(ω)|Xs � 1 for all j 6= l,
the variance can be approximated by

Var(Ws(t, ω,X, κx, Y, κy)) =

N(ω)∑
j=1

∫
R6

Wj

(
t′ +

t′′

2
, ω,X, Y ′ +

Y ′′

2
, κ′y +

κ′′y
2

)
Wj

(
t′ − t′′

2
, ω,X, Y ′ − Y ′′

2
, κ′y −

κ′′y
2

)
× 1

T 2
s

ψ
( t− t′
Ts

)2 1

Ys
ψ
(Y − Y ′

Ys

)2 1

Kys
ψ
(κy − κ′y

Kys

)2
ψ(Ωst

′′)2ψ(Ysκ
′′
y)2ψ(KysY

′′)2

× dt′dt′′dY ′dY ′′dκ′ydκ′′y
2(2π)3

K2
xs

ψ
(κx − βj(ω)

Kxs

)2
∂zφj(ω, 0)4. (5.5)

A complete expression of the variance is given in the proof. The first result (5.4)
shows that there is a smoothing of the mean Wigner transform in t of order Ts, a
smoothing in Y of order Ys, a smoothing in κy of order Kys, and a smoothing in κx
of order Kxs. The effect of the smoothing in ω and X is negligible, as long as the
smoothing parameters are of order ε2. The smoothing in ω is, however, important
because it reduces the variance. Indeed, the second result (5.5) shows that the relative
variance (also called coefficient of variation) is of order

Var(Ws)

E[Ws]2
= O

( 1

Ts
×min(∆t,Ω−1

s )×min(∆κy, Y
−1
s )×min(∆Y,K−1

ys

)
, (5.6)

where ∆κy, resp. ∆t, ∆Y , is the width of the mean Wigner transform in κy, resp. in
t, Y .

Proof. The first result is obtained by substituting (4.10) into the expectation of
(5.3). Using the Gaussian approximation makes it possible to express the expectation
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of the square of Ws in terms of a double sum (over j and l) and multiple integrals
involving the product of two terms Wj and Wl (the solutions of (4.4)):

Var(Ws(t, ω,X, κx, Y, κy)) =

N(ω)∑
j,l=1

∫
R6

dt1dκy1dY1dt2dκy2dY2Wj

(
t1, ω,X, Y1, κy1

)
Wl

(
t2, ω,X, Y2, κy2

)
× 2(2π)3

T 2
sK

2
xsYsKys

ψ
( t1+t2

2 − t
Ts

)2
ψ
( κy1+κy2

2 − κy
Kys

)2
ψ
( Y1+Y2

2 − Y
Ys

)2
× ψ

( βj(ω)+βl(ω)
2 − κx
Kxs

)2
ψ(Ωs(t1 − t2))2ψ

(
Ys(κy1 − κy2)

)2
ψ
(
Kys(Y1 − Y2)

)2
× ψ

(
(βj(ω)− βl(ω))Xs

)2
∂zφj(ω, 0)2∂zφl(ω, 0)2.

The condition that Xs is large then reduces the double sum over j, l to a single sum
and gives the desired result.

We study the relative variance (5.6). We first remark that ∆Y is in fact the radius
of the transverse envelope of the wave field and ∆κy is the reciprocal of the transverse
correlation radius of the wave field. For a coherent beam we have ∆Y∆κy ∼ 1, but for
a partially coherent or incoherent wave as we deal with here, we may have ∆Y∆κy & 1
or ∆Y∆κy � 1. If we want to resolve (by a factor Rs > 1) the dependence of
the Wigner transform with respect to the variables Y and κy, we need to choose
Ys = ∆Y/Rs and Kys = ∆κy/Rs.

If Ω−1
s is larger than ∆t, then the smoothing in ω in (5.2) plays no role and the

relative variance is of order

Var(Ws)

E[Ws]2
= O

(∆t

Ts
×min(∆Y∆κy,

R2
s

∆Y∆κy
)
)
. (5.7)

If Ω−1
s is smaller than ∆t, then the smoothing in ω in (5.2) plays an important role

and the relative variance is of order

Var(Ws)

E[Ws]2
= O

( 1

ΩsTs
×min(∆Y∆κy,

R2
s

∆Y∆κy
)
)
, (5.8)

which can be made smaller than one if Ω−1
s is small enough. This self-averaging effect

is due to the small coherence frequency of the field, and this is the main mechanism
that can ensure the statistical stability of the smoothed Wigner transform. Note that
the partial spatial coherence of the wave field can also give some stability. Indeed,
if ∆Y∆κy � 1 and we choose Rs such that 1 < R2

s � ∆Y∆κy (and therefore
YsKys � 1), then we get an extra reduction of the relative variance by the factor
YsKys:

Var(Ws)

E[Ws]2
= O

( 1

ΩsTs
× 1

YsKys

)
. (5.9)

To summarize, the smoothing parameters are chosen as follows to ensure both
resolution and stability: We take Ts � ∆t, Kys � ∆κy, Ys � ∆Y to get good
resolution. We take Ω−1

s � Ts to get good stability. The coefficient of variation is
then given by:

Var(Ws)

E[Ws]2
= O

( 1

ΩsTs
×min(∆κy, Y

−1
s )×min(∆Y,K−1

ys

)
, (5.10)
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which is always smaller than O
(

∆Y∆κy
ΩsTs

)
whatever the values of Ys and Kys. If

the coefficient of variation is not small enough for the considered application, it is
possible to reduce it by taking Ys = ∆Y/(∆Y∆κy)α and Kys = ∆κy/(∆Y∆κy)α for

some α ∈ (0, 1), so that Var(Ws)
E[Ws]2

= O
(

(∆Y∆κy)2α−1

ΩsTs

)
. As α becomes close to zero, we

loose resolution but we gain stability.
The stability results of this section will be important in the robust estimation of

the (background) medium and source parameters, which we discuss in the Section 7.

6. Transport Albedo Kernel. We develop an expression for what we refer
to as the Albedo kernel which describes the mapping between the source and the
measurements in our framework. This description is useful in order to analyze the
announced inverse problem of inferring model parameters from the observed data.
We discuss this inverse problem in more detail in the next section.

We consider the mean Wigner transforms Wj , j = 1, . . . , N solving the radiative
transfer equations (4.4). For a fixed frequency ω we define the associated effective
Albedo kernel A(t, ω,X, Y, κy; t0, Y0, κy,0) that is the N(ω)×N(ω) matrix solution of

∂XA+ diagj

{
κy

βj(ω)

}
∂YA+ diagj

{
1

vj(ω)

}
∂tA = −diagj

{
Λcj(ω) + Λrj(ω)

}
A

+
1

2π

∫
R

diagj
{
Řjj(ω, κ

′
y)
} [
A(κy − κ′y)−A(κy)

]
dκ′y

+
1

2π

∫
R

Γ̌(ω, κ′y)A(κy − κ′y)dκ′y, (6.1)

with initial condition

A|X=0 = δ(Y − Y0)δ(κy − κy,0)δ(t− t0)IN , (6.2)

where IN is the N ×N identity matrix and

Γ̌(ω, κy) = {Γ̌cj,l(ω, κy)1j 6=l}N(ω)
j,l=1. (6.3)

The Albedo kernel relates the initial Wigner transform (W
(0)
l )Nl=1 at x = 0 to the

mean transmitted Wigner transform (Wj)
N
j=1 at the range x = X/ε2:

Wj(t, ω,X, Y, κy) =

N∑
l=1

∫
R3

Aj,l(t, ω,X, Y, κy; t0, Y0, κy,0)

×W (0)
l (ω, t0, Y0, κy,0)dt0dY0dκy,0. (6.4)

We next develop a closed-form expression forA. For n ≥ 0, letA(n)(t, ω,X, Y, κy; t0, Y0, κy,0)
solve:

∂XA(n) + diagj

{
κy

βj(ω)

}
∂YA(n) + diagj

{
1

vj(ω)

}
∂tA(n)

= −diagj
{

Λcj(ω) + Λrj(ω)
}
A(n)

+
1

2π

∫
R

diagj
{
Řjj(ω, κ

′
y)
} [
A(n)(κy − κ′y)−A(n)(κy)

]
dκ′y

+
1

2π

∫
R

Γ̌(ω, κ′y)A(n−1)(κy − κ′y)dκ′y, (6.5)
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starting from

A(n)|X=0 = δ(Y − Y0)δ(κy − κy,0)δ(t− t0)IN10(n), n = 0, 1, . . . . (6.6)

Here we use the convention A(−1) ≡ 0. We then find that

A(0)(t, ω,X, Y, κy; t0, Y0, κy,0) = (2π)−2diagj

{
δ
(
t− X

vj(ω)
− t0

)
e−(Λcj(ω)+Λrj (ω))X

×
∫
R2

e
∫X
0

(Rjj(ω,η+X′ξ/βj(ω))−Rjj(ω,0))dX′ei((Y0−Y+κy,0X/βj(ω))ξ+(κy,0−κy)η)dηdξ
}
,

(6.7)

and for n ≥ 1

A(n)(t, ω,X, Y, κy; t0, Y0, κy,0)

=

∫ X

0

dX ′
∫
R3

dt′dY ′dκ′yA(0)(t, ω,X −X ′, Y, κy; t′, Y ′, κ′y)

× 1

2π

∫
R

Γ̌(ω, κ̃y)A(n−1)(t′, ω,X ′, Y ′, κ′y − κ̃y; t0, Y0, κy,0)dκ̃y. (6.8)

We introduce the operator L(0)
X defined by

L(0)
X Φ(t, Y, κy) :=

∫
R3

dt′dY ′dκ′y
1

2π

∫
R
dκ̃yA(0)(t, ω,X, Y, κy; t′, Y ′, κ̃y)Γ̌(ω, κ̃y − κ′y)

× Φ(t′, Y ′, κ′y) (6.9)

for any square integrable test function Φ : R3 → RN(ω)×N(ω). The operator L(0)
X is

such that

‖L(0)
X ‖2 ≤ ϑ(ω) := N(ω) max

j 6=l∈{1,...,N(ω)}
Γcj,l(ω, 0) (6.10)

with

‖Φ‖22 :=

N(ω)∑
j,l=1

∫
R3

dtdY dκyΦj,l(t, Y, κy)2. (6.11)

We then have convergence of
∑n
j=0A(j) to A in the sense we describe next. With

Φ ∈ L2 it follows that we can write AΦ =
∑∞
j=0A(j)Φ, satisfying the precision bound

at order n:

‖(A−
n∑
j=0

A(j))Φ‖2(X) ≤ (ϑ(ω)X)n+1

(n+ 1)!
eXϑ(ω)‖Φ‖2, (6.12)

where we used that ‖A(0)‖2(X) ≤ 1. Note that we have a rapid decay of the higher
order terms (large n) in the case of small medium fluctuations so that ϑ(ω) is small.
We discuss in more detail in the next section how a particular source condition cor-
responds to a particular form of Φ so that the approximations

∑n
j=0A(j)Φ converge
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to the full response function AΦ as n goes to infinity. For the second order term, we
have

A(1)
j,l (t, ω,X, Y, κy; t0, Y0, κy,0) = (2π)−3

∫
R3

dηdξdκ̃y Γ̌cj,l(ω, κ̃y − κy,0)

× eHj(ω,X−s
∗
j,l,η,ξ)+Hl(ω,s

∗
j,l,η+ξ(X−s∗j,l)/βj ,ξ)

× ei(ξ(Y0−Y+(X−s∗j,l)κ̃y/βj+s
∗
j,lκy,0/βl)+η(κ̃y−κy)) × 1(0,X)(s

∗
j,l), (6.13)

in which

Hj(ω,X, η, ξ) =

∫ X

0

[
Rjj(ω, η +X ′ξ/βj(ω))−Rjj(ω, 0)

]
dX ′ −

[
Λcj(ω) + Λrj(ω)

]
X

(6.14)
and s∗j,l is the solution of

t− t0 =
X − s∗j,l
vj

+
s∗j,l
vl
, (6.15)

corresponding to ‘effective scattering’ from mode l to mode j at propagation distance
s∗j,l and an ‘effective travel time’ in mode l being s∗j,l/vl and in mode j being (X −
s∗j,l)/vj .

The coefficient Řjj determines the conversion rates between different κy compo-
nents of the jth surface mode and it depends on low-frequency components of the
fluctuations of the random medium. The coefficients Γ̌cjl determine the conversion
rates between different surface modes (j 6= l) and they depend on high-frequency
components of the fluctuations of the random medium because of the presence of the
term cos

(
βl(ω)−βj(ω))x) in (3.13). We will consider a regime in which the coefficients

Řjj are larger than the coefficients Γ̌cjl. More exactly, we will consider propagation
distances X such that

XRjj(ω, 0)� 1, XΛcj(ω)� 1, (6.16)

and we will call it the strongly heterogeneous regime.
The second hypothesis in (6.16) implies that the term A(1) is much smaller than A0)

but much larger than the remainder
∑∞
n=2A(n). The first hypothesis in (6.16) makes

it possible to obtain simplified expressions for A(1) and A0). Indeed, assuming that
the first hypothesis in (6.16) holds and that, additionally, the covariance function of
the medium fluctuations is smooth enough so that we can expand

Rjj(ω, Y ) = Rjj(ω, 0)
[
1− 1

2

Y 2

`j(ω)2
+ o
( Y 2

`j(ω)2

)]
, (6.17)

then we obtain

A(0)(t, ω,X, Y, κy; t0, Y0, κy0) = diagj

{
δ
(
t− X

vj(ω)
− t0

)
× e−(Λcj(ω)+Λrj (ω))X√

rjX
ψ
(κy,0 − κy√

rjX

) 1√
rjX3

12β2
j

ψ

(Y0 − Y +
X(κy,0+κy)

2βj√
rjX3

12β2
j

)}
, (6.18)
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with

rj(ω) =
Rjj(ω, 0)

`j(ω)2
. (6.19)

Moreover, we find for j 6= l that

A(1)
j,l (t, ω,X, Y, κy; t0, Y0, κy,0) =

1

2π

∫
R
dκ̃y Γ̌cj,l(ω, κ̃y − κy,0)

× 1√
hj,l

ψ

(
κ̃y − κy√

hj,l

)
1√
Hj,l

ψ

(
Y0 − Y +Kj,l(κ̃y)√

Hj,l

)
× exp

(
−(Λcj(ω) + Λrj(ω))(X − s∗j,l)− (Λcl (ω) + Λrl (ω))s∗j,l)

)
× 1(0,X)(s

∗
j,l), (6.20)

with s∗jl,l defined by (6.15) and

Hj,l

=
r2
j

(X−s∗j,l)
4

3β2
j

+ r2
l

(s∗j,l)
4

3β2
l

+ 2rjrls
∗
j,l(X − s∗j,l)

(
s∗j,l(X−s

∗
j,l)

βjβl
+

2(X−s∗j,l)
2

3β2
j

+
2(s∗j,l)

2

3β2
l

)
4hj,l

,

Kj,l(κ̃y)

=

(X−s∗j,l)
2

βj
rj(κy + κ̃y) + 2s∗j,l(X − s∗j,l)

(
rjκy,0
βl

+
rlκy
βj

)
+

(s∗j,l)
2

βl
rl(κy − κ̃y + 2κy,0)

2hj,l
,

hj,l = rj(X − s∗j,l) + rls
∗
j,l.

In the next section, we analyze how this simplified form of the Albedo kernel allows
us to identify how model parameters can be inferred from the observed data.

7. Source Response, Data Separation and Parameter Identification.
In this section, we consider the situation with a Gaussian source and measuring the
transmitted field in the form of the smoothed Wigner transform in (5.2) in the strongly
heterogeneous random medium case (6.16). We show that in this case, we can stably
identify the parameters of the RTE in (4.4).

From Proposition 5.1 and the previous section, we find that the mean smoothed
Wigner transform Ws = E[Ws] can be expanded up to second order as

Ws(t, ω,X, κx, Y, κy) =W(0)
s (t, ω,X, κx, Y, κy) +W(1)

s (t, ω,X, κx, Y, κy), (7.1)

W(n)
s (t, ω,X, κx, Y, κy) =

N(ω)∑
j,l=1

∂zφj(ω, 0)2

∫
R3

T (n)
j,l (t′, ω,X, Y ′, κ′y)

1

Ts
ψ
( t− t′
Ts

)
× 1

Ys
ψ
(Y − Y ′

Ys

) 1

Kys
ψ
(κy − κ′y

Kys

)
dt′dY ′dκ′y

× 1

Kxs
ψ
(κx − βj(ω)

Kxs

)
, n = 0, 1, (7.2)

in terms of the first (n = 0) and second (n = 1) order response functions

T (n)
j,l (t, ω,X, Y, κy)

:=

∫
R3

dt0dY0dκy,0A(n)
j,l (t, ω,X, Y, κy; t0, Y0, κy,0)W

(0)
l (t0, ω, Y0, κy,0). (7.3)
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We assume that the source terms Gε(t) and F (Y, z) in (3.1) are such that

WG(t, ω) =

√
πwG(ω)

σt
exp

(
− t2

4σ2
t

)
, Fj(ω, Y ) =

fj(ω)

π
exp

(
− Y 2

2σ2
y

)
, (7.4)

for some positive constants σt, σy and smooth functions wG(ω), fj(ω). We then find
by (4.5) that

W
(0)
j (t, ω, Y, κy) =

|wj(ω)|2σy
β2
j (ω)σt

exp
(
− t2

4σ2
t

− Y 2

σ2
y

− σ2
yκ

2
y

)
, (7.5)

with wj(ω) =
√
wG(ω)fj(ω). Figure 3.1 illustrates the wave propagation configu-

ration that we consider. Note first that via the projections in (2.4) we reduce the
problem to an evolution problem in two space dimensions with x being the propaga-
tion (range) direction and y the lateral space dimension. A source emits in the plane
x = 0 which then produces a boundary condition on the incoming boundary Γ− (a
strip on the y axis), the field is measured on the thin set Γ+ in the x− y plane. Here,
ε is a small parameter which characterizes the transverse radius and the propagation
distance in relation to the wavelength which is order one in our scaling. The prop-
agated field is measured on the receiver array at x = X/ε2, denoted Γ+, for a time
duration O(1) and subsequently processed to form the smoothed Wigner transform in
(5.2). Note that in the figure (x, y) denote the un-scaled coordinates while the scaled
coordinates are (X,Y ) = (ε2x, εy). We remark that the Albedo kernel developed in
the previous section gives the mapping from the initial data for the Wigner transform
to the left, at x = 0, in Figure 3.1 to the mean transmitted Wigner transform to the
right, at the range X/ε2.

We assume that Ω−1
s � Ts, so that the coefficient of variation in (5.6) is much

smaller than one. We remark that we do not consider additive measurement noise,
although this could easily have been included. We emphasize that the medium pertur-
bations are responsible for generating the mode coupling and producing the particular
form for the Wigner transform in (7.2). As we show below, this form can be used
for parameter estimation. What is important to note here is that to identify the
medium information carried by the particular form in (7.2) we need to perform an a
priori smoothing step. This signal-to-noise enhancement step is indeed not so often
discussed in the transport literature, but nevertheless important in the processing of
the measurements.

We discuss next how parameters in the radiative transport equations can be
identified based on these measurements. We have

T (0)
j,l (t, ω,X, Y, κy) =

(
|wj(ω)|2σy4π3/2

βjX

)
1√
2σt

ψ

(
t−X/vj√

2σt

)
1√
Σj
ψ

(
κy√
Σj

)

× e−(Λcj(ω)+Λrj (ω))X 1√
rjX(1/3 + 1/(2σ2

yΣj)) + 2β2
jσ

2
y/X

2

× ψ

 κy(1 + 1/(2σ2
yΣj))− 2Y βj/X√

rjX(1/3 + 1/(2σ2
yΣj)) + 2β2

jσ
2
y/X

2

1l(j) (7.6)
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with Σj(ω) = rj(ω)X + 1
2σ2
y
, and

T (1)
j,l (t, ω,X, Y, κy) =

∫
R4

dY0dκy,0dκ̃ydt0

(
Γ̌cj,l(ω, κ̃y − κy,0)|wl(ω)|2σy

2πβ2
l (ω)σt

)

× exp

(
− t20

4σ2
t

− Y 2
0

σ2
y

− σ2
yκ

2
y,0

)
1√
hj,l

ψ

(
κ̃y − κy√

hj,l

)

× 1√
Hj,l

ψ

(
Y0 − Y +Kj,l(κ̃y)√

Hj,l

)
× exp

(
−(Λcj(ω) + Λrj(ω))(X − s∗j,l)− (Λcl (ω) + Λrl (ω))s∗j,l

)
× 1(0,X)(s

∗
j,l). (7.7)

We make some simplifying assumptions to get more explicit expressions to ar-

ticulate the parameter estimation context. In the regime (6.16) W(0)
s is the leading

contribution; moreover, we assume narrow temporal source and smoothing, that is,(
Λcj(ω) + Λrj(ω)

)
X � 1, (7.8)

Ts � σt � min
j 6=l
|v−1
j (ω)− v−1

l (ω)|X, Kxs � min
2≤j≤N(ω)

|βj − βj−1| ∧ βN(ω), (7.9)

Ys � σy ∧
√
rj(ω)X(X/βj(ω)), Kys � σ−1

y ∧
√
rj(ω)X ∧ σyβj(ω)/X, (7.10)

for all j = 1, . . . , N(ω). Note then that the term ψ((κx − βj)/Kxs) in (7.2) makes it
possible to use the support in the variable κx and the dispersion in phase velocities
to separate the contributions to Ws associated with different j values (corresponding

to observing transmitted surface mode j). Moreover, note that T (0)
j,l = 0, j 6= l and

T (1)
j,j = 0 and that the term 1(0,X)(s

∗
j,l) is supported for t− t0 ∈ X(vj ∧ vl, vj ∨ vl) in

view of (6.15). This then allows us to additionally separate the contributions to Ws

associated with different source modes l due to the dispersion in group velocities and
in view of the fact that the observations have a high signal-to-noise ratio due to the
smoothing. We then find the following lemma:

Lemma 7.1. Assume that the assumptions in Proposition 5.1 are satisfied and
that Ω−1

s � Ts so that the coefficient of variation is much smaller than one. Moreover,
assume that the source assumptions in (6.16) and (7.8-7.10) are satisfied. Then the
components of the second order smoothed Wigner transform

W(n,j,l)
s (t, ω,X, κx, Y, κy) =∂zφj(ω, 0)2

∫
R3

T (n)
j,l (t′, ω,X, Y ′, κ′y)

1

Ts
ψ
( t− t′
Ts

)
× 1

Ys
ψ
(Y − Y ′

Ys

) 1

Kys
ψ
(κy − κ′y

Kys

)
dt′dY ′dκ′y

× 1

Kxs
ψ
(κx − βj(ω)

Kxs

)
, n = 0, 1, j, l = 1, . . . , N(ω)

can be identified. Next, we discuss the identification of the parameters of the RTE
assuming additionally that the range X is known. We note first that the group and
phase velocities vj , ω/βj , and the parameters

σt, σy, rj , ∂zφ
2
j (ω, 0)|wj(ω)|2, (7.11)

can be identified from the leading-order smoothed Wigner response W(0)
s .
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Now, we consider the second-order smoothed Wigner function contributions

W(1)
s (t, ω,X, κx, Y, κy) :=

N(ω)∑
j,l=1

∂zφ
2
j (ω, 0)

∫
R3

T (1)
j,l (t′, ω,X, Y ′, κ′y)

× 1

Ts
ψ
( t− t′
Ts

) 1

Ys
ψ
(Y − Y ′

Ys

) 1

Kys
ψ
(κy − κ′y

Kys

)
dt′dY ′dκ′y

1

Kxs
ψ
(κx − βj(ω)

Kxs

)
.

(7.12)

We assume, finally, a fast decorrelation on the scale `y of the medium fluctuations in
the lateral direction, so that

`y � σy ∧
1√

rj(ω)X
. (7.13)

This then additionally allows for estimation of

∂zφ
2
j (ω, 0)Γ̌cj,l(ω, 0)|wl(ω)|2, j 6= l = 1, . . . , N(ω). (7.14)

In summary, using also that Γ̌ is symmetric, we get the following identification
result.

Proposition 7.2. Assume that the conditions in Lemma 7.1 are satisfied, that
the identification conditions (7.13) are satisfied and additionally that X is known,
then with the observations being the smoothed Wigner transform, this allows for iden-
tification of the group and phase velocities

vj(ω), ω/βj(ω), j = 1, . . . , N(ω), (7.15)

as well as the source parameters

σt, σy, |wj(ω)|, j = 1, . . . , N(ω), (7.16)

and the (coupling) medium parameters

|∂zφj(ω, 0)|, rj , Γ̌cj,l(ω, 0), j 6= l = 1, . . . , N(ω). (7.17)

In Proposition 7.2 we assumed that the distance to the source is known. However,
from the form of the smoothed Wigner transform Ws observations at arrays centered
at two values for the range coordinate x allow us to identify the distance from the
source. We have the following corollary:

Corollary 7.3. Assume that we measure on two arrays separated in range
by a distance of order O(ε−2) compared to the wavelength, then the parameters in
Proposition 7.2 can be estimated without a priori knowledge of range.

We illustrate the situation with two measurement arrays in Figure 3.1. Here, we
have focused on wave propagation in the transport regime and can conclude that in
the high frequency source and strongly heterogeneous random medium regime, we can
identify the parameters of the RTE (4.4).

8. Discussion. We have developed a general framework for studying coupling
between body and surface modes along a boundary with random medium layers be-
neath it, and an associated inverse problem. We shed light on various aspects moti-
vated by recent descriptions and observations of coupling published in the seismology
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literature. While the inverse problem addressed the recovery of surface-wave phase
and group velocities, in a forthcoming paper we will present the unique recovery of
the background wave speed from the phase velocities if this is piecewise constant in
the boundary normal coordinate. The statistical stability of the “data” makes this
framework well suited for sensitive background monitoring applications when the re-
alizations of the random medium fluctuations may change in time. We expect that
the results obtained, here, carry over the Rayleigh system.
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Appendix A. The Sedimentary Paraxial Regime.
We assume again that the source is of the form (3.1). As above we rescale the

field as (3.2). This scaling corresponds to the one discussed in the previous sections
and illustrated in Figure 3.1.

However, here we assume that the medium perturbation is of the form

µn(x, y, z) = ε3/2µ(εx, εy, z). (A.1)

The process µn is anisotropic with a vertical correlation length (in z) of the order
of the wavelength and horizontal correlation lengths (in x and y) of the order of the
beam radius. It differs from the scaling discussed above in that the correlation length
in the x coordinate is of the order of the beam radius, rather than small compared to
this radius. The standard deviation (of the order of ε3/2) of the process µn is such
that the cumulative scattering effects are of order one as ε→ 0.

The Fourier transform of (3.2) is given by the scaled version of (2.8):

p̂ε(ω,X, Y, z) =

N(ω)∑
j=1

p̂εj(ω,X, Y )φj(ω, z) +

∫ n2
1k

2

−∞
p̂εγ(ω,X, Y )φγ(ω, z)dγ, (A.2)

and the modal amplitudes satisfy the following proposition.
Proposition A.1. Let α̂εj(ω,X, Y ) be defined by (3.5). As ε→ 0, α̂ε(ω,X, Y ) =

(α̂εj(ω,X, Y ))Nj=1 converges weakly and in distribution to the diffusion Markov pro-

cess α̂(ω,X, Y ) = (α̂j(ω,X, Y ))Nj=1. The limit processes α̂j(ω,X, Y ) solve the Itô-
Schrödinger equations

dα̂j(ω,X, Y ) =
i

2βj(ω)
∂2
Y α̂j(ω,X, Y )dX + iα̂j(ω,X, Y ) ◦ dBj(ω,X, Y ), (A.3)

for X > 0, starting from

α̂j(ω,X = 0, Y ) =
Fj(ω, Y )

2i
√
βj(ω)

, Fj(ω, Y ) =

∫ +∞

0

F (Y, z)φj(ω, z)dz. (A.4)

Equations (A.3) are uncoupled for different j, but they are driven by correlated Brow-
nian fields Bj(ω,X, Y ), satisfying

E [Bj(ω,X, Y )] = 0, E [Bj(ω,X, Y )Bl(ω,X
′, Y ′)] = min{X,X ′}Rjl(ω, Y − Y ′),

(A.5)
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with Rjl defined by (3.10).
The situation that the medium fluctuations in (A.1) have an isotropic scaling in

the horizontal variables rather than the anisotropic scaling in (3.3) gives a qualita-
tively different description of the modal amplitudes. By comparing Propositions A.1
and 3.1 we find that in the horizontally isotropic case the modal amplitudes are dy-
namically uncoupled while they are dynamically coupled in the anisotropic case. Note
however that in both cases the correlations of the Brownian fields Bj give statistical
coupling of the mode amplitudes. We consider next the radiative transfer equations
for the Wigner transform modes and from the modal amplitude equations we find the
following proposition.

Proposition A.2. If Gε satisfies (4.1), then the mean Wigner transform

Wj(t, ω,X, κx, Y, κy) = lim
ε→0

1

2π

∫
R3

dω′dx′dY ′e−iω
′t−iκxx′−iκyY ′

× E
[
p̂εj
(
ω + ε2ω

′

2
, X + ε2x

′

2
, Y +

Y ′

2

)
p̂εj
(
ω − ε2

ω′

2
, X − ε2

x′

2
, Y − Y ′

2

)]
(A.6)

has the form

Wj(t, ω,X, κx, Y, κy) = Wj(t, ω,X, Y, κy)δ
(
κx − βj(ω)), (A.7)

where Wj satisfies the radiative transfer equation

∂XWj +
κy

βj(ω)
∂YWj +

1

vj(ω)
∂tWj =

1

2π

∫
R
Řjj(ω, κ

′
y)
[
Wj(κy − κ′y)−Wj(κy)

]
dκ′y,

(A.8)
starting from (4.5). Here vj(ω) = 1/β′j(ω) and Řjj is defined by (4.7).

Note that (A.8) is (4.4) in the special case Γ̌c ≡ 0. Furthermore, note that Γ̌c
jl is

small if the relative phase velocity contrast |βj − βl| is large relative to the coherence
length of the fluctuations the range direction, see (3.13), in which case the dynamic
mode amplitude coupling becomes small.

We can then conclude that in the case of isotropic fluctuations in the horizontal
directions we have the following proposition.

Proposition A.3. The mean Wigner transform (4.9) has the form

W(t, ω,X, κx, Y, κy) =

N(ω)∑
j=1

∂zφj(ω, 0)2Wj(t, ω,X, Y, κy)δ
(
κx − βj(ω)

)
, (A.9)

where the Wj’s satisfy (A.8). Finally, we remark that in this scaling regime, via a
smoothing step as in Section 5, we can obtain stable estimates of the group and phase
velocities at the central frequency ω, vj(ω), ω/βj(ω), as well as information about the
scattering kernels κ 7→ Řjj(ω, κ) for j = 1, . . . , N(ω).
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