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ABSTRACT

Neutron correlations measurements in zero power systems can be used to extract information on
the system criticality state. These non-destructive assay techniques have been more and more
studied in the recent years but the uncertainty quantification of such Bayesian inverse problems
are yet to be consistent. This article proposes Monte-Carlo Markov chain methods to sample the
posterior distribution of the nuclear parameters. It presents a simple application to nuclear waste
characterization.
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1. INTRODUCTION

The production of neutrons in a neutron emitting material is largely dependent on the type of source and
reaction considered. In a fissile material, the neutron detection statistics depends on the medium. The more
fissions occur in the material, the more neutrons are correlated and tend to be detected by batches. The
time list file of the detected neutrons can be used to trace back nuclear properties of the material [1] such as
its prompt multiplication factor kp. Neutron noise techniques have multiple potential applications ranging
from criticality safety to nuclear safeguard and proliferation monitoring.
However, the uncertainty quantification is one of the main hindrances when dealing with neutron noise
measurements. The noise is important for both practical and numerical experiments. In this paper, it will
be shown that the probability distributions of the parameters obtained with neutron noise techniques are also
difficult to exploit. The problems considered are strongly non-linear and lead to probability distributions
more complex than ideal Gaussian distributions which makes uncertainty quantification more difficult [2].
The goal of this article is to find and assess the performance of different methods to sample the probability
distributions of nuclear parameters inferred from neutron correlations measurements. The objective is to
estimate the parameters with a Bayesian approach and simulate the posterior probability distributions of
these parameters with Monte-Carlo Markov Chain (MCMC) methods. An application to nuclear waste
characterization is presented at the end of this paper.



2. THEORETICAL FRAMEWORK

2.1. Point Model Assumptions

In this paper, the point model is the forward model used in the Bayesian problem formulation. In the point
model, the medium is assumed to be infinite, isotropic and homogeneous. The system is prompt subcritical
kp < 1. The source is an infinite source of monoenergetic neutrons following compound-Poisson statistics.
This source reflects the behavior of spontaneous fission sources like 240Pu, while neglecting the energy
spectrum of the neutrons. No spatial effects are taken into account in this model. The delayed neutrons are
not accounted for as well. The three model inputs describe the medium characteristics:

• The prompt effective multiplication factor kp.
• The detector efficiency ϵF defined as the ratio of detection rate over induced fission rate.
• The source intensity S in fissions.s−1.

Three model outputs describe neutron correlations:

• The average count rate in the detector R.
• The second asymptotic Feynman moment Y∞, quantifying the number of correlated double detections.
• The third asymptotic Feynman moment X∞, quantifying the number of correlated triple detections.

The next subsection describes in detail how the second and third moments, introduced by Feynman and
Furuhashi [3,4] are defined and what they represent.
In the point model assumptions, simple analytical formulas link the inputs to the outputs:
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where ρ =
kp−1
kp

is the prompt reactivity, ν is the average number of neutrons produced by induced fissions,

and D2 and D3 are the Diven factors of order 2 and 3, defined by D2 = ν(ν−1)

ν2
and D3 = ν(ν−1)(ν−2)
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where the bar stands for the average. The same quantities with the subscript s refer to the spontaneous
fissions. More details on the derivation of those formulas can be found in [5]. They are approximations of
the more general relations in [6].

2.2. Feynman Moments

The Feynman moment of order n is defined as Yn = n!Γn
Γ1

, where Γn is the average number of correlated
n-detections, which correspond to simultaneous detections of n neutrons arising from the same fission
chain. In this paper, Y and X refer respectively to the second and third Feynman moments. The Feynman
moments depend on the time width T of the detection windows. If T is small compared to the average
fission chain lifetime, most of the real correlated detections are not recorded because the detection windows
are too small to encompass them. However when T is much larger than the fission chain average lifetime,
all the real correlated detections are recorded. The Feynman moments reach an asymptotic value denoted
by the subscript ∞. In practice, Feynman moments can be estimated using the empirical moments of the
detection distribution. The method is detailed in section 3.2.



2.3. Inverse Problem Resolution by Bayesian Inference

The goal is to identify the inputs θ = (kp, ϵF , S) using neutron correlations measurements yi = (R, Y∞, X∞)i
and quantify their probability distributions with Bayesian inference.
Some information is known about the parameters prior to the measurements. This information is given by
the prior distribution p(θ). In this paper, the prior is a uniform distribution on [0.7, 0.95] × [0.05, 0.3] ×
[5000, 30000]. It reflects the a priori knowledge of a credible domain for the parameters. A series of N
measurements (yi)i≤N obtained in the same experimental configuration is given. They are represented by
a matrix y of size 3 ×N . The aim is to estimate the probability distribution of the parameters given these
measurements. This distribution is called the posterior distribution π(θ|y). According to Bayes’ theorem,
the posterior distribution is given by :

π(θ|y) = L(y|θ)p(θ)∫
(L(y|θ)p(θ)dθ

(4)

where L(y|θ) is the likelihood, which is the probability of having the measures y given parameters θ.
The measures are assumed to display Gaussian noise, such that yi = f(θ) + ϵi where ϵi are independent
identically distributed Gaussian distributions with zero mean and covariance matrix C. The Gaussian noise
assumption is justified in section 3.3.2. The function f is given by the analytical formulas of the point
model in (1), (2) and (3). With the Gaussian noise assumption, the likelihood can be calculated by :
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where xT is the transpose of the vector x. From equation (4) and (5), and assuming a uniform prior
distribution on a domain, the posterior distribution can be evaluated. The evaluation of the denominator
of (4) would, however, require to evaluate the numerator of (4) on a fine mesh of the parameter space.
This would be possible for low-dimension problems but very costly. Monte-Carlo Markov Chain methods
are a good alternative when the target distribution is known within a multiplicative constant. They aim at
sampling a target distribution without evaluating the likelihood in every point of the parameter space.

3. SIMULATIONS OF NEUTRON CORRELATIONS

3.1. Geometry and Source Description

The application considered is the identification of unknown nuclear waste. Measures of the Feynman
moments are generated by numerical simulations using MCNP6 [7] on a simple geometry of a nuclear
waste container. These measures can then be used to identify the nuclear parameters of the system.
The geometry is described in Figure 1. A cylindrical fissile area containing Pu (around 90% of 239Pu) and
a CH2 moderator is surrounded by a dense CH2 reflector and a low density CH foam. It is supported by a
steel plate, under which lies a concrete structure. The 3He detector is in the outer regions, surrounded by
dense CH2. A complete description is found in [8].
A criticality calculation with MCNP6 gives kp = 0.8933 with standard deviation σ = 0.0008 which is
similar to the value obtained in [8].

3.2. Time List File Generation

Analog Monte-Carlo simulations are conducted to generate the time list file. All the detection events
occurring in the 3He region are recorded in a PTRAC file. For each detection, this file provides the history
number of the neutron and the instant of detection. By default, the origin of time is the beginning of the
neutron history. In order to simulate a dynamic recording of the detection events, the birth instants of the
neutrons need to be sampled according to a compound Poisson distribution with mean S (in fissions.s−1).



Figure 1: Description of the model used in the MCNP simulations

The time interval between two spontaneous fissions is ∆tsource = −ln(u)
S with u sampled from a uniform

law on [0, 1].
A complete time list file is thus generated. The duration of the experiment is determined by the number of
neutrons simulated and by the source intensity S chosen. The spontaneous fissions are assumed to occur
only in 240Pu with an average neutron production rate of r = 1020 n.g−1.s−1 [1]. Given the known mass
of 240Pu, the source intensity is hence S = 17660 fissions.s−1. N = 32 different simulations of 500000
neutron histories are performed, each leading to roughly 338000 detection events in the PTRAC files. Based
on [8], each simulation is equivalent to roughly 30 seconds of acquisition.
The detector efficiency ϵF is obtained by flux tallies in the fissile area and in the detector region. The aver-
age fluxes are then multiplied respectively by the effective macroscopic fission and capture cross sections
to evaluate the induced fission and detection rate. The detector efficiency obtained is ϵF = 0.113 with
standard deviation σ = 0.001. The induced and spontaneous fission multiplicities are given in MCNP.
They are displayed in Table I.

ν D2 D3 νs D2s D3s

Mean 2.8684 0.8278 0.5449 2.155 0.817 0.522

σ 0.0005 0.0008 0.0008 0.001 0.002 0.003

Table I: Induced and spontaneous fission multiplicities as obtained by MCNP

3.3. Estimating the Feynman Moments

3.3.1. Sequential binning

The Feynman moments are evaluated using sequential binning. This method produces noisy estimations
which are representative of a practical experiment. The whole simulation is divided into W time windows
of a given width T . The number of detections in the i-th window is denoted ni. The empirical moments of
the distribution M̂p are defined by M̂p =

1
W

∑W
i=1 n

p
i . The average detection rate is estimated by R̂ = M̂1

T .
The second and third Feynman moments are evaluated with the following formulas derived from their
definitions.
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In sequential binning, the number of counts is recorded in each window based on the PTRAC data. Then
the Feynman moments and the average detection rate are estimated with previous equations (6). The time
windows are then merged two by two, and the Feynman moments and the detection rate are estimated
once again. The iteration of this process gives an estimation of Y (Tn) and X(Tn) for Tn = nT . With
this method, the evolution of the Feynman moments with T is visualized and the asymptotic values can be
estimated for a large T∞. The time width should be large enough to reach the asymptotic value but not too
much to keep a large number of windows to limit stochastic noise. T∞ = 20 ms is chosen in this work.

Figure 2: Second and third Feynman moments obtained by sequential binning (blue) compared to
the point model predictions (dotted)

An example of the Feynman moments evaluated for one of the simulations is shown in Figure 2. The
dotted lines represent the point model predictions. Both the second and third Feynman moments are in
good agreement with the theoretical predictions. The choice of T∞ = 20 ms is justified based on the time
dependence of the graph.

3.3.2. Covariance structure of the Feynman moments

The next step is to evaluate the covariance structure of the outputs yi = (R, Y∞, X∞)i. They are strongly
correlated since they quantify multiple and single neutron detections. The covariance structure is required
to evaluate the likelihood in equation (5).
A first possible approach is to evaluate the empirical covariance matrix of the measurements. It is also
possible to use the moving block bootstrap method. Another approach is to directly estimate the covariance
with the help of the central limit theorem. This requires the knowledge of the moments of the distribution
up to the order 6.
The central limit theorem ensures that, for large W , the estimators M̂p follow a Gaussian distribution
centered on Mp, with covariance matrix C = 1

W Γ, and where Γ = (Mi+j −MiMj)i,j≤3 is the variance-
covariance matrix of the three first moments. A similar formula can be derived using the delta method for
the Feynman moment estimators:R̂Ŷ
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where ψ is the function giving (R, Y,X) in terms of (M1,M2,M3) and ∇ψ is the gradient of ψ with

respect to the column vector
(

M1
M2
M3

)
.

The covariance is used in the calculation of the likelihood. The real moments Mp cannot be analytically
computed and are approximated by their empirical estimations averaged over all simulations. The MCNP
simulations provide outputs in the form of average detection rates and Feynman moments, as well as their
covariance structure. The next step is to combine these simulations with MCMC methods in order to sample
a posterior distribution of the nuclear parameters. In the next section, a brief introduction to the MCMC
methods used is presented.

4. MONTE-CARLO MARKOV CHAIN METHODS FOR DEGENERATE TARGET
DISTRIBUTION

4.1. The Metropolis-Hastings Algorithm

The principle of a MCMC method is to generate an ergodic Markov chain step by step, whose stationary
distribution is the target distribution (in our case, the posterior distribution of the parameter θ of the un-
known nuclear material). The simplest MCMC method used in this paper is the Metropolis-Hastings (MH)
algorithm [9].
Let us consider a target distribution π defined on a subset E ⊂ Rd. An initial state θ0 is chosen. From this
initial state, a candidate point θ̂ is sampled from a so-called proposal distribution of density q(θ̂|θ0), which
is usually a Gaussian distribution centered on the last point and with covariance matrix proportional to the
identity matrix.
The candidate θ̂ is accepted with the probability α(θ̂, θ0) in which case θ1 = θ̂. If it is rejected then θ1 = θ0.
The probability α(θ̂, θ0) is given by :

α(θ̂, θ0) = min

{
1,
π(θ̂)q(θ0|θ̂)
π(θ0)q(θ̂|θ0)

}
(8)

The algorithm is iterated until the desired chain length is achieved.
MH is the basis of many MCMC methods. The distribution of the Markov chain created converges towards
the target distribution. This algorithm is robust but yet requires some adjustment. The acceptance rate of
all the candidates is a key value to monitor. If it is too high, the chain does not move enough and does
not explore fully the distribution. On the other hand, if it is too low the convergence towards the target
distribution is slow. The acceptance rate is tuned by multiplying the covariance of the proposal distribution
by a so-called scaling factor. In this study, the target distributions are very degenerate, meaning they rely
mostly on a one-dimensional curve in the 3D parameter space and thus the acceptance rate must not be too
high. The target rate should be around 10% to 15%.
In this paper, the target distribution π is the posterior distribution π(θ|y) and the proposal distribution q
is chosen to be Gaussian and hence symmetric. Thus, the acceptance ratio α(θ̂, θn) is simply a likelihood
ratio, since the prior is uniform. The likelihoods are calculated with equation (5).

4.2. Adaptation of the Covariance Matrix

We will see that the forward model used in this paper leads to degenerate posterior distributions (with
strongly correlated coordinates). The support of the distribution is thin, and thus most of the candidate
points tend to miss the support and be rejected. As a consequence, the acceptance rate is low. If the scaling
factor is adjusted to reach a higher acceptance rate, the chain stays around the same spot and the distribution
is not properly sampled.
One way to correct this is to modify the covariance of the proposal distribution in order to draw candidate
points closer to the target distribution. The idea of the Adaptive Metropolis (AM) [10] algorithm is to adapt



the covariance of the proposal by estimating the empirical covariance of the previously accepted points of
the chain. The proposal distribution is still Gaussian but the covariance matrix Cn is modified at each step
to be proportional to the empirical covariance of the points of the chain. Furthermore, the scaling factor
is changed dynamically to reach an arbitrary target acceptance rate. For example, one can multiply the
covariance matrix at each step by a factor rn defined as :

rn = exp
(
α(θ̂, θn)− αtarget

)
(9)

where αtarget is the target acceptance rate.
For distributions with important local curvatures, the global covariance matrix adaptation of AM can aim
away from the actual distribution and a local adaptation could be preferred. This Adaptive Proposal (AP)
method [10] is implemented in this work.
Numerous other MCMC methods are investigated as well. Delayed-rejection Metropolis (DRM) [11], and
its adaptive versions (DRAM and DRAP) are studied. Hamiltonian Monte-Carlo (HMC) [12] is also tested.
All these methods are implemented in Python.

4.3. Reparametrization and Prior Adjustment

A final idea explored in this paper is the reparametrization of the forward model. The analytical formulas
for the point model give a strongly degenerate behavior of the posterior distribution.

Figure 3: Shape of the posterior distribution in the 3D parameter space, before (left) and after
(right) reparametrization

In order to improve the sampling of the distribution with the MCMC methods, it is possible to change the
input parameters of the forward model to reduce the non-linearity of the forward model and decorrelate the
outputs. From the equations (1), (2) and (3) of the point model, three new parameters are defined.

a1 =
ϵF
ρ2

a2 =
ϵ2F
ρ3

a3 =
ϵFS

ρ
(10)

The shape of the distribution in the 3D parameter space is presented in Figure 3, on the left. The distribution
after reparametrization is on the right. The probability distribution in the parameter space (kp, ϵF , S) is very
degenerate and its sampling is thus difficult. However in the new parameter space (a1, a2, a3) the posterior
distribution is less degenerate and is expected to be easier to sample.
The prior for these new parameters is not a uniform distribution anymore. The change in the prior needs to
be taken into account when evaluating the ratio of posterior densities in the acceptance probability α(θ̂, θn).
The reparametrization of the forward model is expected to yield better convergence results in the MCMC
sampling. In the convergence study, the reparametrization is coupled with a simple Metropolis-Hastings
algorithm.



5. RESULTS

5.1. Convergence towards Target Distribution

Figure 4: Autocorrelation curves for different MCMC methods

Two convergence criteria are studied in this subsection. First of all, the autocorrelations of the Markov
chains are examined. The autocorrelation at distance h is defined as the average correlation between two
points of the chain distant from h iterations. It is expected to start at 1 (complete correlation) for h = 0 and
decrease to 0 (complete decorrelation) when h becomes large. The time of decorrelation is a key feature
to investigate. The smaller it is, the faster the decorrelation and the faster the chain produces independent
samples. The decorrelation time can be thought as the average number of iterations required to walk
through the whole target distribution. The different MCMC methods are tested for 5 × 105 iterations, and
the autocorrelation is evaluated for each. The results are presented in Figure 4.
HMC outperforms other MCMC methods with regards to decorrelation time, though it is more costly.
Adaptation helps to decorrelate the points, and local adaptation seems more efficient in this case. Fur-
thermore, delayed-rejection methods seem to reduce the decorrelation time, though not significantly. Fi-
nally, reparametrization is a very efficient tool in reducing the autocorrelation of the chain since the
reparametrized distribution is easier to sample.

Figure 5: Distance between empirical and theoretical distributions for various MCMC methods

It is also possible to study directly the distance between the Markov chain distribution and the theoretical
target distribution. The theoretical posterior distribution is evaluated on a (300 × 300 × 300) fine mesh
in the parameter space using equation (5) and a numerical Simpson integration scheme on each bin. This
calculation is cumbersome (20 hours on 10 processors). The results are compared to the distributions
obtained by MCMC sampling for various methods and chain length. Figure 5 displays the discretized L2
distance between empirical and theoretical distributions.



The convergence towards the target distribution is faster for global adaptation methods. For local adaptation
methods, the invariant distribution is not exactly the target posterior distribution [10]. This bias explains
why the distance between the empirical and target distributions does not converge to 0. Delayed-rejection
methods slightly improve convergence but also require more computing time. Reparametrization requires
more iterations to match the same level of precision with respect to the target distribution. AM and DRAM
provide good convergence towards the target distribution. For that reason, the AM method is used in the
application presented in the next paragraphs.

5.2. Parameter Estimation and Uncertainty Quantification

Since the posterior distribution depends on the choice of the prior, two MCMC samplings are performed
with two different prior distributions. The priors used are a uniform prior on the domain, and Jeffreys prior
[13]. Jeffreys prior is the non-informative prior, meaning that it is independent of the parametrization of the
problem. It is defined by p(θ) ∝ |I(θ)|1/2 where |I(θ)| is the determinant of the Fisher information matrix
defined by :

I(θ) = Ey

[
− d2

dθ2
log L(y|θ)

]
= −

∫
R3

d2

dθ2
log L(y|θ) L(y|θ)dy (11)

Based on the convergence study, Adaptive Metropolis is used to sample the posterior distribution as it is
a good compromise between running time, and convergence performance. The number of iterations is set
to 8 × 106 which amounts to 15 minutes of computing time on 8 processors. The marginal probability
distributions obtained for kp, ϵF and S are presented in Figure 6, with the 95% confidence intervals, in blue
for the uniform prior, and in red for Jeffreys prior. Both distributions are close, the influence of the prior is
minor in this case.
Considering the uniform prior, the estimated kp with 95% confidence is kp ∈ [0.884, 0.907]. The value
obtained in [8] is within the bounds. Confidence intervals for the detector efficiency and source intensity
are respectively ϵF ∈ [0.082, 0.133] and S ∈ [15420, 19330].

Figure 6: Marginal distributions and 95 % confidence intervals for kp, ϵF and S obtained by MCMC
sampling, for a uniform (blue) and Jeffreys (red) prior. MCNP values appear as black dotted lines.

5.3. Pu Mass Estimation

The confidence intervals obtained can be used to estimate the mass of Pu in the waste. The geometry of
the container is known through other measurements (γ-spectroscopy or radiography). The fissile region is
assumed to contain only CH2 and Pu with unknown isotopic composition.
The source intensity S is used to estimate the mass of 240Pu which is the sole neutron emitter in this
model. Taking the same neutron production rate of 1020 neutrons.g−1.s−1, the estimated mass of 240Pu is
m̂240 = 37.0 ± 3.8 g. Criticality calculations are then conducted with different Pu compositions to match
the upper and lower bounds of the estimated kp. The mass of 239Pu estimated is thus m̂239 = 350± 18 g.
The real valuesm239 = 337.3 g andm240 = 33.7 g are within the confidence interval given. The plutonium
masses tend to be slightly overestimated. The bias between the point model predictions and the Feynman



moments seen in Figure 2 can explain these minor disparities. For the same reason, the estimated kp is off
by 400 pcm. Yet the method presented in this paper allows to give a good estimate of the fissile mass while
also providing uncertainties on this estimation.

6. CONCLUSIONS

The method presented in this paper helps to quantify the uncertainties in neutron correlation techniques
and can be used to identify unknown fissile materials. Numerous applications to proliferation control and
waste monitoring could be implemented. The simple example of nuclear waste identification presented in
this paper provided very satisfying results in the estimated mass of plutonium.
The point model framework is efficient in describing most simple situations. For more complex geometries
where the point model approximations introduce a bias, the method of this paper could be coupled to
supervised learning techniques to account for the model bias and uncertainties.
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