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I. DERIVATION OF THE KINETIC EQ.(4)

A. Primary asymptotics

The starting point is the NLS Eq.(1) (main text) written
in the mode basis, i.e., Eq.(2) (main text). We consider the
regime where linear propagation dominates over disorder,
which in turn dominates over the nonlinearity. Accordingly,
we introduce a small dimensionless parameter ε and we con-
sider the regime βj → βj ,C → εC, γ → ε2γ. For propa-
gation distances of order ε−2, the rescaled mode amplitudes
aεj(z) = aj(z/ε
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where the bar stands for complex conjugation. We set
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This is the usual diffusion approximation framework [1]. We
get the following result.

Proposition I.1 The random process (cεj(z))
M−1
j=0 converges

in distribution in C0([0,∞),CM ), the space of continu-
ous functions from [0,∞) to CM , to the Markov process
(cj(z))

M−1
j=0 with infinitesimal generator L:

L =L1 + L2 + L3 + L4 + L5, (S2)

with
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where δKjlmn = 1βj−βl−βm+βn=0. In this definition we
use the classical complex derivative: if ζ = ζr + iζi, then
∂ζ = (1/2)(∂ζr − i∂ζi) and ∂ζ = (1/2)(∂ζr + i∂ζi), and the
coefficients of the operator Lk (k = 1, ..., 5) are defined for
j, l = 0, . . . ,M − 1, as follows:
- For all j 6= l, Γjl and Γ̂OD

jl are given by
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dz, (S3)
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with Rjl(z) defined by

Rjl(z) = E[Cjl(0)Cjl(z)]
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- For all j, l = 0, . . . ,M − 1:
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- For all j = 0, . . . ,M − 1:
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B. Secondary asymptotics

We observe that ΓOD and Γ̂OD depend on the power spec-
tral density of the random index perturbation evaluated at
the difference of distinct frequencies βj − βl, while ΓD de-
pends on the power spectral density of the index perturba-
tion evaluated at zero-frequency. Therefore, when Llin =



2
1/β0 � `c, then ΓD is larger than ΓOD, Γ̂OD. We consider
this regime by introducing a small dimensionless parameter
η with ΓD → ΓD, ΓOD → η2ΓOD, Γ̂OD → η2Γ̂OD, γ → ηγ.

For propagation distances of order η−2, we introduce the
rescaled mode amplitudes cηj (z) = cj(z/η

2). By Proposition
I.1 it is a Markov process with infinitesimal generator Lη:

Lη = L1 + η−2L2 + L3 + η−2L4 + η−1L5, (S8)

where the operators Lk (k = 1, .., 5) are given above. By
(S8) the second-order moments satisfy for j 6= j′:
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up to negligible terms in η. Note that ΓD
jj + ΓD

j′j′ − 2ΓD
jj′ =∫∞
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is the power spectral density evaluated at 0 frequency of the
stationary process Cjj(z)− Cj′j′(z) by Bochner’s theorem).
Therefore E[cηj c
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If j = j′, then the mean square amplitudes wη
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By (S8) the fourth-order moments satisfy
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up to negligible terms in η. The coefficients GD
jlmn and the

sixth-order moment Y η
jlmn are given by
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up to negligible terms in η. The tensor Mjlmn,j′l′m′n′ in-
volves the coefficients ΓOD and Γ̂OD. Note that we have
GD

jlmn =
∫∞
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[
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By substituting into (S10) and by using Isserlis formula for
the sixth-order moments that appear in the expression (S13)
of Y η

jlmn we obtain the kinetic Eq.(4) in the main text:
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The second term in (S14) has a form analogous to the con-
ventional collision term of the wave turbulence kinetic equa-
tion [2]. Exploiting the invariances properties of the tensors
Qjlmn and GD

jlmn, as well as the property GD
jlmn ≥ 0, it can

be shown that the collision term conserves the particle num-
ber N =

∑
j wj , the energy E =

∑
j βjwj , and exhibits

a H−theorem of entropy growth ∂zS(z) ≥ 0, where the
nonequilibrium entropy reads S(z) =

∑
j log[wj(z)] (note

that, for simplicity we omitted to write the superscript
η). The entropy growth saturates at thermal equilibrium.
The RJ equilibrium distribution that maximizes the entropy
S[wj ], under the constraints that N and E are conserved,
reads

wRJ
j = T/(βj − µ), (S15)

where 1/T and −µ/T are the Lagrange multipliers associated
to the conservation of E andN . There is a one to one relation
relation between the pair (N,E) and (T, µ): The values of
the conserved quantities (N,E) determine uniquely (T, µ),
and thus the RJ equilibrium (S15).

C. Degenerate modes

In this section we assume that the modes may be degener-
ate. The detailed derivation of the kinetic equation account-
ing for mode degeneracy is cumbersome and will be reported
elsewhere. Here we report the main results.

There are G distinct wavenumbers:
{β(g), g = 1, . . . , G},

and the mode indices can be partitioned into G groups G(g),
g = 1, . . . , G:

G(g) = {p = 1, . . . , N, βp = β(g)}.
We obtain the kinetic equation
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D. Numerical simulations

Implementation of disorder: To implement the disorder in
the simulations of the NLS Eq.(2) (main text), we consid-
ered an exact discretization of the Ornstein-Uhlenbeck pro-
cess. The propagation axis is divided in intervals with de-
terministic lengths ∆z, with ∆z < `c. The random func-
tion µ(z) is stepwise constant over each elementary inter-
val z ∈ [k∆z, (k + 1)∆z), where µ0 ∼ N (0, σ2/2) de-
notes the Gaussian distribution, µk =

√
1− 2∆z/`cµk−1 +√

2∆z/`cN (0, σ2/2), with N (0, σ2/2) all independent and
identically distributed.
Model of disorder: We have considered in the nu-
merical simulations an elliptical parabolic poten-
tial V (x) = qxx

2 + qyy
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κxκy(πpx! py! 2
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√
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We have considered the following form of model

of disorder: δV (x, z) = µ(z) cos(κxbxx) cos(κybyy),
with E[µ(0)µ(z)] = σ2f(z), f(z) = exp(−|z|/`c).
The advantage of this model is that the ma-
trices C,ΓD,ΓOD can be computed in analyti-
cal form. We have Cnk(z) = µ(z)C0

nxkx
C0

nyky
=

µ(z)
∫
unx(x) cos(κxbxx)ukx(x)dx

∫
uny (y) cos(κybyy)uky (y)dy.

Then we have for jx, jy, lx, ly ≥ 0: Cj,j+2l =
µ(z)C0

jx,jx+2lx
C0

jy,jy+2ly
where we denote for s = x or

s = y:

C0
js,js+2ls = (−1)lsb2lss exp(−b2s/4)L

2ls
js

(b2s/2)

√
js!/(js + 2ls)!

2ls

and C0
js,js+2ls+1 = 0, where Ll

j is the generalized La-
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For nx, kx, ny, ky ≥ 0 we obtain:
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In order to avoid high values of ΓOD
n,k , we have considered

an irrational ratio β0x/β0y =
√
2, so that β0x(nx − kx) +

β0y(ny − ky) 6= 0. Parameters are (bx = 0.4, by = 0.5) in
Figs. 1-2, and (bx = 0.4, by = 0.3) in Fig. 3. In all cases we
considered M =46 modes. The value of Lnl = 1/(γN/A0

eff )
in the simulations is computed by considering that all the
power N is in the fundamental mode of effective area A0

eff =

1/
∫
|u0|4(r)dr.

II. EXPERIMENTAL METHODS

1) Setup: The experimental setup has been described in
detail in Ref.[4]. Here we summarize the main characteris-
tics. The source is a Nd:YAG laser delivering subnanosec-
ond pulses (400ps) at λ0 =1064 nm. We control the power
with a half-wave plate and a polarizer. The laser beam was
collimated and passed through a glass diffuser plate placed
in the vicinity of the Fourier plane of a 4f-optical system.
The beam was launched into the MMF. The near-field (NF)
and far-field (FF) intensity distributions are measured at the
fiber output following the procedure of Ref.[4]. We used a
12m-long graded-index MMF whose refractive index profile
exhibits a parabolic shape in the fiber core with a maximum
core index (at the center) of nco=1.470 and ncl = 1.457
for the cladding at the pump wavelength of 1064nm (nu-
merical aperture NA=0.195, fiber radius R = 26µm, β0 '
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FIG. S1: Observation of RJ thermalization (without
disorder): Experimental modal distributions wj/N
(circles), for an individual realization of the launched

speckle beam (a), for an average over the realizations of
speckle beams (b). The red circles report the results at high
power (N = 7kW, nonlinear regime), and the blue circles at

low power (N = 0.23kW, linear regime). The condensate
fraction is w0/N = 0.6 for E/N = 1.94× 104m−1 (a);

w0/N = 0.57 for E/N = 2.05× 104m−1 (b). Corresponding
theoretical RJ equilibrium distribution wRJ

j /N given from
Eq.(S15) (green line): The quantitative agreement with the

experimental data (red circles) is obtained without using
any adjustable parameter.

5× 103m−1). The MMF guides M ' 120 modes. The trun-
cation of the potential introduces a frequency cut-off in the
FF spectrum kc = (2π/λ0)

√
n2co − n2cl. For details, see Sup-

plementary Methods in Ref.[4].
The temporal spectrum was controlled by an optical spec-

trum analyzer (OSA) (600 to 1700nm range). The spectral
analysis showed that the power scattered by self-stimulated
Raman effect is in average ∼5% of the injected power.
Also, the spectral analysis did not reveal the presence of
parametric lines that would be induced by coupling between
dispersive and nonlinear effects.

2) Conservation of power N and energy E during
propagation without strong disorder: The conservation
of the power has been verified by keeping fixed the conditions
of injection of the speckle beam into the MMF: We measured
N at the fiber output, and then at the input by cutting
the fiber at 20cm, and we always obtained a relative power
difference less than 1%. The conservation of the energy
requires the NF and FF intensity measurements, which
provide the potential energy Epot =

∫
V (r)|ψ(r)|2dr, and

the kinetic energy Ekin =
∫
α|∇ψ|2dr, with E = Ekin+Epot.

The energy Eout is measured at the fiber output at L = 12m.

FIG. S2: Suppression of light thermalization and
condensation by strong disorder: Measurements of the
condensate fraction w0/N vs energy E/N at small power

(linear (LIN) regime) and high power (nonlinear (NL)
regime), for a large strength of random mode coupling

corresponding to an increase of the energy due to disorder
of ∆E/N ' 19%. The black solid line reports the

condensate fraction from the RJ theory, wRJ
0 /N vs E/N .

In the absence of strong disorder (squares): w0/N increases
as the power increases, and reaches the value predicted by
the RJ theory (solid line) – each color refers to a different

value of the energy E/N . In the presence of strong disorder
(big circles): the energy E/N increases (the squares are

shifted to the big circles of the same color). The big circles
report the average over 10 different realizations of disorder
(10 small circles for each color). At variance with Fig. 4,

here the strength of random mode coupling is so large that
RJ thermalization and condensation are inhibited by strong

diorder.

Without altering the fiber launch conditions, the fiber is cut
to 20cm to get Ein. The procedure is repeated for different
speckle beams (i.e., for different values of the energy E),
by moving the diffuser before injection into the MMF. We
always obtained |Eout − Ein|/Emoy < 1% for values of the
energy that span the range of the condensation curve, i.e.
wRJ

0 /N varying from 0 to 0.7.

3) Experimental observation of RJ thermalization: In
the absence of strong disorder (i.e., absence of applied stress
induced on the fiber), we observe the process of thermaliza-
tion to the RJ equilibrium distribution, wRJ

j = T/(βj − µ).
In the experiments, the modal populations (wj) are com-
puted by using the Gerchberg-Saxton algorithm, which
allows us to retrieve the transverse phase profile of the field
from the NF and the FF intensity distributions measured
in the experiments [5]. By projecting the complex field over
the modes of the MMF (Gauss-Hermite basis) we get the
complete modal distribution wj/N , j = 0, 1, ..,M − 1. A
typical example is reported in Fig. S1 showing the modal
distribution wj/N recorded experimentally at low-power
(linear regime) and high-power (nonlinear regime), and its
comparison to the RJ equilibrium distribution. Fig. S1(a)
reports a single realization of the speckle beam, Fig. S1(b)
reports an average over 60 realizations of speckle beams.
The quantitative agreement between the experimental
results and the theoretical RJ distribution is obtained
without using adjustable parameters.
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FIG. S3: Impact of losses on the condensate fraction:
Simulation of the kinetic Eq.(S14) for the same parameters
as Fig. 2 (main text): In the absence of losses (black), and

when 10% of losses are distributed among all modes
(dashed green), among the higher-order 10 modes of the

fiber (blue), among the higher-order 15 modes of the fiber
(dashed red). Condensate fraction w0(z)/N(z) vs z, where
N(z) is the local value of the power accounting for the
losses (a), and corresponding evolutions of the energy
E(z)/(N(z)β0) (b). The inset in (a) shows a zoom: The

condensate peak relevant to the experiments is only weakly
affected by the presence of the losses.

4) Experimental procedure with strong disorder (ap-
plied stress): The laser beam is passed through a diffuser
before injection of the speckle beam into the MMF. The cou-
pling conditions and the position of the diffuser then fix the
energy density E/N of the speckle beam. In the absence of
applied stress, E/N is conserved through propagation in the
MMF (see point 2) above). We report in Fig. 4(a) (main
text), 5 different ensembles of measurements, each one cor-
responding to a fixed position of the diffuser (i.e. fixed value
of the energy E/N without applied stress). For a given fixed
position of the diffuser, we perform the following steps i)-vii)
to retrieve 10 different realizations of disorder in Fig. 4(a):
i) Without applying any stress, we measure the NF and
FF intensity patterns at high power (N = 7kW, nonlinear
regime), and compute E/N and w0/N (squares in Fig. 4(a)).
We verify that w0/N is in agreement with the value predicted
by the RJ theory, see Ref.[4] for details.
ii) At low power (N = 0.23kW, linear regime) we measure

the NF and FF intensity patterns and compute E/N and
w0/N .
iii) We return to the previous higher power (N = 7kW, non-
linear regime) and we verify that we recover the same NF
speckle beam as in step i).
iv) Then we apply stress to a specific location of the MMF.
The stress is applied by using clamps mounted on a linear
translation manual stage whose position is controlled at the
micrometer scale. We adjust the amount of stress by mea-
suring the power losses (10% in Fig. 4(a), corresponding to
∆E/N ' 6%). Once the stress is adjusted, the power is in-
creased up to the same average power of step i). We then
measure the NF and FF intensity patterns and compute E/N
and w0/N (small circles in Fig. 4(a)).
v) In a next step we decrease the power (N = 0.23kW, linear
regime), we measure the NF and FF intensity patterns and
compute E/N and w0/N (small circles in Fig. 4(a)).
vi) We return to the previous higher power (N = 7kW, non-
linear regime) and remove the applied stress. We verify that
we recover the same initial NF speckle beam as in step i).
vii) We repeat the steps iv)-v)-vi) 10 times to get 10 dif-
ferent realizations of strong disorder (small circles). Each
disorder realization is achieved by applying stress to a dif-
ferent position of the MMF by rotating the drum on which
it is wound.
The procedure i)-vii) is repeated for a larger amount of ap-
plied stress (disorder), corresponding to an increase of energy
due to disorder of ∆E/N ' 11% in Fig. 4(b) (20% of power
losses), and ∆E/N ' 19% in Fig. S2 (40% of power losses).
In Fig. S2 the strength of random mode coupling is so large
that RJ thermalization and condensation are inhibited by
strong disorder.
Note that losses induced by strong disorder only weakly
affect the condensate fraction through the propagation in
the MMF, as illustrated in the simulation reported in
Fig. S3. We have considered 10% of losses (over the prop-
agation length zβ0 = 11 × 105), in the case where losses
are distributed homogeneously in mode space, and non-
homogeneously in mode space (only the higher-order modes
experience losses). We have considered the parameters of
the simulation reported in Fig. 2 (main text), which refers
to the most interesting regime where linear disorder effects
and nonlinear effects are of the same order, LRJ

kin . Leq
kin. The

condensate peak relevant to the experiments is only weakly
affected by the losses, see the inset in Fig. S3(a). Note that,
for larger propagation lengths, the losses concentrated on
the higher-order modes reduce the effective number of modes
and thus limit the increase of energy E/(Nβ0) due to dis-
order (Fig. S3(b)), which in turn leads to an increase of the
condensate fraction (Fig. S3(a)).
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