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A B S T R A C T

Classical nonlinear waves exhibit, as a general rule, an irreversible process of thermalization toward the
Rayleigh–Jeans equilibrium distribution. On the other hand, several recent experiments revealed a remarkable
effect of spatial organization of an optical beam that propagates through a graded-index multimode optical
fiber (MMF), a phenomenon termed beam self-cleaning. Our aim here is to evidence the qualitative impact of
disorder (weak random mode coupling) on the process of Rayleigh–Jeans thermalization by considering two
different experimental configurations. In a first experiment, we launch speckle beams in a relatively long MMF.
Our results report a clear and definite experimental demonstration of Rayleigh–Jeans thermalization through
light propagation in MMFs, over a broad range of kinetic energy (i.e., degree of spatial coherence) of the
injected speckle beam. In particular, the property of energy equipartition among the modes is clearly observed
in the condensed regime. The experimental results also evidence the double turbulence cascade process: while
the power flows toward the fundamental mode (inverse cascade), the energy flows toward the higher-order
modes (direct cascade). In a 2nd experiment, a coherent laser beam is launched into a relatively short MMF
length. It reveals an effect of beam cleaning driven by an incipient process of Rayleigh–Jeans thermalization.
As discussed through numerical simulations, the fast process of Rayleigh–Jeans thermalization observed in the
1st experiment can be attributed due to a random phase dynamics among the modes, which is favored by the
injection of a speckle beam and the increased impact of disorder in the long fiber system.
. Introduction

Understanding the mechanisms responsible for self-organization
rocesses in conservative wave systems is a difficult problem that
enerated significant interest. Contrary to a dissipative system, a con-
ervative Hamiltonian system cannot evolve toward a fully ordered
tate, because such an evolution would imply a loss of statistical
nformation that would violate the formal reversibility of the evolution
quations. However, in spite of its formal reversibility, a nonintegrable
amiltonian wave system is expected to exhibit an irreversible evo-

ution toward the equilibrium state, i.e., the most disordered state
hat realizes the maximum of entropy [1]. The thermalization to the
ayleigh-Jeans (RJ) equilibrium distribution of weakly nonlinear ran-
om waves can be described in detail by the well-developed wave
urbulence theory [2,3], that has been also successfully applied to
ptical waves [4–6].

RJ thermalization can be characterized by a counter-intuitive pro-
ess of self-organization. To discuss this aspect with some concrete
xamples, let us consider the nonlinear Schrödinger equation (NLS). In

∗ Corresponding author.
E-mail address: Antonio.Picozzi@u-bourgogne.fr (A. Picozzi).

the focusing regime, the self-organization process is known as ‘‘soliton
turbulence’’. It is characterized by the spontaneous formation of a large
scale coherent solitary-wave that remains immersed in a sea of small-
scale fluctuations [3,6–15]. On the other hand, in the defocusing regime
of the NLS equation, the self-organization process refers to ‘wave
condensation’ [3,6,16–27]. It originates in the singular behavior of the
RJ equilibrium distribution, in analogy with the quantum Bose–Einstein
condensation. More precisely, the RJ distribution exhibits a phase
transition to a condensed state that is characterized by a macroscopic
population of the fundamental mode of the system.

The observation of thermalization with optical waves in a (cav-
ityless) free propagation is known to require very large propagation
lengths, a feature that has been discussed recently in different circum-
stances [25,28]. The situation is completely different when the optical
beam propagates in a waveguide configuration. Indeed, the finite num-
ber of modes supported by the waveguide significantly increases the
rate of thermalization to the RJ distribution [29]. In addition, the
finite number of modes introduces a frequency cut-off that regularizes
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the ultraviolet catastrophe inherent to classical waves [29,30]. It is
in this framework that a remarkable phenomenon of spatial beam
self-organization, called ‘beam self-cleaning’, has been recently discov-
ered in graded-index multimode fibers (MMFs) [31–34]. Recent works
indicate that this phenomenon of beam cleaning can be interpreted
as a consequence of RJ thermalization and condensation, a feature
that has been discussed both theoretically [35–39] and experimen-
tally [40–47]. We recall in this respect that light propagation in an
optical fiber is affected by a structural disorder due to refractive index
fluctuations introduced by inherent imperfections and environmental
perturbations [48–53], which significantly impact the process of RJ
thermalization [35,46,54]. We also note that RJ thermalization to
negative temperature equilibrium states in multimode systems has been
theoretically predicted [38,42], and recently observed in graded-index
multimode optical fibers [55].

In this work we report an accurate experimental demonstration of
the process of RJ thermalization through light propagation in a MMF.
In a 1st experiment, we consider the injection of speckle beams in a
relatively long MMF [40]. We compare the experimental distribution
of the power among the fiber modes with the corresponding theoretical
RJ distribution, which reveals a quantitative agreement without using
adjustable parameters. Furthermore, such a remarkable agreement is
obtained over a broad range of kinetic energies 𝐸 (‘temperatures’),
i.e., over a broad range of randomness of the speckle beams launched
in the MMF. In this way, we provide the experimental observation of
the equipartition of the kinetic energy among the fiber modes. The
experimental results also evidence that, while the power (or ‘wave-
action’, or particle number in a corpuscular picture) flows toward
the fundamental mode (inverse turbulence cascade), the energy flows
toward the high-order modes (direct turbulence cascade). Next, in a
2nd experiment, we consider the injection of a coherent laser beam in

short piece of MMF length, while the power is increased so as to
eep constant the effective nonlinear interaction with respect to the
st experiment. At variance with the 1st experiment, in the 2nd exper-
mental configuration there are no random phases among the initially
opulated modes, while the impact of disorder on light propagation
polarization mixing and random mode coupling) is severely limited
y the short fiber length used. In this 2nd experiment, while we can
dentify an effect of beam self-cleaning driven by the thermalization
f the low-order modes, the high-order modes exhibit a deviation from
he RJ distribution. As will be discussed through numerical simulations,
he fast process of Rayleigh-Jeans thermalization observed in the 1st
xperiment can be attributed due to a random phase dynamics among
he modes, which is favored by the injection of a speckle beam and the
ncreased impact of disorder in the long fiber system.

. First experiment: Rayleigh-jeans thermalization

.1. Experimental setup and procedure

Fig. 1 schematically reports the experimental setup. The source is a
d:YAG laser delivering subnanosecond pulses (400ps) at 𝜆0 = 1064

nm. A key feature of the 1st experiment is that the laser beam is
passed through a diffuser before the injection of the speckle beam into
the MMF. More specifically, the laser beam is collimated and passed
through a glass diffuser plate placed in the vicinity of the Fourier plane
of a 4f-optical system. The near-field (NF) intensity distribution of the
output beam was magnified and imaged on a first CCD camera owing
to a two lens telescope optical system. The CCD camera was placed on
a rail orthogonal to the beam propagation in order to remove or put the
camera back on the beam path. The far-field (FF) intensity distribution
of such a magnified image was obtained by placing it in the object focal-
plan of a lens and using a second CCD camera positioned in its image
(Fourier) focal-plan, see Fig. 1.

An other important property of the 1st experiment considered in

this section is that the MMF used is relatively long, i.e., 𝐿 = 12m M

2

Fig. 1. Experimental setup: laser, optical isolator, half-wave plate and polarizer,
diffuser (D), lenses for magnification and imaging (𝑓𝑗 ), graded-index MMF, and cameras
for near- and far-field detections (C).

long graded-index MMF. Its refractive index profile exhibits a parabolic
shape in the fiber core with a maximum core index (at the center) of
𝑛co=1.470 and 𝑛cl = 1.457 for the cladding at the pump wavelength
of 1064 nm (numerical aperture NA=0.195, fiber radius 𝑅 = 26 μm).
The corresponding parabolic potential reads 𝑉 (𝒓) = 𝑞|𝒓|2 for |𝒓| ≤ 𝑅,
where 𝑅 = 26 μm is the fiber radius and 𝑞 = 𝑘0(𝑛2co − 𝑛2cl)∕(2𝑛co𝑅

2),
𝑘0 = 2𝜋∕𝜆0 the laser wave-number. The MMF guides 𝑀 = 120 modes
(i.e., 𝑔𝑚𝑎𝑥 = 15 groups of non-degenerate modes). The truncation of
the potential introduces a frequency cut-off in the FF spectrum 𝑘𝑐 =
(2𝜋∕𝜆0)

√

𝑛2co − 𝑛
2
cl. The eigenvalues are well approximated by the ones

f the ideal harmonic potential 𝛽𝑝 = 𝛽0(𝑝𝑥 + 𝑝𝑦 + 1), where the index
𝑝} labels the two numbers (𝑝𝑥, 𝑝𝑦) needed to specify a mode. We have
omputed analytically the propagation of the optical wave throughout
he setup of our detection scheme. The optical field amplitude in the
F plane is an exact magnification of the wave amplitude at the output
f the MMF. In addition, the optical field amplitude in the FF detection
lane exactly corresponds to the Fourier transform of the amplitude at
he fiber output. We note that the experimental setup for the NF and
F detection does not introduce detrimental spurious transverse phase
rofiles in the optical field, e.g., related to optical free propagation in
ir or phase shifts due to the presence of additional lenses. For more
etails about the experimental set-up, we refer the reader to Ref. [55]
Supplementary Material).

This setup allowed us to retrieve an accurate measurement of the
ower 𝑁 and the energy 𝐸 of the speckle beam. More precisely, the
F intensity distribution 𝐼NF(𝒓) = |𝜓|2(𝒓) provides a measurement
f the power 𝑁 = ∫ 𝐼NF(𝒓)𝑑𝒓 and of the potential energy 𝐸pot =
𝑉 (𝒓)|𝜓|2(𝒓)𝑑𝒓. The kinetic energy 𝐸kin = 𝛼 ∫ |∇𝜓|2(𝒓)𝑑𝒓 is retrieved

rom the FF intensity distribution 𝐼FF(𝜿) = |�̃�|2(𝜿), where 𝛼 = 1∕(2𝑛co𝑘0)
nd �̃�(𝜿) is the Fourier transform of 𝜓(𝒓). This provides the measure-
ent of the (linear) energy (Hamiltonian) 𝐸 = 𝐸pot + 𝐸kin. Projecting

nto the basis of the fiber modes, the power and (kinetic) energy read

=
∑

𝑝
𝑛𝑝, 𝐸 =

∑

𝑝
𝛽𝑝𝑛𝑝, (1)

here 𝑛𝑝 is the amount of power in the mode {𝑝}, and ∑

𝑝 is carried
ver the set of 𝑀 modes indexed by {𝑝} [29]. Note that 𝐸 is in units
f W m−1 (not Joule). However, we refer 𝐸 to the energy because it is
he (dominant) linear contribution to the Hamiltonian.

The accurate measurements of the NF and FF intensity distributions
llowed us to retrieve the modal content of the optical beam in the
xperiment, namely the distribution of power among the modes 𝑛exp𝑝 .
n general, to achieve the mode decomposition, several interferometric
pproaches based on use of a reference beam have been exploited
o study light thermalization in MMFs [43,45]. On the other hand, a
umber of methods without a reference beam have been also proposed,
ee references in [56]. Here, we use a (non-interferometric) numer-
cal computing mode decomposition procedure that is based on the
ell-established Gerchberg–Saxton algorithm [57,58]. It allows us to

etrieve the transverse phase profile of the field from the NF and the
F intensity distributions measured in the experiments [59,60]. By pro-
ecting the retrieved spatial profile of the complex field over the fiber
odes, we get the complete modal distribution of the experimental

ptical beam 𝑛exp𝑝 . We refer the reader to the Ref. [55] (Supplementary

aterial) for a detailed presentation of the procedure (theoretical and
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numerical computation of the error introduced by the Gerchberg–
Saxtonalgorithm, impact of the sampling due to the cameras, validity
of the phase reconstruction). In addition, we show experimentally and
theoretically in the Appendix that the modal distribution recorded
experimentally 𝑛exp𝑝 at the fiber output converges toward the expected
RJ distribution as the number of realizations of speckles beams is
increased.

2.2. RJ thermalization over a broad energy range

The experiment is realized in the weakly nonlinear regime, where
linear propagation effects dominate over nonlinear effects 𝐿𝑙𝑖𝑛 ∼ 𝛽−10 ≪
𝑛𝑙 = 1∕(𝛾𝑁), where 𝛾 is the nonlinear coefficient of the MMF.
ypically, we have 𝐿𝑙𝑖𝑛 ∼ 0.2 mm, and 𝐿𝑛𝑙 ∼ 0.3m. This means that the
onlinearity plays a role over a propagation length much larger than
hat of the rapidly fluctuating speckle beam.

The process of RJ thermalization in the MMF is driven by the Kerr
onlinearity, as described theoretically by a wave turbulence kinetic
pproach [29,35,37,46]. Accordingly, as the beam propagates through
he MMF, it is expected to relax toward the thermodynamic equilibrium
tate described by the RJ distribution [29,35,37,38,40,42,43,45]
RJ
𝑝 = 𝑇 ∕(𝛽𝑝 − 𝜇), (2)

here 𝑇 and 𝜇 are the temperature and chemical potential. Accord-
ngly, we have at equilibrium 𝑁 = 𝑇

∑

𝑝(𝛽𝑝−𝜇)−1 and 𝐸 = 𝑇
∑

𝑝 𝛽𝑝∕(𝛽𝑝−
). Important to notice, (𝑇 , 𝜇) are uniquely determined by (𝑁,𝐸),

.e., there is a one to one correspondence between (𝑇 , 𝜇) and (𝑁,𝐸). In
ther terms, we are dealing with the microcanonic statistical descrip-
ion, so that 𝑇 does not refer to the ‘room’ temperature (𝑇 is in units
f W m−1). Also note that the RJ distribution can be generalized by
aking into account for the conservation of linear momentum [61–64]
nd angular momentum [44,65]. However, the conservation of angular
omentum is relevant when peculiar conditions of injection of the

ptical beam into the MMF are considered, see Ref. [44]. Here, we
onsider speckle beams for which the angular momentum may vary
rom one realization to another and vanishes in average, so that its
onservation is not relevant to our experiments.

At variance with previous experiments of spatial beam cleaning
nd RJ thermalization [31,33,34,40–43], here we study the process of
hermalization for different amount of the (kinetic) energy 𝐸. Indeed,
y passing the laser beam through a diffuser before injection in the
MF, we can vary the amount of randomness (i.e., degree of spatial co-

erence) of the speckle beam by keeping fixed the power 𝑁 – the higher
he randomness of the fluctuations in the speckle beam, the higher
he corresponding energy 𝐸. In other terms, owing to the diffuser, we
tudy the process of RJ thermalization over a broad range of energies
. This is at variance with previous experiments [31,33,34,40–43], as
ill be discussed in the framework of the 2nd experiment presented
elow in the paper. Note that throughout the paper, the terminology

coherence’ refers to the purely spatial coherence properties of the
uasi-monochromatic optical beam that propagates through the fiber.

An other important advantage of using a diffuser is that it allows
s to perform an average over an ensemble of realizations. Indeed,
he RJ distribution is in essence a statistical distribution, so that the
omparison with the experimental data requires an average over re-
lizations. We have recorded 2 × 1000 realizations of the NF and
F intensity distributions for the same power 𝑁 (𝑁 = 7kW) and
ifferent values of the energy 𝐸. For each individual realization, we
ave retrieved the modal distribution |𝑎exp𝑝 |

2. We have partitioned such
n ensemble of 1000 realizations of {|𝑎exp𝑝 |

2} within small intervals of
energies 𝛥𝐸 = 0.125𝐸0, where 𝐸0 = 𝑁𝛽0 is the minimum of the energy
(only the fundamental mode is populated). Next, we have performed an
average over the realizations of the modal distributions for each specific
energy interval 𝛥𝐸, which gives the averaged modal distributions 𝑛exp𝑝
for different energies 𝐸. We have followed this experimental procedure
at the output of the MMF (at 𝐿 = 12m), and then we have repeated the

procedure at the fiber input (after 20 cm of propagation).

3

2.2.1. Power distribution among the modes
We report in Fig. 2 (left column) the averaged modal distribution in

the experiment 𝑛exp𝑝 at the fiber input and the fiber output, for different
nergies 𝐸. For convenience we have reported the average power �̃�𝑔

within each group of degenerate modes, where 𝑔 = 0,… , 𝑔𝑚𝑎𝑥 − 1
indexes the mode group. For the MMF used in the experiments, 𝑔𝑚𝑎𝑥 =
15 for 𝑀 = 𝑔𝑚𝑎𝑥(𝑔𝑚𝑎𝑥 + 1)∕2 = 120 modes.

We compare the experimental data with the theoretical RJ distri-
bution 𝑛RJ𝑝 . Note that there are no adjustable parameters between the
xperimental distribution 𝑛exp𝑝 and the RJ distribution 𝑛RJ𝑝 : The param-
ters (𝑇 , 𝜇) in 𝑛RJ𝑝 in Eq. (2) are uniquely determined by the power and
he energy (𝑁,𝐸) measured in the experiments. We observe in Fig. 2 a
ery good agreement between the observed modal populations 𝑛exp𝑝 and
he RJ distribution 𝑛RJ𝑝 . Furthermore, such a good agreement is obtained
ver a broad range of the energy 𝐸.

In order to properly appreciate the key role of the energy 𝐸, we
report in Fig. 3(a) the condensate fraction (i.e., amount of power
fraction in the fundamental fiber mode) 𝑛RJ0 ∕𝑁 vs 𝐸∕𝐸crit , where 𝐸crit ≃
𝛽0
√

𝑀∕2 is the threshold value of the energy below which the funda-
ental mode gets macroscopically populated [40]. In a loose sense, the

nergy 𝐸 plays a role analogous to the temperature, i.e., the condensate
raction 𝑛RJ0 ∕𝑁 increases as the energy 𝐸 decreases. Note in particular
hat the effect of beam self-cleaning is suppressed nearby the transition
o condensation for 𝐸 ≃ 𝐸crit , a feature discussed in detail in Ref. [40].

.2.2. Energy distribution among the modes
The modal distribution of the power is mainly sensitive to the

ehavior of the low-order modes. So as to properly characterize the
hermalization process over all modes, it proves convenient to consider
he distribution of the kinetic energy 𝐸𝑝 = (𝛽𝑝 − 𝛽0)𝑛𝑝, or equivalently
he average energy within groups of degenerate modes �̃�𝑔 = 𝛽0𝑔�̃�𝑔 ,
here we recall that 𝑔 indexes the mode group. The results reported

n Fig. 2 (right column) confirm a remarkable quantitative agreement
etween the experimental data and the RJ equilibrium distribution. We
ote in particular that for a small value of the energy 𝐸 ≪ 𝐸crit , we can
bserve an energy equipartition among the modes, a property inherent to
lassical statistical mechanics. Indeed, well below the energy threshold
or condensation, i.e. 𝐸 ≪ 𝐸crit , the chemical potential reaches the
undamental mode eigenvalue 𝜇 → 𝛽−0 , so that 𝑛RJ𝑝 = 𝑇 ∕(𝛽𝑝 − 𝛽0) for
≠ 0 (or �̃�𝑔 = 𝑇 ∕(𝑔𝛽0) for 𝑔 ≠ 0), and thus

𝑝 = 𝑇 for 𝑝 ≠ 0 (3)

or �̃�𝑔 = 𝑇 for 𝑔 ≠ 0). This property of energy equipartition can be
bserved in all panels (k-n), �̃�exp

𝑔 = 𝑇 , the only panel which shows a
ignificant departure from energy equipartition is panel (o) because 𝐸
s then close to 𝐸crit . Note that this is consistent with the fact that for
≳ 𝐸crit , the chemical potential deviates from the fundamental mode

igenvalue, and the RJ distribution (2) with 𝜇 ≪ 𝛽0 no longer verifies
he property of energy equipartition among the modes.

The experimental results also evidence the double turbulence cas-
ade underlying RJ thermalization: While the power flows toward the
undamental mode (inverse cascade), the flow of kinetic energy toward
he higher-order modes (direct cascade). This latter effect is shown in
anels (l-o) of Fig. 2, for a relative small condensate fraction 𝑛RJ0 ∕𝑁 =
.15. This double cascade process was already commented in Ref. [42]
hrough the analysis of the experimental data in direct 𝒓−space. The
ode-resolved analysis reported in Fig. 2 is more appropriate and

onvincing.

.2.3. Attraction to the RJ distribution
We can estimate quantitatively the attraction to the RJ equilibrium

y defining a ‘distance’ to the RJ distribution. For this purpose, we
efine a quantity that reflects the degree of similarity with the RJ
istribution in mode space:

=

∑

𝑝 |𝑛
exp
𝑝 − 𝑛RJ𝑝 |

∑ exp RJ
. (4)
𝑝 𝑛𝑝 + 𝑛𝑝
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Fig. 2. 1st Experiment: Rayleigh-Jeans thermalization. Modal distribution �̃�𝑔 vs mode group 𝑔 in normal scale (1st column), in log-scale (2nd column), and corresponding
nergy distribution �̃�𝑔 vs 𝑔 (3rd column). Initial modal distribution at the fiber input (blue), and modal distributions at the fiber output (red). Corresponding RJ distribution (green
ine): The quantitative agreement with the output distribution is obtained without using any adjustable parameter. Different lines in the figure correspond to different energies 𝐸,
.e., different condensate fractions (see the legend in the 1st column).
ote in particular that this quantity is normalized, 0 ≤  ≤ 1. We
eport in Fig. 3(b) the distance  computed for the experimental data
exp
𝑝 at the fiber input (blue), and at the fiber output (red), for different
nergies 𝐸. The strong reduction of the distance  from the fiber input
o the fiber output clearly confirms the process of thermalization to the
J equilibrium. It is important to note that this attraction process takes
lace over a broad range of variation of the energy 𝐸. Note that, as the
nergy 𝐸 increases and approaches the critical value of the transition
o condensation 𝐸crit , the input-to-output reduction of  decreases as
ell, a feature that becomes apparent in Fig. 2 (left column), where
e can notice that the input and output distributions become similar
s the energy increases.

. Second experiment: Beam cleaning through incipient thermal-
zation

.1. Differences with the first experiment

There are two differences that distinguish the 1st experimental
onfiguration with the 2nd configuration. (i) In the 2nd experiment
he MMF length is reduced by a factor 4 to 𝐿 = 3m – accordingly
he power is increased by the same factor to 𝑁 = 28kW, so as to
aintain constant the effective number of nonlinear lengths 𝐿∕𝐿𝑛𝑙 in

oth experiments. Because of the short fiber length considered, the
mpact of disorder (weak random coupling) is significantly reduced in
his 2nd configuration. (ii) We do not pass the laser beam through
diffuser before injection into the MMF, i.e., we launch a Gaussian-

haped coherent beam (at approximate normal incidence) into the fiber.
otice that the absence of the diffuser in this 2nd configuration does

ot allow us to make an average over the realizations. The energy 𝐸

4

Fig. 3. 1st Experiment: Attraction to the RJ distribution. (a) Power fraction into the
fundamental mode (condensate fraction) 𝑛0∕𝑁 vs 𝐸∕𝐸crit : at the fiber input (blue), and
fiber output (red). Corresponding RJ theory (green line): The quantitative agreement
with the output distribution is obtained without using any adjustable parameter. (b)
Distance  vs energy [defined from Eq. (4)] to the RJ equilibrium distribution at
the fiber input (blue), and fiber output (red). The strong reduction of  from the
input-to-output shows the attraction to the RJ distribution. Note that  is normalized,
0 ≤  ≤ 1.

is varied by varying the radius of the launched Gaussian beam: For a
given power 𝑁 , by increasing the radius of the Gaussian beam, the
population of modes at the fiber input is increased, which in turn
increases the energy 𝐸.

3.2. Deviation from the RJ distribution

Following a procedure similar to that carried out in the 1st exper-
iment, we report in Fig. 4 the modal distribution of the power �̃�exp𝑔 ,
and the energy �̃�exp

𝑔 , observed in the 2nd experiment, at the fiber input
(blue), and the fiber output (red). We compare the experimental data
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Fig. 4. 2nd Experiment: Incipient RJ thermalization. (a) Distance  vs energy
𝐸∕𝐸crit [defined from Eq. (4)] to the RJ equilibrium distribution at the fiber input
(blue), and fiber output (red). (b)–(d) Modal distribution �̃�𝑔 vs mode group 𝑔 (right
column), and corresponding energy distribution �̃�𝑔 vs 𝑔. Initial modal distribution at the
fiber input (blue), and modal distributions at the fiber output (red), and corresponding
RJ distribution (green line). Note that  in (a) is bounded, 0 ≤  ≤ 1.

Fig. 5. 2nd Experiment: Beam self-cleaning. Modal distribution �̃�𝑔 vs mode group 𝑔,
n the presence of a small power 𝑁 = 0.23kW (linear regime) (a), and high power 𝑁 =
8kW (nonlinear regime) (b). The green line reports the RJ equilibrium distribution.
he insets show the 2D intensity distributions: measured (left) and reconstructed (right)
utput beam profile.

ith the theoretical RJ distribution (green line). We can note that the
ow-order modes are efficiently attracted toward the RJ equilibrium
istribution, while the higher-order modes exhibit some significant
eviation to the RJ equilibrium. This aspect becomes even more ap-
arent through the analysis of the distribution of the kinetic energy
̃ exp𝑔 reported in Fig. 4(c). We can remark that mode groups containing
he radially symmetric modes (with 𝑔 even) are more populated than
he other (with 𝑔 odd), as a natural consequence of the injection of a
adially symmetric coherent beam in the MMF. Aside from symmetry
onsiderations, note that nonlinear modal interactions can have dif-
erent efficiencies also due to the large variation in nonlinear overlap
oefficients among the modes, which can significantly affect the rate of
onvergence to equilibrium [37]. Finally note that the deviation from
he RJ distribution is also evidenced by the computation of the distance
. As illustrated in Fig. 4(a), the input-to-output decrease of  shows

hat the system approaches the RJ distribution, although a significant
eviation from that distribution is visible at the fiber output.

Although the 2nd experimental configuration only shows an in-
ipient process of RJ thermalization, it evidences a process of beam
elf-cleaning. This is illustrated in Fig. 5, which reports the modal
istribution �̃�exp𝑔 at low-power, and at high-power, at the output of the
MF. The corresponding 2D intensity distributions at small and high

ower shows an effect of spatial beam cleaning that is dominated by
he behavior of the low order modes, although the higher-order modes

ignificantly deviate from the RJ equilibrium distribution. i

5

Fig. 6. Quasi-resonances accounting for the truncated potential. Computation of
the most favorable non-trivial resonances involving three groups of modes 𝛥𝛽𝑔 =
min(2𝛽𝑔 − 𝛽𝑔−1 − 𝛽𝑔+1), and corresponding resonance efficiency |𝛥𝛽𝑔 |𝐿𝑛𝑙 , where 𝛽𝑔 are
computed by taking into account the truncation of the parabolic potential due to the
fiber cladding. The modes of the fiber can find efficient quasi-resonances |𝛥𝛽𝑔 |𝐿𝑛𝑙 ≲ 1
hat contribute to the thermalization process observed in the 1st experiment, see Fig. 2.

. Interpretation and conclusion

We have studied the impact of disorder on the process of ther-
alization in multimode optical fibers by comparing two different

xperiments realized with a long fiber and an incoherent excitation
1st experiment), and a short fiber with a coherent excitation (2nd
xperiment). The results of the 1st experiment demonstrate without am-
iguity the process of thermalization to the RJ equilibrium distribution,
ver a broad range of the energy 𝐸. For small values of 𝐸, the strong
ondensate fraction (𝑛0 ≫ 𝑛𝑝≠0) entails a process of beam-cleaning
uring the propagation through the MMF. In the 2nd experiment, an
ffect of beam-cleaning can be identified, which can be ascribed to
he RJ thermalization of low-order modes, while high-order modes can
xhibit a deviation from the RJ distribution.

.1. Discussion of previous results

Previous experimental results revealed a good agreement with the
heoretical RJ distribution, especially for low-order modes [43,45]. On
he other hand, some deviation between the experimental measure-
ents and the theoretical RJ distribution was evidenced for high-order
odes when the spatial azimuthal complexity grows, see Fig. 8 in
ef. [45]. The results in Ref. [45] were obtained with a short fiber

ength and the injection of coherent laser beams populating radially
ymmetric modes, a feature which seems to corroborate the results of
ur 2nd experiment.

A good agreement has been also obtained between the measured
odal distribution and the theoretical RJ distribution for low-order

roups of fiber modes [43]. The discrepancy between the experiments
nd the RJ theory for high-order modes was attributed to the lack of
fficient resonances among the modes. Indeed, in an ideal parabolic
otential, the regular spacing of the mode groups provides efficient
hase-matching resonances. In practice however the potential is trun-
ated by the presence of the cladding, which distorts the ladder of
ode-group eigenvalues, especially for higher-order modes that over-

ap more strongly with the cladding. We have computed numerically
he mode eigenvalues accounting for the truncation of the parabolic
otential for the MMF used in our experiments. We have considered
he efficiency of the most favorable non-trivial resonances involving
hree groups of modes 𝛥𝛽𝑔 = min(2𝛽𝑔 − 𝛽𝑔−1 − 𝛽𝑔+1), where we recall
hat 𝑔 indexes the mode group. Then we compute the corresponding
esonance efficiency |𝛥𝛽𝑔|𝐿𝑛𝑙, where 𝐿𝑛𝑙 denotes the nonlinear length
n the 1st experiment 𝐿𝑛𝑙 ≃ 0.3m. Only quasi-resonances verifying
𝛥𝛽𝑔|𝐿𝑛𝑙 ≲ 1 contribute to the thermalization process, while four-mode
nteractions such that |𝛥𝛽𝑔|𝐿𝑛𝑙 ≫ 1 are non-resonant and do not con-
ribute. We report in Fig. 6 the most favorable non-trivial resonances for
ach fiber mode, with 𝑔 = 1,… , 13 (remember 𝑔𝑚𝑎𝑥 = 15). We can see

n Fig. 6 that even higher-order modes of the fiber can find an efficient



K. Baudin, J. Garnier, A. Fusaro et al. Optics Communications 545 (2023) 129716

o
(
(
a
t
o
3
t
(
a
b
1
r
c
t
f

n

Fig. 7. Numerical simulations: Simulations of the NLS equation showing the evo-
lutions of the modal components 𝑛𝑝(𝑧)∕𝑁 (left column), and corresponding evolution
f the distance (𝑧) to the RJ distribution (right column). Fundamental mode 𝑝 = 0
red), 𝑝 = 1 (dark blue), 𝑝 = 2 (blue), 𝑝 = 3 (light blue), 𝑝 = 4 (cyan). 1st row
a)–(b): Simulation without disorder (weak random mode coupling) and starting from
coherent initial condition. 2nd row (c)–(d): Same simulation as (a)–(b), except that

he initial condition is a speckle beam. In (a-d), the system exhibits a coherent regime
f mode interaction featured by persistent oscillations that prevent RJ thermalization.
rd row (e)–(f): Same simulation as (a)–(b), except that disorder is included during
he propagation, which corresponds to the 2nd experimental configuration. 4th row
g)–(h): Same simulation as (e)–(f), except that the initial condition is a speckle beam
nd that the power has been reduced by a factor 4, i.e., 12 m of propagation in the
ottom row corresponds to 3 m in 3rd row — the bottom row corresponds to the
st experimental configuration. The impact of disorder is more effective in the bottom
ow (1st experimental configuration) as compared to the 3rd row (2nd experimental
onfiguration): Disorder accelerates RJ thermalization to equilibrium, as revealed by
he evolutions of (𝑧). The horizontal dashed lines (left column) denote the condensate
ractions at RJ equilibrium. See the text for parameters.

on-trivial quasi-resonance verifying |𝛥𝛽𝑔|𝐿𝑛𝑙 ≲ 1, which indicates
that the finite truncation of the parabolic potential should not prevent
the thermalization of high-order modes. This corroborates the results
reported in the 1st experiment where RJ thermalization is observed
over all groups of fiber modes. We also note that the validity of the
results reported throughout this paper are not affected by the correction
due to the finite truncation of the parabolic potential, i.e., plotting
Figs. 1–4 with the correction does not provide visible differences in the
figures.

4.2. Interpretation and simulations

The substantial differences that distinguish the results of the 1st
and 2nd experiments reported in this work may be interpreted along
the lines of the theoretical works in Refs. [35,37]. We illustrate this
aspect in Fig. 7, which reports the numerical simulations of the spatial
6

NLS equation in different configurations. It was shown in Refs. [35,37]
that, by ignoring the impact of disorder (weak random mode coupling
due to polarization fluctuations), a strong correlation among the modes
is preserved for large propagation lengths, which leads to a phase-
sensitive ‘‘coherent regime’’ of modal interaction. In this coherent
regime, the modes experience a quasi-reversible exchange of power
with each other, which tends to freeze the process of RJ thermaliza-
tion. This regime is illustrated in Fig. 7 (top row), which reports the
evolution of the modal components without disorder with a coherent
initial condition. Note that a similar regime featured by a phase-
sensitive ‘‘coherent’’ modal interaction is also observed by starting the
simulation with a speckle beam, see the second row in Fig. 7. The
oscillatory behavior of the modal components and the slowing down of
RJ thermalization can be related to the existence of Fermi–Pasta–Ulam
recurrences, as recently discussed in Ref. [66,67] in the framework of
the weakly nonlinear regime of the 2D NLS equation with a parabolic
trapping potential. On the other hand, we recall that a key ingredient for
the occurrence of RJ thermalization is the existence of a random phase
dynamics among the modes [3,68] (see also [69,70]). In other words,
a mechanism that breaks the coherent phase-dynamics among the modes is
required in order to achieve thermalization in the weakly nonlinear regime
considered in the experiments. A natural mechanism is provided by the
structural disorder, which is inherent to light propagation in MMFs and
whose leading order contribution is associated to random polarization
fluctuations [48–51]. This weak random coupling regime is sufficient
to introduce a dephasing dynamics among the modes. This is illustrated
in the 3rd row of Fig. 7, that reports the same simulation (same
coherent initial condition and same parameters) as in the top row,
except that a weak random mode coupling has been introduced, with a
correlation length 𝓁𝑐 = 0.3m, and a strength of disorder 2𝜋∕𝜎 = 2.1m,
see Ref. [35,37] for details. The simulation in the 3rd row of Fig. 7 then
corresponds to the 2nd experimental configuration. We note in Fig. 7
that the oscillatory behavior of the modal components associated to
the coherent modal phase dynamics is less pronounced in the 3rd row
than in the 1st or 2nd rows: The evolution of the population of the
fundamental mode 𝑛0(𝑧) keeps an oscillating behavior, although such a
behavior tends to slowly approach the RJ equilibrium value (horizontal
dashed black line, 𝑛RJ0 ∕𝑁 ≃ 0.65). This observation is corroborated
by the evolution of the distance (𝑧) to the RJ equilibrium that also
keeps an oscillatory behavior, though it tends to lower during the
propagation (panel (f) of Fig. 7), a feature which is in contrast with
the corresponding evolution without disorder (panels (b), or (d) for
𝑧 > 1m, in Fig. 7).

This observation is confirmed by the numerical simulation realized
in the framework of the 1st experimental configuration, see bottom row
in Fig. 7 with an injected speckle beam. In this case a larger fiber
length is considered by decreasing the power by a factor 4, so as to
keep constant the effective number of nonlinear interaction lengths,
i.e., 12 m of propagation in the bottom row of Fig. 7 corresponds to 3 m
in the 3rd row (or in the 1st and 2nd rows). Because of the larger fiber
length, the impact of disorder is more effective for the 1st experimental
configuration (bottom row) as compared to the 2nd configuration (3rd
row): The condensate fraction in Fig. 7(g) reaches the RJ thermal value,
while the distance to RJ equilibrium tends to decrease to zero in an
almost monotonic fashion, see Fig. 7(h). Interestingly, the evolutions of
𝑛0(𝑧) and (𝑧) in the 1st experimental configuration (bottom row) do
not exhibit the oscillatory behavior evidenced in the 2nd configuration
(3rd row), which confirms the absence of modal phase-correlations and
the significant acceleration of RJ thermalization due to the disorder.

The simulations reported in Fig. 7 qualitatively reproduce the ex-
perimental results. However, it should be stressed that a power larger
by a factor three has been considered to accelerate the dynamics in
both the 1st and 2nd configurations. Then although the purely spatial
model considered in the simulations captures the essential features
of the experiments, a quantitative description of the experimental
results would require a detailed analysis of the temporal averaging
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effect inherent to the pulsed regime considered in the experimental
measurements [71–73].

We finally note that, on the basis of the wave turbulence theory,
we have derived a kinetic equation describing the evolutions of the
modal components 𝑛𝑝(𝑧), which revealed that polarization fluctuations
ignificantly accelerate the process of RJ thermalization, see Refs. [35,
7]. This theoretical approach then explains, at a pure qualitative
evel, the fast process of RJ thermalization observed in the 1st ex-
eriment reported in this work. We recall that, at variance with the
nd experiment, the 1st experiment is characterized by two factors:
i) a larger fiber length that enhances the impact of disorder, (ii) the
njection of a speckle beam owing to the diffuser. The combination
f these two factors leads to a random phase dynamics among the
odes, which favors the process of RJ thermalization observed in the
st experiment. Finally, this work contributes to the understanding
f the fast process of optical thermalization observed in multimode
ptical fibers, a feature that may also be important for possible future
xtensions to the thermalization of multiple beams [74,75]. From a
roader perspective, this work also contributes to the understanding
f the interplay of nonlinearity and disorder [76–80], in relation with
he paradigm of statistical light-mode dynamics, glassy behaviors, and
omplexity science [81].
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ppendix. Convergence to RJ equilibrium with the number of
peckle realizations

In this Appendix, we show that the modal distribution recorded
xperimentally 𝑛exp𝑝 =

⟨

|𝑎exp𝑝 |

2
⟩

converges toward the expected RJ dis-
tribution 𝑛RJ𝑝 as the number of realizations of speckles beams involved
in the average is increased. Here, we analyze the results retrieved from
the 1st experimental configuration, see Figs. 1–2. The convergence of
𝑛exp𝑝 to the RJ distribution follows qualitatively the behavior expected
theoretically.

As discussed in Section 2.2, we have recorded in the experiments
2 × 1000 realizations of the NF and FF intensity distributions for the
same power 𝑁 = 7kW and different values of the energy 𝐸. For each
individual realization, we have retrieved the modal distribution |𝑎exp𝑝 |

2.
e have partitioned such an ensemble of realizations within small

ntervals of energies 𝛥𝐸∕𝐸0 = 0.125, with 𝐸0 = 𝑁𝛽0 is the minimum of
he energy. Next, we have performed an average over the realizations
f the modal distributions for each specific energy interval 𝛥𝐸. In the
ollowing, we consider a particular energy interval around 𝐸∕(𝑁𝛽0) = 6
nd we study the convergence to the RJ equilibrium distribution with
7

Fig. 8. Experimental convergence to the RJ distribution with the number of
realizations. (a) The blue points denote the distance 𝑄 [Eq. (5)] between the
experimental modal distribution 𝑛exp,𝑄𝑝 averaged over 𝑄 realizations of speckle beams,
and the theoretical RJ equilibrium distribution 𝑛RJ𝑝 . The black line reports the theoretical
distance 𝑄 computed analytically, from Eq. (6). Note that 𝑄 is normalized, 0 ≤ 𝑄 ≤
1. (b) Experimental modal distribution 𝑛exp,𝑄𝑝 averaged over 𝑄 realizations [𝑄 = 1 (blue),
𝑄 = 10 (green), 𝑄 = 50 (red)]. Corresponding theoretical RJ distribution 𝑛RJ𝑝 (black line).

the number of realizations of speckle beams. We define the distance
between the experimental data and the RJ equilibrium as follows:

𝑄 =

∑

𝑝
|

|

|

𝑛exp,𝑄𝑝 − 𝑛RJ𝑝
|

|

|

∑

𝑝 𝑛
exp,𝑄
𝑝 + 𝑛RJ𝑝

. (5)

where the experimental distribution 𝑛exp,𝑄𝑝 = (1∕𝑄)
∑𝑄
𝑗=1 |𝑎

exp,𝑗
𝑝 |

2 is
the empirical average over 𝑄 realizations of the modal distributions
|𝑎exp,𝑗𝑝 |

2. We report the distance 𝑄 vs number of realizations 𝑄 in
Fig. 8(a).

We compare the experimental results with the theoretical expression
of the corresponding distance that we have derived in Ref. [55] (Eq.(3)
in the Supplementary Methods):

𝑄 ≃ 𝑄𝑄−1

(𝑄 − 1)!
𝑒−𝑄. (6)

For 𝑄 ≥ 8, we have 𝑄 ≃ 1∕
√

2𝜋𝑄. Note that Eq. (6) has been found
in quantitative agreement with the numerical simulations (see Fig. 4 in
the Supplementary Material of Ref. [55]). We can note that the distance
𝑄 to the RJ distribution computed from the experimental results
(blue points) decreases with the number of realizations by following
qualitatively the theoretical behavior (solid black line). The theoretical
curve given by Eq. (6) assumes that the Gerchberg–Saxtonalgorithm,
as well as the sampling of the cameras used in the experiments do
not introduce errors. The impact of the two errors can explain that the
distance 𝑄 for the experimental data reported in Fig. 8(a) is slightly
above the theoretical prediction. Finally, we report in Fig. 8(b) the
experimental modal distributions 𝑛exp,𝑄𝑝 averaged over 𝑄 realizations
of speckle beams, which shows the convergence toward the expected
RJ distribution 𝑛RJ𝑝 as 𝑄 increases.
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