
Velocity estimation via model order reduction
Alexander V. Mamonov*, University of Houston; Liliana Borcea, University of Michigan; Josselin Garnier, Ecole
Polytechnique; and Jörn Zimmerling, University of Michigan

SUMMARY

A novel approach to full waveform inversion (FWI), based on
a data driven reduced order model (ROM) of the wave equa-
tion operator is introduced. The unknown medium is probed
with pulses and the time domain pressure waveform data is
recorded on an active array of sensors. The ROM, a projection
of the wave equation operator is constructed from the data via
a nonlinear process and is used for efficient velocity estima-
tion. While the conventional FWI via nonlinear least-squares
data fitting is challenging without low frequency information,
and prone to getting stuck in local minima (cycle skipping),
minimization of ROM misfit is behaved much better, even for
a poor initial guess. For low-dimensional parametrizations of
the unknown velocity the ROM misfit function is close to con-
vex. The proposed approach consistently outperforms conven-
tional FWI in standard synthetic tests.

INTRODUCTION

We consider the inverse problem of velocity estimation from
time-domain reflection data recorded by an array of m sensors
that can both emit and record. For simplicity we work with the
acoustic wave equation with unknown velocity c(x). The pro-
posed approach can be extended to vectorial (elastic) waves.

The model pressure wave p(s)(t,x) generated by the sth sensor,
for s = 1, . . . ,m, satisfies the initial value problem[

∂
2
t − c2(x)∆

]
p(s)(t,x) = f ′(t)θ(x−xs), t ∈ R, (1)

p(s)(t,x) = 0, t <−t f , (2)

for x ∈ Ω, a simply connected domain in two or three dimen-
sions, with boundary ∂Ω. We set homogeneous boundary con-
ditions (Dirichlet, Neumann, or a combination thereof) on ∂Ω.
We assume the sensors in the array to be identical, modeled by
a function θ(x), with small support around the origin. Each
sensor emits the probing pulse f (t), supported on (−t f , t f ).
For simplicity we take f (t) to be an even function, with a non-
negative Fourier transform f̂ (ω)≥ 0 that is analytic.

The inverse problem is to estimate the velocity c(x) from the
measurements

M (r,s)(t) =
∫

Ω

dxθ(x−xr)p(s)(t,x), (3)

for s,r = 1, . . . ,m and t ∈ [0,T ]. Conventional FWI approach
to velocity estimation, see, e.g., Tarantola (1984), suffers from
a fundamental flaw: the objective function is nonconvex with
numerous local minima. This effect makes any local optimiza-
tion algorithm unlikely to succeed, in the absence of an accu-
rate starting guess, see Santosa and Symes (1989). We address
this issue by reformulating the optimization problem for ve-
locity estimation using ROM.

THEORY

Symmetrized wave operator and data model

It is convenient to work with a self-adjoint wave operator

A =−c(x)∆
[
c(x) ·

]
, (4)

a similarity transformation of −c2(x)∆, the wave operator of
equation 1. To obtain the ROM of A , we introduce the even
in time wave

w(s)(t,x) =

[
p(s)(t,x)+ p(s)(−t,x)]

c(x)
, (5)

and “the data”, an m×m matrix D(t), with entries

D(r,s)(t) =
M (r,s)(t)+M (r,s)(−t)

c(xr)c(xs)
, (6)

for s,r = 1, . . . ,m, that can be obtained from the measurements
M (r,s)(t), assuming c(x) is known in the vicinity of sensor
center points xs = 1, . . . ,m.

The ROM is computed from 2n− 1 equidistant time samples
of the data matrix D(t) and its second derivative

D j and D̈ j = ∂
2
t D( jτ), j = 0, . . . ,2n−2, (7)

where the second derivative can be obtained from D(t) via
Fourier domain differentiation. The sampling interval τ should
be chosen according to the Nyquist sampling rate for the es-
sential frequency of f (t) (the largest frequency in the interval
outside of which f̂ (ω) is small).

Using the above, we rewrite Equations 1–2 as the initial value
problem[

∂
2
t +A

]
u(s)(t,x) = 0, t > 0, x ∈Ω, (8)

u(s)(0,x) = u(s)0 (x), ∂tu(s)(0,x) = 0, x ∈Ω, (9)

where the wavefield

u(s)(t,x) = cos
(
t
√

A
)
u(s)0 (x), (10)

is related to the even in time wave via

w(s)(t,x) = f̂
1
2
(√

A
)
u(s)(t,x), (11)

and the initial state is given by

u(s)0 (x) = f̂
1
2
(√

A
)θ(x−xs)

c(xs)
, s = 1, . . . ,m, (12)

which is supported in a ball centered at xs, with radius of order
c(xs)t f . The details of the above formulation can be found in
Borcea et al. (2020).
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Working with wavefields u(s)(t,x) allows to express the data
samples in a symmetric inner product form

D(r,s)
j =

∫
Ω

dxu(r)0 (x)cos
(

jτ
√

A
)
u(s)0 (x), (13)

D̈(r,s)
j =−

∫
Ω

dxu(r)0 (x)A cos
(

jτ
√

A
)
u(s)0 (x), (14)

for r,s = 1, . . . ,m and j = 0, . . . ,2n− 2. These formulas can
be simplified using block algebra notation. Gathering all the
waves u(s)( jτ,x) into the row vector field called a snapshot
u j(x) =

(
u(1)( jτ,x), . . . ,u(m)( jτ,x)

)
, we observe that it sat-

isfies
u j(x) = cos

(
jτ
√

A
)
u0(x), j ≥ 0, (15)

hence the data matrix samples can be written as

D j = 〈u0,u j〉= 〈u0,cos
(

jτ
√

A
)
u0〉, (16)

D̈ j =−〈u0,A u j〉, (17)

where we denote by 〈φ ,ψ〉 =
∫

Ω
dxφ

T (x)ψ(x) the integral
of the outer product of any functions φ(x) and ψ(x) with val-
ues in R1×m or R1×nm and T stands for the transpose.

Wave operator ROM

At the core of the proposed approach is the ROM of the wave
operator, the orthogonal projection of A onto the space

S= span
{
u0(x), . . . ,un−1(x)

}
, (18)

spanned by the first n snapshots. Gathering these snapshots
into the nm-dimensional row vector field

U(x) =
(
u0(x), . . . ,un−1(x)

)
∈ R1×nm, (19)

an orthonormal basis for S can be obtained via the block Gram-
Schmidt orthogonalization U(x) =V (x)R, where 〈V ,V 〉=
Inm and R is an nm× nm block upper triangular matrix, a
block Cholesky factor of the so-called mass matrix

M = 〈U ,U〉=RTR ∈ Rnm×nm. (20)

A remarkable property of the mass matrix M is that it can be
computed from data samples only. Thus, it is possible to ob-
tain the block Cholesky factor R without the knowledge of in-
ternal wavefields that is otherwise required for Gram-Schmidt
orthogonalization. Explicitly, using the trigonometric identity

cos(α)cos(β ) =
1
2
[cos(α +β )+ cos(α−β )] , (21)

the m×m blocks of the mass matrix can be computed as

Mi, j = 〈ui,u j〉=
1
2

(
Di+ j +D|i− j|

)
∈ Rm×m, (22)

for i, j = 0, . . . ,n−1. This computation is the first crucial step
in computing the ROM of A , given by

A ROM = 〈V ,A V 〉=−
∫

Ω

dxV T (x)c(x)∆
[
c(x)V (x)

]
.

(23)
Indeed, substituting V (x) =U(x)R−1 into the above expres-
sion, we obtain

A ROM =R−T 〈U ,A U〉R−1. (24)

Remarkably, the so-called nm× nm operator stiffness matrix
S = 〈U ,A U〉 can also be computed from the data samples
using a calculation similar to equation 22 for the mass matrix.
Explicitly, the m×m blocks of S are given by

Si, j = 〈ui,A u j〉=−
1
2

(
D̈i+ j +D̈|i− j|

)
∈ Rm×m, (25)

for i, j = 0, . . . ,n− 1. This explains the need for the second
derivative data samples. We summarize the computation of
the wave operator ROM A ROM in the following algorithm.

Algorithm 1 (Data-driven ROM computation)
Input: The measurements M (r,s)(t) for t ∈ [0,T ].
1. Compute {D j,D̈ j}2n−2

j=0 using equation 6 and Fourier do-
main differentiation.
2. Calculate blocks of mass and stiffness matrices M ,S ∈
Rnm×nm using Equations 22 and 25, respectively.
3. Perform the block Cholesky factorization M = RTR us-
ing, e.g., Algorithm 5.2 from Druskin et al. (2018).
Output: wave operator ROM A ROM =R−TSR−1.

ROM based velocity estimation

The proposed approach for velocity estimation is based on
minimizing the misfit of operator ROM instead of data misfit.
We expect this to outperform the conventional FWI approach
due to a simple dependency of A ROM on the velocity. In par-
ticular, for a fixed projection space S, and thus a fixed basis
V (x), the dependency of A ROM on c(x) is quadratic, as ob-
served in equation 23. While V (x) also depends on c(x), the
numerical examples presented below demonstrate that ROM
misfit formulation leads to optimization objective that is close
to convex.

Given the above, the basic ROM based velocity estimation is
to minimize the misfit of the wave operator ROM

min
v∈C

OROM(v), OROM(v) =
∥∥Triu

(
A ROM(v)−A ROM

)∥∥2
2 , (26)

where Triu extracts the upper triangular part (including the
main diagonal) of a symmetric matrix and stacks the entries
in a vector. Hereafter ‖ · ‖2 is the Euclidean norm. Here v
denotes a velocity model in the search space C parametrized
using appropriately chosen basis functions {φl(x)}N

l=1:

v(x;η) = co(x)+

N∑
l=1

ηlφl(x), (27)

where co(x) is the initial guess. Then, the optimization is for
the vector η = (η1, . . . ,ηN)

T ∈ RN . The ROM A ROM is com-
puted from the measurements with Algorithm 1, and A ROM(v)
is computed with the same algorithm for the measurements
calculated for the velocity model v.

In practice, ROM based velocity estimation benefits from a
layer stripping formulation. Then, instead of working with the
whole matrix A ROM, we consider the restriction

[
A ROM

]
k, an

upper left km× km submatrix of A ROM, where k ≤ n increases
gradually as the velocity estimation progresses. Due to causal-
ity of wave operator ROM,

[
A ROM

]
k is only affected by the

first 2k− 1 data samples, see Borcea et al. (2022) for details.
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Another modification to the basic formulation in equation 26
is to discard some of the upper triangular entries of A ROM from
the misfit calculation to decrease the computational burden and
storage requirements. We include only the first few dm di-
agonals in the objective function calculation, where d is an
integer between 1 and k. We denote by Restd,k : Rkm×km 7→
Rdm(km−(dm−1)/2) the mapping that takes a km× km matrix,
keeps only its first dm upper diagonals, including the main
one, and puts their entries into a column vector. We use the
resulting objective function

Od,k(v) =
∥∥Restd,k

(
[A ROM(v)−A ROM]k

)∥∥2
2 , (28)

to formulate the following velocity estimation algorithm.

Algorithm 2 (ROM based velocity estimation)
Input: The ROM A ROM computed from the measurements.
1. Set the number L of layers for the layer stripping approach
and the number q of iterations per layer.
2. Choose L positive integers {kl}L

l=1, satisfying

1≤ k1 ≤ k2 ≤ ·· · ≤ kL = n.

3. Starting with the initial vector η(0) = 0, proceed:
For l = 1,2, . . . ,L, and j = 1, . . . ,q, set the update index i =
(l−1)q+ j. Compute η(i) as a Gauss-Newton update for min-
imizing the functional

Fi(η) = Od,kl

(
v(·;η))+Ri(η), (29)

linearized about η(i−1), where Ri(η) is a regularization penalty
functional.
Output: velocity estimate cest(x) = v(x;η(Lq)).

Even in the absence of noise, Algorithm 2 requires the use of
regularization term Ri(η). Note that in the presence of noise a
more sophisticated regularization strategy is needed, described
in detail in Borcea et al. (2022). We choose Tikhonov regular-
ization Ri(η) = µi‖η‖2

2, where µi is chosen adaptively with
the following procedure. Denote by

G (η ;d,kl) = Restd,kl

(
[A ROM(v(·;η))−A ROM]kl

)
(30)

the residual vector of objective Od,kl

(
v(·;η)). Evaluated at

η = η(i−1), its Jacobian is the matrix

J (i) = ∇ηG (η(i−1);d,kl) ∈ Rdm(km−(dm−1)/2)×N . (31)

We choose N so that the Jacobian has more rows than columns.
If σ

(i)
1 ≥ σ

(i)
2 ≥ ·· · ≥ σ

(i)
N are the singular values of J (i), then

for a fixed parameter γ ∈ (0.2,0.4) (typically employed values,
with smaller γ corresponding to more regularization), we take
µi =

(
σ
(i)
bγNc

)2.

The regularized Gauss-Newton update direction is

d(i) =−
((

J (i))T
J (i)+µiIN

)−1 (
J (i))T

r(i), (32)

where IN is the N×N identity matrix and r(i)=G (η(i−1);d,kl).
Once the update direction d(i) is computed, we use a line search

α
(i) = argmin

α∈(0,αmax)
Fi
(
η
(i−1)+αd(i)) (33)

to find the step length α(i), where we take αmax = 3. This gives
the Gauss-Newton update η(i) = η(i−1)+α(i)d(i).

EXAMPLES

We illustrate the performance of Algorithm 2 and compare it
to conventional FWI, the minimization of data misfit

min
v∈C

OFWI(v), OFWI(v) =
2n−1∑
j=0

∥∥Triu
(
D j(v)−D j

)∥∥2
2 , (34)

where D j(v) are the data matrix samples for model velocity.
All the results are for a band-limited source pulse

f (t) = cos(ωot)exp
[
− (2πB)2t2

2

]
, (35)

with central frequency ωo/(2π) = 6Hz and bandwidth B =
4Hz. The essential frequency is ωo/(2π)+B = 10Hz.

Topography of objective functions

Log of FWI objective OFWI Log of ROM objective OROM

Figure 1: Top: velocity model for objective topography study.
Middle dashed line shows the actual interface location; top and
bottom dashed lines show the extent of interface location pa-
rameter sweep. All m = 30 sensors are shown as yellow ×.
Distances are in km, velocity in m/s. Bottom: logarithms of
objective functions. True parameters are indicated with©.

Consider the velocity model displayed in Figure 1 consisting
of two regions separated by a slanted interface with velocities
ct = 1500m/s and cb = 3000m/s above and below the interface,
respectively. To compare the objective functions, we sweep a
two-parameter search space: the first parameter is the depth of
the interface at its leftmost point (actual depth is 1.2km); the
second parameter is the contrast cb/ct (actual contrast is 2).

In Figure 1 we compare the conventional FWI objective OFWI

to wave operator ROM objective OROM. We observe that OFWI

displays numerous local minima, at points in the search space
that are far from the true one. The horizontal stripes in FWI
objective plot are manifestations of cycle skipping. The wave
operator ROM objective is smooth and has a single minimum,
at the true depth and contrast. This confirms that the wave
operator ROM misfit minimization is superior to conventional
FWI formulation for velocity estimation since OROM is more
friendly towards local optimization algorithms.
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The “Camembert” example

Following Yang et al. (2018) we consider the “Camembert”
model with a circular inclusion of radius of 600m, centered at
(1km,1km) in Ω= [0,2km]×[0,2.5km], with c(x)= 4000m/s
in the inclusion and c(x) = 3000m/s outside, see Figure 2.
The search space C consists of N = 400 Gaussian basis func-
tions centered at the nodes of a 20×20 uniform grid discretiz-
ing Ω. A constant initial guess co(x) = 3000m/s is used.

Operator ROM estimate Conventional FWI estimate

Figure 2: Top: “Camembert” velocity model. All m = 10
sensors are shown as yellow ×. Bottom: estimated velocity
after 60 Gauss-Newton iterations, obtained with Algorithm 2
(left) and conventional FWI (right). True inclusion boundary
is shown as a black circle. The axes are in km, velocity in m/s.

In the bottom row in Figure 2 we compare the velocity es-
timates obtained with Algorithm 2 (using parameters L = 9,
q = 4, d = n = 16) with conventional FWI regularized with
adaptive Tikhonov regularization similarly to operator ROM
approach, after performing 60 Gauss-Newton iterations. We
observe that Algorithm 2 gives a much better estimate of c(x)
that includes a correct reconstruction of both the top and bot-
tom of the inclusion. Conventional FWI estimate does not im-
prove much after the 10th iteration, indicating that it is stuck in
a local minimum. Moreover, FWI fails to fill in the inclusion
with the correct velocity, overestimating it in the upper half of
the disk and underestimating it in the lower half.

Marmousi example

The final example is a section of Marmousi model with wa-
ter layer down to depth 266m removed. The domain is Ω =
[0,5.25km]× [0,3km]. The search space C consists of N =
1500 Gaussian basis functions centered at the nodes of a 50×
30 uniform grid discretizing Ω. The initial guess co(x) is a
one dimensional gradient in depth.

In the right column of Figure 3 we compare the velocity esti-
mates obtained from data recorded at m = 30 sensors with Al-
gorithm 2 (using parameters L = 6, q= 3, d = 10, n= 40) with

True velocity FWI velocity estimate

Refined ROM estimate Operator ROM estimate

Figure 3: The section of Marmousi model (top left), velocity
estimates obtained with Algorithm 2 (bottom row: left m = 60,
right m = 30) and conventional FWI (top right, m = 30). The
sensors are shown as yellow ×. The axes are in km, velocity
in m/s.

conventional FWI regularized with adaptive Tikhonov regu-
larization after 18 Gauss-Newton iterations. We note that the
ROM based inversion captures correctly most of the features
of Marmousi model, while the conventional FWI velocity es-
timate suffers from a number of artifacts. We also display in
the bottom left plot in Figure 3 a refinement of operator ROM
velocity estimate obtained by injecting more data from m = 60
sensors and performing 4 additional Gauss-Newton iterations
of Algorithm 2 (using parameters L= 1, q= 4, d = 10, n= 50)
with a refined basis of N = 75×38= 2850 Gaussian functions.
The resulting refined velocity estimate sharpens the boundaries
of the features and improves their contrast.

CONCLUSIONS

We presented a novel approach for velocity estimation based
on the wave operator ROM. The ROM is computed from the
data and is used to formulate the optimization problem for ve-
locity estimation as ROM misfit instead of the conventional
FWI data misfit minimization. This has a convexification ef-
fect on the optimization objective, as shown in a numerical
study of objective topography. As a result, the proposed ap-
proach outperforms the conventional FWI in synthetic exam-
ples such as the “Camembert” and Marmousi models.
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