Inverse Problems and Imaging

Josselin Garnier (Ecole Polytechnique) https://www.josselin-garnier.org

First lecture: friday, january 13, 2023, 9:00-12:00 (ENS, room 1G82). Material on the course website.

Validation: project (notebook jupyter + oral presentation).

Sensor array imaging

• Sensor array imaging (echography in medical imaging, sonar, non-destructive testing, seismic exploration, radar, etc) has two steps:

data acquisition: an unknown medium is probed with waves; waves are emitted by a source (or a source array) and recorded by a receiver array.
data processing: the recorded signals are processed to identify the quantities of interest (reflector locations, etc).

• Example:

Ultrasound echography

- Standard imaging techniques require:
- good receivers,
- suitable conditions for wave propagation (ideally, the "target" is embedded in a homogeneous medium),
- controlled and known sources.

Sensor array imaging

- Goal: Propose and study imaging techniques that are robust with respect to:
- measurement noise,
- the complexity of the medium (heterogeneous medium),
- the control and the knowledge of the sources.
- More generally: resolution of ill-posed inverse problems.
- \hookrightarrow Introduce probabilistic and statistical techniques:
- Bayesian analysis,
- Random matrix theory,
- Spectral theory for stationary processes,
- Gaussian processes.

Application 1: Ultrasound echography in concrete

Experimental configuration

Top view of the acquisition geometry

Application 1: Ultrasound echography in concrete

Application 1: Ultrasound echography in concrete

100.0 0.90 150.0 200.0 0.75 250.0 0.60 300.0 .si Xe N 0.45 400.0 450.0 0.30 500.0 550.0 0.15 600.0 650.0 350.0 600.0 650.0 700.0 750.0 400.0 450.0 500.0 550.0 Y axis

x=400.0mm

50.0

Real configuration

2D Image (along the complex defect plane)

Theory: Cross correlation of signals transmitted by noise sources

Numerical simulation of wave propagation with many noise sources (\circ) and two receivers at \boldsymbol{x} and \boldsymbol{y} (\blacktriangle) How to extract information from the recorded signals $u_{\boldsymbol{x}}(t)$ and $u_{\boldsymbol{y}}(t)$? These signals are just noise !

Theory: Cross correlation of signals transmitted by noise sources

Numerical simulation of wave propagation

with many noise sources (\circ) and two receivers at \boldsymbol{x} and \boldsymbol{y} (\blacktriangle)

 \hookrightarrow Compute the cross correlation of the recorded signals $C_{\boldsymbol{x},\boldsymbol{y}}^{T}(t) = \frac{1}{T} \int_{0}^{T} u_{\boldsymbol{x}}(s) u_{\boldsymbol{y}}(s+t) ds$ and extract the travel time between the receivers at \boldsymbol{x} and \boldsymbol{y} .

Application 2: Seismic interferometry

Application 2: Seismic interferometry

