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Abstract We provide an introduction to different wave turbulence formalisms
describing the propagation of partially incoherent optical waves in nonlinear
media. We consider the nonlinear Schrödinger equation as a representative model
accounting for a nonlocal or a noninstantaneous nonlinearity, as well as higher-
order dispersion effects.We discuss the wave turbulence kinetic equation describing,
e.g., wave condensation or wave thermalization through supercontinuumgeneration;
the Vlasov formalism describing incoherent modulational instabilities and the
formation of large scale incoherent localized structures in analogy with long-range
gravitational systems; and the weak Langmuir turbulence formalism describing
spectral incoherent solitons, as well as spectral shock or collapse singularities.
Finally, recent developments and some open questions are discussed, in particular
in relation with a wave turbulence formulation of laser systems and different
mechanisms of breakdown of thermalization.
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1 Introduction

1.1 From Incoherent Solitons to Wave Turbulence

The coherence properties of partially incoherent optical waves propagating in
nonlinear media have been studied since the advent of nonlinear optics in the
1960s, because of the natural poor degree of coherence of laser sources available
at that time. However, it is only recently that the dynamics of incoherent nonlinear
optical waves received a renewed interest. The main motive for this renewal of
interest is essentially due to the first experimental demonstration of incoherent
solitons in photorefractive crystals [1, 2]. The formation of an incoherent soliton
results from the spatial self-trapping of incoherent light that propagates in a
highly noninstantaneous response nonlinear medium [3, 4]. This effect is possible
because of the noninstantaneous photorefractive nonlinearity that averages the field
fluctuations provided that its response time, !R, is much longer than the correlation
time tc that characterizes the incoherent beam fluctuations, i.e., tc ! !R. The
remarkable simplicity of experiments realized in photorefractive crystals has led
to a fruitful investigation of the dynamics of incoherent nonlinear waves. Several
theoretical approaches have been developed to describe such experiments [5–8],
which have been subsequently shown to be formally equivalent one to each other
[9, 10].

The field of incoherent optical solitons has become a blooming area of research,
as illustrated by several important achievements, e.g., the existence of incoherent
dark solitons [11, 12], the modulational instability of incoherent waves [13–15],
incoherent solitons in resonant interactions [16, 17], in liquid crystals [18], in non-
local nonlinear media [19, 20], in spin waves [21], or spectral incoherent solitons in
optical fibers [22, 23]. Nowadays, statistical nonlinear optics constitutes a growing
field of research covering various topics of modern optics, e.g., supercontinuum
generation [24], filamentation [25], random lasers [26], or extreme rogue wave
events emerging from optical turbulence [27–29].

From a broader perspective, statistical nonlinear optics is fundamentally related
to fully developed turbulence [30, 31], a subject which still constitutes one of
the most challenging problems of theoretical physics [32, 33]. In its broad sense,
the kinetic wave theory provides a nonequilibrium thermodynamic description of
developed turbulence. We schematically report in Fig. 1a qualitative and intuitive
physical insight into the analogy which underlies the kinetic wave approach and
the kinetic theory relevant for a gas system. The wave turbulence theory occupies a
rather special place on the road-map of modern science, at the interface between
applied mathematics, fluid dynamics, statistical physics and engineering. It has
potential applications and implications in a diverse range of subjects including
oceanography, plasma physics and condensed matter physics. This chapter is aimed
at introducing the wave turbulence theory as an appropriate theoretical framework
to describe the propagation of incoherent optical waves.
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Fig. 1 Analogy between a system of classical particles and the propagation of an incoherent
optical wave in a cubic nonlinear medium. (a) As described by the kinetic gas theory (Boltzmann
kinetic equation), collisions between particles are responsible for an irreversible evolution of
the gas towards thermodynamic equilibrium. (b) In complete analogy, the (Hasselmann) WT
kinetic equation and the underlying four-wave mixing describe an irreversible evolution of the
incoherent optical wave toward the thermodynamic Rayleigh-Jeans equilibrium state. (c) When
the incoherent optical wave exhibits an inhomogeneous statistics, the four-wave interaction no
longer takes place locally, i.e., the quasi-particles feel the presence of an effective self-consistent
potential, V.r/, which prevents them from relaxing to thermal equilibrium. The dynamics of
the incoherent optical wave turns out to be described by a Vlasov-like kinetic equation. (d)
In the presence of a noninstantaneous nonlinear interaction, the causality condition inherent to
the response function changes the physical picture: the nonlinear interaction involves a material
excitation (e.g., molecular vibration in the example of Raman scattering). The dynamics of the
incoherent optical wave turns out to be described by a kinetic equation analogous to the weak
Langmuir turbulence equation. Note however that a highly noninstantaneous nonlinear response
is no longer described by the weak Langmuir turbulence equation, but instead by the ‘long-range’
Vlasov-like equation (see Fig. 3)

In the following we provide a panoramic overview of the subjects covered by
this chapter. Note that these topics have been usually discussed separately in the
literature within different contexts.

1.1.1 Wave Turbulence Formulation: Thermalization and Condensation

Consider the nonlinear propagation of a partially coherent optical wave character-
ized by fluctuations that are statistically homogeneous in space (note that caution
should be exercised when separating the description of statistically homogeneous
and inhomogeneous random waves, since a homogeneous statistical wave can
become inhomogeneous as a result of the incoherentMI (see Sect. 4), or the instabil-
ity of the Zakharov-Kolmogorov spectrum [34]). In complete analogy with a system
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of classical particles, the incoherent optical field evolves, owing to nonlinearity,
towards a thermodynamic equilibrium state, as schematically illustrated in Fig. 1a,b.
A detailed theoretical description of the process of dynamical thermalization
constitutes a difficult problem. However, a considerable simplification occurs when
wave propagation is essentially dominated by linear dispersive effects, so that a
weakly nonlinear description of the field becomes possible [30, 32, 33]. The weak-
(or wave-)turbulence (WT) theory has been the subject of lot of investigations in the
context of plasma physics [35], in which it is often referred to the so-called “random
phase-approximation” approach [30, 35–39]. This approach may be considered as
a convenient way of interpreting the results of the more rigorous technique based
on a multi-scale expansion of the cumulants of the nonlinear field, as originally
formulated in [40–42]. This theory has been reviewed in [43], and studied in more
details through the analysis of the probability distribution function of the random
field in [33]. In a loose sense, the so-called ‘random phase approximation’ may
be considered as justified when phase information becomes irrelevant to the wave
interaction due to the strong tendency of the waves to decohere. The random phases
can thus be averaged out to obtain a weak turbulence description of the incoherent
wave interaction, which is formally based on irreversible kinetic equations [30].
It results that, in spite of the formal reversibility of the equation governing wave
propagation, the kinetic equation describes an irreversible evolution of the field
to thermodynamic equilibrium. This equilibrium state refers to the fundamental
Rayleigh-Jeans spectrum, whose tails are characterized by an equipartition of
energy among the Fourier modes. The mathematical statement of such irreversible
process relies on the H-theorem of entropy growth, whose origin is analogous to
the Boltzmann’s H-theorem relevant for gas kinetics. Note that the terminology
‘wave turbulence’ is often employed in the literature to denote the study of wave
systems governed by this type of irreversible kinetic equations, whose structure is
analogous to the Boltzmann kinetic formulation (see, e.g., [30, 33, 39]). However,
in many cases in this review the terminology ‘wave turbulence’ will be employed
in a broader sense, which also includes different forms of nonequilibrium kinetic
formalisms, such as the Vlasov or the weak Langmuir turbulence descriptions of
a wave system (see Fig. 1). We remark that besides this nonequilibrium kinetic
approach, the equilibrium properties of a random nonlinear wave may be studied
on the basis of equilibrium statistical mechanics by computing appropriate partition
functions [44–49].

In this chapter we will discuss different processes of optical wave thermalization
on the basis of the WT theory, as well as some mechanisms responsible for its
inhibition. In particular, the phenomenonof supercontinuumgeneration can be inter-
preted, under certain conditions, as a consequence of the natural thermalization of
the optical field toward the thermodynamic equilibrium state [50–52]. Furthermore,
wave thermalization can be characterized by a self-organization process, in the
sense that it is thermodynamically advantageous for the system to generate a large-
scale coherent structure in order to reach the most disordered equilibrium state.
A remarkable example of this counterintuitive phenomenon is provided by wave
condensation [53–57], whose thermodynamic equilibrium properties are analogous
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to those of quantum Bose-Einstein condensation. Classical wave condensation can
be interpreted as a redistribution of energy among different modes, in which the
(kinetic) energy is transferred to small scales fluctuations, while an inverse process
increases the power (i.e., number of ‘particles’) into the lowest allowed mode, thus
leading to the emergence of a large scale coherent structure.

We note in this respect that the phenomenon of condensation has been recently
extended to optical cavities in different circumstances [58–65], which raises
important questions, such as e.g., the relation between laser operation and the
phenomenon of Bose-Einstein condensation (see Sect. 5 below) [66]. From a
different perspective, when a wave system is driven away from equilibrium by
an external source, it no longer relaxes towards the Rayleigh-Jeans equilibrium
distribution. A typical physical example of forced system can be the excitation of
hydrodynamic surface waves by the wind. This corresponds to the generic problem
of developed turbulence. In general, it refers to a system in which the frequency-
scales of forcing and damping differ significantly. The nonlinear interaction leads
to an energy redistribution among the frequencies (modes). A fundamental problem
is to find the stationary spectrum of the system, i.e., the law of energy distribution
over the different scales. The WT theory provides an answer to this vast issue under
the assumption that the nonlinear interaction is weak—the so-called Kolmogorov-
Zakharov spectra of turbulence [30]. An experiment aimed at observing these
nonequilibrium stationary turbulent states in the context of optics has been reported
in [67] (see [68] for a complete review). Beyond optics, we refer the interested
reader to different comprehensive reviews concerning this vast area of research
[30, 32, 33, 39, 43].

1.1.2 Vlasov and Wigner-Moyal Formulations: Incoherent Solitons

When the nonlinear material is characterized by a nonlocal or a highly-
noninstantaneous response, the dynamics of the incoherent wave turns out to be
essentially governed by an effective nonlinear potential V.r/. This potential is self-
consistent in the sense that it depends itself on the averaged intensity distribution
of the random field, as schematically illustrated in Fig. 1c. Actually, the mechanism
underlying the formation of an incoherent soliton state finds its origin in the
existence of such self-consistent potential, which is responsible for a spatial self-
trapping of the incoherent optical beam. From this point of view, the very nature
of incoherent optical solitons is analogous to the random phase solitons predicted
in plasma physics a long time ago in the framework of the Vlasov equation [69–
71]. This analogy with nonlinear plasma waves has been also exploited in optics
in different circumstances [72–74], in particular in the framework of the Wigner-
Moyal formalism [8, 75], or to interpret the existence of a threshold in the incoherent
modulational instability as a consequence of the phenomenon of Landau damping
[8].

Incoherent spatial solitons can be also supported by a nonlocal spatial non-
linearity, instead of the traditional noninstantaneous nonlinearity inherent to the
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photorefractive experiments. A nonlocal wave interactionmeans that the response of
the nonlinearity at a particular point is not determined solely by the wave intensity at
that point, but also depends on the wave intensity in the neighborhood of this point.
Nonlocality thus constitutes a generic property of a large number of nonlinear wave
systems [76–83], and the dynamics of nonlocal nonlinear waves has been widely
investigated in this last decade [84–88]. In particular, in the highly nonlocal limit,
i.e., in the limit where the range of the nonlocal response is much larger than the
size of the beam, the propagation equation reduces to a linear and local equation
with an effective guiding potential given by the nonlocal response function. The
optical beam can thus be guided by the nonlocal response of the material, a process
originally termed ‘accessible soliton’ [78, 79, 88, 89]. In this highly nonlocal limit,
it has been shown both theoretically and experimentally that a speckled beam can
be guided and trapped by the effective waveguide induced by the nonlocal response
[19, 90].

More recently, the long-term evolution of a modulationally unstable homoge-
neous wave has been studied in the presence of a nonlocal response [20]. Contrarily
to the expected soliton turbulence process where a coherent soliton is eventually
generated in the midst of thermalized small-scale fluctuations [46, 91–93], a highly
nonlocal response is responsible for an incoherent soliton turbulence process [20].
It is characterized by the spontaneous formation of an incoherent soliton structure
starting from an initially homogeneous plane-wave. A WT approach of the problem
revealed that this type of incoherent solitons can be described in detail in the
framework of a long-range Vlasov equation, which is shown to provide an accurate
statistical description of the nonlocal random wave even in the highly nonlinear
regime of interaction. We note that this Vlasov equation differs from the traditional
Vlasov equation considered for the study of incoherent modulational instability
and incoherent solitons in plasmas [70, 71, 94], hydrodynamics [95] and optics
[8, 73, 74, 96]. The structure of this Vlasov equation is in fact analogous to that
recently used to describe systems of particles with long-range interactions [97]. For
this reason we will term this equation ‘long-range Vlasov’ equation. It is important
to underline that the long-range nature of a highly nonlocal nonlinear response
prevents the wave system from reaching thermal equilibrium [20]. This fact can
be interpreted intuitively in analogy with gravitational long-range systems and the
Vlasov-like description of the dynamics of formation and interaction of galaxies in
the Universe [97].

1.1.3 Weak Langmuir Turbulence Formulation: Spectral Incoherent
Solitons and Incoherent Shocks

When the incoherent wave propagates in a nonlinear medium whose non-
instantaneous response time cannot be neglected (e.g., Raman effect in optical
fibers), the dynamics turns out to be strongly affected by the causality property
inherent to the nonlinear response function (see Fig. 1). The kinetic wave theory
reveals in this case that the appropriate description is provided by a formalism
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analogous to that used to describe weak Langmuir turbulence in plasmas [22, 98].
A major prediction of the theory is the existence of spectral incoherent solitons
[22, 23, 99]. This incoherent soliton is of a fundamental different nature than
the incoherent solitons discussed here above. In particular, it does not exhibit a
confinement in the spatiotemporal domain, but exclusively in the frequency domain.
For this reason this incoherent structure has been termed ‘spectral incoherent
soliton’. Indeed, because the optical field exhibits a stationary statistics, the soliton
behavior only manifests in the spectral domain. Then contrarily to the expected
thermalization process, the incoherent wave self-organizes into these incoherent
soliton structures, which can thus be regarded as nonequilibrium and nonstationary
stable states of the incoherent field.

As discussed here above, the existence of a highly nonlocal response changes
the dynamics of spatially incoherent nonlinear waves in a profound way. A natural
question is to see how a highly noninstantaneous nonlinear response can change
the dynamics of temporally incoherent waves. In this temporal long-range regime,
the spectral dynamics of the field can exhibit incoherent shock waves [100]. They
manifest themselves as an unstable singular behavior of the spectrum of incoherent
waves, i.e., ‘spectral wave-breaking’. Note that shock waves play an important role
in many different branches of physics [101]. However, it should be underlined
that, at variance with conventional coherent shock waves, which require the strong
nonlinear regime, incoherent shocks develop into the highly incoherent regime
of propagation, in which linear dispersive effects dominate nonlinear effects. The
weakly nonlinear kinetic approach then reveals that these incoherent shocks are
described, as a rule, by singular integro-differential kinetic equations, which involve
the Hilbert transform as singular operator. In this way, the theory reveals unexpected
links with the 3D vorticity equation in incompressible fluids [102], or the integrable
Benjamin-Ono equation [103, 104], which was originally derived in hydrodynamics
to model internal waves in stratified fluids [105, 106].

1.1.4 Breakdown of Thermalization and the FPU Problem

The relationship between formal reversibility and actual dynamics can be rather
complex for infinite dimensional Hamiltonian systems like classical optical waves.
In integrable systems, one may expect that the dynamics is essentially periodic in
time, reflecting the underlying regular phase-space structure of nested tori. This
recurrent behavior is broken in nonintegrable systems, where the dynamics is
in general governed by an irreversible process of diffusion in phase space. The
essential properties of this irreversible evolution to equilibrium can be described
by the wave turbulence theory.

It is instructive to discuss the phenomenology of nonlinear wave thermalization
from a broader perspective. We recall in this respect the fundamental assumption of
statistical mechanics that a closed system with many degrees of freedom ergodically
samples all equal energy points in phase space. In order to analyze the limits
of this assumption, Fermi, Pasta and Ulam (FPU) considered in the 1950s a
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one-dimensional chains of particles with anharmonic forces between them [107].
They argued that, owing to the nonlinear coupling, an initial state in which the
energy is in the first few lowest modes would eventually relax to a state of
thermal equilibrium where the energy is equidistributed among all modes on the
average. However they observed that, instead of leading to the thermalization of
the system, the energy transfer process involves only a few modes and exhibits
a reversible behavior, in the sense that after a sufficiently (long) time the system
nearly goes back to its initial state. This recurrent behavior could not be interpreted
in terms of Poincaré recurrences, a feature which motivated an intense research
activity. Fundamental mathematical and physical discoveries, like the Kolmogorov-
Arnold-Moser theorem and the formulation of the soliton concept, have led to a
better understanding of the Fermi-Pasta-Ulam problem, although it is by no means
completely understood [107, 108].

We should note that, in spite of the large number of theoretical studies,
experimental demonstrations of FPU recurrences have been reported in very few
systems. In particular, the FPU recurrences associated to modulational instability
of the NLS equation have been experimentally studied in deep water waves [109],
and, more recently, in optical wave systems [110, 111]. In relation with the FPU
problem, we will comment some mechanisms which inhibit the irreversible process
of optical wave thermalization toward the Rayleigh-Jeans distribution, as described
in detail by the WT kinetic equation. In particular, the WT theory reveals the
existence of local invariants in frequency space, which lead to a novel family of
equilibrium states of a different nature than the expected thermodynamic (Rayleigh-
Jeans) equilibrium states [112, 113].

1.2 Organization of the Chapter

The chapter is structured in three different parts aimed at introducing the three
different formalisms discussed above. We will start with the Vlasov formalism
in Sect. 2, which describes in particular incoherent MI and incoherent solitons.
Next we will consider the weak Langmuir turbulence formalism in Sect. 3, which
describes spectral incoherent solitons, as well as spectral shocks and collapse
singularities. In Sect. 4 we will consider the wave turbulence kinetic equation, which
will be discussed in the framework of optical wave thermalization and condensation.
Finally some generalizations concerning the wave turbulence formulation of laser
systems and the breakdown of thermalization, as well as some open problems will
be discussed in the last Sect. 5.
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2 Vlasov Formalism

In this Section we study the transverse spatial evolution of a partially coherent wave
that propagates in a nonlocal nonlinear medium. We consider the case where the
random wave exhibits fluctuations that are statistically inhomogeneous in space. As
illustrated schematically in Fig. 2, the dynamics of the incoherent wave is described
by different forms of the Vlasov equation, whose self-consistent potential depends
on the degree of nonlocality.

2.1 Nonlocal Nonlinear Response

2.1.1 NLS Model

A nonlocal nonlinear response of the medium is found in several wave systems
such as, e.g., dipolar Bose-Einstein condensates [76], atomic vapors [77], nematic
liquid crystals [78, 79, 114], photorefractivemedia [82], thermal susceptibilities [80,
81, 115], and plasmas physics [83]. For this reason the impact of nonlocality on
the dynamics of nonlocal nonlinear waves has been widely investigated [88], in
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Fig. 2 Schematic illustration of the validity of the fundamental kinetic equations in the framework
of a spatially nonlocal nonlinear response—the vertical arrow denotes the amount of nonlocality
of the nonlinear interaction, while the horizontal arrow represents the amount of inhomogeneous
statistics of the incoherent wave. When the incoherent wave is characterized by fluctuations that
are statistically homogeneous in space, the relevant kinetic description is provided by the wave
turbulence kinetic equation (‘WT KE’), which describes in particular the processes of optical wave
thermalization or condensation (see Sect. 4). When the incoherent wave exhibits an inhomogeneous
statistics, the relevant kinetic description is provided by different variants of the Vlasov equation,
whose self-consistent potential depends on the amount of nonlocality in the system (see Sect. 2).
The Vlasov equation describes in particular the phenomena of incoherent modulational instability
and the formation of incoherent soliton states
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particular through the analysis of MI [84], of dark solitons [87], or the inhibition of
collapse in multi-dimensional systems [85, 86].

We consider here the standard form of the nonlocal NLS model equation
describing wave propagation in nonlinear media that exhibit a nonlocal response

i@z C ˛r2 C " 

Z
U.x " x0/ j j2.x0; z/ dx0 D 0; (1)

where x denotes the position in the transverse plane of dimension d and r2 denotes
the corresponding transverse Laplacian (r2 D @2x for d D 1, r2 D @2x C @2y
for d D 2). The nonlocal response function U.x/ is a real and even function
normalized in such a way that

R
U.x/ dx D 1, so that in the limit of a local

response [U.x/ D ı.x/, ı.x/ being the Dirac function], Eq. (1) recovers the
standard local NLS equation. The parameters ˛ D 1=.2kL/ and " refer to the
linear and nonlinear coefficients, respectively, where kL D n2#=$L, n being the
linear refractive index of the material and $L the wavelength of the laser source.
A positive (negative) value of " corresponds to a focusing (defocusing) nonlinear
interaction. Besides the momentum, Eq. (1) conserves the power (or number of
particles)N D

R
j .x/j2dx, and the HamiltonianH D E CU , where

E .z/ D ˛

Z
jr .x; z/j2 dx (2)

denotes the linear (kinetic) contribution, and

U .z/ D ""
2

“
j .x; z/j2U.x " x0/ j .x0; z/j2 dx dx0 (3)

the nonlinear contribution to the total energy H . We denote by % the spatial
extension of U.x/, which characterizes the amount of nonlocality in the system.
This length scale has to be compared with the healing length & D

p
˛=.j" j'/,

where ' D N =Ld is the density of power (intensity), L being the size of the
periodic box in the numerical simulations. We recall that & denotes the typical
wavelength excited by the modulational instability of a homogeneous background in
the limit of a local nonlinearity,% ! 0. An other important length scale is the typical
length ( that characterizes the homogeneity of the statistics. It reflects the typical
length scale over which the fluctuations of the incoherent wave can be considered
as homogeneous in space.

2.1.2 Homogeneous vs Inhomogeneous Statistics

The kinetic equation consists of an equation describing the evolution of the spectrum
of the field during its propagation in the nonlinear medium. Note that, in the
particular case in which diffraction effects can be neglected (˛ D 0), an expression
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for the evolution of the second order correlation function can be obtained in explicit
form, see [116, 117].

As schematically described through Figs. 2, 3, the structure of a kinetic equation
depends on the nature of the statistics of the random wave. The statistics is said to
be homogeneous (or stationary in the temporal domain), if the correlation function
B.x1; x2; z/ D h .x1; z/ !.x2; z/i only depends on the distance j x1 " x2 j. In the
following, the brackets h:i denote an average over the realizations of the initial noise
of the random wave  .x; z D 0/.
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Fig. 3 Schematic illustration of the validity of the fundamental kinetic equations in the framework
of a temporally noninstantaneous nonlinear response—the vertical arrow denotes the amount of
noninstantaneous response of the nonlinearity, while the horizontal arrow represents the amount
of non-stationary statistics of the incoherent wave. The diagram for the temporal domain reported
here is similar to that reported in the spatial domain in Fig. 2. The essential difference between
the spatial and the temporal domain relies on the fact that in the temporal domain the response
function is constrained by the causality condition. It turns out that when the finite response time
of the nonlinearity cannot be neglected, the relevant kinetic description is provided by an equation
analogous to the weak Langmuir turbulence equation (see Sect. 3), which describes for instance
non-localized spectral incoherent solitons. In the presence of a highly noninstantaneous nonlinear
response and a stationary statistics of the incoherent wave, the weak Langmuir turbulence reduces
to singular integro-differential kinetic equations (‘SID-KE’), e.g., Benjamin-Ono equation, which
describe spectral singularities such as dispersive shock waves and collapse behaviors. Conversely,
when the wave exhibits a non-stationary statistics still in the presence of a highly noninstantaneous
response, the dynamics is ruled by a ‘temporal long-range’ Vlasov equation, whose self-consistent
potential is constrained by the causality condition of the noninstantaneous response function, which
breaks the Hamiltonian structure of the Vlasov equation (see Sect. 2.4). The WT kinetic equation
(‘WT KE’) turns out to be relevant for an instantaneous nonlinear response and a statistically
stationary incoherent wave, as will be discussed in the framework of supercontinuum generation
in Sect. 5.2
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2.2 Short-Range Vlasov Equation

We follow the standard procedure to derive an equation for the evolution of the
autocorrelation function of the field, B.x; !; z/ D h .xC !=2; z/ !.x " !=2; z/i,
with

x D .x1 C x2/=2; ! D x1 " x2: (4)

Because of the nonlinear character of the NLS equation, the evolution of the second-
order moment of the wave depends on the fourth-order moment. In the same way,
the equation for the fourth-order moment depends on the sixth-order moment, and
so on. One obtains in this way an infinite hierarchy of moment equations, in which
the nth order moment depends on the .n C 2/th order moment of the field. This
makes the equations impossible to solve unless some way can be found to truncate
the hierarchy. This refers to the fundamental problem of achieving a closure of
the infinite hierarchy of the moment equations [30, 32, 33, 43]. A simple way to
achieve a closure of the hierarchy is to assume that the field has Gaussian statistics.
This approximation is justified in the weakly nonlinear regime, Ld=Lnl ! 1 (or
jU =E j ! 1), where Ld D $2c=˛ is the diffraction length, $c being the coherence
length, and Lnl D 1=.j" j'/ is the characteristic length of nonlinear interaction.

Exploiting the property of factorizability of moments of Gaussian fields, one
obtains the following closed equation for the evolution of the autocorrelation
function

i@zB.x; !; z/ D "2˛rx:r!B.x; !; z/ " "P.x; !; z/ " "Q.x; !; z/; (5)

where

P.x; !/ D B.x; !/
Z

U.y/
!
N.x " yC !=2/" N.x " y " !=2/

"
dy (6)

Q.x; !/ D
Z

U.y/
!
B.x " y=2C !=2; y/B.x " y=2; ! " y/C

" B.x " y=2; ! C y/B.x " y=2" !=2;"y/
"
dy; (7)

and

N.x; z/ # B.x; ! D 0; z/ D
˝
j j2

˛
.x; z/ (8)

denotes the averaged power of the field, which depends on the spatial variable x
because the statistics of the field is a priori inhomogeneous. Note that we have
omitted the z-label in Eqs. (6), (7).

Equations (5)–(7) is quite involved. To provide an insight into its physics we
assume that the incoherent wave exhibits a quasi-homogeneous statistics, that is to
say $c (i.e. the length scale of the random fluctuations) is much smaller than the
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length scale of homogeneous statistics ( (i.e. typically the size of the incoherent
beam), " D $c=( ! 1. We assume that the range of the response function is of the
same order as the healing length, % $ &. Defining the local spectrum of the wave
as the Wigner-like transform of the autocorrelation function,

nk.x; z/ D
Z

B.x; !; z/ exp."ik:!/ d!; (9)

and performing a multiscale expansion of the solution

B.x; !; z/ D B.0/
#
"x; !; "z

$
C O."/; (10)

we obtain in the first-order in " the following Vlasov-like kinetic equation [118]

@znk.x; z/C @k Q!k.x; z/:@xnk.x; z/ " @x Q!k.x; z/:@knk.x; z/ D 0: (11)

The generalized dispersion relation reads

Q!k.x; z/ D !.k/C Vk.x; z/; (12)

where !.k/ D ˛k2 is the linear dispersion relation of the NLS equation (1), and the
self-consistent potential reads

Vk.x; z/ D " "

.2#/d

Z
.1C QUk"k0/ nk0.x; z/ dk

0; (13)

where QU.k/ D
R
U.x/ exp."ik:x/ dx is the Fourier transform of U.x/ [ QU.k/ being

real and even] and

N.x; z/ D 1

.2#/d

Z
nk.x; z/ dk (14)

is the averaged spatial intensity profile of the wave [see Eq. (8)].

2.2.1 Properties of the Vlasov Equation

Several important properties of the Vlasov equation (11) result from its Poisson
bracket structure. More specifically, the Vlasov equation can be recast in Hamilto-
nian form by means of the following Liouville’s equation

dznk.z; x/ # @znC Px:@xnC Pk:@kn D 0; (15)
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where the variables k and x appear as canonical conjugate variables,

Pk D @zk D "@x Q!; (16)

Px D @zx D @k Q!; (17)

where the generalized dispersion relation (12) plays the role of an effective
Hamiltonian.

The Vlasov equation is a formally reversible equation, i.e., it is invariant
under the transformation .z; k/ ! ."z;"k/. Moreover, it conserves the
number of particles, N D .2#/"d

’
nk.x; z/ dxdk, the momentum P D

.2#/"d
’

k nk.x; z/ dxdk, and the Hamiltonian

H D 1

.2#/d

“
!.k/ nk.x/ dxdk " "

2.2#/2d

•
nk1.x/ QUk1"k2 nk2.x/dxdk1dk2:

(18)

In addition, the Vlasov equations (11)–(13) also conserves the so-called Casimirs,
M D

’
f Œn) dxdk, where f Œn) is an arbitrary functional of the distribution nk.x; z/.

2.3 Long-Range Vlasov Equation

2.3.1 Long-Range Response

Let us now consider a long-range nonlocal nonlinear response, %=& % 1. Note that
in this case the random field exhibits fluctuations whose spatial inhomogeneities are
of the same order as the range of the nonlocal potential, % $ (. The derivation of
the long-range Vlasov equation is obtained by following a procedure similar to that
for the short-range case (% $ &), except that we have to introduce the following
scaling for the nonlocal potential

U.x/ D "dU.0/."x/: (19)

Note that the pre-factor "d is required by the normalization condition,
R
U.x/dx DR

U.0/."x/ d."dx/ D 1. Following the multiscale expansion technique [118], one
can derive the Vlasov-like kinetic Eq. (11), with the effective dispersion relation

Q!k.x; z/ D !.k/C V.x; z/; (20)

and the long-range self-consistent potential

V.x; z/ D ""
Z

U.x " x0/N.x0; z/ dx0: (21)



Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves 219

This effective potential then appears as a convolution of the nonlocal response with
the intensity profile of the incoherent wave. Contrarily to the short-range potential,
it does not depend on the spatial frequency k. The long-range Vlasov equation
conserves the number of particles, N D .2#/"d

’
nk.x; z/ dxdk, the momentum

P D .2#/"d
’

k nk.x; z/ dx dk, the Hamiltonian

H D 1

.2#/d

“
!.k/ nk.x; z/ dxdkC

1

2

Z
V.x; z/N.x; z/ dx; (22)

as well as the Casimirs, M D
’

f Œn) dxdk, where f Œn) is an arbitrary functional of
the distribution nk.x; z/.

2.3.2 Validity of the Long-Range Vlasov Equation

It is important to underline that, thanks to the long-range nonlocal response, the
system exhibits a self-averaging property of the nonlinear response,

Z
U.x " x0/j .x0; z/j2dx0 '

Z
U.x " x0/N.x0; z/dx0:

Substitution of this property into the nonlocal NLS equation (1) thus leads to a
closure of the hierarchy of the moment equations. More specifically, using statistical
arguments similar as those in [96], one can show that, owing to the highly nonlocal
response, the statistics of the incoherent wave turns out to be Gaussian. Then
contrarily to a conventional Vlasov equation, whose validity is constrained by
the assumptions of (1) weakly nonlinear interaction and (2) quasi-homogeneous
statistics, the long-range Vlasov equation provides an exact statistical description
of the random wave  .x; z/ in the highly nonlocal regime, " ! 1. This property
is corroborated by the fact that the Vlasov equation considered here is formally
analogous to the Vlasov equation considered to study long-range interacting systems
[97, 119]. In this context, it has been rigorously proven that, in the limit of an infinite
number of particles, the dynamics ofmean-field Hamiltonian systems is governed by
the long-range Vlasov equation [97]. Note however that the term ‘long-range’ used
in [97] refers to a response function whose integral diverges,

R
U.x/ dx D C1,

while the response functions considered here refer to exponential or Gaussian
shaped functions typically encountered in optical materials (see e.g., [88]). We
finally note that the validity of the long-range Vlasov equation in the strongly
nonlinear regime has been recently confirmed by direct numerical simulations in
a recent work in which collective large scale incoherent shocks have been reported
[120].
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2.3.3 Incoherent Modulational Instability

Modulational (or Benjamin-Feir) Instability (MI) refers to the phenomenon in
which an initially plane- (or continuous-) wave tends to break up spontaneously
into periodic modulations while it propagates through a nonlinear medium. In the
frequency domain, this phenomenon can be interpreted as a phase-matched partially
degenerate four-wave mixing process in which an intense pump wave yields energy
to a pair of weak sideband waves. In the following we shall see that an incoherent
field that exhibits a homogeneous statistics may become modulationally unstable
with respect to the growth of weakly statistical inhomogeneities, i.e., the incoherent
field thus becomes statistically inhomogeneous [13–15, 94].

The phenomenon of incoherent MI has been the subject of a detailed investiga-
tion in the optical context with an inertial nonlinear response [8, 13, 118].We present
here the phenomenon of incoherent MI in the framework of the long-range Vlasov
formalism. For the sake of simplicity, we limit the incoherent MI analysis to the
one-dimensional case. We assume that the incident field exhibits a homogeneous
statistics, except for small perturbations that depend on x and z. Note that any
homogeneous stationary distribution, n0k , is a solution of the Vlasov equation, that is,
@zn0k D 0. We perturb this stationary solution according to nk.x; z/ D n0k C ınk.x; z/,
with jınk.x; z/j ! n0k , and linearize the Vlasov equation

@zınk.x; z/C2˛k@xınk.x; z/C
"

2#
@kn0k

Z
dx0@xU.x"x0/

Z
dkınk.x0; z/ D 0 (23)

This equation can be solved by a Fourier-Laplace transform,

Qınk.K;$/ D
Z 1

0

dz
Z C1

"1
dx exp."$z " iKx/ ınk.x; z/;

which gives the dispersion relation

" 1 D "

#
˛K2 QU.K/

Z C1

"1

n0k
.i$ " 2˛Kk/2

dk; (24)

where QU.K/ D
R
U.x/ exp."iKx/ dx. Assuming that the initial spectrum is

Lorentzian-shaped, n0k D 2N0(k=.k2C .(k/2/ [i.e., .2#/"1
R
n0kdk D N0], Eq. (24)

gives

$.K/ D "2˛(kjKj C jKj
q
2˛"N0 QU.K/; (25)

where the incoherent MI gain reads gMI.K/ D 2<Œ$.K/).
First of all, we can note that incoherent MI requires a focusing nonlinearity,

" > 0, as for the usual coherent MI. However, contrary to coherent MI, a focusing
nonlinearity is not a sufficient condition for the occurrence of incoherentMI. Indeed,
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Fig. 4 Spatial incoherent MI: Plots of the MI gain given by Eq. (25), gMI.K/ D 2<Œ$.K/), for
an exponential response function, U.x/ D exp."jxj=%/=.2%/: (a) % D 10& (dashed), % D 25&
(continuous), for (k D 0:5&!1. (b) (k D 0:4&!1 (dashed), (k D 0:6&!1 (continuous), for
% D 10&

we remark in the MI gain expression (25) the existence of a damping term, which
introduces a threshold for incoherent MI [8, 13, 74]. Note that, the existence of
a threshold for incoherent MI was shown to be formally related to an effective
Landau damping [8]. In this way, the stabilizing effect of the partial coherence does
not refer to a genuine dissipative damping, but rather a self-action effect analogous
to Landau damping of electron plasma waves that causes a redistribution of the
spectrum nk.x; z/. This effective damping significantly reduces the MI gain and the
optimal MI frequency, KMI, as illustrated in Fig. 4.

It is interesting to note that in the limit of a local response ( QU.K/ D 1),
Eq. (25) reduces to a straight line. This leads to an unphysical result: the MI gain
increases with the modulation frequency K. This pathology stems from the fact
that the derivation of the Vlasov equation with a local nonlinearity is constrained
by the assumption of quasi-homogeneous statistics. However, as discussed above
in Sect. 2.3.1, the assumption of quasi-homogeneous statistics is automatically
satisfied in the presence of a long-range nonlocality. Accordingly, the incoherent
MI gain curve (25) is bell-shaped, with a maximum growth-rate at some optimal
frequency, KMI.
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2.3.4 Incoherent Solitons

The Vlasov equation describes the evolution of the averaged spectrum of a random
wave. Hence, a spatially localized and stationary solution of the Vlasov equation
describes an incoherent soliton state. The mechanism underlying the formation of
an incoherent soliton is schematically explained in Fig. 5. We consider here the case
of bright solitons with a focusing nonlinearity (" > 0), and again we limit the
study to the pure one-dimensional situation. Let us consider the stationary Vlasov
equation

2˛k @xnstk .x/ " @xV.x/ @knstk .x/ D 0: (26)

where the self-consistent potential is given by V.x/ D ""
R
U.x" x0/N.x0/ dx0 [see

Eq. (21)]. Let us now recall an important observation originally pointed out in the
seminal paper [69], namely the fact that the solution to Eq. (26) can be expressed
as an arbitrary function of the effective Hamiltonian, h D ˛k2 C V.x/. To find an
explicit analytical solution to Eq. (26), we make use of this observation by following
the procedure outlined in [70]. In this work, Hasegawa obtained an analytical soliton
solution of the Vlasov equation in the limit of a local nonlinear interaction,U.x/ D
ı.x/. This solution has been recently generalized to a nonlocal interaction in [20].
The idea of the method is to argue that the ‘particles’ that constitute the soliton are
trapped by the self-consistent potential V.x/ provided that their energy is negative,
h & 0. This determines a specific interval of momenta for the trapped particles,
"kc & k & kc, where kc D

p
"V=˛ (note that V < 0 in the focusing regime,

see Fig. 5). According to Eq. (14), the intensity profile of the soliton solution thus
reads N.x/ D .2#/"1

R Ckc
"kc

nstk .x/ dk. By means of a simple change of variables, this

Fig. 5 Schematic representation of the self-trapping mechanism underlying the formation of an
incoherent soliton solution of the Vlasov equation. A soliton forms when the optical beam induces
an attractive potential V.x/ < 0 (waveguide) owing to a focusing nonlinearity (" > 0). In turn, the
optical beam is guided in its own induced potential V.x/



Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves 223

integral can thus be expressed in the form of a Fredholm equation

N D 1

2#

Z 0

V

nst.h/p
h " V

dh: (27)

A solution to this equation can be obtained under the assumption that U.x/ and
N.x/ are Gaussian-shaped [20]. Assuming U.x/ D .2#%2/"1=2 expŒ"x2=.2%2/)
and N.x/ D N .2#%2N/

"1=2 expŒ"x2=.2%2N/), and making use of the Laplace
convolution theorem, we have

nstk .x/ D Q*
!
c*N*.x/ " ˇk2

" 1
*" 1

2 ; (28)

where

Q* D
2#ˇ

1
2+ .*"1 C 1/

+ .*"1 C 1=2/+ .1=2/c1=**
; (29)

+ .x/ being the Gamma function, and

c* D
.2#/

*
2" 1

2 "%
*
N

N *"1
q
%2 C %2N

; (30)

with

* D 1

1C .%=%N/2
: (31)

This analytical solution is self-consistent, in the sense that it verifies the condition
(27), and it is straightforward to check by direct substitution that it is indeed a
solution of (27).

The fact that the above solution generalizes the solution obtained by Hasegawa
[70] becomes apparent by remarking that Eq. (28) can be expressed as

nst.h/ $ ."h/
1
*" 1

2 : (32)

In the limit of a local potential,U.x/ D ı.x/, the parameter *! 1, and (32) recovers
the solution nst.h/ $

p
"h [70]. Note however that for a local nonlinearity [70], the

analytical solution is valid for any form of the intensity distribution,N.x/, a property
that was subsequently interpreted in the framework of a ray-optics approach [121].
Conversely, for a nonlocal nonlinearity, the analytical solution (28)–(31) refers to a
Gaussian-shaped intensity profile.
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2.3.5 Vlasov Simulations: Incoherent Soliton Turbulence

The phenomena of incoherent MI and subsequent incoherent soliton formation can
be visualized by means of a direct numerical integration of the long-range Vlasov
equations (11), (21). This is illustrated in Fig. 6, which reports the evolution of the
spectrum of the incoherent wave during its propagation. The simulation starts from
a homogeneous spectrum, nk.x; z D 0/ ' n0k , which is periodically perturbed
to seed the incoherent MI. Because of the nonlinear Hamiltonian flow, particles
following different orbits travel at different angular speeds, a process known as
‘phase-mixing’. Each MI-modulation thus starts spiralling in the phase-space .x; k/,
which leads to the formation of four localized incoherent structures, which are
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Fig. 6 Incoherent soliton turbulence: Numerical simulation of the long-range Vlasov equa-
tions (11), (21), showing the evolution of the local spectrum, nk.x/, during the propagation. The
initial homogeneous spectrum exhibits incoherent MI: the four modulations excited by the initial
condition lead to the generation of four incoherent structures, which slowly coalesce into two, and
then into one incoherent soliton state. (a) z D 300, (b) z D 1000, (c) z D 1500, (d) z D 3000,
(e) z D 4000, (f) z D 104 (in units of Lnl), % D 102&. (g) Corresponding evolution of the spatial
intensity profile, N.x; z/. (h) Corresponding spectrum S.k; z0/ at z0 D 700Lnl. Source: from [20]
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mutually attracted and coalesce into two, and eventually into a single incoherent
structure. Note that this process is analogous to the soliton turbulence scenario that
occurs for coherent solitons [91]. The phase-mixing then leads to a smoothing and
homogenization of the perturbations on the incoherent structure, which thus slowly
tend to relax toward a stationary incoherent soliton state. Note that the asymptotic
evolution of inhomogeneous Vlasov states is a long standing mathematical problem
[122].

2.4 Temporal Version: Non Hamiltonian Long-Range Vlasov
Equation

We remark that, as discussed above through Fig. 3, the long-rangeVlasov formalism
also plays a role in the temporal domain in the presence of a highly noninstantaneous
nonlinear response (temporal nonlocality). Because of the causality condition
inherent to the response function in the temporal domain, the Vlasov equation no
longer exhibit a Hamiltonian structure [118]. The corresponding Vlasov formalism
predicts different interesting behaviors, such as the existence of incoherent solitons
in the normal dispersion regime, in contrast to conventional solitons which are
known to require anomalous dispersion. For a review on the long-range Vlasov
formalism in the temporal domain, see [118].

3 Weak Langmuir Turbulence Formalism

In this Section we study the temporal evolution of a partially coherent wave that
propagates in a nonlinear medium characterized by a noninstantaneous response.
As discussed in Sect. 1 through Fig. 3, a delayed nonlinearity leads to a kinetic
description which is formally analogous to the weak Langmuir turbulence kinetic
equation, irrespective of the nature of the fluctuations that may be either stationary
or non-stationary. In the presence of a temporal long-range response and a stationary
statistics of the incoherent wave, the weak Langmuir turbulence formalism reduces
to a family of singular integro-differential kinetic equations (e.g., Benjamin-Ono
equation) that describe incoherent dispersive shock waves and incoherent collapse
singularities in the spectral evolution of the random wave.

3.1 Noninstantaneous Nonlinear Response

A typical example of noninstantaneous nonlinear response in one dimensional
systems is provided by the Raman effect in optical fibers [123]. We consider the
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standard 1D NLS equation accounting for a noninstantaneous nonlinear response
function

i@z C ˇ@tt C " 

Z C1

"1
R.t " t0/ j j2.t0; z/ dt0 D 0; (33)

where the response function R.t/ is constrained by the causality condition. In the
following we use the convention that t > 0 corresponds to the leading edge of the
pulse, so that the causal response will be on the trailing edge of a pulse, i.e.,R.t/ D 0
for t > 0. We will write the response function in the form R.t/ D H."t/ NR."t/,
where NR.t/ is a smooth function from Œ0;1/ to ."1;1/, while the Heaviside
function H."t/ guarantees the causality property. As we will see, this convention
will allow us to easily compare the dynamics of temporal and spatial incoherent
solitons. Because of the causality property, the real and imaginary parts of the
Fourier transform of the response function

QR.!/ D QU.!/ C i g.!/; (34)

are related by the Kramers-Krönig relations. We recall that QU.!/ is even, while the
gain spectrum g.!/ is odd. The causality condition breaks the Hamiltonian structure
of the NLS equation, so that Eq. (33) only conserves the total power (‘number of
particles’) of the wave N D

R
j j2.t; z/ dt. The typical temporal range of the

response function R.t/ denotes the response time, !R. Note that ˇ D " 1
2
@2!k.!/

in Eq. (33), so that ˇ > 0 (ˇ < 0) denotes the regime of anomalous (normal)
dispersion.

3.2 Short-Range Interaction: Spectral Incoherent Solitons

The dynamics is ruled by the comparison of the response time, !R, with the ‘healing
time’, !0 D

p
jˇjLnl. We remind that the weakly nonlinear regime of interaction

refers to the regime in which linear dispersive effects dominate nonlinear effects,
i.e., Ld=Lnl ! 1 where Ld D t2c=jˇj and Lnl D 1=.j" j'/ refer to the dispersive
and nonlinear characteristic lengths respectively, tc being the correlation time of
the partially coherent wave. We consider here the case of a noninstantaneous
nonlinearity characterized by a short-range response time, i.e., !R $ !0. In this
regime, it can be shown that the kinetic equation governing the evolution of the
incoherent wave takes a form analogous to the WT Langmuir kinetic equation
[22, 118]:

@zn!.z/ D
"

#
n!.z/

Z C1

"1
g.! " !0/ n!0.z/ d!0; (35)
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where we have implicitly assumed that the incoherent wave exhibits fluctuation that
are statistically stationary (homogeneous) in time—a generalized WT Langmuir
equation can be obtained for a non-stationary statistics [118]. We first note that this
equation does not account for dispersion effects (it does not involve the parameter
ˇ), although the role of dispersion in its derivation is essential in order to verify the
criterion of weakly nonlinear interaction, Ld=Lnl ! 1. The fact that the dynamics
ruled by the WT Langmuir equation does not depend on the sign of the dispersion
coefficient has been verified by direct numerical simulations of the NLS Eq. (33)
[99]. The kinetic Eq. (35) conserves the power of the field N D 1

2#

R
n!.z/ d!.

Moreover, as discussed above for the Vlasov equation, the WT Langmuir equation
(35) is a formally reversible equation [it is invariant under the transformation
.z; !/! ."z;"!/], a feature which is consistent with the fact that it also conserves
the non-equilibrium entropy S D 1

2#

R
logŒn!.z/) d!.

The WT Langmuir equation admits solitary wave solutions [22, 74, 98, 99]. This
may be anticipated by remarking that, as a result of the convolution product in (35),
the odd spectral gain curve g.!/ amplifies the low-frequency components of the
wave at the expense of the high-frequency components, thus leading to a global red-
shift of the spectrum. We remind that these incoherent solitons are termed ‘spectral’
because they can only be identified in the spectral domain, since in the temporal
domain the field exhibits stochastic fluctuations at any time, t.

3.2.1 Numerical Simulations

Typical spectral incoherent soliton behaviors are reported in Fig. 7. The initial
condition is an incoherent wave characterized by a Gaussian spectrum with ı-
correlated random spectral phases, so that the initial wave exhibits stationary
fluctuations. The Gaussian spectrum is superposed on a background of small noise
of averaged intensity n0 D 10"5. This is important in order to sustain a steady
soliton propagation, otherwise the soliton undergoes a slow adiabatic reshaping so
as to adapt its shape to the local value of the noise background. The relative intensity
of the background noise with respect to the average power of the wave plays an
important role in the dynamics of discrete spectral incoherent solitons. Indeed,
the continuous spectral incoherent soliton is known to become narrower (i.e., of
higher amplitude) as the intensity of the background noise decreases. Accordingly,
a transition from a continuous to a discrete spectral incoherent soliton behavior
occurs as the relative intensity of the background noise is decreased: as the spectral
soliton becomes narrower than !R, the leading edge of the tail of the spectrum
will be preferentially amplified, thus leading to the formation of a discrete spectral
incoherent soliton. In order to test the validity of the WT Langmuir theory, we
reported in Fig. 7 a direct comparison with NLS simulations. We underline that an
excellent agreement has been obtained between the simulations of the NLS equation
and the WT Langmuir equation, without using any adjustable parameter [99].

Note that if the background noise level increases in a significant way and
becomes of the same order as the amplitude of the spectral soliton, the incoherent
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Fig. 7 Spectral incoherent solitons: Transition from discrete to continuous solitons. Left column
(a)–(c): Evolution of the non-averaged spectrum of the optical field, j Q j2.z; !/ (in dB-scale),
obtained by integrating numerically the NLS equation (33) for three different values of the noise
background, n0 D 10!7 (a), n0 D 10!5 (b), n0 D 10!3 (c). Right column (d)–(f): Corresponding
evolution of the averaged spectrum, n.z; !/ (in dB-scale), obtained by solving the Langmuir
WT equation (35): The comparison reveals a quantitative agreement, without using adjustable
parameters. We considered the typical Raman-like gain spectrum, g.!/ (ˇ" < 0). Source: from
[99]

wave enters a novel regime [124]. This regime is characterized by an oscillatory
dynamics of the incoherent spectrum which develops within a spectral cone during
the propagation. Such spectral dynamics exhibits a significant spectral blue shift,
which is in contrast with the expected Raman-like spectral red shift.
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3.2.2 Analytical Soliton Solution

The WT Langmuir kinetic equation (35) admits analytical soliton solutions [74,
118, 125]. More precisely, it is possible to compute the width and velocity of the
soliton given its peak amplitude nm in the regime nm % n0, where n0 denotes the
spectral amplitude of the background noise. We introduce the antiderivative of the
spectral gain G.!/ D "

R1
! g.!0/d!0. The gain spectrum g.!/ is characterized by

its typical gain amplitude gi and its typical spectral width !i. Regardless of the
details of the gain curve g.!/, gi and !i can be assessed by two characteristic
quantities, namely the gain slope at the origin @!g.0/ and the total amount of
gain G.0/ D "

R1
0 g.!/d!. A dimensional analysis allows to express gi and

!i in terms of these two quantities, gi D 1p
2
."@!g.0//1=2

!
"
R1
0 g.!/d!

"1=2
,

!i D
p
2
!

"
R1
0 g.!/d!

"1=2
=
!

" @!g.0/
"1=2. With these definitions, the function

G.!/ can be written in the following normalized formG.!/ D gi!ih.!=!i/; where
the dimensionless function h.x/ verifies h.0/ D 1, h0.0/ D 0, and h00.0/ D "2.
Proceeding as in [125], the profile of the soliton in the regime nm % n0 is of the
form [74], log

# n!.z/
n0

$
D log

# nm
n0

$
h
%
!"Vz
!i

&
, or equivalently:

n!.z/ " n0 D
#
nm " n0

$
exp

h
" log

%nm
n0

& .! " Vz/2

!2i

i
; (36)

where the velocity of the soliton is

V D " nm " n0
log3=2

# nm
n0

$
"gi!2ip
#
; (37)

and its full width at half maximum is !sol D 2!i log1=2.2/= log1=2.nm=n0/.
Spectral incoherent solitons have been recently generalized in the framework

of the generalized NLS equation accounting for the self-steepening term and a
frequency dependence of the nonlinear Kerr coefficient [126]. Such nonlinear
dispersive effects are shown to strongly affect the dynamics of the incoherent wave.
A generalized WT Langmuir kinetic equation is derived and its predictions have
been found in quantitative agreement with the numerical simulations of the NLS
equation, without adjustable parameters [126].

The structure of discrete spectral incoherent solitons can also be interpreted with
an analytical soliton solution of the discretized WT Langmuir equation derived in
[127]. In this way, discrete frequency bands of the soliton are modelled as coupled
Dirac ı-functions in frequency space (ı-peak model). However, the simulations
show that, when injected as initial condition into the WT Langmuir equation with
a Raman-like gain spectrum, the analytical soliton solution rapidly relaxes during
the propagation toward a discrete spectral incoherent solution [99]. This property
reveals the incoherent nature of discrete spectral incoherent solitons.
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We finally note that the emergence of continuous and discrete spectral incoherent
solitons has been identified experimentally owing to the Raman effect in photonic
crystal fibers in the context of supercontinuum generation, a feature discussed in
detail in [23].

3.3 Long-Range Interaction: Spectral Singularities

In this section we present the procedure which allows one to derive appropriate
reduced kinetic equations from the WT Langmuir equation in the long-range
limit, i.e., the limit of a highly noninstantaneous nonlinear response, !R % !0.
As discussed here above, the causality condition leads to a gain spectrum g.!/
that decays algebraically at infinity, a property which introduces singularities into
the convolution operator of the WT Langmuir equation (35). The mathematical
procedure consists in accurately addressing these singularities, see [100]. It reveals
that, as a general rule, a singular integro-differential operator arises systematically
in the derivation of the reduced kinetic equation [100, 128]. The resulting singular
integro-differential kinetic equation then originates in the causality property of the
nonlinear response function.

These singular integro-differential kinetic equations find a direct application
in the description of dispersive shock waves, i.e., shock waves whose singularity
is regularized by dispersion effects instead of dissipative (viscous) effects [101].
Dispersive shock waves have been constructed mathematically [129] and observed
in ion acoustic waves [130] long ago, though it is only recently that they emerged
as a general signature of singular fluid-type behavior, in particular in Bose-Einstein
condensates [131, 132] and nonlinear optics [80, 81, 133, 134].

These previous studies on dispersive shock waves have been discussed for
coherent, i.e., deterministic, amplitudes of the waves. Through the analysis of the
WT Langmuir equation, we will see that incoherent waves can exhibit dispersive
shock waves of a different nature that their coherent counterpart. They manifest
themselves as a wave breaking process (“gradient catastrophe”) in the spectral
dynamics of the incoherent field [100]. Contrary to conventional shocks which are
known to require a strong nonlinear regime, these incoherent shocks develop into
the weakly nonlinear regime. This WT kinetic approach also reveals unexpected
links with the 3D vorticity equation in incompressible fluids [102], or the integrable
Benjamin-Ono equation [103], which was originally derived in hydrodynamics.

3.3.1 Damped Harmonic Oscillator Response: Spectral Dispersive Shock
Waves

The derivation of singular integro-differential kinetic equations has been developed
for a general form of the response function (see the Supplemental of [100]). Here
we illustrate the theory by considering two physically relevant examples of response
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functions, which, respectively, induce and inhibit the formation of incoherent shock
waves.

Let us first consider the example of the damped harmonic oscillator response,
NR.t/ D 1C*2

*!R
sin.*t=!R/ exp."t=!R/. Figure 8 reports a typical evolution of the

spectrum of the incoherent wave obtained by numerical simulations of the NLS
equation (33). Here we considered the highly incoherent limit, (! % (!g (tc !
!R). We see that the low frequency part of the spectrum exhibits a self-steepening
process, whose wave-breaking is ultimately regularized by the development of
large amplitude and rapid spectral oscillations typical of a dispersive shock wave.
This behavior has been described by deriving a singular integro-differential kinetic
equation from the WT Langmuir equation in the long-range regime (!R % !0):

!2R@zn! D ".1C *2/
%
n!@!n! " 1

!R
n!H @2!n!

&
; (38)

Fig. 8 Incoherent dispersive shock waves with a Raman-like response function: (a) Numerical
simulation of the NLS equation (33): The stochastic spectrum j Q j2.!; z/ develops an incoherent
shock at z ' 1200Lnl (!R D 3!0; * D 1/. Snapshots at z D 1040Lnl (b), z D 1400Lnl (c):
NLS (33) (gray) is compared with WT Langmuir equation (35) (green), singular kinetic equation
[Eq. (38)] (dashed–red), and initial condition (solid black). (d) First five maxima of n! vs z in
the long-term post-shock dynamics: the spectral peaks keep evolving, revealing the non-solitonic
nature of the incoherent dispersive shock wave. Insets: (b) gain spectrum g.!/, note that (!g is
much smaller than the initial spectral bandwidth of the wave [black line in (b)]. (c) corresponding
temporal profile j .t/j2 showing the incoherent wave with stationary statistics. Source: from [100]
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where the singular operatorH refers to the Hilbert transform,

H f .!/ D 1

#
P

Z C1

"1

f .! " u/
u

du;

where we recall that P denotes the Cauchy principal value. This kinetic equation
describes the essence of incoherent dispersive shock waves: The leading-orderBurg-
ers term describes the formation of the shock, which is subsequently regularized by
the nonlinear dispersive term involving the Hilbert operator. We remark in Fig. 8
that a quantitative agreement is obtained between the simulations of Eq. (38) and
those of the NLS and WT Langmuir equations, without adjustable parameters.
Also note that in the presence of a strong spectral background noise, the derived
singular equation coincides with the Benjamin-Ono equation, which is a completely
integrable equation [100].

3.3.2 Exponential Response: Spectral Collapse Singularity

As described by the general theory reported in [100], the previous scenario of
incoherent dispersive shock waves changes in a dramatic way when the response
function is not continuous at the origin, as it occurs for a purely exponential response
function, NR.t/ D exp."t=!R/=!R. In this case, considering the limit !R=!0 % 1, the
singular kinetic equation takes the form:

!R@zn! D ""n!H n! " "

!R
n!@!n! C "

2!2R
n!H @2!n!: (39)

Interestingly, the first term of (39) was considered as a one-dimensional model of
the vorticity formulation of the 3D Euler equation of incompressible fluid flows
[102]. In this work, the authors found an explicit analytical solution to the equation
!R@zn! D ""n!H n! . For a given initial condition n!.z D 0/ D n0! the solution
has the form

n!.z/ D
4n0!#

2C ."z=!R/H n0!
$2 C ."z=!R/2.n0!/2

: (40)

There is blow up if and only if there exists ! such that n0! D 0 and H n0! < 0.
Then the blow up distance zc is given by zc D "2!R=Œ"H n0!D!0 ), where !0 is such
that n0!0 D 0. It can be shown [100] that, if the initial condition decays faster than
a Lorentzian, the spectrum exhibits a collapse-like dynamics, which is ultimately
arrested by a small background noise. In this process, the spectrummoves at velocity
Qc, while its peak amplitude increases according to $ 4!2R=Œ"

2z2n0.! D Qcz/). This
property is confirmed by the simulations of the NLS equation, as illustrated in Fig. 9.
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Fig. 9 Inhibition of
incoherent shocks with an
exponential response
function. Without background
spectral noise the spectrum
exhibits a collapse-like
behavior: NLS (33), gray;
singular kinetic equation (39),
dashed–red (!R D 5!0). The
dark continuous line denotes
the theoretical behavior
# 1=Œz2n0.! D Qcz/), with
Qc D ""N=!R , predicted from
the first term of equation (39)
and the corresponding
analytical solution (40).
Source: from [100]

4 Wave Turbulence Kinetic Equation

In the previous Sects. 2, 3 we considered the Vlasov and WT Langmuir equations
which are quadratic nonlinear equations whose derivations refer to a first-order
closure of the hierarchy of moments equations. These kinetic equations are formally
reversible and describe, in particular, the spontaneous formation of incoherent
soliton structures. Let us now consider the following two limits. (1) In the spatial
domain the limit of homogeneous statistics of a broadband incoherent wave, so that
the Vlasov equation becomes irrelevant, as commented through Fig. 2 in Sect. 1. (2)
In the temporal domain the limit of stationary statistics and instantaneous response
of the nonlinearity, so that the WT Langmuir equation becomes irrelevant, as
commented through Fig. 3. In both limits, we thus need to close the hierarchy of
the moments equations to the second-order. The analysis reveals that in this case
the appropriate formalism for the description of the random wave is provided by the
(Hasselmann) WT kinetic equation, which is a cubic nonlinear equation.

4.1 Kinetic Equation in a Waveguide

4.1.1 Properties of the Kinetic Equation

The WT description of a random wave has been essentially developed in the ideal
situation in which the random wave is supposed ‘infinitely extended in space’,
an assumption that may be considered as justified when its correlation length is
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much smaller than the size of the whole beam. However, the propagation of an
incoherent localized beam is eventually affected by incoherent diffraction, which
inevitably affects the processes of thermalization and condensation. In the following
we derive the WT kinetic equation by considering the propagation of the incoherent
beam in an optical waveguide. In the guided configuration, incoherent diffraction is
compensated by a confining potential, thus allowing to study the thermalization and
the condensation of the optical field over large propagation distances. Accordingly,
we consider the NLS equation with a confining potential V.x/ and we formulate
a WT description of the random wave into the basis of the eigenmodes of the
waveguide (i.e., potential’s eigenmodes), instead of the usual plane-wave Fourier
basis relevant to statistically homogeneous random waves [V.x/ D 0] [135].

The NLS equation with a confining potential V.x/ reads

i@z D "˛r2 C V.x/ " " j j2 : (41)

Note that in this section we deal essentially with a defocusing nonlinearity," < 0 (so
as to ensure the stability of the homogeneous plane-wave solution, i.e., condensate).
We recall that this NLS equation conserves the power of the optical field, N DR
j j2 dx. The NLS equation also conserves the total energy (Hamiltonian) H D

EC U, which has a linear contribution,

E D
Z
˛jr j2 dx C

Z
V.x/j j2 dx; (42)

and a nonlinear contribution,

U D ""
2

Z
j j4 dx: (43)

The potential V.x/ models the waveguide in which the optical beam propagates.
If one considers a multimode optical fiber, the waveguide potential exhibits a
revolution symmetry with respect to the axis of propagation of the beam. Then
a direct correspondence exists between V.jxj/ and the transverse refraction index
profile of the waveguide. For a graded-indexmultimode fiber, we have V.jxj/ D qx2

if jxj & a and V.jxj/ D V0, if jxj ' a, where q D V0=a2 [135]. This potential
is schematically illustrated in Fig. 10. In this way the finite depth of the potential
V0 < 1 introduces an effective frequency cut-off for the classical wave. This is
due to the fact that the nonlinear coupling among bounded and unboundedmodes is
negligible, because of the poor spatial overlap of the corresponding modes.1

1The efficiency of the generation of unbounded modes (! $ V0) is several orders of magnitude
smaller than the conversion efficiency between bounded modes (! $ V0), so that their excitations
can be neglected [for details see Appendix 4 in [135]].
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Fig. 10 Refractive index profile n.x/ of an optical waveguide (graded-index fiber) (a), and corre-
sponding confining potential V.x/ in the NLS equation (41) (b). The finite depth of the potential
introduces an effective frequency cut-off for the classical wave problem. The existence of an
inhomogeneous (e.g., parabolic) potential reestablishes wave condensation in the thermodynamic
limit in 2D, in analogy with quantum Bose-Einstein condensation

4.1.2 Basic Considerations

We assume that the initial random field  .x; z D 0/ can be expanded into the
orthonormal basis of the eigenmodes of the linearized NLS equation [Eq. (41) with
" D 0],

 .x; z D 0/ D
X

m

cm.z D 0/ um.x/; (44)

where the index fmg labels the two numbers .mx;my/ needed to specify the mode
that um.x/ refers to. The modal coefficients are random variables uncorrelated with
one another,

˝
cm.z D 0/c!

n .z D 0/
˛
D nm.z D 0/ ıKn;m, ı

K
n;m being the Kronecker’s

symbol. We remark that this formalism is also known as the Karhunen-Loeve
expansion [118]. The eigenmodes um.x/ are orthonormal,

R
um.x/ u!

n .x/ dx D ıKn;m,
and satisfy the ‘stationary’ (i.e., z-independent) Schrödinger equation

ˇmum.x/ D "˛r2um.x/C V.x/um.x/; (45)

with the corresponding eigenvalues ˇm.
As it propagates through the waveguide the incoherent field  .x; z/ can be

represented as a superposition of modal waves with random coefficients cm.z/,
which denotes the respective modal occupancy:

 .x; z/ D
X

m

cm.z/ um.x/ exp."iˇmz/: (46)

In the linear regime of propagation " D 0, we have cm.z/ D cm.z D 0/. In
the nonlinear regime, we will follow in the next section the procedure of the
random phase approximation underlying the WT theory [30, 39]. In particular, the
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modal occupancies cm.z/ are still random variables uncorrelated with one another,˝
cm.z/c!

n .z/
˛
D nm.z/ ıKn;m. The modal occupancies nm.z/ satisfy a coupled system of

nonlinear equations that we shall describe below.
The average local power of the field is

˝
j .x; z/j2

˛
D P

m nm.z/ jum.x/j2, and a
spatial integration over x gives the total average power of the beam

N D
X

m

nm.z/; (47)

which is a conserved quantity. The parameter nm.z/ thus denotes the amount of
power in the mode fmg. It can be obtained by projecting the field  .x; z/ on the
corresponding eigenmode um.x/,

nm.z/ D
˝ ˇ̌ˇ̌
Z
 .x; z/ u!

m.x/ dx
ˇ̌
ˇ̌
2 ˛

D
˝
jcm.z/j2

˛
: (48)

Wave condensation takes place when the fundamental mode becomes macroscopi-
cally populated, i.e., when n0 % nm for m ¤ 0 [136, 137].

In the same way, by substituting the modal expansion of the incoherent field
 .x; z/ into the expression of the linear energy (42), one obtains

E.z/ D
X

m

Em.z/ D
X

m

nm.z/ ˇm: (49)

The total linear energy is the sum of the modal energies weighted by the correspond-
ing modal occupancy nm.z/.

4.1.3 Wave Turbulence Kinetic Equation in a Waveguide

We now study the influence of a weak nonlinear coupling among the modes, so that
the modal occupancies defined by (48) depend on z, nm.z/. This weakly nonlinear
regime precisely corresponds to the regime investigated numerically in Sect. 4.3.7.
Substituting the modal expansion (46) into the NLS equation (41), one obtains

i@zam D ˇmam " "
X

p;q;s

Wmpqsapa!
q as (50)

where am.z/ D cm.z/ exp."iˇmz/, and the fourth-order tensor is defined by the
overlap integral

Wmpqs D
Z

u!
m.x/up.x/u

!
q .x/us.x/ dx: (51)
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Equation (50) conserves the total power N DP
m jamj2 and the Hamiltonian

H D
X

m

ˇmjamj2 " "

4

X

m;p;q;s

#
Wmpqsa!

mapa
!
q as CW!

mpqsama
!
p aqa

!
s

$
: (52)

Starting from Eq. (50) and following the procedure of the random phase approx-
imation [30, 39], we derived in [135] the irreversible kinetic equation governing
the nonlinear evolution of the modal occupancies. For this purpose, we take the
continuum limit of the discrete sum over the modes fmg, which is justified when one
deals with a large number of modes, i.e., V0=ˇ0 % 1. The substitution of the discrete
sums by continuous integrals also refers to the so-called ‘semiclassical description
of the excited states’ [137]. Its validity implies that the relevant excitation energies
contributing to the discrete sum are much larger than the level spacing ˇ0, i.e., the
spreading of the modal occupancies is much larger than ˇ0. In [135], the following
kinetic equation governing the irreversible evolution of the modal occupancies has
been derived:

@z Qn".z/ D
4#"2

ˇ60

•
d"1d"2d"3ı. Q̌"1 C Q̌

"3 " Q̌
"2 " Q̌

"/j QW""1"2"3 j2

(Qn" Qn"1 Qn"2 Qn"3

#
Qn"1

" C Qn"1
"2

" Qn"1
"1

" Qn"1
"3

$

C8#"
2

ˇ20

Z
d"1ı. Q̌"1 " Q̌

"/j QU""1 . Qn/j2.Qn"1 " Qn"/; (53)

where

QU""1 . Qn/ D
1

ˇ20

Z
d"0 QW""1"0"0 Qn"0 : (54)

The functions with a tilde refer to the natural continuum extension of the corre-
sponding discrete functions, i.e., Qnk.z/ D nŒk=ˇ0).z/, Q̌

" D ˇŒ"=ˇ0), QW""1"2"3 D
WŒ"=ˇ0)Œ"1=ˇ0)Œ"2=ˇ0)Œ"3=ˇ0) and so on, where Œx) denotes the integer part of x.

The kinetic equations (53), (54) differs from the conventional WT kinetic
equation in several respects. First, we remark the presence of the new second term
in Eq. (53). Note that this term vanishes when the occupation of a mode depends
only on its energy Q̌. Actually, this term enforces an isotropization of the mode
occupancies amongst the modes with the same modal energy. Another important
property of the kinetic equation (53) is the presence of the function QW""1"2"3 in the
collision term. We will discuss this term through the analysis of some particular
examples of waveguide configurations.
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4.1.4 Application to Specific Examples

The kinetic equations (53), (54) is general and, in principle, relevant to different
types of waveguide configurations. We briefly comment this aspect by considering
different concrete examples.

We first comment the parabolic potential relevant to graded-index multimode
fibers. It is also known to play an important role in experiments involving weakly
interacting Bose gases [137]. In the ideal parabolic limit (V0 ! 1), um.x/ refer to
the normalized Hermite-Gaussian functions with corresponding eigenvalues ˇm D
ˇmx;my D ˇ0.mx C my C 1/,

umx;my.x; y/ D ,.#mxŠmyŠ 2
mxCmy/"1=2 Hmx.,x/Hmy.,y/ expŒ",2.x2 C y2/=2);

(55)

where , D .q=˛/1=4. In the continuum limit, we have Q̌
" D ,x C ,y C ˇ0. This

expression plays the role of a generalized anisotropic dispersion relation, whose
wave vector reads " D ˇ0.mx;my/. The parabolic potential will be discussed in
more detail below, in relation with wave condensation in a waveguide in Sect. 4.3.7.

An other example that can easily be illustrated is the circular waveguide of radius
R, whose index of refraction is supposed to be constant for jxj < R (‘step-index’
waveguide). We assume the waveguide to be of infinite depth for simplicity. The
field can be expanded into the orthonormal basis of the Bessel functions, .x; z/ DP

l;s cl;s.z/ul;s.x/ exp."iˇl;sz/, with

ul;s.x/ D
1

q
#R2J2lC1.xl;s/

Jl.xl;sjxj=R/ exp.il./; (56)

where Jl.x/ is the Bessel function of the first kind, xl;s is the sth zero of Jl.x/, and
.jxj; ./ are the polar coordinates. With these notations, the eigenvalues read ˇl;s D
˛x2l;s=R

2. In a similar way as above, the passage to the continuum limit can be done
by defining the wave vector " D ˇ0;1.l; s/, which thus leads to the kinetic equation
for the evolution of Qn".z/. Note that with this parametrization of the wave vectors "
the density of states '.ˇ/ is uniform.

We finally show that Eq. (53) recovers the traditionalWT equation when the field
is expanded into the usual plane-wave basis with periodic boundary conditions

umx;my.x/ D
1

L
expŒ2i#.mxxC myy/=L); (57)

where L stands for the box size and k D 2#
L .mx;my/ the usual wave-vector. This

expansion is relevant to the homogeneous problem, i.e., in the absence of the
confining potential [V.x/ D 0]. It models the evolution of the random wave in
the presence of a box-shaped confining potential, V.x/, whose frequency cutoff,
kc D #=dx mimics the finite depth of the waveguide, V0 $ ˛k2c . With this plane-
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wave modal expansion, one obtains j QW""1"2"3 j2 D .2#/2

L6 ı.k1Ck3"k2"k/. Because
of the Dirac ı-function, the second term in the kinetic equation (53) vanishes, which
thus leads to the standard form of the WT kinetic equation

@z Qnk.z/ D CollŒQnk); (58)

with the collision term

CollŒQnk) D ,0"
2

•
dk1dk2dk3ı .!k1 C !k3 " !k2 " !k/ ı.k1C k3 " k2 " k/Q. Qn/;

(59)
where ,0 D 4#=.2#/2, the dispersion relation is !.k/ D ˛k2, and

Q. Qn/ D Qnk Qnk1 Qnk2 Qnk3
#
Qn"1
k C Qn"1

k2 " Qn"1
k1 " Qn"1

k3

$
: (60)

As discussed in the Introduction, this kinetic equation can be derived by making
use of a rigorous mathematical technique based on a multi-scale expansion of the
cumulants of the nonlinear wave, as originally formulated in [40–42], and recently
studied in more details through the analysis of the probability distribution function
of the random field [33].

It is interesting to note that in the 1D case, the degenerate phase-matching
conditions lead to a vanishing collision term in Eq. (59). This aspect has been
discussed in [138], in relation with integrable turbulence, a subject of growing
interest [29, 139]. Notice that the presence of a nonlocal nonlinearity also leads to
a vanishing collision term in 1D—though contrary to the integrable NLS case, the
hierarchy of the moments equations can be closed to the next order in the presence
of nonlocality. Instead of the usual four-wave resonant interaction [Eq. (58)], one
obtains in this case a six-wave resonant interaction process. We refer the reader to
[68] for a detailed discussion of this interesting six-wave nonlinear dynamics.

4.2 Thermalization and Nonequilibrium
Kolmogorov-Zakharov Stationary States

We will describe the essential properties of the WT kinetic equation by considering
the standard version of the homogeneous WT kinetic equation, i.e., Eqs. (58)–(60)
[with V.x/ D 0], while the influence of the potential trap will be discussed in
Sect. 4.3.7. Note that, to avoid cumbersome notations, in the following we drop the
tilde notation adopted here above [in particular we substitute the notation Qn".z/ with
the standard notation nk.z/]. We will also generalize the presentation of the results
to a spatial dimension d D 2 or d D 3 in the framework of the dimensionless NLS
equation

i@z D "r2 C aj j2 : (61)
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For d D 2, the spatial variable has been normalized with respect to the healing
length & D .˛Lnl/1=2 (see Sect. 2). In the same way, for d D 3 the additional
temporal variable has been normalized with respect to the healing time !0 D
.jˇjLnl/1=2 (see Sect. 3). The variables can be recovered in real units through the
transformation: z ! zLnl; t ! t!0; x ! x&;  !  

p
', where we recall that

' D N=Ld denotes the wave intensity (see Sect. 2). Note that in this section we
deal essentially with a defocusing nonlinearity, so as to ensure the stability of the
homogeneous plane-wave solution (‘condensate’). The parameter a D "sign."/
then denotes the sign of the nonlinearity, a > 0 (a < 0) for a defocusing (focusing)
nonlinearity. We keep in mind that for d D 3 the Laplacian operator in Eq. (61)
accounts for both diffraction and dispersion effects, r2 D @xx C @yy C @tt, where we
implicitly assumed that the wave propagates in the anomalous dispersion regime,
so that chromatic dispersion acts in the same way as diffraction effects, and thus
ensures the stability of the monochromatic plane-wave solution in the defocusing
regime [140].

4.2.1 Thermodynamic Rayleigh-Jeans Spectrum

The WT kinetic equation has a structure analogous to the celebrated Boltzmann’s
equation, which is known to describe the evolution of a dilute classical gas far
from the equilibrium state [141]. For this reason the kinetic equation (58) exhibits
properties similar to those of the Boltzmann’s equation. It conserves the total power
(or quasi-particle number) of the field

N D Ld
Z

nk.z/dk; (62)

the momentum

P D Ld
Z

knk.z/dk; (63)

and the kinetic (linear) energy

E D Ld
Z
!.k/ nk.z/dk: (64)

Let us remark that Eq. (58) does not conserve the total energy H, but only its
linear contribution E. This results from the fact that the nonlinear energy has a
negligible contribution in the perturbation expansion procedure of the kinetic theory
(jU=Ej ! 1).

In analogy with the Boltzmann’s equation, the kinetic wave equation is not
reversible with respect to the propagation distance z. The irreversible character of
Eq. (58) is expressed by the H-theorem of entropy growth, dS=dz ' 0, where the
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nonequilibrium entropy reads

S.z/ D Ld
Z

logŒnk.z/)dk: (65)

As in standard statistical mechanics, the thermodynamic equilibrium state is
determined from the extremum of entropy, subject to the constraint of conservation
of kinetic energy (64), momentum (63) and power (62). The method of the Lagrange
multipliers thus gives the thermodynamic Rayleigh-Jeans equilibrium distribution

neqk D T
!.k/ " k:v " /

: (66)

The parameters T;/ and v are in principle arbitrary and refer to the temper-
ature, chemical potential and mean velocity, by analogy with thermodynamics.
We underline that there exist a one-to-one correspondence between .T;/; v/ and
the conserved quantities .E;N;P/. This means that the evolution of the wave is
described in the framework of the microcanonical statistical ensemble, in contrast
with the conventional canonical treatment using a thermal bath [137]. Note that
the equilibrium distribution (66) yields an exactly vanishing collision term (58),
CollŒneq) D 0. This means that once the spectrum has reached the equilibrium
distribution (66), it no longer evolves during the propagation, @znk D 0.

In many cases the equilibrium distribution is spherically symmetric and the
Rayleigh-Jeans distribution takes the following simplified form

neqk D T
!.k/ " / : (67)

This equilibrium spectrum is Lorentzian-shaped and the chemical potential charac-
terizes the correlation length of the field at equilibrium, $eqc $ 1=

p"/. However,
we will see that the Langrange multiplier associated to momentum conservation
plays an essential role for the study of multiple interacting wave-packets [142],
or in the presence of higher-order dispersion effects that lead to an asymmetric
supercontinuum equilibrium spectrum, see Sect. 5.2.

4.2.2 Nonequilibrium Kolmogorov-Zakharov Stationary Spectra

As discussed in the introduction, the process of thermalization is physically relevant
when one considers a Hamiltonian wave system, which can be considered as an
‘isolated’ system. Conversely, when one considers a dissipative system which is
driven far from equilibrium by an external source, then it no longer relaxes toward
the Rayleigh-Jeans equilibrium distribution (66). A typical physical example of
forced system could be the excitation of hydrodynamic surface waves by the wind.
In general, the frequency-scales of forcing and damping differ significantly. The
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nonlinear interaction leads to an energy redistribution among the frequencies and an
important problem is to find the stationary spectra of the system.

V.E. Zakharovwas the first to realize that the kinetic equation of weak-turbulence
theory also admits nonequilibrium stationary solutions [30, 143]. Contrary to the
Rayleigh-Jeans equilibrium distribution, these stationary solutions carry a non-
vanishing flux of conserved quantities, i.e., the energy and the particle fluxes.
Such nonequilibrium stationary distributions are the analogue of the Kolmogorov
spectra of hydrodynamic turbulence proposed by Kolmogorov in his theory in 1941.
Zakharov used a clever set of ‘conformal transformations’ to show that the kinetic
equation admits finite flux spectra as exact stationary solutions.

The formation of these nonequilibrium stationary solutions requires the existence
of a permanent forcing or damping in the system, a feature that has been widely
studied theoretically [30, 32, 33] (also see [144, 145]), and experimentally in
different circumstances (e.g., surface waves, spin waves, surface tension waves,
capillary waves, elastic waves). In optics, an experiment aimed at observing these
nonequilibrium stationary spectra has been reported in [67] and reviewed in [68].
In this case, the optical system is forced at the entry of the nonlinear medium
(z D 0), and the formation of the nonstationary spectrum was observed in the
transient propagation of the optical wave. Actually, in optics the propagation length
z plays the role of time, so that the observation of a permanent nonequilibrium
stationary state would require a forcing and a damping at any z. This situation is
rather artificial in optics, so that, so far, Kolmogorov-Zakharov spectra did not play
a major role in nonlinear optics experiments. For this reason, we will not discuss
such nonequilibrium stationary states and refer the reader to [30, 33, 43] for details.
For concreteness, we just give here the expressions of the nonequilibrium stationary
solutions

nQk D CQ
Q1=3

k˛Q
(68)

nPk D CP
P1=3

k˛P
(69)

where Q and P are the particle and energy fluxes in frequency space and CP;CQ

are prefactors. These solutions are exact stationary solutions of the WT kinetic
equation (58). The exponents ˛Q and ˛P depend on the scaling of the dispersion
relation and on the explicit nonlinearities. Considering the particular example of the
NLS equation (61), one obtains ˛Q D d " 2=3 and ˛P D d, where d denotes the
spatial dimension.

It is interesting to note that the process of relaxation to a stationary spectrum
can be described by means of self-similar solutions of the WT kinetic equation. In
substance, the non-stationary solution describes a self-similar front that propagates
in frequency-space and which leaves a quasi-stationary state in its wake. This self-
similar relaxation solution can be obtained for both equilibrium and nonequilibrium
Kolmogorov-Zakharov stationary solutions of the kinetic equation. We refer the
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reader to [38, 146–148] for more details concerning the properties of these self-
similar solutions. So far, these non-stationary solutions have not been exploited in
the context of optical waves.

4.3 Wave Condensation

The phenomenon of wave thermalization can be characterized by a self-organization
process, in the sense that it is thermodynamically advantageous for the system
to generate a large-scale coherent structure in order to reach the most disordered
equilibrium state. A remarkable example of this counterintuitive phenomenon is
provided by wave condensation [33, 53, 55, 57, 135, 149], whose thermodynamic
equilibrium properties are analogous to those of quantum Bose-Einstein conden-
sation [55]. Classical wave condensation can be interpreted as a redistribution
of energy among different modes, in which the (kinetic) energy is transferred to
small scales fluctuations, while an inverse process increases the power (i.e., number
of ‘particles’) into the lowest allowed mode, thus leading to the emergence of
a large scale coherent structure [55, 57, 149, 150]. It is important to note that
the phenomenon of wave condensation has been extended in this last decade
to optical cavity systems [58–61, 64, 65, 151], which raises interesting ques-
tions on the relation between laser operation and the Bose-Einstein condensation
of photons [66, 152–154]. These aspects will be discussed in more details in
Sect. 5.

4.3.1 Wave Condensation in the Cubic NLS Equation

4.3.2 3D: Condensation in the Thermodynamic Limit

To describe the thermodynamic equilibrium properties of the condensation process
in three dimensions it is important to point out some preliminary observations. We
remark that the distribution (67) realizes the maximum of the entropy SŒnk) and
vanishes exactly the collision term, CollŒneqk ) D 0. However, note that Eq. (67) is
only a formal solution, because it does not lead to converging expressions for the
energy E and the power N in the limits k ! 1, a feature which is usually termed
‘ultraviolet catastrophe’. The usual way to regularize such unphysical divergence is
to introduce an ultraviolet cut-off kc. Note that a frequency cut-off appears naturally
in the numerical simulation through the spatial discretization (dx) of the NLS
equation (61), kc D #=dx. As will be discussed in detail in Sect. 4.3.7, an effective
physical frequency cut-off arises naturally in the guided wave configuration of the
optical field.
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Following the procedure of [55], one can combine Eqs. (62)–(64) and (67), which
gives the expression for the power of the field at equilibrium

N
L3

D 4# Tkc

'
1 "

p"/
kc

arctan
(

kcp"/

)*
; (70)

E
L3

D 4# Tk3c
3

"
1C 3

/

k2c
C 3

("/
k2c

) 3
2

arctan
(

kcp"/

)#
: (71)

An inspection of Eq. (70) reveals that / tends to 0" for a non-vanishing temperature
T, keeping a constant power density N=L3. This means that the correlation length
$c diverge to infinity [see Eq. (67)]. By analogy with the Bose-Einstein transition in
quantum systems, such a divergence of the equilibrium distribution at k D 0 reveals
the existence of a condensation process.

As in standard Bose-Einstein condensation, the fraction of condensed power
N0=N vs the temperature T (or the energy E), may be calculated by setting / D 0
in the equilibrium distribution (67). Note that the assumption / D 0 for T & Tc can
be justified rigorously in the thermodynamic limit (i.e., L ! 1, N ! 1, keeping
N=L3 constant). One readily obtains .N " N0/=L3 D 4#Tkc and E=L3 D 4#Tk3c=3,
which gives

N0=N D 1 " E=Ec; (72)

where the critical energy reads Ec D Nk2c=3. Alternatively, the fraction of condensed
power may be expressed as a function of the temperature,

N0=N D 1 " T=Tc; (73)

where Tc D 3Ec=.4#L3k3c/. As in standard Bose-Einstein condensation,N0 vanishes
at the critical temperature Tc, and N0 becomes the total number of particles as T
tends to 0.

4.3.3 Weakly Nonlinear Regime: Weak Condensate Amplitude

The linear behavior of n0 vs E in Eq. (72) is consistent with the results of numerical
simulations. However note that Eq. (72) is derived for a spherically symmetric
continuous distribution of nk, while in the numerics the integration is discretized.
A discretization of Eq. (72) leads to a better agreement between the theory and
the numerical simulations of Eq. (61) [55]. More precisely, making use of wave
turbulence theory, one may express the averaged total energy of the field hHi in
terms of the condensed particles n0, which gives [57]

hHi
L3

D .n " n0/

P0
k 1P0
k
1
k2

C a
(
n2 " 1

2
n20

)
; (74)
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Fig. 11 Condensate fraction n0=n vs total energy density hHi =Ld . Points (diamond) refer to
numerical simulations of the normalized NLS Eq. (61) for d D 3;N" D 323 modes (a), and
d D 2;N" D 322 modes (b) [N=Ld D 1; dx D 1 (kc D #)]. Each numerical point corresponds to
a time average over 3000 time units once the equilibrium state is reached. The red line corresponds
to the condensation curve in the presence of a small condensate amplitude [WT regime, Eq. (74)],
while the blue line in the presence of a high-condensate amplitude [Bogoliubov regime, Eq. (75)].
The green line in (b) refers to the condensation curve for a non-vanishing chemical potential,
[Eq. (76), (77)]. The bars denote the amplitude of the fluctuations of n0=n at equilibrium. Source:
from [57]

where
P0

k denotes the sum over the whole frequency space which excludes the
mode k D 0 (n0 # N0=Ld, n # N=Ld). This expression is plotted in Fig. 11 (red
line), and it is in good agreement with the numerical simulations in the regime of
weak condensation (typically n0 < 0:3).

4.3.4 Bogoliubov Regime: Strong Condensate Amplitude

To describe the regime of strong condensation, one has to take into account the
“interactions between the quasi-particles”. To include the nonlinear (interaction)
contribution, the Bogoliubov’s expansion procedure of a weakly interacting Bose
gas has been adapted to the classical wave problem. The interested reader may find
the details of the analysis in [55, 57]. One obtains the following closed relation
between the total energy and the fraction of condensed power

hHi
L3

D .n " n0/

P0
k 1P0

k
k2Can0

k4C2an0k2
C a
2

!
n2 C .n " n0/2

"
: (75)

In the presence of high-condensate amplitudes, this expression is in quantitative
agreement with the numerical simulations of the NLS equation (61), without any
adjustable parameter (see Fig. 11).
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4.3.5 2D: Condensation Beyond the Thermodynamic Limit

Let us now consider the condensation process in two dimensions. The analysis
exposed above in 3D may readily be applied to 2D, which givesN=L2 D #Tlog.1"
k2c=//. It becomes apparent from this expression that, for a fixed power density
N=L2, / reaches zero for a vanishing temperature T. In complete analogy with the
Bose-Einstein condensation, this indicates that condensation no longer takes place
in 2D. In other terms, the critical temperature Tc tends to zero because of the infrared
divergence of the equilibrium distribution neqk . Actually, this result is rigorously
correct in the thermodynamic limit (i.e., L ! 1, N ! 1, keeping n # N=L2

constant). Nevertheless, for situations of physical interest in which N and L are
finite, wave condensation is re-established in two dimensions, a property confirmed
by the numerical simulations [57]. Indeed, one can calculate the critical temperature
for condensation in two dimensions, Tc D nL2=

P0
k 1=k

2 [150]. This expression
reveals that the discrete sum in frequency space provides a non-vanishing value of
Tc, while Tc tends to zero in the thermodynamic limit, because of the (infrared)
logarithmic divergence of the continuous integral

R
dk=k2.

In complete analogy with quantum Bose-Einstein condensation, for a finite
surface of the optical beam, wave condensation occurs for a non-vanishing value
of the chemical potential, / ¤ 0. The condensation curve may thus be derived
without the implicit assumption / D 0. The interested reader may find the details
in [57]. One obtains

hHi .//
L2

D .n " n0/

P0
k

k2

k2"/P0
k

1
k2"/

C a
(
n2 " 1

2
n20

)
; (76)

n0.//
n

D 1

"/
1

P
k

1
k2"/

: (77)

We plotted in Fig. 11b the condensate fraction n0=n [Eq. (77)] vs the energy
density hHi=L2 [Eq. (76)], as a parametric function of /. It reveals that a non-
vanishing chemical potential makes the transition to condensation “smoother”, with
the appearance of a characteristic “tail” in the condensation curve. Such a “tail”
progressively disappears as the surface L2 increases, so that the condensation curve
n0=n vs hHi=L2 tends to the expression derived in the thermodynamic limit, i.e.,
Eq. (76) with/ D 0 recovers Eq. (74). Let us remark that the theory is in quantitative
agreement with the numerical simulations of the NLS equation (61), as illustrated
in Fig. 11.

It results that the critical behaviour of the two-dimensional condensation curve
looks similar to that of a genuine “phase transition”. Note however that, strictly
speaking, “phase transitions” only occur in the thermodynamic limit, so that such
terminology is not appropriate for the two dimensional problem considered here.
Nevertheless, if one considers the macroscopic occupation of the fundamental mode
k D 0 as the essential characteristic of condensation, one may say that wave
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condensation do occur in 2D. It is important to note that for d D 2, nearby the
transition to condensation some clear evidence of a Berezinskii-Kosterlitz-Thouless
transition has been provided, with an algebraic decay of the correlation function of
the field [155].

4.3.6 Condensation Beyond the Cubic NLS Equation: Nonlocal and
Saturable Nonlinearities

The phenomenon of classical wave condensation has been essentially studied in the
framework of the NLS equation in the presence of a pure cubic Kerr nonlinearity.
In many cases, however, realistic optical experiments are not modelled by a cubic
Kerr nonlinearity. In a recent work [149], it has been shown that wave condensation
can take place with more complex nonlinearities. The examples of the nonlocal
nonlinearity and of the saturable nonlinearity were considered in [149], which
refer to natural extensions of the cubic nonlinearity [140]. It was shown that
the generalized NLS equation accounting either for a nonlocal or a saturable
nonlinearity describes a process of wave condensation completely analogous to that
described in the framework of the cubic Kerr nonlinearity. Following the procedure
of the previous Sect. 4.3.1, analytical expressions of the condensate fraction are
derived in both the weakly and the strongly nonlinear regimes of propagation, and a
quantitative agreement is obtained with the simulations [149].

4.3.7 Condensation in a Waveguide

In the previous Sect. 4.3.1 we have considered wave condensation in the ideal
limit in which the incoherent wave is expanded in the plane-wave Fourier basis
with periodic boundary conditions. As discussed above, this approach of wave
condensation requires the introduction of a frequency cut-off in the theory [55, 57],
so as to regularize the ultraviolet catastrophe inherent to classical nonlinear waves.
From the physical point of view, such a frequency cut-off is not properly justified
for classical waves. We will see that an effective frequency cut-off arises naturally
in the guided-wave configuration of the optical beam. This frequency cut-off plays
a key role in wave condensation (see Sect. 4.3.1), since it prevents the divergence
of the critical energy for condensation [135] [see Eq. (72)]. Moreover, we have
also seen that in 2D, wave condensation does not occur in the thermodynamic
limit [55, 57]. We will see that a parabolic waveguide configuration reestablishes
wave condensation in two dimensions, in analogy with quantum Bose-Einstein
condensation [137]. Accordingly, wave condensation and thermalization can be
studied accurately through the analysis of the two-dimensional spatial evolution of
a guided optical beam.
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4.3.8 Rayleigh-Jeans Distribution in a Waveguide

The starting point is the WT kinetic derived in Sect. 4.1 into the basis of the
eigenfunctions of the potential V.x/. Here we follow [135] to describe wave
condensation in an optical waveguide. The kinetic equations (53), (54) conserves
the power N D ˇ"2

0

R
d"n" and the energy E D ˇ"2

0

R
d"ˇ"n", where we recall

that ˇ" D ,x C ,y C ˇ0. Contrarily to the homogeneous WT kinetic equation (58),
the kinetic equation (53), (54) does not conserve the momentum, a feature which
is consistent with the fact that the potential V.x/ prevents momentum conservation
in the NLS equation (41). The kinetic equations (53), (54) exhibits a H-theorem
of entropy growth, dS =dz ' 0, where the nonequilibrium entropy reads S .z/ D
ˇ"2
0

R
d" ln.n"/. The Rayleigh-Jeans equilibrium state neq" realizing the maximum

of entropy, subject to the constraints of conservation of E and N, is obtained by
introducing the corresponding Lagrange’s multipliers,

neq" D T
ˇ" " / : (78)

Note that, in a way akin to the usual Rayleigh-Jeans distribution (67), the tempera-
ture denotes the amount of energy E" that is equipartitioned among the modes of the
waveguide. Indeed, in the tails of the equilibrium distribution (78), i.e., ˇ" % j/j,
we have E" D ˇ" n

eq
" $ T [see Eq. (49)]. Also note that the equilibrium state (78)

cancels both collisions terms of the kinetic Eqs. (53), (54).
This equilibrium property of energy equipartition has been confirmed by the

numerical simulations of the NLS equation (41) with a truncated parabolic potential,
as illustrated in Fig. 12. To be concrete, in the numerical simulations we considered
a realistic graded-index multimode optical fiber, with a radium of 150m and
an index difference of n1 " n0 D 10"3 (see Fig. 10), and a refractive index of
reference n0 D 1:45. With these parameters the number of modes is N! D 66.
It is important to note that silica fibers exhibit a focusing nonlinearity, " < 0 in
Eq. (41). The incoherent beam may thus exhibit filamentation effects (i.e., speckle
beam fragmentation) during its propagation in the fiber. However, as revealed by
the numerical simulations, the beam does not exhibit filamentation effects because
we consider the weakly nonlinear regime of propagation, in which the linear energy
dominates the nonlinear energy, U=E ! 1. The weakly nonlinear condition can
easily be satisfied in the framework of the considered optical fiber system, since the
nonlinearity of silica fibers is known to be relatively small as compared to other
types of commonly used nonlinear optical media. In the numerical simulations,
the following standard value of the nonlinear silica coefficient was considered
n2 D "2 ( 10"80m2/W, together with a power of the beam of 94 kW.
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Fig. 12 Condensation and thermalization in a trap: Numerical simulation of the NLS equation (41)
with a parabolic potential V.x/, showing the establishment of energy equipartition among the
modes of the waveguide: Energy per mode, Em D ˇmnm [see Eq. (49)] vs the mode m D .mx;my/,
in the initial condition (a), and averaged over the propagation once the equilibrium state is reached,
i.e., @zS ' 0 (b). The amount of power nm in the mode m D .mx;my/ is calculated by projecting
the field amplitude into the corresponding eigenmode [see Eq. (48)]. Energy almost reaches an
equipartition among all modes, except the fundamental condensed mode mx D my D 0 which
is macroscopically populated [not shown in (a), (b)]. In particular, we considered a truncated
parabolic potential (Fig. 10), so that ˇmx;my ' ˇ0.mx Cmy C 1/ and only modes whose eigenvalue
verifies ˇmx;my $ V0 are guided. Source: from [135]

4.3.9 Frequency Cut-Off, Density of States and Thermodynamic Limit

The number of modes involved in the dynamics with a trap V.x/ is finite because
of the truncation of the potential (see Fig. 10, V0 < 1). In this way the truncated
potential introduces an effective frequency cut-off for the classical nonlinear wave,
because modes whose eigenvalues exceed the potential depth, ˇ" > V0, are not
guided during the propagation. A more rigorous justification of this aspect is given
in the Appendix of [135]. Note that this is in contrast with the homogeneous problem
[V.x/ D 0 in Eq. (41)], as discussed in Sect. 4.3.1. In this case, the frequency cut-
off kc is introduced by the spatial discretization (dx) of the NLS equation, i.e., kc D
#=dx, so that in the continuous limit kc ! 1 (see, e.g., [55]).

Let us discuss the importance of the truncation of the potential (V0 <1) through
the example of a parabolic potential considered in the numerical simulations (see
Figs. 12, 13). Considering the constraint,ˇ0 & ˇ."/ & V0, as well as the assumption
ˇ0 ! V0 (i.e., large number of modesN! % 1), the power of the field at equilibrium
reads N D .T=ˇ20/

R V0
0 d,x

R V0",x
0 .,x C ,y C ˇ0 " //"1 d,y, which gives

N D T
ˇ20

'
V0 " Q/ ln

( " Q/
V0 " Q/

)*
; (79)
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Fig. 13 Wave condensation in a trap: Fraction of power condensed in the fundamental mode at
equilibrium, n0=N, vs the energy of the field, H, for a truncated parabolic potential (parameters are
given in Sect. 4.3.7). The red points refer to the results of the numerical simulations of the NLS
equation (41) with a parabolic potential V.x/. They have been obtained by averaging n0=N over
the propagation distance once the equilibrium state is reached, i.e., @zS ' 0. The ‘error-bars’
denote the amount of fluctuations (standard deviation) of n0=N once equilibrium is reached. The
continuous blue line refers to the theoretical condensation curve given in Eqs. (82)–(83), while the
dashed green line refers to the corresponding thermodynamic limit [ Q/ ! 0 in Eqs. (82)–(83)]. In
these plots the eigenvalues ˇm and eigenmodes um.x/ in Eqs. (82)–(83) account for the truncation
of the potential (V0 <1). Source: from [135]

where we defined Q/ D / " ˇ0. In order to comment expression (79), we recall
that in the homogeneous problem [V.x/ D 0 in Eq. (41)] wave condensation
was shown to only occur in 3D, while in 2D the chemical potential was shown
to reach zero for a vanishing temperature [55, 57, 150]. In analogy with Bose-
Einstein condensation in quantum gases, this means that wave condensation does
not occur in the thermodynamic limit in 2D. Conversely, Eq. (79) reveals that
Q/ ! 0 for a non-vanishing critical temperature, Tc D 4˛Nq=V0, which indicates
that the presence of a parabolic potential V.x/ reestablishes wave condensation in
the thermodynamic limit in 2D. Indeed, the thermodynamic limit for a parabolic
potential corresponds to taking N ! 1 and q ! 0, keeping constant the product
Nq [137]. This result is in complete analogy with the well-known fact that a
parabolic potential reestablishes Bose-Einstein condensation in 2D [137]. There is
however a difference with quantum condensation. Bose-Einstein condensation is
known to be reestablished in a parabolic potential of infinite depth, V0 ! 1, while
here Tc tends to zero in the limit V0 ! 1. Contrary to the quantum case, one also
needs to introduce a finite depth of the potential, V0 <1, to get wave condensation
in 2D. This condition is satisfied for any optical waveguide configuration.
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4.3.10 Condensate Fraction in the Waveguide

We now look for a relation between the fraction of condensed power n0=N and
the temperature T or the energy E, in a way completely analogous to what has
been done for the homogeneous problem (V.x/ D 0) in Sect. 4.3.1. As in the
usual interpretation of Bose-Einstein condensation in a trap, we set / D ˇ0 in the
equilibrium distribution (78). Note that the assumption Q/ D /"ˇ0 D 0 for T & Tc
can be justified rigorously in the 2D thermodynamic limit. Isolating the fundamental
mode, one has N " n0 D .T=ˇ20/

’
D 1=.,x C ,y/ d2", where n0 D T=Œˇ20.ˇ0 " //).

We thus readily obtainN"n0 D TV0=ˇ20 . Proceeding in a similar way for the energy,

one obtains E " n0ˇ0 D TV20
2ˇ20

.1C 2ˇ0=V0/. Eliminating the temperature from the
expressions for E and N gives the following expression of the condensate fraction

n0
N

D 1 " E " E0
NV0=2

; (80)

where E0 D Nˇ0 refers to the minimum energy, i.e. the energy of the field when
all the power is condensed, n0=N D 1. The condensate amplitude n0=N increases as
the energy E decreases, and condensation arises below the critical energy

Ec D E0 C NV0=2 D
NV0
2

(
1C 2ˇ0

V0

)
: (81)

This expression deserves to be commented in two respects. First, because of the
truncation of the waveguide potential (V0 <1), the value of Ec does not diverge to
infinity. This is in contrast with the homogeneous problem [V.x/ D 0 in Eq. (41)],
as discussed above in 2D in Sect. 4.3.1. In this case the critical value of the energy
behaves as Ec $ Nk2c=ln.kc/, where kc D #=dx is the arbitrary frequency cut-off. In
the continuous limit in which the spatial discretization of the NLS equation tends to
zero, dx ! 0, the critical value of the energy Ec diverges to infinity (see, e.g., [55,
57]). A second point that could be remarked in Eq. (81) is that wave condensation
is reestablished in the thermodynamic limit in 2D. Indeed, writing Eq. (81) in the
following form, Ec=S D Nq.1C 2ˇ0=V0/=.2#/, where S D #a2 is the waveguide
surface, it becomes apparent that the energy density Ec=S does not tend to zero in
the thermodynamic limit (N ! 1; q ! 0, keeping Nq constant). As discussed in
the previous Sect. 4.3.9, this is again in contrast with the homogeneous problem and
the plane-wave expansion of the field, in which Ec=S tends to zero logarithmically
in the thermodynamic limit [57, 150].

The simple analysis of Eqs. (80), (81) outlined above provides physical insight
into the process of wave condensation. However, a direct quantitative comparison
with the numerical simulations requires the derivation of the condensation curve
relating the condensate fraction to the Hamiltonian, as discussed above in Sect. 4.3.1
for the homogeneous problem, V.x/ D 0. For this purpose, we note that Eq. (80)
can be improved along three lines. (1) The continuous integrals by a discrete sum
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over the modes of the waveguide. One obtains n0=N D 1 " .E " E0/
P0.mx C

my/
"1= .E0.N! " 1//, where we recall that N! is the number of modes of the

waveguide, and
P0 denotes the sum over all modes fm D .mx;my/g excluding

the fundamental mode m D 0. In the continuous limit we have
P0 1

mxCmy
!

ˇ"1
0

’
D

d2"
,xC,y D V0=ˇ0 and the number of modes N! D ˇ"2

0

’
D d2" D V20=.2ˇ

2
0/,

so that the above equation recovers Eq. (80). (2) A generalization of the expression
of the condensate fraction, n0=N vs E, can be done beyond the thermodynamic
limit [57, 150], i.e., without the implicit assumption Q/ D 0 for T & Tc. From
the physical point of view, this means that we take into account the finite size of
the optical waveguide. (3) We include the contribution of the nonlinear energy U
into the expression of the condensation curve. We split the contribution of the fun-
damental mode into the modal expansion of the field,  .x; z/ D  0.x; z/C ".x; z/,
where  0.x; z/ D c0.z/u0.x/ exp."iˇ0z/ is the coherent condensate contribution
and ".x; z/ D P

m¤0 cm.z/um.x/ exp."iˇmz/ is the incoherent contribution. This
expansion can be substituted into the expression ofU in Eq. (43), and then computed
in explicit form by making use of the random phase approximation [135]. The
generalizations (1)–(3) finally lead to the following expression of the condensation
curve beyond the thermodynamic limit, including the nonlinear contribution of the
energy

n0
N
. Q// D 1

" Q/Pm
1

ˇm"ˇ0" Q/
(82)

hHi . Q// D N

P
m

ˇm
ˇm"ˇ0" Q/P

m
1

ˇm"ˇ0" Q/
C hUi . Q//; (83)

where hUi . Q// is a cumbersome expression given in [135]. The fraction of con-
densed power n0=N is thus coupled to the total energy hHi through the non-
vanishing chemical potential, Q/ D / " ˇ0 ¤ 0. The parametric plot of (82), (83)
with respect to Q/ is reported in Fig. 13 (continuous line). As for the homogeneous
problem [V.x/ D 0], the long tail in the condensation curve at high energies H is
due to the non-vanishing chemical potential, Q/ ¤ 0. In the thermodynamic limit
Q/ ! 0, the condensation curve (82), (83) recovers the straight line discussed
above through Eqs. (80), (81) (see the dashed line in Fig. 13). Let us remark the
good agreement between the theoretical condensation curve and the simulations,
without using adjustable parameters. We finally note that Eqs. (82), (83) are valid
for various different types of waveguide index profiles, provided one makes use of
the appropriate eigenvalues ˇm and eigenmodes um.x/ (see [135]).
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5 Generalizations and Perspectives

5.1 Turbulence in Optical Cavities

The phenomenon of condensation discussed above in Sect. 4.3 has been recently
interpreted within a broader perspective in different active and passive optical cavity
configurations [58–65]. This raises important questions, such as e.g., the relation
between laser operation and the phenomenon of Bose-Einstein condensation. As a
matter of fact, these questions are still the subject of vivid debate—we refer the
reader to [66, 152, 154, 156] for some recent discussions on this important problem.

An important analogy with condensation has been also discussed in the dynamics
of active mode-locked laser systems in the presence of additive noise source [60,
154, 157]. On the basis of their previous works [158, 159], the authors showed that
the formation of coherent pulses in actively mode-locked lasers exhibits in certain
conditions a transition of the laser mode system to a light pulse state that is similar
to Bose-Einstein condensation, in the sense that it is characterized by a macroscopic
occupation of the fundamental mode as the laser power is increased. The analysis is
based on statistical light-mode dynamics with a mapping between the distribution of
the laser eigenmodes to the equilibrium statistical physics of noninteracting bosons
in an external potential.

5.1.1 Wave Turbulence in Raman Fiber Lasers

The dynamics of Raman fiber lasers has been also shown to exhibit some interesting
analogies with condensation-like phenomena [59, 64, 65]. Here we discuss in more
detail these systems in light of the WT theory that has been developed to describe
their turbulent dynamics. For more details, we refer the interested reader to [63] for
an overview on the WT description of Raman fiber lasers (also see the more recent
work [160]).

In [161], the Raman fiber laser is modelled as a turbulent system whose optical
power spectrum results from a weakly nonlinear interaction among the multiple
modes of the cavity. Performing a mean field approach in which the Raman Stokes
field does not evolve significantly over one cavity round trip, the authors of [161]
first establish a differential equation for the evolution of the complex amplitude En

of the nth longitudinal mode

!rt
dEn

dt
" 1

2
.g " ın/En.t/ D " i

2
"L
X

l¤0
En"l.t/

(
X

m¤0
En"m.t/E!

n"m"l.t/ exp.2iˇml(2 c t/: (84)
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In their approach, the time evolution of En is determined by the Raman gain g, the
dispersion of the fiber, the losses ın of the fiber and of the cavity mirrors, and the
four-wave mixing process. " is the Kerr coupling coefficient and ˇ represents the
second-order dispersion coefficient of the cavity fiber. ( D 1=!rt D c=2L is the
free spectral range of the Fabry-Perot cavity that has a length L. Gain, losses and
dispersive effects occurring inside the whole laser cavity are supposed to influence
the formation of the optical power spectrum through their dependence in frequency-
space. In particular fiber Bragg grating mirrors are considered as spectral filters
introducing parabolic losses in frequency space (ın D ı0 C ı2.n(/2). Dispersive
effects occurring inside the laser cavity are supposed to be dominantly governed by
the second-order dispersion ˇ of the cavity fiber. It must be emphasized that Eq. (84)
refers to the discretized version of the one-dimensional NLS equation, in which gain
and losses terms have been added [162]. In other words, the approach developed by
the authors of [161] amounts to apply a WT treatment to a one-dimensional NLS
equation, whose integrability is broken by the presence of gain and loss terms.

Assuming an exponential decay for the correlation function among the modes,
hEn.t/E!

n .t
0/i D In exp."jt" t0j=!/, the following WT kinetic equation that governs

the temporal evolution of the intracavity spectrum was derived [161]

!rt
dI.˝/
dt

D .g " ı.˝//I.˝/C SFWM.˝/; (85)

where I.˝/ D hEnE!
n i=(. The mathematical expression of the collision term

SFWM.˝/ can be separated into two parts

SFWM.˝/ D "ıNLI.˝/C ."L/2
Z

F ŒI) d˝1 d˝2

.3!rt=!/Œ1C .4!Lˇ=3!rt/2˝2
1˝

2
2 )
; (86)

where the functional reads F ŒI) D I.˝ " ˝1/I.˝ " ˝2/I.˝ " ˝1 " ˝2/, while
the nonlinear term responsible for four-wave-mixing-induced losses ıNL reads

ıNL D ."L/2
Z

G ŒI) d˝1 d˝2

.3!rt=!/Œ1C .4!Lˇ=3!rt/2˝2
1˝

2
2 )
; (87)

where G ŒI) D ŒI.˝ "˝1/C I.˝ "˝2/)I.˝ "˝1 "˝2/" I.˝ "˝1/I.˝ "˝1/.
A stationary solution of the WT kinetic equation (85) has been obtained by
Babin et al. in [161], which exhibits the following hyperbolic-secant structure,
I.˝/ D 2I=

#
#+ cosh.2˝=+ /

$
, where + is the width of the intracavity laser power

spectrum. This analytical solution is in very good agreement with spectra recorded
in experiments in which the fiber laser operates well above threshold, in various
different configurations, even in regimes in which the mean field approximation
should no longer hold [163]. Although the WT approach developed in [161] has
undoubtedly provided a new insight into the physics of Raman fiber lasers, some
other numerical and experimental works have raised some interesting questions
concerning the applicability of the WT approach to the description of the spectral
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broadening phenomenon. In particular, numerical simulations of the mean field
equations introduced in [161] revealed that the shape of the laser optical power
spectrum strongly depends on the sign of the second-order dispersion coefficient
[59]. This cannot be captured by the WT theory, which is inherently insensitive to
the sign of the second-order dispersion parameter. As pointed out in [162, 164], the
formation of the Stokes spectrum is also deeply influenced both by dispersive effects
and by the spectral shape of the fiber Bragg grating mirrors used to close the laser
cavity.

5.1.2 Laminar-Turbulent Transition in Raman Fiber Lasers

Fast recording techniques have been recently exploited for the experimental char-
acterization of a laminar-turbulent transition in Raman fiber lasers [65]. The fiber
laser used in the these experiments has been specifically designed. It is made
with dispersion-free ultra-wideband super-Gaussian fiber grating mirrors. Slightly
changing the pump power, an abrupt transition with a sharp increase in the width of
laser spectrum has been observed, together with an abrupt change of the statistical
properties of the Stokes radiation. The laminar state observed before the transition
is associated to a multimode Stokes emission with a relatively narrow linewidth and
relatively weak fluctuations of the Stokes power. On the other hand, the turbulent
state corresponds to a high multimode operation with a wider spectrum and stronger
fluctuations of the Stokes power. The laminar-turbulent transition has been also
studied by means of intensive numerical simulations (see Fig. 14) [59, 64, 65]. The
simulations reveal that, by increasing the pump power, the mechanism underlying
the laminar-turbulent transition relies on the generation of an increasing number of

Fig. 14 Numerical simulations evidencing the laminar-turbulent transition in a Raman fiber laser.
The evolution of the laser optical power spectrum is plotted as a function of number of round trips
inside the laser cavity. Source: from [65]
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dark (or grey) solitons. This experimentalwork opens new fields of investigations, in
particular as regard the impact of phase-defects on the turbulent dynamics of purely
1D wave systems.

5.1.3 Wave Kinetics of Random Fiber Lasers

Random lasers are a rapidly growing field of research, with implications in soft-
matter physics, light localization, and photonic devices [26, 165, 166]. Considering
a different perspective, the authors of [160] described the cyclic wave dynamics
inherent to laser systems by considering weakly dissipative modifications of the
integrable NLS equation. In this way, a ‘local kinetic equation’ describing the
turbulent dynamics of a random fiber laser system is derived [160]. The key property
of this kinetic equation is that the ı-function reflecting energy conservation at
each elementary four-wave interaction is substituted by an effective Lorentzian
function that involves a frequency dependent gain. As a remarkable result, the
collision term of the local kinetic equation does not vanish in spite of the trivial
resonant conditions inherent to the 1D four-wave interaction with a purely quadratic
dispersion relation [138]. From this point of view, the local kinetic equation exhibits
properties reminiscent of those considered in [38, 167], although the equations
are different, e.g., as regard the renormalization of the dispersion relation by the
nonlinearity and the additional nonlinear damping. Then at variance with the purely
conservative (Hamiltonian) system, in active cyclic laser systems, the interactions
are mediated by a non-homogenous gain, which leads to an effective interaction
over the finite interval of the evolution coordinate. We also note that the local
kinetic equation is derived under a double separation of scales, i.e., the turbulent
regime is dominated by dispersive effects as compared to gain effects, and the
gain itself if much larger than gain variation over the typical spectral width of the
radiation. Furthermore, the authors confirm their theoretical work bymeans of direct
experimental measurements in random fibre lasers: In the high-power regime, the
equilibrium spectrum of the random laser measured experimentally is found in good
agreement with the nonequilibrium stationary solution of the local kinetic equation,
see Fig. 15. Finally, the theory is also completed by means of a generalization of the
linear kinetic Schawlow-Townes theory. For more details on these aspects we refer
the reader to [160].

5.1.4 Turbulent Dynamics in Passive Optical Cavities

As commented above, a classical wave can exhibit a genuine process of wave
condensation as it propagates in a 2D conservative Kerr material, [33, 55, 135].
Actually, a phenomenon completely analogous to such conservative condensation
process can occur in an incoherently pumped passive optical cavity, despite the fact
that the system is inherently dissipative [62]. For this purpose, let consider a passive
optical cavity pumped by an incoherent optical wave, whose time correlation, tc,
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Fig. 15 Nonlinear kinetic description of the random fiber laser optical spectrum. (a) Optical
spectrum measured experimentally: near the generation threshold (blue curve, laser power
= 0.025W), slightly above the generation threshold (green curve, 0.2W) and well above the
generation threshold (red curve, 1.5W). The optical spectrum predicted by the local wave kinetic
equation, for laser power 1.5W is shown by dashed red line. (b) Spectrum width as a function
of the laser’s output power in theory and experiment. Experimental data are shown by black
circles. The prediction for the spectrum broadening from the nonlinear kinetic theory based on
the local wave kinetic equation (blue dashed line). The prediction for the spectral narrowing from
the modified linear kinetic Schawlow-Townes theory (dashed green line). The red line denotes
the sum of nonlinear and linear contributions. The inset shows the spectral narrowing near the
threshold in log-scale. For more details see [160]. Source: from [160]

is much smaller than the round trip time, tc ! !rt. In this way, the optical field
from different cycles are mutually incoherent with one another, which makes the
optical cavity non-resonant. Because of this property, the cavity does not exhibit the
widely studied dynamics of pattern formation [168, 169]. Instead, the dynamics of
the cavity exhibits a turbulent behavior that can be characterized by an irreversible
process of thermalization toward energy equipartition. A mean-field WT equation
was derived in [62], which accounts for the incoherent pumping, the nonlinear
interaction and both the cavity losses and propagation losses. In spite of the dissipa-
tive nature of the cavity dynamics, the intracavity field undergoes a condensation
process below a critical value of the incoherence (kinetic energy) of the pump.
This phenomenon is illustrated in Fig. 16a, which shows the temporal evolution
of the condensate fraction in the intracavity field: After a transient, the fraction
of power condensed in the fundamental transverse mode of the cavity saturates to
a constant value, which is found in agreement with the theory. Figure 16b reports
the condensation curve, i.e., the fraction of condensed power at equilibrium vs the
kinetic energy of the injected pump wave. This latter quantity reflects the degree
of coherence of the pump wave and plays the role of the control parameter of the
transition to wave condensation in the cavity configuration. We remark in Fig. 16b
that the condensate fraction in this dissipative optical cavity is found in agreement
with the theory inherited from the conservative Hamiltonian NLS equation, without
using adjustable parameters. For more details on the simulations and the theory, we
refer the reader to [62].
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Fig. 16 Wave condensation in an incoherently pumped passive optical cavity. (a) Evolution of the
fraction of condensed power N0.t/=N.t/ vs time t: The condensate growth saturates to a constant
value Nst

0 =N
st , which is in agreement with the theory [62]. (b) Condensation curve: fraction of

condensed power in the stationary equilibrium state Nst
0 =N

st vs the kinetic energy of the pump EJ .
The condensation curve is computed for a fixed value of the pump intensity J0, while EJ is varied
by modifying the degree of coherence of the pump (i.e., its spectral width). The blue solid line
refers to the (Bogoliubov) strong condensation regime. The black dotted line refers to the weak
condensation regime beyond the thermodynamic limit (/ ¤ 0), while the dashed black line refers
to the thermodynamic limit (/! 0). The red points correspond to the NLS numerical simulations
with the cavity boundary conditions. For more details, see [62]. Source: from [62]

Let us note an important difference that distinguishes the thermalization and
condensation processes discussed here with those reported in the quantum photon
context in [61, 170]. In these works the thermalization process is achieved thanks to
the presence of dye molecules, which thus play the role of an external thermostat.
Conversely, in the passive cavity configuration considered here, the process of ther-
malization solely results from the four-wave interaction mediated by the intracavity
Kerr medium, while the ‘temperature’ is controlled by varying the kinetic energy
(degree of coherence) of the injected pump.

In a recent experimental work [171], the incoherently pumped passive cavity
has been implemented in a fully integrated optical fiber system, nearby the
zero-dispersionwavelength of the fiber. The dynamics of the cavity exhibits a quasi-
soliton turbulent behavior which is reminiscent of the turbulent dynamics of the
purely Hamiltonian wave system considered in [172, 173]. The analysis reveals
that, as the coherence of the injected pump wave is degraded, the cavity undergoes
a transition from the coherent quasi-soliton regime toward the highly incoherent
(weakly nonlinear) turbulent regime characterized by short-lived and extreme rogue
wave events. This transition can then be interpreted in analogy with a phenomenon
of quasi-soliton condensation. The experiments realized in the incoherently pumped
passive optical cavity have been characterized by means of complementary spectral
and temporal PDF measurements [171].

An unexpected result of [171] is that quasi-soliton condensation can take place
efficiently, even in the presence of a low cavity finesse, in contrast with wave-
condensation in 2D defocusing media discussed here above, which requires a high
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finesse [62]. This can be interpreted as a consequence of the fact that the process of
thermalization of an optical wave constitutes a prerequisite for the phenomenon
of wave-condensation in a defocusing medium, while wave thermalization is
known to require a high cavity finesse. There is another important difference
which distinguishes wave-condensation and (quasi-)soliton condensation. Wave-
condensation is known to exhibit a property of long-range order and coherence,
in the sense that the correlation function of the field amplitude does not decay at
infinity, limjr"r0j!1 hA.r/A!.r0/i ¤ 0, a property consistent with the idea that
the coherence length of a plane-wave diverges to infinity [55]. This is in contrast
with the spatial localized character of a (quasi-)soliton, which naturally limits the
range of coherence to the characteristic spatial width of the (quasi-)soliton structure.
Wave-condensation then appears to be more sensitive to the “boundary conditions”
of the system, and thus results less robust than (quasi-)soliton condensation when
considered in an optical cavity system.

5.2 Optical Wave Thermalization Through Supercontinuum
Generation

The phenomenon of SC generation is characterized by a dramatic spectral broaden-
ing of the optical field during its propagation [24, 174]. As a rather general rule, the
process of spectral broadening is interpreted through the analysis of the following
main nonlinear effects: the four-wave mixing effect, the soliton fission, the Raman
self-frequency shift and the generation of dispersive waves [174]. Due to such a
multitude of nonlinear effects involved in the process, a complete and satisfactory
theoretical description of SC generation is still lacking. However, there is a growing
interest in developing new theoretical tools aimed at describing SC generation in
more details, see e.g., [175].

The general physical picture of SC generation in PCFs can be summarized as
follows. When the PCF is pumped with long pulses in the anomalous dispersion
regime, MI is known to lead to the generation of a train of soliton-like pulses, which
in turn lead to the emission of Cherenkov radiation in the form of spectrally shifted
dispersive waves. These optical solitons are known to exhibit a self-frequency shift
towards longer wavelengths as a result of the Raman effect. One encounters the same
picture if the PCF is characterized by two zero dispersion wavelengths. In this case
the Raman frequency shift of the solitons is eventually arrested in the vicinity of the
second zero dispersion wavelengths. The SC spectrum then results to be essentially
bounded by the corresponding dispersive waves [24, 176]. The important aspect to
underline here is that in all these regimes the existence of coherent soliton structures
plays a fundamental role into the process of SC generation.

This physical picture of SC generation changes in a significant way when one
considers the regime in which long and intense pump pulses are injected into the
PCF. Indeed, in this highly nonlinear regime, the spectral broadening process is
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essentially dominated by the combined effects of the Kerr nonlinearity and higher-
order dispersion, i.e., by four-wave mixing processes [177]. In this regime the
optical field exhibits rapid and random temporal fluctuations, which prevent the
formation of robust and persistent coherent soliton structures. It turns out that the
optical field exhibits an incoherent turbulent dynamics, in which coherent soliton
structures do not play any significant role. In the following we shall term this regime
the ‘incoherent regime of SC generation’ [178].

In these last years a nonequilibrium thermodynamic interpretation of this
incoherent regime of SC generation has been formulated [23, 50, 51, 99, 178] on
the basis of the WT theory. In the following we remind the main aspect of optical
wave thermalization through SC generation. For more details we refer the interested
reader to the short review article [179]. The generalized NLS equation is known to
describe the main properties of SC generation in a PCF [123, 174]. In its simplest
form that neglects the Raman effect, the shock term, the generalized NLS equation
takes the form:

i
@ 

@z
C

mX

j%2

ijˇj
jŠ
@j 

@tj
C " j j2 D 0; (88)

with the corresponding dispersion relation:

k.!/ D
mX

j%2

ˇj!
j

jŠ
: (89)

In the following we consider dispersion curves of PCFs characterized by two zero
dispersion wavelengths, whose accurate description requires a high-order Taylor
expansion of the dispersion relation (m > 4 and even). Starting from the high-
order dispersion NLS equation (88), one can derive the irreversible WT kinetic
equation governing the evolution of the averaged spectrum of the field n.z; !/
[
˝ Q .z; !1/ Q !.z; !2/

˛
D n.z; !1/ ı.!1 " !2/]:

@zn.z; !1/ D CollŒn); (90)

with the collision term

CollŒn) D
•

d!2 d!3 d!4 n.!1/n.!2/n.!3/n.!4/

( W Œn"1.!1/C n"1.!2/" n"1.!3/" n"1.!4/) (91)

where ‘n.!/’ stands for ‘n.z; !/’ in Eq. (91). As usual in the WT kinetic equation,
the phase-matching conditions of energy and momentum conservation are expressed
by the presence of Dirac ı-functions in W D "2

#
ı.!1 C !2 " !3 " !4/ ıŒk.!1/ C

k.!2/ " k.!3/ " k.!4/), where k.!/ refers to the linear dispersion relation.
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Equation (90) conserves the power density N=T0 D
R
n.z; !/ d!, the density of

kinetic energy E=T0 D
R
k.!/ n.z; !/ d! and the density of momentum P=T0 DR

! n.z; !/ d!, where T0 refers to the considered numerical time window. It also
exhibits a H-theorem of entropy growth, @zS ' 0, where the nonequilibrium
entropy reads S .z/ D

R
logŒn.z; !/) d!. The Rayleigh-Jeans equilibrium distri-

bution is obtained by maximising the entropy under the constraints imposed by the
conservation of the energy, momentum and power, which gives

neq.!/ D T
k.!/C $! " /

; (92)

where T and / are by analogy with thermodynamics the temperature and the
chemical potential of the incoherent wave at equilibrium.

The meaning of the parameter $ becomes apparent through the analysis of the
group-velocityvg of the optical field [k0.!/ # @k=@! D 1=vg.!/]. Indeed, recalling
the definition of an average, hA ieq D

R
A neq.!/ d!=

R
neq.!/ d! and making use

of the equilibrium spectrum (92), one readily obtains

˝
k0.!/

˛
eq D "$: (93)

The parameter $ then denotes the average of the inverse of the group-velocity of the
optical field at equilibrium. We report in Fig. 17c the comparison of the theoretical
prediction (92) with the results of the numerical simulations of the high-order NLS
equation (88). A quantitative agreement is obtained between the simulations and the
theory (92), without using adjustable parameters [51]. The Rayleigh-Jeans spectrum
is characterized by a double-peaked structure, which results from the presence of
two zero dispersion wavelengths in the dispersion curve of the PCF. The relaxation
toward thermal equilibrium is also corroborated by the saturation of the process of
entropy production illustrated in Fig. 17b. Note however that a notable discrepancy
is visible in the tails of the spectrum in Fig. 17c, as if the thermalization process
were not achieved in a complete fashion. Actually, the simulations reveal that the
tails of the spectrum exhibits a very slow process of spectral broadening, which
apparently tends to evolve toward the expected Rayleigh-Jeans tails—though the
required propagation length is extremely large. This aspect will be discussed in
more detail in Sect. 5.3. Note that the good agreement between the theory and
the simulations has been obtained in a variety of configurations, e.g., under cw or
incoherent pumping, as discussed in detail in [50, 51].

5.2.1 Thermodynamic Phase-Matching

The thermodynamic equilibrium spectrum given in Eq. (92) is characterized by a
double peak structure, which originates from the two zero dispersion wavelengths
that characterize the PCF dispersion curve. It is important to underline, however, that
the frequencies .!1; !2/ of the two peaks of neq.!/ do not simply correspond to the
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Fig. 17 Optical wave thermalization through SC generation. (a) Simulation of the instantaneous
NLS equation (88) with a dispersion curve featured by two zero-dispersion wavelengths (for
more details see [179]). (b) Optical wave thermalization is characterized by a process of entropy
production, which saturates to a constant level once the equilibrium state is reached, as described
by the H-theorem of entropy growth. (c) Comparison of the thermodynamic Rayleigh-Jeans
equilibrium spectrum neq.!/ [Eq. (92)] (red line), and the numerical spectrum corresponding to
an averaging over the last 20m of propagation. A good agreement is obtained without adjustable
parameters—note however a discrepancy in the tails of the spectrum (see the text for discussion)

minima of the dispersion relation, i.e. k0.!1;2/ ¤ 0. To further analyze this aspect, let
us write the thermodynamic equilibrium spectrum in the form neq.!/ D T=F .!/,
with F .!/ D k.!/ C $! " /. The two frequencies .!1; !2/ which maximize the
equilibrium spectrum (92) satisfy F 0.!1/ D F 0.!2/ D 0, i.e., k0.!1/ D k0.!2/ D
"$. This observation reveals that the two frequencies .!1; !2/ of the double peaked
equilibrium spectrum (92) are selected in such a way that the corresponding group-
velocities coincide with the average group-velocity of the optical wave,

vg.!1/ D vg.!2/ D 1=
˝
k0.!/

˛
eq D "1=$: (94)

It can be shown that there exists, in principle, a unique pair of frequencies
.!1; !2/ satisfying the conditions given by Eqs. (94). In other terms, for a given
thermodynamic equilibrium spectrum (92), there exists a unique pair of frequencies
.!1; !2/ that leads to a matched group-velocity of the double peaked spectrum
[51]. In this sense, Eq. (94) can be regarded as a thermodynamic phase-matching
condition.
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The thermodynamic phase-matching given by Eq. (94) then imposes a matching
of the group-velocities of the two spectral peaks of the SC spectrum. The fact that
different wave-packets naturally tend to propagate with the same group-velocity
was discussed in [142]. This can be interpreted in analogy with basic equilibrium
thermodynamic properties, namely that an isolated system can only exhibit a
uniform motion of translation (and rotation) as a whole, while any macroscopic
internal motion is not possible at thermodynamic equilibrium [180]. In this way,
it was shown that a velocity locking is required, in the sense that it prevents “a
macroscopic internal motion in the wave system.” We refer the interested reader to
[51, 118] for more details on this aspect.

5.3 Breakdown of Thermalization

As discussed in the introduction section in relation with the Fermi-Pasta-Ulam prob-
lem, thermalization does not necessarily in nonlinear systems. By considering the
one-dimensional NLS equation, we present in this section two different mechanisms
that inhibit the process of optical wave thermalization toward the Rayleigh-Jeans
distribution. Depending on whether the dispersion relation is truncated up to
the third, or fourth-order, the wave system exhibits different types of relaxation
processes. Provided that the interaction occurs in the weakly nonlinear regime, the
WT theory provides an accurate description of such mechanisms of breakdown of
thermalization.

5.3.1 Truncated Thermalization

We consider here the 1D NLS equation in which the dispersion relation is
truncated to the fourth-order. In this case, the WT theory reveals the existence of
an irreversible evolution toward a Rayleigh-Jeans equilibrium state characterized
by a compactly supported spectral shape [52]. This phenomenon of truncated
thermalization may explain the physical origin of the abrupt SC spectral edges
discussed above in Sect. 5.2. Besides its relevance in the context of SC generation,
this phenomenon is also important from a fundamental point of view. Indeed, it
unveils the existence of a genuine frequency cut-off that arises in a system of
classical waves described by the generalized NLS equation, a feature of importance
considering the well-known ultraviolet catastrophe of ensemble of classical waves
[118].

The starting point is the NLS equation (88) accounting for third- and fourth-
orders dispersion effects, as well as the corresponding WT kinetic equation (90).
The kinetic theory reported in [52] reveals that the process of thermalization to the
Rayleigh-Jeans spectrum (92) is not achieved in a complete way, but turns out to be
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truncated within a specific frequency interval defined by the bounds, ! 2 Œ!"; !C),
with

!˙ D " Q̨
4 Q̌!0

˙
p
21

12 Q̌!0

q
3 Q̨ 2 C 8 Q̌; (95)

where Q̨ and Q̌ refer to the normalized third- and fourth-orders dispersion param-
eters, namely Q̨ D Lnlˇ3=

#
6!30

$
, and Q̌ D Lnlˇ4=

#
24!40

$
, where !0 D

p
ˇ2Lnl=2

is the corresponding healing time, i.e., the characteristic time for which linear and
nonlinear effects are of the same order of magnitude [118].

The confirmation of this process of truncated thermalization by the numerical
simulations has not been a trivial task. This is due to the fact that in the usual
configurations of SC generation discussed above, the cascade of MI side-bands
generated by the cw pump in the early stage of propagation spreads beyond the
frequency interval predicted by the theory. As already discussed, the MI process
is inherently a coherent nonlinear phase-matching effect which is not described
by the WT kinetic equation [Eqs. (90), (91)]. This explains why the numerical
simulations reported above (or in [50, 51]) did not evidence a precise signature of
this phenomenon of truncated thermalization.

In order to analyze the theoretical predictions in more detail, one needs to
decrease the injected pump power so as to maintain the (cascaded) MI side-bands
within the frequency interval (95). Intensive numerical simulations of the NLS
equation in this regime of reduced pump power have been performed in [52]. This
study reveals that the nonlinear dynamics slows down in a dramatic way, so that
the expected process of thermalization requires huge nonlinear propagation lengths.
This results from the fact that the normalized parameters Q̨ and Q̌ decrease as the
pump power decreases, so that the NLSE approaches the integrable limit, which
does not exhibit thermalization [138]. We report in Fig. 18 the wave spectra at
different propagation lengths obtained by solving the NLS equation with Q̨ D
0:1 and Q̌ D 0:02. In the early stage of propagation, z $ 200, the spectrum
remains confined within the frequency interval Œ!"; !C) predicted by the theory
[Eq. (95)], although the spectrum exhibits a completely different spectral profile
than the expected Rayleigh-Jeans distribution. As a matter of fact, the process of
thermalization requires enormous propagation lengths, as illustrated in Fig. 18d,
which shows that the wave spectrum eventually relaxes toward a truncated Rayleigh-
Jeans distribution. For more details on these numerical simulations, we refer the
reader to [118].

5.3.2 Anomalous Thermalization

Here we discuss another mechanism that inhibits the natural process of thermaliza-
tion. We consider the 1D NLS equation by truncating the dispersion relation up
to the third order. We will see that the incoherent wave exhibits an irreversible
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Fig. 18 Truncated thermalization of incoherent waves: Spectra j Q j2.!; z/ obtained by solving the
NLS equation (88) with solely third and fourth-order dispersion effects ( Q̨ D 0:1, Q̌ D 0:02): (a)
z D 200, (b) z D 104 , (c) z D 5&105 , (d) z D 106 . After a long transient, the wave relaxes toward
a truncated Rayleigh-Jeans distribution [Eq. (92), green line] (d). The dashed red lines denote the
frequencies !˙ in Eq. (95)—! is here in units of !!1

0 . Source: from [52]

evolution toward an equilibrium state of a different nature than the conventional
Rayleigh-Jeans equilibrium state. The WT kinetic equation reveals that this effect
of anomalous thermalization is due to the existence of a local invariant in frequency
space J! , which originates in degenerate resonances of the system [112, 113]. In
contrast to conventional integral invariants that lead to a generalized Rayleigh-Jeans
distribution, here, it is the local nature of the invariant J! that makes the new
equilibrium states different than the usual Rayleigh-Jeans equilibrium states. We
remark that local invariants and the associated process of anomalous thermalization
have been also identified in the 1D vector NLS equation, a configuration in which
optical fiber experiments have been also performed, see [112].
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The starting point is the NLS equation (88) accounting for third-order dispersion
effects, as well as the corresponding WT kinetic equation (90). A refined analysis
of the WT kinetic equation reveals a remarkable property, namely the existence of a
local invariant in frequency space:

J.!/ D n.!; z/ " n.q " !; z/; (96)

where q D 2s!!, !! being the zero-dispersion angular frequency, and s D sign.ˇ2/
[112, 113]. This invariant is ‘local’ in the sense that it is verified for each frequency
! individually, @zJ.!/ D 0. It means that the subtraction of the spectrum by the
reverse of itself translated by q, remains invariant during the whole evolution of
the wave. The invariant (96) finds its origin in the following degenerate resonance
of the phase-matching conditions: a pair of frequencies .!; q " !/ may resonate
with any pair of frequencies .!0; q " !0/, because k.!/ C k.q " !/ D sq2=3 does
not depend on !. Because of the existence of this local invariant, the incoherent
wave relaxes toward an equilibrium state of fundamental different nature than the
expected thermodynamic Rayleigh-Jeans spectrum:

nloc.!/ D J!
2

C 1

$

0

@1C

s

1C
(
$J!
2

)2
1

A : (97)

Here, the parameter $ is determined from the initial condition through the con-
servation of the power. We remark that the equilibrium distribution (97) vanishes
exactly the collision term of the kinetic equation, i.e., it is a stationary solution.
The equilibrium distribution is characterized by a remarkable property: it exhibits
a constant spectral pedestal, nloc.!/ ! 2=$ for j!j % j!!j. We remark in this
respect that in the tails of the spectrum (j!j % j!!j), the invariant J! vanishes,
so that a constant spectrum (n! D const) turns out to be a stationary solution of
the WT kinetic equation. The existence of the process of anomalous thermalization
has been confirmed by the numerical simulations of both the NLS equation and
the WT kinetic equation, as illustrated in Fig. 19. For more details on theoretical
and numerical simulations of anomalous thermalization, we refer the reader to
[113, 118, 181].

5.3.3 Local vs Integral Invariants

The equilibrium distribution (97) is of a fundamental different nature than the
conventional Rayleigh-Jeans distribution. In particular, as discussed just above,
nloc.!/ is characterized by a constant spectral pedestal in the tails of the spectrum.
The kinetic theory reveals that the difference between nloc.!/ and neq.!/ is due to
the existence of the local invariant J! . Let us briefly discuss the ‘local’ nature of the
invariant J! in regard to the integral invariants investigated in [182–185] in line with
the problem of integrability. First of all, one may note that the possible existence of
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Fig. 19 Anomalous thermalization of incoherent waves: (a) Spectral evolution obtained by
integrating numerically the NLSE with third-order dispersion (blue) and the corresponding WT
kinetic equation (red) at z D 20; 000 for Q̨ D 0:05 (a). (b) Numerical simulations of the WT
kinetic equation showing the spectral profile n.z; !/ at different propagation lengths z: a constant
spectral pedestal emerges in the tails of the spectrum ( Q̨ D 0:05). The spectrum slowly relaxes
toward the equilibrium state nloc.!/ given by Eq. (97) (blue). Source: from [181]

a set of additional integral invariants, Qj D
R
1j.!/ n!.z/ d!, would still lead to a

(generalized) Rayleigh-Jeans distribution,

neq.!/ D T
k.!/CP

j $j1j.!/ " / ; (98)

where $j refer to the Lagrangian multipliers associated to the conservation of
Qj [185]. The local invariant J! thus leads to an equilibrium spectrum nloc.!/ of
a different nature than the generalized Rayleigh-Jeans spectrum (98).

One may wonder whether the local invariant J! may generate the existence of
integral invariants of the kinetic equation (i.e., Eqs. (90), (91) with m D 3). We can
easily verify that Q D

R
1! n!.z/ d! is a conserved quantity of the kinetic equation

whenever 1! satisfies the following relation

1!1 C 1q"!1 D 1!2 C 1q"!2 ; (99)

for any couple of frequencies .!1; !2/. In other terms, it is sufficient that 1!C1q"!
does not depend on ! for Q to be a conserved quantity of the kinetic equation. A
simple way to satisfy this condition is to construct 1! as follows, 1! D '! " 'q"! .
In this way, regardless of the particular choice of the function '! ,

Q D
Z #

'! " 'q"!
$
n!.z/ d!; (100)
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is a conserved quantity of the kinetic equation. This shows that the existence of a
local invariant (J!) can generate an infinite set of integral invariants Q.

5.4 Emergence of Rogue Waves from Optical Turbulence

In this section we briefly comment some open interesting issues related to optical
wave turbulence in fibers. An interesting problem concerns a proper description
of the emergence of extreme rogue waves (RW) from a turbulent environment. A
rather commonly accepted opinion is that RWs can be conveniently interpreted in
the light of exact analytical solutions of integrable nonlinear wave equations, the
so-called Akhmediev breathers, or more specifically their limiting cases of infinite
spatial and temporal periods, the rational soliton solutions, such as Peregrine and
higher-order solutions of the integrable 1D NLSE—see the recent reviews [27, 28].
Rational soliton solutions can be regarded as a coherent and deterministic approach
to the understanding of RW phenomena. On the other hand, RWs are known to
spontaneously emerge from an incoherent turbulent state [29, 139, 186–190]. This
raises a difficult problem, since the description of the turbulent system requires a
statistical WT approach, whereas rational soliton solutions are inherently coherent
deterministic structures. This problem was addressed in the optical fiber context in
[172, 173] by considering a specific NLSE model that exhibits a quasi-soliton turbu-
lence scenario, a feature that can be interpreted in analogy with wave condensation,
see Sect. 5.1.4. It was shown that the deterministic description of rogue wave events
in terms of rational soliton solutions is not inconsistent with the corresponding
statistical WT description of the turbulent system [173]. It is important to stress
that the emergence of RW events was shown to solely occur near by the transition
to (quasi-)soliton condensation. From a different perspective, the fluctuations of
the condensate fraction in 2D wave condensation have been recently computed
theoretically, revealing that large fluctuations solely occur near by the transition
to condensation, while they are significantly quenched in the strongly condensed
Bogoliubov regime (small ‘temperature’), and almost completely suppressed in the
weakly nonlinear turbulent regime (high ‘temperature’). This result is consistent
with the general idea that nearby second-order phase-transitions, physical systems
are inherently sensitive to perturbations and thus exhibit large fluctuations. One can
then address a possible alternative point of view on the question of the spontaneous
emergence of rogue waves from a conservative turbulent environment: Is it possible
to interpret the sporadic emergence of RW events as the natural large fluctuations
inherent to the phase transition to soliton condensation? This issue may pave the
way for a statistical mechanics approach based on the idea of scaling and universal
theory of critical phenomena to the description of RWs.

Acknowledgements The authors are grateful to many collaborators for fruitful discussions: P.
Aschieri, S.A. Babin, J. Barré, B. Barviau, P. Béjot, F. Biancalana, D. Christodoulides, S. Coen,
C. Conti, D. Faccio, C. Finot, M. Guasoni, R. Kaiser, B. Kibler, M. Haelterman, K. Hammani, T.



Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves 269

Hansson, H.R. Jauslin, M. Lisak, C. Michel, G. Millot, C. Montes, S. Nazarenko, M. Onorato, S.
Pitois, E.V. Podivilov, S. Residori, M. Segev, S. Trillo, S. Wabnitz, V.E. Zakharov. The authors
also acknowledge P. Suret, S. Randoux, D. Churkin and S. Turitsyn for their deep insights and
valuable contributions in the understanding of optical turbulence, in particular in dissipative laser
systems or near by the limit of integrability. A.P. is especially grateful to T. Dauxois and S. Ruffo
for their introduction into the physics of long-range interactions. It is also a pleasure for A.P. to
thank M. Onorato, S. Residori and F. Baronio for their fantastic work in organizing the conference
“Rogue and Shock Waves in Nonlinear Dispersive Media,” held in Cargese (France, July 2015),
where I had a chance to participate. A.P. acknowledges support from the French National Research
Agency (ANR-12-BS04-0011 OPTIROC), as well as from the Labex ACTION (ANR-11-LABX-
01-01) program. A.P. also acknowledges support from the European Research Council under the
European Community’s Seventh Framework Programme (FP7/20072013 Grant Agreement No.
306633, PETAL project).

References

1. Mitchell, M., Chen, Z., Shih, M., Segev, M.: Self-trapping of partially spatially incoherent
light. Phys. Rev. Lett. 77, 490 (1996)

2. Mitchell, M., Segev, M.: Self-trapping of incoherent white light. Nature (London) 387, 880
(1997)

3. Segev, M., Christodoulides, D.: Incoherent solitons. In: Trillo, S., Torruellas, W. (eds.) Spatial
Solitons. Springer, Berlin (2001)

4. Kivshar, Y., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic, New
York (2003)

5. Pasmanik, G.A.: Self-interaction of incoherent light beams. Sov. Phys. JETP 39, 234 (1974)
6. Mitchell, M., Segev, M., Coskun, M.T., Christodoulides, D.: Theory of self-trapped spatially

incoherent light beams. Phys. Rev. Lett. 79, 4990 (1997)
7. Christodoulides, D., Coskun, T., Mitchell, M., Segev, M.: Theory of incoherent self-focusing

in biased photorefractive media. Phys. Rev. Lett. 78, 646 (1997)
8. Hall, B., Lisak, M., Anderson, D., Fedele, R., Semenov, V.E.: Statistical theory for incoherent

light propagation in nonlinear media. Phys. Rev. E 65, 035602 (2002)
9. Christodoulides, D.N., Eugenieva, E.D., Coskun, T.H., Segev, M., Mitchell, M.: Equivalence

of three approaches describing partially incoherent wave propagation in inertial nonlinear
media. Phys. Rev. E 63, 035601 (2001)

10. Lisak, M., Helczynski, L., Anderson, D.: Relation between different formalisms describing
partially incoherent wave propagation in nonlinear optical media. Opt. Commun. 220, 321
(2003)

11. Christodoulides, D.N., Coskun, T.H., Mitchell, M., Chen, Z., Segev, M.: Theory of incoherent
dark solitons. Phys. Rev. Lett. 80, 5113 (1998)

12. Chen, Z., Mitchell, M., Segev, M., Coskun, T.H., Christodoulides, D.N.: Self-trapping of dark
incoherent light beams. Science 280, 889 (1998)

13. Soljacic, M., Segev, M., Coskun, T., Christodoulides, D., Vishwanath, A.: Modulation
instability of incoherent beams in noninstantaneous nonlinear media. Phys. Rev. Lett. 84,
467 (2000)

14. Kip, D., Soljacic, M., Segev, M., Eugenieva, E., Christodoulides, D.: Modulation instability
and pattern formation in spatially incoherent light beams. Science 290, 495–498 (2000)

15. Kibler, B., Michel, C., Garnier, J., Picozzi, A.: Temporal dynamics of incoherent waves in
noninstantaneous response nonlinear Kerr media. Opt. Lett. 37, 2472 (2012)

16. Picozzi, A., Haelterman, M.: Parametric three-wave soliton generated from incoherent light.
Phys. Rev. Lett. 86, 2010–2013 (2001)



270 A. Picozzi et al.

17. Picozzi, A., Haelterman, M., Pitois, S., Millot, G.: Incoherent solitons in instantaneous
response nonlinear media. Phys. Rev. Lett. 92, 143906 (2004)

18. Peccianti, M., Assanto, G.: Incoherent spatial solitary waves in nematic liquid crystals. Opt.
Lett. 26(22), 1791–1793 (2001)

19. Rotschild, C., Schwartz, T., Cohen, O., Segev, M.: Incoherent spatial solitons in effectively-
instantaneous nonlocal nonlinear media. Nat. Photonics 2, 371 (2008)

20. Picozzi, A., Garnier, J.: Incoherent soliton turbulence in nonlocal nonlinear media. Phys. Rev.
Lett. 107(23), 233901 (2011)

21. Wu, M., Krivosik, P., Kalinikos, B., Patton, C.: Random generation of coherent solitary waves
from incoherent waves. Phys. Rev. Lett. 96, 227202 (2006)

22. Picozzi, A., Pitois, S., Millot, G.: Spectral incoherent solitons: a localized soliton behavior in
frequency space. Phys. Rev. Lett. 101, 093901 (2008)

23. Kibler, B., Michel, C., Kudlinski, A., Barviau, B., Millot, G., Picozzi, A.: Emergence of
spectral incoherent solitons through supercontinuum generation in a photonic crystal fiber.
Phys. Rev. E 84, 066605 (2011)

24. Dudley, J.M., Taylor, J.R.: Supercontinuum Generation in Optical Fibers. Cambridge
University Press, Cambridge (2010)

25. Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep.
441(2), 47–189 (2007)

26. Wiersma, D.S.: The physics and applications of random lasers. Nat. Phys. 4(5), 359–367
(2008)

27. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.: Rogue waves and their
generating mechanisms in different physical contexts. Phys. Rep. (2013)

28. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in
optics. Nat. Photonics 8(10), 755–764 (2014)

29. Walczak, P., Randoux, S., Suret, P.: Optical rogue waves in integrable turbulence. Phys. Rev.
Lett. 114, 143903 (2015)

30. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I. Springer,
Berlin (1992)

31. Frisch, U.: Turbulence. The Legacy of A. N. Kolmogorov. Cambridge University Press,
Cambridge (1995)

32. Newell, A.C., Rumpf, R.: Wave turbulence. Annu. Rev. Fluid Mech. 43, 59–78 (2011)
33. Nazarenko, S.: Wave Turbulence. Lecture Notes in Physics, vol. 825. Springer, Berlin (2011)
34. Newell, A.C., Rumpf, B., Zakharov, V.E.: Spontaneous breaking of the spatial homogeneity

symmetry in wave turbulence. Phys. Rev. Lett. 108, 194502 (2012)
35. Tsytovich, V.N.: Nonlinear Effects in Plasma. Plenum, New York (1970)
36. Hasselmann, K.: On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General

theory. J. Fluid Mech. 12, 481–500 (1962)
37. Hasselmann, K.: On the non-linear energy transfer in a gravity-wave spectrum. Part 2.

Conservation theorems, wave-particle analogy, irreversibility. J. Fluid Mech. 15, 273–281
(1963)

38. Dyachenko, S., Newell, A.C., Pushkarev, A., Zakharov, V.E.: Optical turbulence: weak
turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Phys.
D 57, 96 (1992)

39. Zakharov, V., Dias, F., Pushkarev, A.: One-dimensional wave turbulence, Phys. Rep. 398, 1
(2004)

40. Benney, D.J., Saffman, P.G.: Nonlinear interactions of random waves in dispersive medium.
Proc. R. Soc. London Ser. A 289, 301 (1966)

41. Newell, A.: The closure problem in a system of random gravity waves. Rev. Geophys. 6, 1
(1968)

42. Benney, D.J., Newell, A.: Random wave closure. Stud. Appl. Math. 48, 29 (1969)
43. Newell, A.C., Nazarenko, S., Biven, L.: Wave turbulence and intermittency. Phys. D 152-153,

520–550 (2001)



Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves 271

44. Rasmussen, K., Cretegny, T., Kevrekidis, P.G., Gronbech-Jensen, N.: Statistical mechanics of
a discrete nonlinear system. Phys. Rev. Lett. 84, 3740 (2000)

45. Jordan, R., Turkington, B., Zirbel, C.L.: A mean-field statistical theory for the nonlinear
Schrödinger equation. Phys. D 137, 353 (2000)

46. Rumpf, R., Newell, A.C.: Coherent structures and entropy in constrained, modulationally
unstable, nonintegrable systems. Phys. Rev. Lett. 87, 054102 (2001)

47. Rumpf, B.: Simple statistical explanation for the localization of energy in nonlinear lattices
with two conserved quantities. Phys. Rev. E 69, 016618 (2004)

48. Derevyanko, S.A.: Thermalized polarization dynamics of a discrete optical-waveguide system
with four-wave mixing. Phys. Rev. A 88, 033851 (2013)

49. Antenucci, F., Ibáñez Berganza, M., Leuzzi, L.: Statistical physics of nonlinear wave
interaction. Phys. Rev. B 92, 014204 (2015)

50. Barviau, B., Kibler, B., Kudlinski, A., Mussot, A., Millot, G., Picozzi, A.: Experimental
signature of optical wave thermalization through supercontinuum generation in photonic
crystal fiber. Opt. Express 17, 7392 (2009)

51. Barviau, B., Kibler, B., Picozzi, A.: Wave turbulence description of supercontinuum gen-
eration: influence of self-steepening and higher-order dispersion. Phys. Rev. A 79, 063840
(2009)

52. Barviau, B., Garnier, J., Xu, G., Kibler, B., Millot, G., Picozzi, A.: Truncated thermalization
of incoherent optical waves through supercontinuum generation in photonic crystal fibers.
Phys. Rev. A 87(3), 035803 (2013)

53. Davis, M., Morgan, S., Burnett, K.: Simulations of Bose fields at finite temperature. Phys.
Rev. Lett. 87, 160402 (2001)

54. Davis, M., Morgan, S., Burnett, K.: Simulations of thermal Bose fields in the classical limit.
Phys. Rev. A 66, 053618 (2002)

55. Connaughton, C., Josserand, C., Picozzi, A., Pomeau, Y., Rica, S.: Condensation of classical
nonlinear waves. Phys. Rev. Lett. 95, 263901 (2005)

56. Zakharov, V., Nazarenko, S.: Dynamics of the Bose-Einstein condensation. Phys. D 201, 203
(2005)

57. During, G., Picozzi, A., Rica, S.: Breakdown of weak-turbulence and nonlinear wave
condensation. Phys. D 238, 1524 (2009)

58. Conti, C., Leonetti, M., Fratalocchi, A., Angelani, L., Ruocco, G.: Condensation in disordered
lasers: theory, 3d+1 simulations, and experiments. Phys. Rev. Lett. 101, 143901 (2008)

59. Turitsyna, E., Falkovich, G., Mezentsev, V., Turitsyn, S.: Optical turbulence and spectral
condensate in long-fiber lasers. Phys. Rev. A 80, 031804 (2009)

60. Weill, R., Fischer, B., Gat, O.: Light-mode condensation in actively-mode-locked lasers. Phys.
Rev. Lett. 104(17), 173901 (2010)

61. Klaers, J., Schmitt, J., Vewinger, F., Weitz, M.: Bose-Einstein condensation of photons in an
optical microcavity. Nature 468, 545 (2010)

62. Michel, C., Haelterman, M., Suret, P., Randoux, S., Kaiser, R., Picozzi, A.: Thermalization
and condensation in an incoherently pumped passive optical cavity. Phys. Rev. A 84, 033848
(2011)

63. Turitsyn, S.K., Babin, S.A., Turitsyna, E.G., Falkovich, G.E., Podivilov, E., Churkin, D.:
Optical wave turbulence. In: Shira, V., Nazarenko, S. (eds.) Wave Turbulence. World
Scientific Series on Nonlinear Science Series A, vol. 83. World Scientific, Singapore (2013)

64. Turitsyna, E., Falkovich, G., El-Taher, A., Shu, X., Harper, P., Turitsyn, S.: Optical turbulence
and spectral condensate in long fibre lasers. Proc. R. Soc. A 468, 2145 (2012)

65. Turitsyna, E., Smirnov, S., Sugavanam, S., Tarasov, N., Shu, X., Babin, S., Podivilov, E.,
Churkin, D., Falkovich, G., Turitsyn, S.: The laminar-turbulent transition in a fibre laser. Nat.
Photonics 7(10), 783–786 (2013)

66. Carusotto, I., Ciuti, C.: Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)
67. Bortolozzo, U., Laurie, J., Nazarenko, S., Residori, S.: Optical wave turbulence and the

condensation of light. J. Opt. Soc. Am. B 26, 2280 (2009)



272 A. Picozzi et al.

68. Laurie, J., Bortolozzo, U., Nazarenko, S., Residori, S.: One-dimensional optical wave
turbulence: experiment and theory. Phys. Rep. 514, 121 (2012)

69. Bernstein, I., Green, J., Kruskal, M.: Exact nonlinear plasma oscillations. Phys. Rev. 108, 546
(1957)

70. Hasegawa, A.: Dynamics of an ensemble of plane waves in nonlinear dispersive media. Phys.
Fluids 18, 77 (1975)

71. Hasegawa, A.: Envelope soliton of random phase waves. Phys. Fluids 20, 2155 (1977)
72. Marklund, M., Shukla, P.K.: Nonlinear collective effects in photon-photon and photon-plasma

interactions. Rev. Mod. Phys. 78, 591–640 (2006)
73. Dylov, D., Fleischer, J.: Observation of all-optical bump-on-tail instability. Phys. Rev. Lett.

100, 103903 (2008)
74. Garnier, J., Picozzi, A.: Unified kinetic formulation of incoherent waves propagating in

nonlinear media with noninstantaneous response. Phys. Rev. A 81, 033831 (2010)
75. Mendonça, J.T., Tsintsadze, N.L.: Analog of the Wigner-Moyal equation for the electromag-

netic field. Phys. Rev. E 62, 4276–4282 (2000)
76. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M., Pfau, T.: The physics of dipolar bosonic

quantum gases. Rep. Prog. Phys. 72, 126401 (2009)
77. Skupin, S., Saffman, M., Krolikowski, K.: Nonlocal stabilization of nonlinear beams in a

self-focusing atomic vapor. Phys. Rev. Lett. 98, 263902 (2007)
78. Conti, C., Peccianti, M., Assanto, G.: Route to nonlocality and observation of accessible

solitons. Phys. Rev. Lett. 91, 073901 (2003)
79. Conti, C., Peccianti, M., Assanto, G.: Observation of optical spatial solitons in a highly

nonlocal medium. Phys. Rev. Lett. 92, 113902 (2004)
80. Ghofraniha, N., Conti, C., Ruocco, G., Trillo, S.: Shocks in nonlocal media. Phys. Rev. Lett.

99, 043903 (2007)
81. Conti, C., Fratalocchi, A., Peccianti, M., Ruocco, G., Trillo, S.: Observation of a gradient

catastrophe generating solitons. Phys. Rev. Lett. 102, 083902 (2009)
82. Segev, M., Crosignani, B., Yariv, A., Fischer, B.: Spatial solitons in photorefractive media.

Phys. Rev. Lett. 68, 923–926 (1992)
83. Litvak, A., Sergeev, A.: One dimensional collapse of plasma waves. JETP Lett. 27, 517 (1978)
84. Wyller, J., Krolikowski, W., Bang, O., Rasmussen, J.J.: Generic features of modulational

instability in nonlocal Kerr media. Phys. Rev. E 66, 066615 (2002)
85. Turitsyn, S.: Spatial dispersion of nonlinearity and stability of multidimensional solitons.

Theor. Math. Phys. 64, 226 (1985)
86. Bang, O., Krolikowski, W., Wyller, J., Rasmussen, J.J.: Collapse arrest and soliton stabiliza-

tion in nonlocal nonlinear media. Phys. Rev. E 66, 046619 (2002)
87. Dreischuh, A., Neshev, D.N., Petersen, D.E., Bang, O., Krolikowski, W.: Observation of

attraction between dark solitons. Phys. Rev. Lett. 96, 043901 (2006)
88. Krolikowski, W., Bang, O., Nikolov, N., Neshev, D., Wyller, J., Rasmussen, J., Edmundson,

D.: Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear
media. J. Opt. B: Quantum Semiclassical Opt. 6, S288 (2004)

89. Snyder, A., Mitchell, D.: Accessible solitons. Science 276, 1538 (1997)
90. Cohen, O., Buljan, H., Schwartz, T., Fleischer, J., Segev, M.: Incoherent solitons in instanta-

neous nonlocal nonlinear media. Phys. Rev. E 73, 015601 (2006)
91. Zakharov, V., Pushkarev, A., Shvets, V., Yan’kov, V.: Soliton turbulence. JETP Lett. 48, 83

(1988)
92. Jordan, R., Josserand, C.: Self-organization in nonlinear wave turbulence. Phys. Rev. E 61,

1527 (2000)
93. Rumpf, R., Newell, A.C.: Localization and coherence in nonintegrable systems. Phys. D 184,

162 (2003)
94. Zakharov, V.E., Musher, S.L., Rubenchik, A.M.: Hamiltonian approach to the description of

non-linear plasma phenomena. Phys. Rep. 129, 285 (1985)
95. Onorato, M., Osborne, A., Fedele, R., Serio, M.: Landau damping and coherent structures in

narrow-banded 1C 1 deep water gravity waves. Phys. Rev. E 67, 046305 (2003)



Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves 273

96. Garnier, J., Ayanides, J.-P., Morice, O.: Propagation of partially coherent light with the
maxwell-debye equation. J. Opt. Soc. Am. B 20, 1409 (2003)

97. Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models
with long-range interactions. Phys. Rep. 480, 57–159 (2009)

98. Musher, S., Rubenchik, A., Zakharov, V.: Weak Langmuir turbulence. Phys. Rep. 252, 177
(1995)

99. Michel, C., Kibler, B., Picozzi, A.: Discrete spectral incoherent solitons in nonlinear media
with noninstantaneous response. Phys. Rev. A 83, 023806 (2011)

100. Garnier, J., Xu, G., Trillo, S., Picozzi, A.: Incoherent dispersive shocks in the spectral
evolution of random waves. Phys. Rev. Lett. 111(11), 113902 (2013)

101. Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)
102. Constantin, P., Lax, P., Majda, A.: A simple one-dimensional model for the three-dimensional

vorticity equation. Commun. Pure Appl. Math. 38, 715–724 (1985)
103. Fokas, A., Ablowitz, M.: The inverse scattering transform for the benjamin-ono equation – a

pivot to multidimensional problems. Stud. Appl. Math. 68, 1 (1983)
104. Coifman, R., Wickerhauser, V.: The scattering transform for the benjamin-ono equation. Stud.

Appl. Math. 6, 825 (1990)
105. Benjamin, T.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29,

559 (1967)
106. Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 1082 (1975)
107. Gallavotti, G.E.: The Fermi-Pasta-Ulam Problem: A Status Report. Lecture Notes in Physics.

Springer, Berlin (2007)
108. Onorato, M., Vozella, L., Proment, D., Lvov, Y.V.: Route to thermalization in the ˛-fermi–

pasta–ulam system. Proc. Natl. Acad. Sci. 112(14), 4208–4213 (2015)
109. Lake, B., Yuen, H., Rundgaldier, H., Ferguson, W.: Nonlinear deep-water waves: theory and

experiment. part 2. evolution of a continuous wave train. J. Fluid Mech. 83, 49 (1977)
110. Simaeys, G., Emplit, P., Haelterman, M.: Experimental demonstration of the Fermi-Pasta-

Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett. 87, 033902
(2001)

111. Mussot, A., Kudlinski, A., Droques, M., Szriftgiser, P., Akhmediev, N.: Fermi-pasta-ulam
recurrence in nonlinear fiber optics: the role of reversible and irreversible losses. Phys. Rev.
X 4, 011054 (2014)

112. Suret, P., Randoux, S., Jauslin, H., Picozzi, A.: Anomalous thermalization of nonlinear wave
systems. Phys. Rev. Lett. 104, 054101 (2010)

113. Michel, C., Suret, P., Randoux, S., Jauslin, H., Picozzi, A.: Influence of third-order dispersion
on the propagation of incoherent light in optical fibers. Opt. Lett. 35, 2367 (2010)

114. Peccianti, M., Assanto, G.: Nematicons. Phys. Rep. 516(4), 147–208 (2012)
115. Rotschild, C., Cohen, O., Manela, O., Segev, M., Carmon, T.: Solitons in nonlinear media

with an infinite range of nonlocality: first observation of coherent elliptic solitons and of
vortex-ring solitons. Phys. Rev. Lett. 95(21), 213904 (2005)

116. Babenko, V., Zel’dovich, B.Y., Malyshev, V., Sychev, A.A.: Spectrum of a giant laser pulse
under frequency self-modulation conditions. Quantum Electron. 3(2), 97–99 (1973)

117. Manassah, J.T.: Self-phase modulation of incoherent light revisited. Opt. Lett. 16, 1638 (1991)
118. Picozzi, A., Garnier, J., Hansson, T., Suret, P., Randoux, S., Millot, G., Christodoulides, D.:

Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of
statistical nonlinear optics. Phys. Rep. 542(1), 1–132 (2014)

119. Levin, Y., Pakter, R., Rizzato, F.B., Teles, T.N., Benetti, F.P.: Nonequilibrium statistical
mechanics of systems with long-range interactions. Phys. Rep. 535(1), 1–60 (2014)

120. Xu, G., Vocke, D., Faccio, D., Garnier, J., Roger, T., Trillo, S., Picozzi, A.: From coherent
shocklets to giant collective incoherent shock waves in nonlocal turbulent flows. Nat.
Commun. 6, 8131 (2015)

121. Snyder, A., Mitchell, D.: Big incoherent solitons. Phys. Rev. Lett. 80, 1422 (1998)
122. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29 (2011)
123. Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic, New York (2012)



274 A. Picozzi et al.

124. Xu, G., Garnier, J., Trillo, S., Picozzi, A.: Spectral dynamics of incoherent waves with a
noninstantaneous nonlinear response. Opt. Lett. 38, 2972–2975 (2013)

125. Montes, C.: Photon soliton and fine structure due to nonlinear compton scattering. Phys. Rev.
A 20, 1081 (1979)

126. Xu, G., Garnier, J., Conforti, M., Picozzi, A.: Generalized description of spectral incoherent
solitons. Opt. Lett. 39, 4192–4195 (2014)

127. Musher, S., Rubenchik, A., Zakharov, V.: Weak Langmuir turbulence of an isothermal plasma.
JETP 42, 80 (1976)

128. Xu, G., Garnier, J., Trillo, S., Picozzi, A.: Impact of self-steepening on incoherent dispersive
spectral shocks and collapselike spectral singularities. Phys. Rev. A 90, 013828 (2014)

129. Gurevich, A., Pitaevskii, L.: Nonstationary structure of a collisionless shock wave. Sov. Phys.
JETP 38, 291 (1974)

130. Taylor, R., Baker, D., Ikezi, H.: Observation of collisionless electrostatic shocks. Phys. Rev.
Lett. 24, 206 (1970)

131. Hoefer, M.A., Ablowitz, M.J., Coddington, I., Cornell, E.A., Engels, P., Schweikhard, V.:
Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics. Phys.
Rev. A 74, 023623 (2006)

132. Chang, J.J., Engels, P., Hoefer, M.A.: Formation of dispersive shock waves by merging and
splitting Bose-Einstein condensates. Phys. Rev. Lett. 101, 170404 (2008)

133. Ghofraniha, N., Gentilini, S., Folli, V., DelRe, E., Conti, C.: Shock waves in disordered media.
Phys. Rev. Lett. 109, 243902 (2012)

134. Ghofraniha, N., Amato, L.S., Folli, V., Trillo, S., DelRe, E., Conti, C.: Measurement of scaling
laws for shock waves in thermal nonlocal media. Opt. Lett. 37, 2325–2327 (2012)

135. Aschieri, P., Garnier, J., Michel, C., Doya, V., Picozzi, A.: Condensation and thermalization
of classsical optical waves in a waveguide. Phys. Rev. A 83, 033838 (2011)

136. Leggett, A.: Quantum Liquids. Oxford University Press, Oxford (2006)
137. Pitaevskii, S., Stringari, L.: Bose-Einstein Condensation. Oxford Science Publications,

Oxford (2003)
138. Suret, P., Picozzi, A., Randoux, S.: Wave turbulence in integrable systems: nonlinear

propagation of incoherent optical waves in single-mode fibers. Opt. Express 19, 17852 (2011)
139. Randoux, S., Walczak, P., Onorato, M., Suret, P.: Intermittency in integrable turbulence. Phys.

Rev. Lett. 113, 113902 (2014)
140. Boyd, R.: Nonlinear Optics, 3rd edn. Academic, New York (2008)
141. Huang, K.: Statistical Mechanics. Wiley, New York (1963)
142. Pitois, S., Lagrange, S., Jauslin, H.R., Picozzi, A.: Velocity locking of incoherent nonlinear

wave packets. Phys. Rev. Lett. 97, 033902 (2006)
143. Zakharov, V.: Weak turbulence spectrum in a plasma without a magnetic field. Sov. Phts.

JETP 24, 455 (1967)
144. Annenkov, S.Y., Shrira, V.I.: Evolution of wave turbulence under gusty forcing. Phys. Rev.

Lett. 107, 114502 (2011)
145. Annenkov, S.Y., Shrira, V.I.: Fast nonlinear evolution in wave turbulence. Phys. Rev. Lett.

102, 024502 (2009)
146. Connaughton, C., Newell, A.C., Pomeau, Y.: Non–stationary spectra of local wave turbulence.

Phys. D 184(1–4), 64–85 (2003). Complexity and Nonlinearity in Physical Systems – A
Special Issue to Honor Alan Newell

147. Lacaze, R., Lallemand, P., Pomeau, Y., Rica, S.: Dynamical formation of a Bose-Einstein
condensate. Phys. D 152, 779 (2001)

148. Escobedo, M., Valle, M.A.: Instability of the rayleigh-jeans spectrum in weak wave turbulence
theory. Phys. Rev. E 79, 061122 (2009)

149. Picozzi, A., Rica, S.: Condensation of classical optical waves beyond the cubic nonlinear
Schrödinger equation. Opt. Commun. 285, 5440 (2012)

150. Picozzi, A.: Towards a nonequilibrium thermodynamic description of incoherent nonlinear
optics. Opt. Express 15, 9063 (2007)



Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves 275

151. Assémat, E., Picozzi, A., Jauslin, H.R., Sugny, D.: Instabilities of optical solitons and
Hamiltonian singular solutions in a medium of finite extension. Phys. Rev. A 84, 013809
(2011)

152. Kirton, P., Keeling, J.: Nonequilibrium model of photon condensation. Phys. Rev. Lett. 111,
100404 (2013)

153. Sob’yanin, D.N.: Bose-Einstein condensation of light: general theory. Phys. Rev. E 88,
022132 (2013)

154. Fischer, B., Weill, R.: When does single-mode lasing become a condensation phenomenon?
Opt. Express 20, 26704–26713 (2012)

155. Nazarenko, S., Onorato, M., Proment, D.: Bose-einstein condensation and berezinskii-
kosterlitz-thouless transition in the two-dimensional nonlinear schrödinger model. Phys. Rev.
A 90, 013624 (2014)

156. Kirton, P., Keeling, J.: Thermalization and breakdown of thermalization in photon conden-
sates. Phys. Rev. A 91, 033826 (2015)

157. Weill, R., Levit, B., Bekker, A., Gat, O., Fischer, B.: Laser light condensate: experimental
demonstration of light-mode condensation in actively mode locked laser. Opt. Express 18(16),
16520–16525 (2010)

158. Gordon, A., Fischer, B.: Phase transition theory of many-mode ordering and pulse formation
in lasers. Phys. Rev. Lett. 89, 103901 (2002)

159. Weill, R., Rosen, A., Gordon, A., Gat, O., Fischer, B.: Critical behavior of light in mode-
locked lasers. Phys. Rev. Lett. 95, 013903 (2005)

160. Churkin, D.V., Kolokolov, I.V., Podivilov, E.V., Vatnik, I.D., Nikulin, M.A., Vergeles, S.S.,
Terekhov, I.S., Lebedev, V.V., Falkovich, G., Babin, S.A., et al.: Wave kinetics of random
fibre lasers. Nat. Commun. 2, 6214 (2015)

161. Babin, S.A., Churkin, D.V., Ismagulov, A.E., Kablukov, S.I., Podivilov, E.V.: Four-wave-
mixing-induced turbulent spectral broadening in a long Raman fiber laser. J. Opt. Soc. Am. B
24, 1729 (2007)

162. Dalloz, N., Randoux, S., Suret, P.: Influence of dispersion of fiber bragg grating mirrors on
formation of optical power spectrum in Raman fiber lasers. Opt. Lett. 35, 2505–2507 (2010)

163. Randoux, S., Dalloz, N., Suret, P.: Intracavity changes in the field statistics of Raman fiber
lasers. Opt. Lett. 36(6), 790–792 (2011)

164. Turitsyna, E.G., Turitsyn, S.K., Mezentsev, V.K.: Numerical investigation of the impact of
reflectors on spectral performance of Raman fibre laser. Opt. Express 18, 4469 (2010)

165. Turitsyn, S.K., Babin, S.A., El-Taher, A.E., Harper, P., Churkin, D.V., Kablukov, S.I., Ania-
Castanon, J.D., Karalekas, V., Podivilov, E.V.: Random distributed feedback fibre laser. Nat.
Photonics 4, 231 (2010)

166. Turitsyn, S.K., Babin, S.A., Churkin, D.V., Vatnik, I.D., Nikulin, M., Podivilov, E.V.: Random
distributed feedback fibre lasers. Phys. Rep. 542(2), 133–193 (2014). Random Distributed
Feedback Fibre Lasers

167. L’vov, V.S., L’vov, Y., Newell, A.C., Zakharov, V.: Statistical description of acoustic turbu-
lence. Phys. Rev. E 56, 390–405 (1997)

168. Leo, F., Coen, S., Kockaert, P., Gorza, S.-P., Emplit, P., Haelterman, M.: Temporal cavity
solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 4, 471
(2010)

169. Arecchi, T., Boccalettic, S., Ramazza, P.: Pattern formation and competition in nonlinear
optics. Phys. Rep. 318, 1 (1999)

170. Klaers, J., Vewinger, F., Weitz, M.: Thermalization of a two-dimensional photonic gas in a
white wall photon box. Nat. Phys. 6(7), 512–515 (2010)

171. Conforti, M., Mussot, A., Fatome, J., Picozzi, A., Pitois, S., Finot, C., Haelterman, M., Kibler,
B., Michel, C., Millot, G.: Turbulent dynamics of an incoherently pumped passive optical fiber
cavity: quasisolitons, dispersive waves, and extreme events. Phys. Rev. A 91, 023823 (2015)

172. Hammani, K., Kibler, B., Finot, C., Picozzi, A.: Emergence of rogue waves from optical
turbulence. Phys. Lett. A 374, 3585 (2010)



276 A. Picozzi et al.

173. Kibler, B., Hammani, K., Finot, C., Picozzi, A.: Rogue waves, rational solitons and wave
turbulence theory. Phys. Lett. A 375, 3149 (2011)

174. Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev.
Mod. Phys. 78, 1135 (2006)

175. Korhonen, M., Friberg, A.T., Turunen, J., Genty, G.: Elementary field representation of
supercontinuum. J. Opt. Soc. Am. B 30, 21–26 (2013)

176. Mussot, A., Beaugeois, M., Bouazaoui, M., Sylvestre, T.: Tailoring cw supercontinuum
generation in microstructured fibers with two-zero dispersion wavelengths. Opt. Express 15,
11553–11563 (2007)

177. Wadsworth, W., Joly, N., Knight, J., Birks, T., Biancalana, F., Russell, P.: Supercontinuum and
four-wave mixing with q-switched pulses in endlessly single-mode photonic crystal fibres.
Opt. Express 12, 299–309 (2004)

178. Barviau, B., Kibler, B., Coen, S., Picozzi, A.: Towards a thermodynamic description of
supercontinuum generation. Opt. Lett. 33, 2833 (2008)

179. Kibler, B., Michel, C., Barviau, B., Millot, G., Picozzi, A.: Thermodynamic approach of
supercontinuum generation. Opt. Fiber Technol. 18, 257 (2012)

180. Landau, L., Lifchitz, E.: Statistical Physics, Part 1. Pergamon Press, New York (1980)
181. Michel, C., Garnier, J., Suret, P., Randoux, S., Picozzi, A.: Kinetic description of random

optical waves and anomalous thermalization of a nearly integrable wave system. Lett. Math.
Phys. 96(1), 415–447 (2011)

182. Zakharov, V., Schulman, E.: Degenerative dispersion laws, motion invariants and kinetic
equations. Physica 4D, 192 (1980)

183. Zakharov, V., Schulman, E.: To the integrability of the system of two coupled nonlinear
Schrödinger equations. Physica 4D, 270 (1982)

184. Zakharov, V., Schulman, E.: On additional motion invariants of classical Hamiltonian wave
systems. Physica 29D, 283 (1988)

185. Balk, A., Ferapontov, E.: In: Zakharov, V. (ed.) Nonlinear Waves and Weak Turbulence.
American Mathematical Society Translations. American Mathematical Society, Providence,
RI (1998)

186. Onorato, M., Osborne, A., Serio, M., Cavaleri, L., Brandini, C., Stansberg, C.: Extreme waves,
modulational instability and second order theory: wave flume experiments on irregular waves.
European Journal of Mechanics-B/Fluids 25(5), 586–601 (2006)

187. Akhmediev, N., Soto-Crespo, J., Ankiewicz, A.: Extreme waves that appear from nowhere:
on the nature of rogue waves. Phys. Lett. A 373(25), 2137–2145 (2009)

188. Janssen, P.A.E.M.: The Interaction of Ocean Waves and Wind. Cambridge University Press,
Cambridge (2004)

189. Ankiewicz, A., Soto-Crespo, J., Akhmediev, N.: Rogue waves and rational solutions of the
Hirota equation. Phys. Rev. E 81(4), 046602 (2010)

190. Viotti, C., Dutykh, D., Dudley, J.M., Dias, F.: Emergence of coherent wave groups in deep-
water random sea. Phys. Rev. E 87, 063001 (2013)


	Preface
	Contents
	Hydrodynamic and Optical Waves: A Common Approach for Unidimensional Propagation
	1 Introduction
	2 Normal Variables in the Wave Equation
	3 Water Waves in One Horizontal Dimension and Their Hamiltonian Formulation
	3.1 Surface Gravity Waves: The Canonical Transformation
	3.2 The NLS Equation for Surface Gravity Waves in Infinite Water Depth
	3.2.1 The NLS Equation as an Evolution Equation in Space


	4 Optical Waves in Normal Variables
	4.1 Three-Wave Interactions: χ(2) Media
	4.1.1 Second-Harmonic Generation Model
	4.1.2 The Three-Wave Resonant Interaction System

	4.2 Four-Wave Interactions in Pure χ(3) Media
	4.2.1 The NLS Equation in Optical Waves

	4.3 Four-Wave Mixing in a χ(2) and χ(3) Medium
	4.4 The Stokes Expansion in Optical Waves

	5 Discussion and Conclusions
	Appendix
	References

	Integrability in Action: Solitons, Instability and Rogue Waves
	1 Introduction to Integrability and Solitons
	2 Integrability in Action: The NLS Equation as Study Case
	2.1 Conservation Laws from the Lax Pair
	2.2 The Initial Value Problem and Particular Solutions

	3 NLS Equation: Linear Instability and Rogue Waves
	4 Wave Coupling: Integrability and Rogue Waves
	5 Integrability in Action: Beyond the NLS Model
	References

	Hydrodynamic Envelope Solitons and Breathers
	1 Introduction
	2 Weakly Nonlinear Water Waves Theory
	2.1 Stokes Waves and Modulation Instability
	2.2 The Nonlinear Schrödinger Equation (NLSE)

	3 Exact NLSE Solutions and Their Physical Interpretation
	4 Experimental Setup
	5 Observations of Envelope Solitons on the Water Surface
	5.1 Dark Solitons
	5.2 Bright Solitons
	5.3 Multi-Soliton Solutions

	6 Observations of Breathers on a Finite Background
	6.1 Fundamental Periodic Breathers
	6.2 Doubly-Localized Breathers

	7 Discussions
	References

	Experiments on Breathers in Nonlinear Fibre Optics
	1 Introduction
	2 Nonlinear Schrödinger Breathers
	2.1 First-Order Breathers
	2.1.1 Kuznetsov-Ma Breathers
	2.1.2 Peregrine Breather
	2.1.3 Akhmediev Breathers
	2.1.4 Localisation Properties
	2.1.5 Spectral Description

	2.2 Second-Order Breathers

	3 Experimental Configurations in Nonlinear Fiber Optics
	3.1 Experimental Setups
	3.2 Impact of Initial Conditions

	4 Experimental Results
	4.1 First-Order Breathers
	4.2 Higher-Order Breathers

	5 Conclusions
	References

	Hamiltonian Description of Ocean Waves and Freak Waves
	1 Introduction
	2 The Problem
	3 Brief History
	4 Hamiltonian Formulation
	5 The Instability of Finite-Amplitude Deep-Water Waves
	5.1 Narrow-Band Wave Train in 1D
	5.2 Properties of 1D NLS
	5.3 NLS and Fermi-Pasta-Ulam Recurrence
	5.4 Narrow-Band Wave Train in 2D
	5.5 Nomenclature

	6 Ocean Waves and Statistical Mechanics
	6.1 A Generation Mechanism for Freak Waves
	6.2 Stochastic Approach: Free Waves
	6.3 Stochastic Approach: Bound Waves
	6.4 Results for Skewness and Kurtosis
	6.4.1 Bound Waves
	6.4.2 Free Waves

	6.5 Comparison with Monte Carlo Simulations

	7 Comparison with Observations from Wave Tanks
	8  Operational Implementation and Verification
	8.1 Validation
	8.2 A Special Case: The Draupner Freak Wave

	9 Conclusions
	References

	Modelling Transient Sea States with the Generalised Kinetic Equation
	1 Introduction
	2 Theoretical Background
	3 Numerical Algorithm
	4 Simulations with Constant Wind
	5 Sharp Changes of Wind Speed
	6 Wave Field Decorrelation
	7 Concluding Remarks
	References

	Rogue Waves in Random Sea States: An Experimental Perspective
	1 Introduction
	2 Wave Crest Distribution in the Absence of a Background Current
	2.1 Experimental Model
	2.2 Evolution of the Wave Spectrum
	2.3 Evolution of the Wave Crest Distribution

	3 Wave Crest Distribution in the Presence of a Background Current
	3.1 Experimental Model
	3.2 Evolution of the Wave Spectrum
	3.3 Evolution of the Wave Crest Distribution

	4 Conclusions
	Appendix
	References

	Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves
	1 Introduction
	1.1 From Incoherent Solitons to Wave Turbulence
	1.1.1 Wave Turbulence Formulation: Thermalization and Condensation
	1.1.2 Vlasov and Wigner-Moyal Formulations: Incoherent Solitons
	1.1.3 Weak Langmuir Turbulence Formulation: Spectral Incoherent Solitons and Incoherent Shocks
	1.1.4 Breakdown of Thermalization and the FPU Problem

	1.2 Organization of the Chapter

	2 Vlasov Formalism
	2.1 Nonlocal Nonlinear Response
	2.1.1 NLS Model
	2.1.2 Homogeneous vs Inhomogeneous Statistics

	2.2 Short-Range Vlasov Equation
	2.2.1 Properties of the Vlasov Equation

	2.3 Long-Range Vlasov Equation
	2.3.1 Long-Range Response
	2.3.2 Validity of the Long-Range Vlasov Equation
	2.3.3 Incoherent Modulational Instability
	2.3.4 Incoherent Solitons
	2.3.5 Vlasov Simulations: Incoherent Soliton Turbulence

	2.4 Temporal Version: Non Hamiltonian Long-Range VlasovEquation

	3 Weak Langmuir Turbulence Formalism
	3.1 Noninstantaneous Nonlinear Response
	3.2 Short-Range Interaction: Spectral Incoherent Solitons
	3.2.1 Numerical Simulations
	3.2.2 Analytical Soliton Solution

	3.3 Long-Range Interaction: Spectral Singularities
	3.3.1 Damped Harmonic Oscillator Response: Spectral Dispersive Shock Waves
	3.3.2 Exponential Response: Spectral Collapse Singularity


	4 Wave Turbulence Kinetic Equation
	4.1 Kinetic Equation in a Waveguide
	4.1.1 Properties of the Kinetic Equation
	4.1.2 Basic Considerations
	4.1.3 Wave Turbulence Kinetic Equation in a Waveguide
	4.1.4 Application to Specific Examples

	4.2 Thermalization and Nonequilibrium Kolmogorov-Zakharov Stationary States
	4.2.1 Thermodynamic Rayleigh-Jeans Spectrum
	4.2.2 Nonequilibrium Kolmogorov-Zakharov Stationary Spectra

	4.3 Wave Condensation
	4.3.1 Wave Condensation in the Cubic NLS Equation
	4.3.2 3D: Condensation in the Thermodynamic Limit
	4.3.3 Weakly Nonlinear Regime: Weak Condensate Amplitude
	4.3.4 Bogoliubov Regime: Strong Condensate Amplitude
	4.3.5 2D: Condensation Beyond the Thermodynamic Limit
	4.3.6 Condensation Beyond the Cubic NLS Equation: Nonlocal and Saturable Nonlinearities
	4.3.7 Condensation in a Waveguide
	4.3.8 Rayleigh-Jeans Distribution in a Waveguide
	4.3.9 Frequency Cut-Off, Density of States and Thermodynamic Limit
	4.3.10 Condensate Fraction in the Waveguide


	5 Generalizations and Perspectives
	5.1 Turbulence in Optical Cavities
	5.1.1 Wave Turbulence in Raman Fiber Lasers
	5.1.2 Laminar-Turbulent Transition in Raman Fiber Lasers
	5.1.3 Wave Kinetics of Random Fiber Lasers
	5.1.4 Turbulent Dynamics in Passive Optical Cavities

	5.2 Optical Wave Thermalization Through SupercontinuumGeneration
	5.2.1 Thermodynamic Phase-Matching

	5.3 Breakdown of Thermalization
	5.3.1 Truncated Thermalization
	5.3.2 Anomalous Thermalization
	5.3.3 Local vs Integral Invariants

	5.4 Emergence of Rogue Waves from Optical Turbulence

	References

	Integrable Turbulence with Nonlinear Random Optical Waves
	1 Introduction
	2 Spatio-Temporal, Spectral and Statistical Features Arising from Nonlinear Propagation of Random Waves in Systems Ruled by the Integrable 1D-NLSE 
	2.1 General Framework and Description of the Random Initial Condition
	2.2 Focusing Regime
	2.3 Defocusing Regime

	3 Optical Fiber Experiments in Focusing and in Defocusing Propagation Regimes
	4 Separation of Scales and Intermittency Phenomenon
	5 Conclusion
	References

	Whitham Modulation Equations and Application to Small Dispersion Asymptotics and Long Time Asymptotics of Nonlinear Dispersive Equations
	1 Introduction
	2 Modulation of Nonlinear Equation
	2.1 Whitham Modulation Equations

	3 Application of Whitham Modulation Equations 
	3.1 Long Time Asymptotics
	3.2 Small ε Asymptotic
	3.2.1 Solution of the Whitham Equations


	References

	Dispersive Shock Waves: From Water Waves to Nonlinear Optics
	1 Introduction
	2 Classical Shock Waves and Regularising Mechanisms
	3 Dispersive Shocks in Shallow Water
	4 Dispersive Shocks in Optics
	4.1 Temporal DSW in Fibers
	4.2 Spatial DSW in Bulk Materials

	5 Radiating Dispersive Shocks
	5.1 NLS Equation with HOD in the Semiclassical Regime
	5.2 Resonant Radiation Emitted by Dispersive Shocks
	5.2.1 Third-Order Dispersion
	5.2.2 Fourth-Order Dispersion


	6 Conclusions
	References

	Acronym Glossary

