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We address the problem of thermalization in the presence of a time-dependent disorder in the framework
of the nonlinear Schrödinger (or Gross-Pitaevskii) equation with a random potential. The thermalization to
the Rayleigh-Jeans distribution is driven by the nonlinearity. On the other hand, the structural disorder is
responsible for a relaxation toward the homogeneous equilibrium distribution (particle equipartition),
which thus inhibits thermalization (energy equipartition). On the basis of the wave turbulence theory, we
derive a kinetic equation that accounts for the presence of strong disorder. The theory unveils the interplay
of disorder and nonlinearity. It unexpectedly reveals that a nonequilibrium process of condensation and
thermalization can take place in the regime where disorder effects dominate over nonlinear effects. We
validate the theory by numerical simulations of the nonlinear Schrödinger equation and the derived kinetic
equation, which are found in quantitative agreement without using any adjustable parameter. Experiments
realized in multimode optical fibers with an applied external stress evidence the process of thermalization in
the presence of strong disorder.
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Introduction.—A nonintegrable Hamiltonian system of
random waves is expected to exhibit a process of thermal-
ization, which is characterized by an irreversible evolution
toward the thermodynamic equilibrium state of maximum
entropy. In the weakly nonlinear regime, this process is
described in detail by the well-developed wave turbulence
theory [1–9]. In spite of the formal reversibility of the
Hamiltonian system, the wave turbulence kinetic equation
describes the actual irreversible evolution to the Rayleigh-
Jeans (RJ) equilibrium distribution. RJ thermalization can
be characterized by a process of wave condensation that is
featured by the macroscopic population of the fundamental
mode of the system [2–4,10–18]. This phenomenon
received a recent renewed interest with the discovery of
spatial beam cleaning in multimode optical fibers (MMFs)
[19–21]. Along this line, RJ thermalization and light
condensation in MMFs have been discussed [22–28] and
recently observed experimentally [29–33].
On the other hand, a structural disorder of the nonlinear

medium is known to deeply affect the coherence properties
of the waves. Understanding the interplay of nonlinearity
and disorder is a fundamental problem, in relation with
the paradigm of statistical light-mode dynamics, glassy
behaviors, and complexity science [34–42]. Disorder
is also known to impact light propagation in MMFs, a
feature relevant to endoscopic imaging [43,44], or to study
completely integrable Manakov systems [45–48]. Because
of refractive index fluctuations introduced by inherent

imperfections and environmental perturbations, a MMF
leads to both polarization mixing and random mode
coupling [45–49]. While polarization random fluctuations,
i.e., “weak disorder,” have been shown to accelerate the
process of beam-cleaning condensation in MMFs [23,25],
so far, the interplay of “strong disorder” (i.e., random
coupling among nondegenerate modes) and thermalization
has not yet been considered.
In this Letter, we address the problem of thermalization

of random waves that propagate in a disordered system by
considering the representative example of the nonlinear
Schrödinger (NLS), or Gross-Pitaevskii, equation with a
time-dependent random potential. On the basis of the wave
turbulence theory [1–9], we derive a kinetic equation (KE)
that accounts for the presence of a time-dependent strong
disorder. Our theory describes in detail the antagonist
impacts of nonlinearity and disorder. While strong disorder
enforces a relaxation to the homogeneous equilibrium
distribution of the modal components (“particle” equipar-
tition, weq

j ¼ const, wj being the occupation of the jth
mode), the nonlinear process of thermalization favors the
macroscopic population of the condensed fundamental
mode (w0 ≫ wj for j ≠ 0). The remarkable result of our
Letter is to show that, despite the dominant strength of
disorder, the system can exhibit an unexpected process of
“nonequilibrium condensation” in the initial evolution
stage, while the system eventually relaxes to the homo-
geneous equilibrium distribution dictated by strong
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disorder. The theory is confirmed by intensive numerical
simulations of the NLS equation, which are found in
quantitative agreement with the simulations of the derived
KE, without using any adjustable parameter. We report
experiments in MMFs with an applied external stress to
control the strength of disorder, which evidences the
process of RJ thermalization and condensation in the
presence of strong disorder.
Our Letter paves the way for the development of a

systematic method to tackle the impact of a time-dependent
disorder in wave turbulence—our methodology substan-
tially differs from that developed for a time-independent
disorder [38–42]. More generally, this Letter contributes to
the understanding of spontaneous organization of coherent
states in nonlinear disordered systems [34–38].
NLS equation with random potential.—We consider the

general form of the stochastic NLS equation

i∂zψ ¼ −α∇2ψ þ VðrÞψ − γjψ j2ψ þ δVðr; zÞψ : ð1Þ

It governs the transverse spatial evolution of an optical
beam propagating along the z axis of a waveguide, whose
ideal transverse index profile is VðrÞ [r ¼ ðx; yÞ], while
δVðr; zÞ is the “time”-dependent random perturbation of the
potential (hδVi ¼ 0). The parameters α and γ denote the
linear and nonlinear coefficients. The disorder being
(“time”) z dependent, our system is of different nature
than those studying the interplay of thermalization and
Anderson localization [38–42].
We expand the field ψðr; zÞ ¼ P

j ajðzÞujðrÞ on the
basis of the M real-valued eigenmodes ujðrÞ (solution of
βjuj ¼ −α∇2uj þ VðrÞuj) of the unperturbed waveguide.
The mode amplitudes ajðzÞ satisfy

i∂zaj ¼ βjaj − γ
X

l;m;n

Qjlmnalama�n þ
X

l

CjlðzÞal; ð2Þ

whereQjlmn ¼
R
ujðrÞulðrÞumðrÞunðrÞdr denotes the mode

overlap, and the random mode coupling matrix reads

CjlðzÞ ¼
Z

ujðrÞδVðz; rÞulðrÞdr: ð3Þ

The stochastic NLS [Eq. (1)] and the modal NLS [Eq. (2)]
are equivalent. They conserve the total power (particle
number) N ¼ R jψ j2dr ¼ P

j jajj2, while the random
potential δVðr; zÞ in Eq. (1) [or CðzÞ in Eq. (2)], prevents
the conservation of the energy (Hamiltonian).
Kinetic equation.—We consider the situation where

the random potential is a weak perturbation with respect
to linear propagation effects (δV ≪ V), i.e., Llin ¼
1=β0 ≪ Ldis ¼ 1=σ and Llin ≪ lc, where σ2 denotes
the variance of the fluctuations of the random potential
(i.e., “strength” of disorder) and lc the corresponding
correlation length. Note that this is the usual case in an

optical waveguide configuration, e.g., in MMFs.
Furthermore, we assume that disorder dominates over
nonlinear effects Ldis ≪ Lnl ≃ 1=ðγhjψ j2iÞ.
We develop a wave turbulence theory [1–9] accounting

for a time-dependent disorder by exploiting tools inherited
from the asymptotic analysis of randomly driven ordinary
differential equations [50]. We derive the KE governing the
evolution of the averaged modal components wjðzÞ ¼
hjajðzÞj2i [51]:

∂zwj ¼
X

l≠j
ΓOD
jl ðwl − wjÞ þ Collj½w� ð4Þ

where the collision term reads

Collj½w� ¼ 8γ2
X

l;m;n

δKjlmnQ
2
jlmn

GD
jlmn

Rjlmn½w�;

Rjlmn½w� ¼ wlwmwj þ wlwmwn − wjwnwm − wjwnwl;

and the Kronecker symbol denotes a frequency resonance
(δKjlmn ¼ 1 if Δβjlmn ¼ βj − βl − βm þ βn ¼ 0, and zero
otherwise). For clarity, we assume that the modes are
not degenerate—see [51] for the KE accounting for mode
degeneracies.
The KE [Eq. (4)] unveils the interplay of nonlinearity

and disorder. It reveals that diagonal and off-diagonal
elements of the random matrix C play fundamental differ-
ent roles. The first term in the KE [Eq. (4)] originates in off-
diagonal elements of Cjl (j ≠ l):

ΓOD
jl ¼ 2

Z
∞

0

hCjlð0ÞCjlðzÞi cos½ðβj − βlÞz�dz: ð5Þ

It describes an irreversible relaxation toward the
homogeneous distribution featured by an equipartition of
“particles” among the modes, weq

j ¼ N=M ¼ const. This
process occurs over the typical propagation length [54]

Leq
kin ≃ 1=ΓOD

jl : ð6Þ

This is the well-known evolution of a system ruled by
random mode coupling.
We now show that this relaxation process mediated by

strong disorder does not necessarily inhibit the nonlinear
processes of thermalization and condensation. This
becomes apparent through the collision term in the KE
[Eq. (4)], which exclusively involves the diagonal compo-
nents Cjj:

ΓD
jl ¼

Z
∞

0

hCjjð0ÞCllðzÞi þ hCllð0ÞCjjðzÞidz: ð7Þ

The matrix ΓD contributes to the tensor involved in the
collision term, GD

jlmn ¼ ΓD
ll þ ΓD

mm þ ΓD
nn þ ΓD

jj þ 2ΓD
lm −

2ΓD
ln − 2ΓD

lj − 2ΓD
mn − 2ΓD

mj þ 2ΓD
nj [51]. To discuss the role
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of the collision term, we forget for a while the first term in
the KE [Eq. (4)]. The collision term conserves
N ¼ P

j wjðzÞ, E ¼ P
j βjwjðzÞ, and exhibits aH theorem

of entropy growth ∂zS ≥ 0, with SðzÞ ¼ P
j log½wjðzÞ�

[51]. Hence, it describes a process of thermalization to
the RJ distribution wRJ

j ¼ T=ðβj − μÞ, which occurs over a
typical propagation length,

LRJ
kin ≃ L2

nlG
D
jlmn=Q

2
jlmn: ð8Þ

For an energy smaller than a critical value E ≤ Ecrit≃
Nβ0

ffiffiffiffiffiffiffiffiffiffi
M=2

p
, the RJ distribution wRJ

j exhibits a phase
transition to a condensed state [29]. The condensate ampli-
tude w0 then constitutes the natural parameter that distin-
guishes the two antagonist regimes: (i) For Leq

kin ≪ LRJ
kin, the

disorder dominates and w0ðzÞ → weq
j ¼ N=M ¼ const for

j ¼ 0; 1;…;M − 1; (ii) For Leq
kin ≫ LRJ

kin, the dynamics is
dominated by RJ thermalization, and condensation leads to
a macroscopic population of the fundamental mode
w0ðzÞ → wRJ

0 ≫ wRJ
j for j ¼ 1;…;M − 1.

Numerical simulations.—We have performed numerical
simulations to test the validity of our theory. We have
considered the concrete example of a parabolic trapping
potential of the form VðrÞ ¼ qxx2 þ qyy2, with the funda-
mental mode eigenvalue β0 ¼

ffiffiffi
α

p ð ffiffiffiffiffi
qx

p þ ffiffiffiffiffiqy
p Þ. We con-

sider a general model of disorder with a random potential of
the form δVðr; zÞ ¼ μðzÞgðrÞ, where μðzÞ is a real-valued
stochastic function with zero mean and hμð0ÞμðzÞi ¼
σ2 expð−jzj=lcÞ. In order to remove mode degeneracies,
we consider in the simulations an elliptical parabolic
potential (qx ≠ qy). To compute the matrices ΓOD and
ΓD in analytical form we consider gðx; yÞ ¼ cosðbxx=x0Þ×
cosðbyy=y0Þ, where ðx0; y0Þ denote the radii of the funda-
mental elliptical mode [51].
According to the theory, the two terms in the KE

[Eq. (4)] are antagonists and compete against each other.
If Leq

kin ≪ LRJ
kin, disorder prevails and the system relaxes to

the expected equilibrium weq
j ¼ const. This is illustrated in

Fig. 1, which reports the results of the numerical integration
of the NLS Eq. (2) for 64 realizations (LRJ

kin=L
eq
kin ≃ 400).

The corresponding average over such realizations (bold
white line) is in agreement with the simulation of the KE
[Eq. (4)] (dashed black line) starting from the same initial
condition. Here and thereafter, the quantitative agreement
between NLS and KE simulations is obtained without any
adjustable parameter.
Unexpectedly, however, a “nonequilibrium” process of

condensation and thermalization can be observed in the
initial stage of propagation when LRJ

kin ≲ Leq
kin (see Fig. 2 for

LRJ
kin=L

eq
kin ≃ 0.07), while asymptotically the system still

relaxes to the homogeneous equilibrium state weq
j . The

nonequilibrium property of condensation is reflected by the

fact that the energy EðzÞ ¼ P
j βjwjðzÞ is not conserved

during the evolution; see Fig. 2(c).
We stress that the condensation processes can occur very

efficiently by increasing the correlation length lc, in such a
way that LRJ

kin ≪ Leq
kin; see Fig. 3 for LRJ

kin=L
eq
kin ≃ 0.003. In

this regime, the energy is almost conserved E ≃ const and
RJ thermalization occurs almost completely, as confirmed
by the modal populations that approach the RJ distribution
wRJ
j [Fig. 3(d)], and the condensate approaches the RJ

prediction wRJ
0 =N ≃ 0.55; see Fig. 3(a). Note that, for

z ≫ Leq
kin, the system would still relax to the equilib-

rium weq
j .

Experiments.—We performed experiments in a MMF to
evidence light condensation in the presence of strong
disorder. The subnanosecond pulses delivered by a Nd:
YAG laser (λ ¼ 1.06 μm) are passed through a diffuser
before injection into a 12 m long graded-index MMF [i.e.,
parabolic-shaped potential VðrÞ] that guides M ≃ 120
modes. We measure the power N and the energy E from
the near-field and far-field measurements of the intensity
distributions at the fiber output; see Ref. [29] for details.
Here, the originality with respect to all previous experi-

ments on beam-cleaning condensation and thermalization

FIG. 1. Dynamics dominated by strong disorder LRJ
kin ≫ Leq

kin.
The system irreversibly relaxes toward the equilibrium weq

j .
Evolutions of the fundamental mode w0ðzÞ (a), and w2ðzÞ (b),
the energy EðzÞ=ðNβ0Þ (c), obtained from the numerical simu-
lation of the NLS Eq. (2). Sixty-four realizations are reported
with colored lines; the bold white line is the corresponding
empirical average; the dashed black line is the prediction of the
KE [Eq. (4)]. (d) Modal distribution wj in the initial condi-
tion (z ¼ 0, blue) and at zβ0 ¼ 2 × 106 for the NLS simu-
lation (red), and the KE (black). Parameters: Ldis=Llin ¼ 7,
Ldis=Lnl ¼ 4.1 × 10−4, lcβ0 ¼ 42.

PHYSICAL REVIEW LETTERS 129, 063901 (2022)

063901-3



[19–21,29–32] is that we introduce strong disorder in the
experiment. Strong mode coupling is obtained by applying
a stress to the MMF with clamps [49]. By adjusting the
applied stress, we can tune the strength of mode coupling
(i.e., σ). In the absence of an applied stress, polarization
coupling and random coupling among degenerate modes
take place: In this weak random coupling regime, the
energy E ¼ P

j βjwj is conserved during light propagation
in the MMF [23,25], as confirmed by direct experimental
measurements [24,29–32]. Here, we apply stress on the
MMF to induce a random coupling among nondegenerate
modes [45–48,55]. In this regime of strong mode coupling,
the energy E is no longer conserved through propagation
in the MMF. Note that, it would be difficult, or even
impossible, to accurately model in the simulations the
peculiar form of disorder induced by the applied stress on
the fiber. Furthermore, the simulations reported above do
not account for the mode degeneracies of the fiber used in
the experiments. Accordingly, the simulations do not
describe quantitatively our experiments.
We report in Fig. 4(a) the measurements of the con-

densate fraction w0=N at small power (linear regime),
strong power (nonlinear regime), and in the presence, or
absence, of applied stress. Following Ref. [29], the diffuser
allows us to vary the energy density E=N of the injected
speckle beam. The squares in Fig. 4(a) report the

corresponding condensate fractions w0=N in the linear
and nonlinear regimes in the absence of strong disorder.
For each speckle beam with energy E=N [i.e., for each
color in Fig. 4(a)], we apply stress on different points of the
fiber to get an ensemble of 10 realizations with disorder. We
report in Fig. 4(a) the corresponding values of w0=N for
such 10 realizations (small circles), as well as the corre-
sponding average over realizations (large circles). Because
the applied stress on the MMF induces power losses [10%
in Fig. 4(a)] [49], we normalize the energy with respect
to the (average) power: E=N ¼ P

j βjwj=
P

j wj ¼ βj.
Strong random mode coupling leads to an increase of
E=N, as evidenced in Fig. 4(a), where the squares are
shifted to the big circles by an amount of ΔE=N ≃ 6%. The
larger the strength of applied stress, the larger the energy
shift ΔE=N.
Figure 4(a) remarkably reveals that, by increasing the

power from the linear regime (N ¼ 0.23 kW) to the non-
linear regime (N ¼ 7 kW), the condensate fraction w0=N
(big circles) increases and approaches the value predicted
by the RJ distribution wRJ

0 =N (solid line). Thermalization
then takes place: (i) in the presence of strong disorder, i.e.,
in the presence of an energy shift ΔE=N; (ii) over a broad
range of E=N, i.e., broad range of condensate fractions.
Note that, the presence of losses, distributed either

FIG. 2. Thermalization precedes equilibrium relaxation. Same
panels as in Fig. 1, but in the regime LRJ

kin ≲ Leq
kin. The system

exhibits an incipient process of RJ thermalization and non-
equilibrium condensation characterized by a growth of the
condensate amplitude w0ðzÞ for zβ0 ≲ 2 × 105. Disorder sub-
sequently prevails, which induces a decay of w0ðzÞ (and even-
tually brings the system to equilibrium weq

j ). Parameters:
Ldis=Llin ¼ 7, Ldis=Lnl ¼ 0.033, and lcβ0 ¼ 167.

FIG. 3. Thermalization prevails over equilibrium relaxation.
Same panels as in Fig. 1, but in the regime LRJ

kin ≪ Leq
kin. The

system exhibits a process of RJ thermalization and condensation
characterized by a significant growth of the condensate amplitude
w0ðzÞ to the value predicted by the RJ distribution, wRJ

0 =N ≃ 0.55
(horizontal dashed-dotted black line) (a). At variance with Figs. 1
and 2, the energy EðzÞ is almost constant (c). The modes
approach the RJ distribution wRJ

j (green) (d). Parameters:
Ldis=Llin ¼ 8.4, Ldis=Lnl ¼ 0.04, and lcβ0 ¼ 4 × 103.

PHYSICAL REVIEW LETTERS 129, 063901 (2022)

063901-4



homogeneously or nonhomogeneously among the modes,
does not significantly affect the condensate fraction [51].
We have repeated the procedure of Fig. 4(a) by increas-

ing the applied stress on the MMF with an energy shift
ΔE=N ≃ 11% (20% of power losses). As evidenced in
Fig. 4(b), ΔE=N is larger than in Fig. 4(a). Consequently,
the condensate fractions w0=N in the nonlinear regime no
longer reach the RJ prediction, i.e., strong disorder prevents
a complete process of RJ thermalization and condensation.
By further increasing the applied stress and the correspond-
ing energy shift ΔE=N ≃ 19%, our experimental results
show that RJ thermalization is inhibited by strong disorder;
see Ref. [51].
Conclusion.—We have developed a wave turbulence

theory that accounts for a “time”-dependent disorder by
considering the NLS equation with a random potential.
Simulations of the derived KE [Eq. (4)] are found in
quantitative agreement with NLS simulations without using
any adjustable parameter. The theory remarkably reveals
that RJ thermalization and condensation can take place
efficiently in the presence of strong disorder, as confirmed
by experiments realized in MMFs.
The developed wave turbulence theory can be extended

to dissipative systems [56,57], or to different types of
disordered nonlinear systems, e.g., Bose-Einstein conden-
sates, hydrodynamics, condensed matter, etc.
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