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ABSTRACT:
We propose a modal approach developed in the framework of the paraxial approximation to investigate the effects

of deterministic surface perturbations in a planar waveguide. In the first part, the sensitivity of the modal amplitudes

is theoretically formulated for a three-dimensional perturbation at the air–water interface. When applied to a broad-

band ultrasonic signal in a laboratory tank experiment, this approach results in travel-time and amplitude fluctuations

that are successfully compared to experimental data recorded between two vertical source–receiver arrays that span

the ultrasonic waveguide. The nonlinear shape of the modal amplitude fluctuations is of particular interest and is due

to the three-dimensional nature of the surface perturbation. In the second part, a time-harmonic inversion method is

built in the paraxial single-scattering approximation to image the dynamic surface perturbation from the modal trans-

mission matrix between two source–receiver arrays. Again, the inversion results for capillary-gravity surface pertur-

bations are successfully compared to similar inversions performed from experimental data processed with a

complete set of eigenbeams extracted between the two arrays. VC 2022 Acoustical Society of America.
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I. INTRODUCTION

Surface scattering in a waveguide involves the combi-

nation of waveguide propagation and scattering physics,

both of which have been extensively studied separately. The

rough and time-varying nature of the sea surface scatters

sound in complex ways. For instance, the crest of a surface

wave can act like a concave acoustic lens to focus sound so

that the surface-reflected multi-path arrival has an intensity

greater than that of the direct arrival. Arrival times vary as

the gross elevation of the smaller waves responsible for

acoustic focusing is modulated by large-scale wave features,

such as swell.

From theory and simulation, a series of studies in the

late 1980s provided useful descriptors of sea-surface scatter-

ing using Kirchhoff and perturbation approximations.1,2 The

new trend in surface scattering is to predict and invert for a

deterministic gravity wave, taking advantage of the sensitiv-

ity of the amplitude and phase modulations of the incident

acoustic wave to the local elevation and curvature of the sur-

face near the specular reflection points.3–7 These studies

were motivated by the impact of surface scattering on under-

water acoustics applications, such as communication sys-

tems or sonar in shallow waters.8,9

The dynamic imaging of a deterministic gravity wave

propagating at an air–water interface requires continuous

sampling of every point at this interface. This sampling can

be done acoustically using waves that propagate in the water

column but have specular reflection points that fully scan

the air–water interface. The use of many source–receiver

pairs multiplies the number of specular reflection points,

which allows for better sampling of the air–water interface.

Moreover, the multi-path propagation in the waveguide also

contributes to improved surface sampling, as each eigenray

that bounces several times at the surface naturally increases

its sensitivity to any surface deformation.10 Following this

methodology, there were recent experimental demonstra-

tions of dynamic imaging of a deterministic capillary-

gravity wave in an ultrasonic waveguide from ultrasonic

source and receiver arrays that face each other in a 1-m-

long, 5-cm-deep fluid waveguide and have frequencies in

the MHz range. Through a double-beamforming (DBF) pro-

cess,11,12 a large set of acoustic multi-reverberated beams

that interact with the air–water interface were isolated and

identified. The travel-times, amplitudes, and source–receiver

angles of a few thousand eigenbeams are natural observ-

ables for eigenbeams that are measured when the capillary-

gravity wave travels through the source–receiver plane.

Linear inversion of these observables leads to accurate

spatial–temporal patterns of the surface deformation13,14

with the spatial resolution bounded by both the acoustic

wavelength and the extent of the source-to-receiver Fresnel

zone of the acoustic wave at the surface.

The present study aims at revisiting the above-

mentioned eigenbeam methodology using a newly developed

modal approach for the dynamic imaging of a deterministica)Electronic mail: josselin.garnier@polytechnique.edu
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gravity wave in a waveguide. Using the eigenmodes of the

waveguide to invert for a surface perturbation might appear

counterintuitive because the modes are classically defined as

an invariant of the waveguide along the waveguide axis

propagation. However, the eigenmodes are also a basis for

the acoustic wavefield: as such, the modal transmission

matrix between the source array and the receiver array con-

tains all of the elements that allow reconstruction of the pro-

file of the waveguide surface.

The objective of this paper is twofold. In the first part,

the modal approach is rapidly revisited in a plane wave-

guide. The sensitivity of the modal amplitudes is theoreti-

cally formulated for a three-dimensional perturbation at the

air–water interface in the paraxial approximation. The para-

xial approximation holds when the typical wavelength is

much smaller than the typical scale of variations of the

surface perturbations, which is itself much smaller than the

propagation distance. When applied to a broadband ultra-

sonic signal, this approach results in travel-time and ampli-

tude fluctuations that are compared successfully to

experimental data.4 In the second part, a time-harmonic

method is built in the paraxial single-scattering approxima-

tion to image the dynamic surface perturbations from the

modal amplitudes of the signals collected at a high frame

rate between the source and receiver arrays. Again, inver-

sion results for two-dimensional and three-dimensional sur-

face perturbations are successfully compared to similar

inversions performed from the eigenbeam methodology4,13

with the same experimental data.

II. WAVE PROPAGATION IN AN ACOUSTIC
WAVEGUIDE

We consider acoustic wave propagation in a planar

waveguide, as illustrated in Fig. 1. We denote by x 2 R the

range as the main axis of the waveguide. The medium is

unbounded in the cross-range direction y, but it is confined

in depth z by two planar and parallel boundaries that trap the

waves, thus creating the waveguide effect. The acoustic

pressure field denoted by pðt; x; y; zÞ satisfies the wave

equation

@2
x þ@2

y þ@2
z �

1

c2
o

@2
t

� �
pðt;x;y;zÞ¼ f ðt;zÞdðxÞdðyÞ (1)

inside the waveguide, which is filled with a medium with

homogeneous wave speed co. The pulsed excitation is due to

a vertical linear source array localized in the line

x ¼ 0; y ¼ 0, and the wavefield is received at distance L on

a vertical linear receiver array localized in the line

x ¼ L; y ¼ 0. The bottom at z¼ 0 is perfectly flat and rigid:

@zpðt; x; y; z ¼ 0Þ ¼ 0. The pressure release boundary condi-

tion at the perturbed top boundary pðt; x; y; z ¼ Tðx; yÞÞ ¼ 0

means that the top boundary z ¼ Tðx; yÞ has small fluctua-

tions around the mean depth D; jTðx; yÞ � Dj � D, local-

ized in the region x 2 ð0; LÞ. The boundary fluctuations are

modeled with the smooth and bounded function l,

Tðx; yÞ ¼ D 1þ lðx; yÞ½ �: (2)

The goals of our study are (1) to quantify the effects of

acoustic scattering by the surface perturbation l, (2) to

experimentally compare the modal-based perturbation

approach to ultrasonic data recorded by the receiver array,

and (3) to design imaging functions that estimate the surface

perturbation from the ultrasonic signals recorded between

the source–receiver arrays. In the analysis, the surface per-

turbation l is assumed to be time-independent with respect

to the ultrasonic wave sampling. This assumption is valid in

our experimental configurations, as the velocity of the grav-

ity waves (<1 m/s) is much smaller than the velocity of the

acoustic waves (’ 1500 m/s), so the surface perturbation

can be considered as frozen during the acquisition of the

transfer matrix from all of the elements of the source array

to all of the elements of the receiver array.

III. PARAXIAL APPROXIMATION IN A PERFECT
WAVEGUIDE

We consider the paraxial regime L� D� ko, where

ko ¼ 2p=k is the central wavelength. In this section, we

consider the case l � 0. Assuming x� ko and jyj�
ffiffiffiffiffiffiffi
kox
p

,

the pressure field in the paraxial approximation has the

form

FIG. 1. (Color online) Schematic of the experimental setup designed to

image a traveling gravity-capillary wave on the surface of the waveguide.

Vertical 64-element source and receiver arrays face each other in a 1-m-

long, 55-mm-deep water waveguide. The waveguide dimensions are large

compared to the 1.5 mm wavelength of the ultrasonic wave. The bottom is

made of steel, which allows for perfect reflection at this interface. The

transfer matrix of the waveguide (between the elements of the source and

receiver arrays) is recorded at a rate of 100 frames/s over 5 s. (a) Modified

from Ref. 4. A computer-controlled dynamic shaker is attached to a

Plexiglas cylinder placed at the air–water interface on the side of the wave-

guide. This device generates impulsive gravity waves that cross the source–

receiver axis in a few seconds. (b) Modified from Ref. 13. The surface

waves are caused by laser-induced breakdown (lightning-shaped arrow) in

the center of the waveguide, which generates contra-propagative waves

along the axis of the waveguide.
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p̂oðx; x; y; zÞ �
XNðxÞ
j¼1

/jðx; zÞâj;oðx; x; yÞeibjðxÞx; (3)

with explicit expressions of the eigenfunctions /j, which are

independent of the frequency in a perfect waveguide,

/jðzÞ ¼
ffiffiffiffi
2

D

r
cos p j� 1

2

� �
z

D

� �
(4)

and

âj;oðx; x; yÞ ¼
e�3ip=4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjðxÞx

q exp
ibjðxÞy2

2x

� �
f̂ jðxÞ; (5)

for j ¼ 1;…;N that correspond to the N ¼ ½kD=p� propaga-

tive modes in the waveguide, with k ¼ x=co. In Eqs. (3) and

(5), we introduce the modal wavenumber bjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkjðxÞj

p
with eigenvalues defined as

kjðxÞ ¼
p
D

� �2 kD
p

� �2

� j� 1

2

� �2
" #

(6)

and the coefficients of the source profile in the basis of the

eigenfunctions,

f̂ jðxÞ ¼
ðD

0

dz /jðzÞf̂ ðx; zÞ: (7)

The Fourier transform of the source,

f̂ ðx; zÞ ¼
ð1
�1

dt f ðt; zÞeixt; (8)

is assumed to be compactly supported (for positive frequen-

cies) in ½xo � B=2;xo þ B=2�. Here, xo is the central fre-

quency, and B is the bandwidth.

In short, the pressure field in Eq. (3) is a superposition

of forward going modes that are propagating in the range

direction x, with slowly varying amplitudes âj;o given by

Eq. (5). For j ¼ 1;…;N, these modal amplitudes solve the

paraxial equations,

2ibjðxÞ@x þ @2
y

h i
âj;oðx; x; yÞ ¼ 0; (9)

with initial conditions

âj;oðx; x ¼ 0; yÞ ¼
f̂ jðxÞ

2ibjðxÞ
dðyÞ: (10)

In the case of broadband source excitation, the wave

signals recorded by a receiver located at depth zr for a

source of the form

f ðt; zÞ ¼ FðzÞfoðBtÞe�ix0t þ c:c:; (11)

with B� xo, is

poðt; L; 0; zrÞ ¼
1

2p

ðXNðxÞ
j¼1

/jðzrÞâj;oðx; L; 0Þ

� eibjðxÞL�ixtdxþ c:c:; (12)

âj;oðx; L; 0Þ ¼
e�3ip=4Fj

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjðxÞL

q 1

B
f̂ o

x� xo

B

� �
; (13)

with Fj ¼
ÐD

0
FðzÞ/jðzÞdz. Therefore, the signal has the form

of a train of short pulses,

poðt;L;0;zrÞ¼
XNðxoÞ

j¼1

Aj;o/jðzrÞfo Bðt�Tj;oÞ
� �

þc:c:; (14)

which arrive at the travel-time of the jth mode,

Tj;o ¼ b0jðxoÞL ’
j<<NðxoÞ L

co
þ L

co

p2

�
j� 1

2

�2

2k2
oD2

; (15)

with ko ¼ xo=co, and with amplitude

Aj;o ¼
eibjðxoÞL�ixot�3ip=4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjðxoÞL

q Fj: (16)

IV. PARAXIAL APPROXIMATION IN A ROUGH
WAVEGUIDE

In the paraxial regime and in the presence of a surface

perturbation [Eq. (2)], the pressure field takes the form (see

details in Appendix A)

p̂ðx; x; y; zÞ ¼
XNðxÞ
j¼1

/jðzÞâjðx; x; yÞeibjðxÞx: (17)

The modal amplitudes satisfy the leading order of the

Schr€odinger-type equations,

@xâjðx; x; yÞ ¼
i

2bjðxÞ
@2

y âj �
i qjj

2bjðxÞ
lðx; yÞâj; (18)

for x> 0, and the initial conditions

âjðx; x ¼ 0; yÞ ¼
f̂ jðxÞ

2ibjðxÞ
dðyÞ; j ¼ 1;…;N: (19)

The coefficients qjj are defined by

qjj ¼ 2

ðD
0

dz /jðzÞ/00j ðzÞ ¼ �2
p
D

� �2

j� 1

2

� �2

: (20)

To analyze beam propagation in rough waveguides and

to obtain Eq. (18), we introduce in Appendix A 1 a change

of coordinates that flattens the perturbed surface boundary.

The mapped wave field then satisfies a wave equation
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perturbed by a differential operator with rough coefficients.

We show in Appendix A 2 that the solution can be written as

a superposition of the ideal (unperturbed) waveguide modes

with range-dependent modal amplitudes that solve the para-

xial Eq. (18) driven by the function l. These modal ampli-

tudes model the cumulative scattering effects of the

perturbed surface. In Eq. (18), we keep only the leading-

order terms that describe the evolutions of the modal ampli-

tudes and that explain the forms of the travel-time and

amplitude perturbations observed in the experiments [see

Eqs. (26) and (27) below]. We neglect higher-order terms

that describe mode conversion and that will be important for

the resolution of the inverse problem in Sec. VI.

The wave field recorded at distance L on the receiver

array is sensitive to the perturbation l only in a tube with

radius in y on the order of
ffiffiffiffiffiffiffi
koL
p

(the Fresnel zone). We

assume that the transverse scale of the perturbation l is on

the order of or larger than
ffiffiffiffiffiffiffi
koL
p

. We can therefore expand

lðx; yÞ ¼ l0ðxÞ þ
yffiffiffiffiffiffiffi
koL
p l1ðxÞ þ

y2

koL
l2ðxÞ; (21)

where lj are compactly supported in ½L0; L1� 	 ð0; LÞ. Under

such circumstances, Appendix B 1 shows that the approxi-

mate expression of the modal amplitudes at x¼ L, y¼ 0 is

given by

âjðx; L; 0Þ ¼
Âj;oðx; LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� qjj

bjðxÞ2
�2

ko

L1ðL� L1Þ
L2

s

� exp �i
qjj

2bjðxÞ
�0

� �
; (22)

where

Âj;oðx; LÞ ¼
e�3ip=4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjðxÞL

q f̂ jðxÞ; �l ¼
ðL1

L0

llðxÞdx: (23)

The wave signals recorded by a receiver located at depth zr

when there is a source of the form (11) are

pðt; L; 0; zrÞ ¼
1

2p

ðXNðxÞ
j¼1

/jðzrÞâjðx; L; 0Þ

� eibjðxÞL�ixtdxþ c:c:; (24)

where âjðx; L; 0Þ is given by Eqs. (22) and (23) with

f̂ jðxÞ ¼ ðFj=BÞf̂ oððx� xoÞ=BÞ. Therefore, the signal has

the form of a train of short pulses,

pðt; L; 0; zrÞ ¼
XNðxoÞ

j¼1

Aj/jðzrÞfo Bðt� TjÞ
� �

þ c:c:; (25)

that arrive at the perturbed travel-times of the modes,

Tj ¼ b0jðxoÞLþ
qjj

2bjðxoÞ2
b0jðxoÞ�0

¼ Tj;o 1þ qjj

2bjðxoÞ2
�0

L

� �

’
j�NðxoÞ

Tj;o 1� j� 1

2

� �2
p2�0

k2
oD2L

 !
; (26)

where Tj;o is the unperturbed arrival time of the jth mode

[Eq. (15)] and with the perturbed amplitude

Aj ¼
Aj;offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� qjj

bjðxÞ2
�2

ko

L1ðL� L1Þ
L2

s

’
j�NðxoÞ Aj;offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

j� 1

2

�2 p�2L1ðL� L1Þ
koD2L2

s ; (27)

where Aj;o is the unperturbed amplitude of the jth mode [Eq.

(16)]. Note that the travel-time perturbation is linear in �0,

while the amplitude perturbation is not linear in �2. As a

consequence, when the perturbation of the surface slowly

evolves in time, as a periodic and harmonic function like a

cosine, for instance, then the terms �j behave like a cosine

and the travel-time perturbation behaves like a cosine, but

the amplitude perturbation behaves like a nonharmonic

function. This apparent nonlinear behavior of the amplitude

perturbation results from linear propagation effects: the

transverse curvature of the surface perturbation �2 can

induce a quadratic wave front that acts as a lens and

involves the focusing of the acoustic wave. This behavior is

illustrated in Sec. V, devoted to the experimental data.

V. EXPERIMENTAL CONFIGURATION AND DATA
ANALYSIS

The experimental setup is a variation of an ultrasonic

Pekeris waveguide.15 Two source–receiver ultrasonic arrays

face each other in a small-scale shallow-water waveguide

(Fig. 1). The waveguide depth is D ¼ 55 mm, and its length

is L¼ 1 m. The bottom of the waveguide is steel and pro-

vides good reflection of ultrasonic waves. The arrays are

composed of 64 transducers centered at 1 MHz with a 75%

bandwidth. The ultrasonic signal transmitted by each piezo-

transducer source is a broadband pulse of 1 ls at the central

frequency of the transducer. The received signals spread

over 80 ls after the direct arrival at ’ 680 ls, which corre-

sponds to ðL=DÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð760=680Þ2 � 1

q
’ 10 reverberations on

the waveguide boundaries.4 On both arrays, the transducer

dimensions are 0.75 mm along the vertical axis (that corre-

sponds to half of the central wavelength) and 12 mm along

the transverse axis. This feature naturally creates a colli-

mated beam in the waveguide axis direction, which avoids

side echoes from the tank walls. Recent studies13,14 estimate

the transverse size of the source-to-receiver Fresnel zone at

62 cm on each side of the waveguide axis.
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Based on this experimental setup for ultrasonic waveguide

propagation, the present study revisits this in the framework of

the paraxial approximation for two experimental datasets that

deal with surface perturbations at an air–water interface.

The first experiment (EXP1) is detailed in Ref. 4. A

computer-controlled dynamic shaker is connected to a 20-cm-

long, 2-cm-diameter Plexiglas cylinder that is half-immersed

on the side of the acoustic waveguide, as shown in Fig. 1(a).

The signal sent to the shaker is a Gaussian pulse that is cen-

tered at 3.5 Hz, with a’ 40% bandwidth, and generates impul-

sive capillary-gravity waves at the air–water interface. The

cylinder axis is horizontal and tilted at ’ 40
 with respect to

the source-to-receiver array axis. The capillary-gravity wave

crosses the acoustic waveguide as a three-dimensional surface

perturbation in a few seconds. The maximum wave height is

controlled by the amplitude of the signal sent to the shaker and

is on the order of a few millimeters. As the capillary-gravity

wavelength kg (of a few centimeters) is much greater than the

acoustic wavelength (ko ¼ 1:5 mm), the surface-reflected

acoustic waves should be sensitive to details in the surface

deformation at spatial scales much smaller than kg.

The second experiment (EXP2) is detailed in Ref. 14.

The surface of the waveguide is perturbed by a blast wave

generated by laser-induced breakdown above the surface in

the plane y¼ 0 and at the position x � 0:56 m [Fig. 1(b)].

The perturbation is localized and controllable by the power

of the laser excitation and results in a circular surface wave.

Due to the dimensions of the waveguide, this circular wave

is seen by the ultrasonic source–receiver arrays as two

counter-propagative capillary-gravity wave packets that

expand from the center of the waveguide as a two-

dimensional surface perturbation.

In both experiments, while the surface perturbation is

traveling across the surface, the ultrasonic system records

the transfer matrix of the waveguide between the source–

receiver arrays at 100 times/s, over 5 s. By transfer matrix,

we mean the complete set of 64� 64 time-domain signals

emitted by every source and received by every receiver of

the two arrays.

The calculation of the perturbed and unperturbed travel-

times fTj; Tj;0g and amplitudes fAj;Aj;0g defined for each

mode in Eqs. (26) and (27) requires projection of the pres-

sure wavefield onto the modal basis. In theory, the mode

profiles /jðzÞ should be the theoretical eigenfunctions [Eq.

(4)] in a perfect waveguide. In practice, the waveguide used

in EXP1 and EXP2 can be approximated by a Pekeris wave-

guide. The actual mode profiles ~/jðzÞ are extracted for each

mode from the waveguide transfer matrix p̂oðx; x; y; zÞ
recorded between the source and receiver arrays in the

absence of surface perturbation. More precisely, the mode

profiles ~/jðzÞ are obtained by optimizing the mode parame-

ters numerically computed from a Pekeris waveguide model

so as to maximize the output intensity of the experimental

waveguide transfer matrix projected on the modes for both

the source and receiver dimensions [Eq. (28)]. The optimi-

zation is carried out with respect to physical parameters,

such as the waveguide depth D and steel bottom elastic

properties for the Pekeris model, but also against geometri-

cal parameters, such as the relative positions in depth of the

64-element source–receiver arrays in the water column.

Figure 2 shows the optimal projection of the transfer

matrix on the mode profiles for the unperturbed waveguide

with the plot of the mode profiles ~/jðzÞ for modes j¼ 1 to

j¼ 4 on the source–receiver arrays. The travel-times Tj;0 and

amplitudes Aj;0 are obtained directly from the maximum of

the envelope of the transfer matrix projection for every

mode, as calculated from the following equation:

Aj;o fo Bðt� Tj;oÞ
� �
¼
ð

dx
ðD

0

dzr

ðD
0

dzs
~/jðzrÞ~/jðzsÞ

� p̂oðx; zs; zr; x ¼ L; y ¼ 0Þe�ixt þ c:c:; (28)

FIG. 2. (Color online) (a) Mode profiles ~/jðzÞ for modes 1–4 extracted from the transfer matrix data of the unperturbed waveguide. (b) Normalized projec-

tion of the unperturbed transfer matrix onto the mode profiles on both the source and receiver arrays. Note the delayed arrival times of the different modes

(from mode 1 to mode 30) that correspond to the dispersion of the pressure field in the reverberated waveguide, as calculated from the source–receiver dis-

tance L and the modal group velocities (red square).
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where p̂oðx; x ¼ L; y ¼ 0; zs; zrÞ is the unperturbed pressure

field between a source in zs and a receiver in zr, respectively.

Using the actual mode profiles ~/jðzÞ, the projections of the

successive recorded transfer matrices lead to the extraction

of the travel-times Tj [Eq. (26)] and amplitudes Aj [Eq.

(27)], while the surface perturbation travels at the air–water

interface.

In the experimental configuration of EXP1,4 the

dynamic shaker excites the half-immersed horizontal cylin-

der with three different voltages (amp1¼ 1 V, amp2¼ 2 V,

amp3¼ 3 V), thus creating increasing surface perturbations

in each case. Due to the large bandwidth of the piezo-

transducers, the transfer matrices can be studied at three dif-

ferent frequencies xo ¼ 2p� 0:5; 1; 1:5 MHz and for each

amplitude modulation of the surface perturbation.

In Fig. 3, we plot for mode 15 and at xo ¼ 2p� 1 MHz

the relative amplitude perturbation AjðtÞ=Aj0 � 1 and the

time perturbation TjðtÞ � Tj0 as functions of the acquisition

time t. Here, we assume that the surface perturbations vary

as p1 cos ðp2tÞ exp ð�p3t2Þ with respect to the slow time t (up

to a time shift), and we adapt p1, p2, and p3 to fit the observa-

tions. We find p1ðamp1Þ ’ p1ðamp2Þ=2 ’ p1ðamp3Þ=3, in

FIG. 3. (Color online) Relative amplitude and travel-time perturbations as functions of slow acquisition time for frequency xo ¼ 2p� 0:5� 106 rad�s�1

and mode number 15 and for different surface perturbation amplitudes amp1, amp2, and amp3. The blue lines plot the experimental results. The red lines

plot the theoretical results obtained from Eqs. (26) and (27).
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agreement with the different voltages used to create the sur-

face perturbations. We find p2 ¼ 22:5 s�1 and p3 ¼ 0:852 s�2,

which correspond, respectively, to a central frequency

� ¼ 22:5=ð2pÞ ’ 3:5 Hz and a root mean square (rms) pulse

width of 0.6 s, which is in agreement with the pulse generated

by the shaker. Indeed, the pulse shape generated by the shaker

has a carrier frequency equal to �sh ¼ 3:5 Hz and a rms pulse

width of tsh ¼ 0:25 s. The capillary-gravity waves are disper-

sive with dispersion relation x2 ’ ðgk þ ðr=qÞk3Þ, where

g ’ 9:8 m/s2 is the acceleration of gravity, r ¼ 0:074 N/m is

the air–water surface tension, and q ¼ 1000 kg/m3 is the

water density. The rms pulse width after a propagation dis-

tance d is then close to tsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k00ðxshÞ2d2=t4sh

q
, with xsh

¼ 2p�sh. Around the frequency xsh, we have kðxÞ
’ x2=g and k00ðxÞ ’ 2=g, so the rms pulse width after a prop-

agation distance d is actually close to tsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4d2=ðg2t4shÞ

p
,

which is equal to 0.6 s for d¼ 0.6 m. This is the approximate

distance between the shaker and the position of the

capillary-gravity waves when the acoustic waves are trans-

mitted. Finally, we can clearly observe the nonlinear

shape of the relative mode amplitude perturbation for the

strongest surface perturbation amp3, as predicted by the

theory [Eq. (27)].

In Fig. 4, we report the averaged relative amplitude per-

turbation hðAj=Aj0 � 1Þ2i and time perturbation hðTj � Tj0Þ
2i

as a function of the mode number j. The ensemble average

hi is performed on the 500 transfer matrix acquisitions,

while the surface perturbation travels at the air–water inter-

face. We compare this with the theoretical forms [Eqs. (27)

and (26)] with a least-square fit for �0 and �2 [for instance,

at frequency 1 MHz, we find ðp2�0Þ=ðk2
oD2LÞ ¼ 2 10�5 and

ðp�2L1ðL� L1ÞÞ=ðkoD2L2Þ ¼ 3 10�4]. The dependence with

respect to mode number is well predicted by the theory for

both amplitude and time perturbations: the theory predicts a

quadratic form for the time perturbation and a nearly qua-

dratic form for the amplitude perturbation. The dependence

with respect to carrier frequency xo is qualitatively pre-

dicted by the theory as the perturbations decay with increas-

ing frequency. The dependence with respect to the surface

perturbation amplitude is as expected, with relative ampli-

tude and travel-time perturbations increasing linearly with

surface perturbation amplitude.

VI. INVERSION OF THE SURFACE PERTURBATION
FROM THE PARAXIAL APPROXIMATION

In this section, we aim to invert the surface perturbation

at every point x between the two arrays (from x¼ 0 to x¼ L)

through the paraxial approximation formulation. We recall

that the paraxial regime holds when the typical wavelength

ko is much smaller than the propagation distance L and the

amplitude of the surface perturbation is small, with a scale

of variation that is between ko and L. We expand the surface

perturbation lðx; yÞ as in Eq. (21) for all y 2 �
ffiffiffiffiffiffiffi
Lko

p
;

�ffiffiffiffiffiffiffi
Lko

p
Þ. As shown in Appendix A 3, the expressions of the

modal amplitudes of the pressure field after propagation

between the two arrays in the paraxial single-scattering

regime can be written as follows:

âjðx; L; 0Þ ¼ Aj;oðx; LÞ þ Aper
j ðx; LÞ; (29)

Aper
j ðx; LÞ ¼

XNðxÞ
l¼1

e3ip=4

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjblðxÞ

q
�
ðL

0

l0ðxÞeiðblðxÞ�bjðxÞÞxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjðxÞxþ blðxÞðL� xÞ

q dxsjl f̂ lðxÞ;

(30)

where Aj;oðx; LÞ is the unperturbed amplitude of the jth
mode [Eq. (16)], and the sjl coefficients for every modal pair

( j, l) are defined by

sjl ¼ 2
p2

D2
ð�1Þl�j l� 1

2

� �
j� 1

2

� �
: (31)

The term Aper
j ðx; LÞ in Eq. (30) is the perturbed mode ampli-

tude due to the surface perturbation in the paraxial single-

scattering regime. In Eqs. (29) and (30), we have neglected

some terms that appear in Eq. (22) and that describe the

mode amplitude perturbations [the terms associated with l2

in Eq. (21)], while we have kept the leading-order mode

conversion terms that are the ones that are exploited in the

resolution of the inverse problem.

In the following, we build a modal-based method to

image the surface perturbation from the observation of the

modal transmission matrix from the source array to the

receiver array. We anticipate that it is difficult in practice to

extract all modes from the signals recorded by the source–

receiver arrays, so we assume that we can only extract the

first M modes from the wave field, with M 2 f1;…;Ng.
Equations (29) and (30) give the forward model F that

determines the modal transmission matrix ðTjlðxÞÞMj;l¼1 from

the surface perturbation ðl0ðxÞÞx2ð0;LÞ, where TjlðxÞ is the

complex amplitude of the jth perturbed modal amplitude

Aper
j ðx; LÞ seen by the receiver array when the source trans-

mits a unit-amplitude lth mode (the source is such that f̂ l0

¼ 0 for l0 6¼ l and f̂ l ¼ 1). According to Eq. (30), the for-

ward model has the form F : ðl0ðxÞÞx2ð0;LÞ 7!ðTjlÞMj;l¼1 with

Tjl¼F l0½ �jl¼
e3ip=4sjl

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjbl

p ðL

0

l0ðxÞeiðbl�bjÞxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjxþblðL� xÞ

q dx;

j; l¼ 1;…;M:

(32)

The adjoint operator has the form F� : ðTjlÞMj;l¼1

7!ðl0ðxÞÞx2ð0;LÞ with

l0ðxÞ¼F� T½ �ðxÞ¼
XM
j;l¼1

e�3ip=4sjl

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjbl

p Tjle
�iðbl�bjÞxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bjxþblðL�xÞ
q ; x2ð0;LÞ:

(33)

We can then deduce that the normal operator F�F has the form
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F�F l0½ �ðxÞ ¼
ðL

0

aF ðx; x0Þl0ðx0Þdx0; x 2 ð0;LÞ; (34)

with the kernel aF given by

aF ðx;x0Þ¼
XM

j;l¼1

s2
jl

32pbjbl

� eiðbl�bjÞðx0�xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjxþblðL�xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjx
0þblðL�x0Þ

q : (35)

The inverse problem that consists in recovering the sur-

face perturbation ðl0ðxÞÞx2ð0;LÞ from the observed transmis-

sion matrix ðTjlÞMj;l¼1 can be solved using a pseudo-inverse or

a regularized inverse approach. The estimated surface per-

turbation is then ðF�F þ cIÞ�1F�½T� for some regulariza-

tion parameter c > 0. Indeed, according to Lemma C in

Appendix B 4, the kernel of the normal operator is almost a

convolution kernel concentrated on the diagonal x0 ¼ x,

which shows that the normal operator is close to the identity

up to a multiplicative constant: F�F½l0�ðxÞ � l0ðxÞ.
Therefore, the pseudo-inverse or regularized inverse is close

FIG. 4. (Color online) Relative amplitude and travel-time perturbations as functions of mode number for different carrier frequencies xo and for different

surface perturbation amplitudes amp1, amp2, and amp3. The solid lines plot the experimental results. The dashed lines plot the theoretical results obtained

from Eqs. (26) and (27).
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to the adjoint operator (up to a multiplicative constant). We

can also use an approximate inverse that is close to the

adjoint operator and that has a physical interpretation as

explained below.

We define the imaging function I in terms of the mea-

sured transmission matrix ðTjlÞMj;l¼1 as

Iðx0Þ ¼
XM

j;l¼1

Tjle
�3ip=4ð�1Þj�l ffiffiffiffiffiffiffiffi

bjbl

p
j� 1

2

� �
l� 1

2

� � e�iðbl�bjÞx0 ;

xo 2 ð0;LÞ: (36)

The imaging function [Eq. (36)] is close to the adjoint oper-

ator F� applied to the measured transmission matrix, as can

be seen by a comparison of Eq. (36) with the expression of

Eq. (33) of the adjoint operator: the phase factors are equal;

the differences are only in the amplitudes. It is possible to

interpret the imaging function Eq. (36) as a DBF process in

the modal domain. To clarify this, let us fix x0 2 ð0; LÞ, and

let us consider a source function with the following modal

coefficients:

f̂ l ¼
ð�1Þl

ffiffiffiffi
bl

p
e�3ip=4

l� 1
2

e�iblx0 for l  M: (37)

Given the perturbed modal amplitudes ðAper
j Þ

M
j¼1 of the wave

signals recorded by the receiver array and transmitted by the

source [Eq. (37)], the imaging function [Eq. (36)] can be

expressed as

Iðx0Þ ¼
XM
j¼1

Aper
j

ð�1Þj
ffiffiffiffi
bj

p
j� 1

2

eibjx0 : (38)

This representation of the imaging function is obtained

by substituting the expression

Aper
j ¼

XM

l¼1

Tjl f̂ l

into the definition [Eq. (36)] of the imaging function, with f̂ l

given by Eq. (37) and ðTjlÞMj;l¼1 being the measured transmis-

sion matrix. The representation of Eq. (38) of the imaging

function makes it possible to explain the analogy with a

DBF process.

Indeed, the source [Eq. (37)] is designed to produce a

focal spot centered at the point ðx0; 0;DÞ. When a ¼ M=N is

equal to one, the size of the focal spot is diffraction-limited,

and its radius is on the order of the wavelength. When

a ¼ M=N is small, the focal spot is on the order of the wave-

length divided by a in the depth direction z and on the order

of the wavelength divided by a2 in the range direction x (see

Appendix B 2 for details).

The imaging process, therefore, looks like a DBF pro-

cess as beamforming is performed here both from modal

projection in transmission by Eq. (37) and in reception by

Eq. (38). We can then anticipate the extraction of local

information on the surface perturbation around ðx0; 0;DÞ by

this formulation in a way equivalent to what was performed

for DBF eigenbeam selection applied to source–receiver

(sub)arrays in the sensitivity kernel (SK) approach.4,10,13,16

It follows that the imaging function gives an image of

the surface perturbation l0ðxÞ, and it is possible to quantify

its resolution properties. As shown in Appendix B 3, when

a ¼ M=N � 1, we have

Iðx0Þ ¼
ðL

0

Kðx0 � xÞl0ðxÞdx; (39)

where KðxÞ ¼ ðk3=2a2Þ= 2
ffiffiffiffiffiffiffiffi
2pL
p� �

jwða2kxÞj2 and wðxÞ ¼
ffiffiffi
2
p

�ðC x=
ffiffiffi
2
p� �
� iS x=

ffiffiffi
2
p� �
Þ=x, with C and S as Fresnel inte-

grals CðxÞ¼
Ð x

0
cosðs2Þds, SðxÞ¼

Ð x
0

sinðs2Þds, and k¼x=c.

Note that the inversion kernel KðxÞ is integrable (it

decays as x�2), so the imaging function Iðx0Þ gives a

smoothed image of the surface perturbation l0ðx0Þ with a res-

olution on the order of the wavelength divided by a2. More

exactly, the half-width at half-maximum of jwj2 is approxi-

mately equal to 2, so the resolution is ’ ko=ðpa2Þ. Of course,

the more modes we can extract from the data, the better the

resolution is, and we could ultimately reach resolution on the

order of the wavelength if we could exploit the amplitudes of

all of the propagative modes with indices up to j¼N. We

also have
Ð

R
KðxÞdx ¼ p

ffiffiffi
k
p

=ð2
ffiffiffiffiffiffi
2L
p
Þ, which makes it possi-

ble to estimate l0ðx0Þ’ 2
ffiffiffiffiffiffi
2L
p
Þ=ðp

ffiffiffi
k
p� �	 


Iðx0Þ when it is

varying slowly.

The imaging function of Eq. (36) uses only the data

recorded at one frequency. For broadband data, it is straight-

forward to sum the time-harmonic imaging functions over

the available frequency band. In the following example, we

sum over 40 frequencies regularly spaced in the band

½0:8; 1:2�MHz.

In Figs. 5 and 6, we compare the modal-based imaging

function [Eq. (36)] with the DBF eigenbeam inversion

applied on the same experimental data (EXP1 and EXP2) in

Refs. 4 and 13. In the modal-based approach, the number of

modes is approximately N¼ 70 (N¼ 58 at 0.8 MHz and

N¼ 88 at 1.2 MHz), and M¼ 20 modes can be exploited in

the band ½0:8; 1:2� MHz (i.e., a ’ 0:3). The resolution is,

therefore, on the order of half a centimeter, which is smaller

than the capillary-gravity wavelength of the surface

perturbation.

In Ref. 4, a one-dimensional SK formulation was pro-

posed to invert for both amplitude and travel-time fluctua-

tions for a complete set of DBF eigenbeams. The inversion

leads to a maximum volume perturbation estimation of

DV¼ 22 mm3. This volume is difficult to interpret in terms

of surface elevation, as the lateral extent of the Fresnel zone

was not taken into account in the computation of the surface

SK. In other words, the inversion result projected along the

source–receiver axis should have been weighted by the lat-

eral extent of the SK along the direction perpendicular to

the waveguide. This problem is solved in the present para-

xial approximation, where the three-dimensional aspect of

the propagation projected on the surface perturbation is
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taken into account in the forward problem. The inversion

result in Fig. 5(a) shows a maximum 3-mm surface deforma-

tion along the source–receiver axis that is consistent with

external observations.

In Refs. 13 and 14, two-dimensional surface SKs

applied to DBF eigenbeams were used for amplitude, travel-

time, or emitting-receiving angle perturbations that lead to

surface elevation estimations on the order of 20 lm for

weak laser excitation and up to 2 mm for strong laser excita-

tion. The optimal inversion result obtained so far was for a

joint angle inversion on emitting-receiving angle perturba-

tions for a set of more than 2000 eigenbeams and very weak

laser excitation [Fig. 6(a)]. Interestingly enough, the modal

projection used within the paraxial approximation in the pre-

sent paper did not extract the modal transmission matrix

above the noise level in the case of this very weak laser

excitation. For stronger laser excitation, the inversion result

obtained from the paraxial approximation in Fig. 6(b) shows

a similar shape for the two counter-propagative gravity-

capillary waves generated from the center of the waveguide,

with a maximum 0.5-mm surface elevation.

When comparing the eigenbeam approach and the

modal transmission matrix approach to invert for an

unknown surface deformation in an acoustic waveguide, we

should keep in mind the following points. First, extracting

the complete set of eigenbeams between the transmitting

and receiving (sub)arrays via a DBF algorithm is much

more time consuming than extracting the modal transmis-

sion matrix as proposed here in the paraxial approximation

formulation. However, as discussed in Ref. 14, only the

independent families of eigenbeams would be worth extract-

ing via DBF, which could greatly reduce the computational

time under the eigenbeam approach. Second, it appears from

experimental investigations that the fluctuations of the

modal transmission matrix are sensitive to surface deforma-

tion elevation on the order of a wavelength when the

eigenbeam amplitude fluctuations are sensitive to elevation

that can be 10 times weaker. Finally, the eigenbeam algo-

rithm applied to sub-antennas on both sides of the wave-

guide does not require the transmitting and receiving arrays

to cover the entire water column, which can have significant

advantages in ocean experiments. The mode-based imaging

method proposed here in the paraxial approximation

requires extraction of modal amplitudes that can be esti-

mated by a simple projection when the antenna array is

dense and covers the cross section of the waveguide. When

the antenna array covers only a limited portion of the cross

section, it is still possible to extract the first modal ampli-

tudes from the wave signals recorded by the receiver array

by using an appropriate weighted projection method, pro-

vided that we know the mode profiles and the modal wave-

numbers, as explained in Refs. 17 and 18. This method

works as long as the array aperture is not too small com-

pared to the waveguide depth.

VII. CONCLUSION

In conclusion, we recall the main results of the present

study: (1) we propose a formulation based on the paraxial

approximation in the context of an acoustic waveguide to

describe both three-dimensional aspects of the forward prop-

agation and the interaction with a complex surface deforma-

tion; (2) the prediction of the wavefield projected onto the

mode profiles between two source–receiver arrays provides

an explanation for the nonlinear shape of modal amplitude

fluctuations that was experimentally observed, but up until

now not understood, in the presence of strong surface defor-

mation; (3) within the paraxial approximation, the formula-

tion of the inverse problem is proposed to obtain the surface

deformation at any position between the source–receiver

arrays from the observed modal transmission matrix; (4)

when applied to experimental tank data in an ultrasonic

waveguide, excellent agreement is observed with a different

FIG. 5. (Color online) Estimation of the surface perturbation in the experimental configuration EXP1. (a) The DBF approach (Ref. 4) performed from a joint

inversion of both amplitudes and times of a set of more than 2000 eigenbeams. Using a one-dimensional SK, the inversion is plotted as a function of the vol-

ume DV of the perturbation. (b) The modal-based approach described in the present paper with the surface deformation DhðxÞ ¼ Dl0ðxÞ shown in mm.
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inversion algorithm that was proposed recently through

eigenbeam selection in the framework of the SK approach.
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APPENDIX A: PARAXIAL APPROXIMATION

The first steps of the analysis follow the lines of that in

Ref. 19, which is itself based on the modal approach intro-

duced and studied in Refs. 20–25.

1. Change of coordinates

Consider the change of coordinates from (x, y, z) to

ðx; y; gÞ, with

g ¼ zD
Tðx; yÞ ; (A1)

which straightens the boundary z ¼ Tðx; yÞ to g ¼ D for any

ðx; yÞ 2 R2. The pressure field in the new coordinates is

given by

P̂ðx; x; y; gÞ ¼ p̂ x; x; y;
gTðx; yÞ
D

� �
: (A2)

This satisfies the simple boundary conditions

P̂ðx; x; y;DÞ ¼ @gP̂ðx; x; y; 0Þ ¼ 0 (A3)

and the partial differential equation

@2
x þ @2

y þ
D2

T2
þ g2 jrTj2

T2

� �
@2

g � 2g
rT

T
� r@g

�

þ 2g
jrTj2

T2
� g

DT

T

� �
@g þ k2

#
P̂ ¼ f̂ ðx; gÞdðxÞdðyÞ; (A4)

derived from Eqs. (1) and (A2) using the chain rule. Here,

r and D are the gradient and Laplacian operators in (x, y).

When substituting the model of Eq. (2) into Eq. (A4), we

obtain that P̂ satisfies a perturbed problem

@2
x þ @2

y þ @2
g þ k2 þ p:t:

h i
P̂ðx; x; y; gÞ

¼ f̂ ðx; gÞdðxÞdðyÞ; (A5)

where the perturbed terms p.t. are

p:t: ¼ r1ðx; y; gÞ@2
g þ r2ðx; y; gÞ@2

gx þ r3ðx; y; gÞ@2
gy

þ r4ðx; y; gÞ@g;

with functions

r1ðx; y; gÞ ¼ �
2lþ l2

ð1þ lÞ2
þ g2 ð@xlÞ2 þ ð@ylÞ2

ð1þ lÞ2
;

r2ðx; y; gÞ ¼ �2g
@xl

1þ l
;

r3ðx; y; gÞ ¼ �2g
@yl

1þ l
;

r4ðx; y; gÞ ¼ 2g
ð@xlÞ2 þ ð@ylÞ2

ð1þ lÞ2
� g

@2
x lþ @2

y l

1þ l
:

2. Wave decomposition

Equation (A5) is not separable, but we can still write its

solution on the basis of the eigenfunctions of Eq. (4) of the

FIG. 6. (Color online) Estimation of the surface perturbation in the experimental configuration EXP2. (a) The DBF approach (Ref. 13) performed from a

joint inversion of both source and receive angles of a set of more than 2000 eigenbeams and a two-dimensional SK. (b) The modal-based approach described

in the present paper with the surface deformation DhðxÞ ¼ Dl0ðxÞ. Both inversions in (a) and (b) are plotted in mm. However, the joint angle inversion was

performed from a dataset induced from weak laser excitation (inducing low values of Dh) when the modal inversion was achieved from stronger laser excita-

tion at the air–water interface, with maximum Dh values on the order of 1 mm.
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unperturbed waveguide because the basis is complete. The

expansion has the general form

P̂ðx; x; y; gÞ ¼
XNðxÞ
j¼1

/jðgÞûjðx; x; yÞ

þ
X

j>NðxÞ
/jðgÞv̂jðx; x; yÞ: (A6)

We define the forward and backward going wave modal

amplitudes âj and b̂j by

âjðx; x;yÞ

¼ 1

2
ûjðx;x;yÞ þ

1

2ibjðxÞ
@xûjðx; x;yÞ

 !
e�ibjðxÞx; (A7)

b̂jðx;x;yÞ¼
1

2
ûjðx;x;yÞ�

1

2ibjðxÞ
@xûjðx;x;yÞ

 !
eibjðxÞx;

(A8)

so that the complex-valued amplitudes of the propagative

modes can be written as

ûjðx;x;yÞ¼ âjðx;x;yÞeibjðxÞxþ b̂jðx;x;yÞe�ibjðxÞx: (A9)

The modal amplitudes of the propagative modes each satisfy

a boundary condition in the range ð0; LÞ of the surface fluc-

tuations. To derive these boundary conditions, we first

observe that because the boundary is flat outside ð0; LÞ, the

radiation (outgoing conditions) implies that the modal

amplitudes satisfy

âjðx; x ¼ 0�; yÞ ¼ 0; b̂jðx; x ¼ L; yÞ ¼ 0: (A10)

This last equation is the boundary condition for b̂j. The

boundary value âjðx; x ¼ 0þ; yÞ follows from the jump con-

ditions across the plane x¼ 0 due to the source in Eq. (A5).

We have ½ûj�0
þ

0� ¼ 0; ½@xûj�0
þ

0� ¼ f̂ jðxÞdðyÞ, with f̂ j defined

by Eq. (7). This gives ½âj þ b̂j�0
þ

0� ¼ 0; ibj½âj � b̂j�0
þ

0� ¼ f̂ jðxÞ
�dðyÞ and therefore

âjðx; 0þ; yÞ ¼
f̂ jðxÞ

2ibjðxÞ
dðyÞ: (A11)

Substituting Eq. (A6) into Eq. (A5), using the orthonor-

mality of the eigenfunctions /j and the relation @xâjðx; x; yÞ
eibjðxÞx þ @xb̂jðx; x; yÞe�ibjðxÞx ¼ 0 that comes from Eqs.

(A7) and (A8), we find that the modal amplitudes solve par-

axial equations coupled by the surface fluctuations in

z 2 ð0; LÞ,

2ibj@x þ @2
y

� �
âj þ e�2ibjx@2

y b̂j ¼ Ej;aðâ; b̂; v̂; x; yÞ; (A12)

�2ibj@x þ @2
y

� �
b̂j þ e2ibjx@2

y âj ¼ Ej;bðâ; b̂; v̂; x; yÞ; (A13)

with the coupled terms given by

Ej;aðâ; b̂; v̂;x;yÞ

¼�
XN

l¼1

eiðbl�bjÞx r1
jlðx;yÞâlþ iblr

2
jlðx;yÞâlþ r3

jlðx;yÞ@yâl

h i

�
XN

l¼1

eið�bl�bjÞx r1
jlðx;yÞb̂l� iblr

2
jlðx;yÞb̂lþ r3

jlðx;yÞ@yb̂l

h i

�
X
l>N

e�ibjx r1
jlðx;yÞv̂lþ r2

jlðx;yÞ@xv̂lþ r3
jlðx;yÞ@yv̂l

h i
;

Ej;bðâ; b̂; v̂;x;yÞ

¼�
XN

l¼1

eiðblþbjÞx r1
jlðx;yÞâlþ iblr

2
jlðx;yÞâlþ r3

jlðx;yÞ@yâl

h i

�
XN

l¼1

eið�blþbjÞx r1
jlðx;yÞb̂l� iblr

2
jlðx;yÞb̂lþ r3

jlðx;yÞ@yb̂l

h i

�
X
l>N

eibjx r1
jlðx;yÞv̂lþ r2

jlðx;yÞ@xv̂lþ r3
jlðx;yÞ@yv̂l

h i
;

in terms of

r1
jlðx; yÞ ¼

ðD
0

dg /jðgÞ/00l ðgÞr1ðx; y; gÞ
h

þ /jðgÞ/0lðgÞr4ðx; y; gÞ�;

r2
jlðx; yÞ ¼

ðD
0

dg/jðgÞ/0lðgÞr2ðx; y; gÞ;

r3
jlðx; yÞ ¼

ðD
0

dg/jðgÞ/0lðgÞr3ðx; y; gÞ:

The equations for the evanescent components are

obtained similarly,

@2
x þ @2

y � b2
j

� �
v̂j ¼ Ej;vðâ; b̂; v̂; x; yÞ; (A14)

with the coupled term Ej;vðâ; b̂; v̂; x; yÞ as in Eqs. (A12) and

(A13), and they are augmented with the decay conditions

v̂jðx; x; yÞ ! 0 as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
!1 for all j � N þ 1. The

equations for the modal amplitudes of the evanescent modes

are similar to those encountered in Ref. 26. These ampli-

tudes were shown to vanish in Ref. 26 (Sec. 3.3) in a regime

that was similar to the one addressed in this paper. We there-

fore neglect them in the following.

From Eqs. (A12) and (A13), we obtain that the modal

amplitudes of the propagative modes satisfy the system of

partial differential equations

2ibj@xþ@2
y e�2ibjx@2

y

e2ibjx@2
y �2ibj@xþ@2

y

0
@

1
A âj

b̂j

 !

¼�
XN

l¼1

e�iðbj�blÞx e�iðbjþblÞx

eiðbjþblÞx eiðbj�blÞx

 !
r1

jlðx;yÞþr3
jlðx;yÞ@y

h i âl

b̂l

 !

�
XN

l¼1

iblr
2
jlðx;yÞ

e�iðbj�blÞx �e�iðbjþblÞx

eiðbjþblÞx �eiðbj�blÞx

 !
âl

b̂l

 !
(A15)

for j ¼ 1;…;N with initial and end conditions
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âjðx; 0; yÞ ¼
f̂ jðxÞ

2ibjðxÞ
dðyÞ; b̂jðx; L; yÞ ¼ 0: (A16)

If we apply the multi-scale analysis proposed in Ref. 12

in the paraxial regime, then we get Eq. (18), which gives the

leading-order perturbations of the modal amplitudes gener-

ated by the surface perturbation l. In Appendix A 3, we pre-

sent a detailed approach that makes it possible to capture all

of the terms that are linear in the surface perturbation l.

3. Time-harmonic single-scattering wave
propagation in the paraxial regime

In this subsection, we prove Eq. (29). We only keep the

terms linear in l and neglect the backscattered wave compo-

nents b̂j in Eq. (A15). We simplify the notations and do not

write the x-dependence explicitly. This gives the following

coupled paraxial wave equations for the modal amplitudes âj:

2ibj@x þ @2
y

h i
âj

¼ lðx; yÞ
XN

l¼1

qjle
iðbl�bjÞxâl þ ð@2

x þ @2
y Þlðx; yÞ

�
XN

l¼1

rjle
iðbl�bjÞxâl þ @ylðx; yÞ

XN

l¼1

2rjle
iðbl�bjÞx@yâl

þ @xlðx; yÞ
XN

l¼1

2rjle
iðbl�bjÞxiblâl; (A17)

where

qjl¼2

ðD
0

dg/jðgÞ/00l ðgÞ¼�2
p
D

� �2

j�1

2

� �2

djl; (A18)

rjl¼
ðD

0

dgg/jðgÞ/0lðgÞ

¼�1

2
djlþ

2 l�1

2

� �
j�1

2

� �
ðl� jÞðlþ j�1Þ ð�1Þl�jð1�djlÞ: (A19)

We apply the single-scattering approximation, and we get

âjðL; 0Þ ¼ Ĝðbj; L; 0Þf̂ j þ
XN

l¼1

ðL

0

ð
R

Ĝðbj; L� x; yÞ

�
h
lðx; yÞqjlĜðbl; x; yÞ

þ ð@2
x þ @2

y Þlðx; yÞrjlĜðbl; x; yÞ
þ @ylðx; yÞ2rjl@yĜðbl; x; yÞ

þ @xlðx; yÞ2rjliblĜðbl; x; yÞ
i
eiðbl�bjÞxdydxf̂ l;

(A20)

where Ĝ is the homogeneous paraxial Green’s function,

Ĝðb; x; yÞ ¼ e�3ip=4

2
ffiffiffiffiffiffiffiffiffiffi
2pbx
p exp ib

y2

2x

� �
;

and we have used the fact that Ĝðb; x;�yÞ ¼ Ĝðb; x; yÞ.
After integration by parts, we find

âjðL;0Þ ¼ Ĝðbj;L;0Þf̂ jþ
ð ð

Ĝðbj;L� x;yÞlðx;yÞ

� Ĝðbj;x;yÞdydxqjj f̂ jþ
XN

l¼1

ð ð
Ĝðbj;L� x;yÞ

�lðx;yÞĜðbl;x;yÞdyeiðbl�bjÞxdxrjlðb2
l �b2

j Þf̂ l;

(A21)

up to terms that involve products of @yl and @yG, which are

smaller in the paraxial regime. Due to the form of the para-

xial Green’s function Ĝ, the modal amplitude âj is only sen-

sitive to the perturbations lðx; yÞ in a tube going from

ðx ¼ 0; y ¼ 0Þ to ðx ¼ L; y ¼ 0Þ, with width
ffiffiffiffiffiffiffi
Lko

p
. If

lðx; yÞ ’ l0ðxÞ for all y 2 �
ffiffiffiffiffiffiffi
Lko

p
;
ffiffiffiffiffiffiffi
Lko

p� �
, then usingð

Ĝðbj; L� x; yÞĜðbl; x; yÞdy

¼ � e3ip=4

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjbl

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjxþ blðL� xÞ

q ;

we get

âjðL; 0Þ ¼
e�3ip=4

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2pbjL

p f̂ j �
e3ip=4

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pb3

j L
q ðL

0

l0ðxÞdxqjjf̂ j

�
XN

l¼1

e3ip=4

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjbl

p ðL

0

l0ðxÞeiðbl�bjÞxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjxþ blðL� xÞ

q dx

� rjlðb2
l � b2

j Þf̂ l: (A22)

We note that rjlðb2
l � b2

j Þ ¼ 2ðp2=D2Þð�1Þl�jþ1 l� 1
2

� �
� j� 1

2

� �
ð1� djlÞ, and therefore we get Eq. (29).

APPENDIX B: TECHNICAL PROOF

1. Expression [Eq. (22)] of the modal amplitudes

Given the form of Eq. (21) of the surface perturbation,

the modal amplitudes have the form

âjðx; x; yÞ ¼ Âjðx; xÞ exp iB̂jðx; xÞy2 þ iĈjðx; xÞy
� �

;

(B1)

where ðÂj; B̂j; ĈjÞ are given by

Âjðx; xÞ ¼
e�3ip=4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pbjðxÞx

q f̂ jðxÞ; B̂jðx; xÞ ¼
bjðxÞ

2x
;

Ĉjðx; xÞ ¼ 0; (B2)

for x 2 ð0; L0Þ; ðÂj; B̂j; ĈjÞ satisfy
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@xB̂j ¼ �
2B̂

2

j

bj

� qjj

2bjkoL
l2ðxÞ;

@xĈj ¼ �
2B̂jĈj

bj

� qjj

2bj

ffiffiffiffiffiffiffi
koL
p l1ðxÞ;

@xÂj

Âj

¼ �
2B̂j þ iĈ

2

j

2bj

� i
qjj

2bj

l0ðxÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

(B3)

for x 2 ðL0; L1Þ, and ðÂj; B̂j; ĈjÞ satisfy

Âjðx; xÞ ¼
Âjðx; L1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2Bjðx; L1Þ
bjðxÞ

ðx� L1Þ
s

�exp �i
Ĉjðx; L1Þ2

2bjðxÞ
x� L1

1þ 2B̂jðx; L1Þ
bjðxÞ

ðx� L1Þ

0
BB@

1
CCA;

B̂jðx; xÞ ¼
B̂jðx; L1Þ

1þ 2B̂jðx; L1Þ
bjðxÞ

ðx� L1Þ
;

Ĉjðx; xÞ ¼
Ĉjðx; L1Þ

1þ 2B̂jðx; L1Þ
bjðxÞ

ðx� L1Þ
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(B4)

for x 2 ðL1; LÞ. Note that B̂j and Ĉj are real-valued. The

important equation is the Ricatti equation satisfied by B̂j in

x 2 ðL0; L1Þ. The solution is of the form B̂j ¼ ðbj=2Þ
ð@xD̂j=D̂jÞ, where D̂j satisfies the second-order differential

equation

@2
x D̂j¼�

qjj

b2
j koL

l2ðxÞD̂j; D̂jðL0Þ¼L0; @xD̂jðL0Þ¼ 1:

If, additionally, L1 � L0 is smaller than L, then we find

ÂjðL1Þ ¼ e�3ip=4

2
ffiffiffiffiffiffiffiffiffiffi
2pbjL1

p exp �i
qjj

2bj
�0

� �
f̂ j; B̂jðL1Þ ¼

bj

2L1
� qjj

2bjkoL �2;

and

Âjðx;LÞ¼
Âj;oðx;LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� qjj�2

bjðxÞ2
L1ðL�L1Þ

koL2

s exp �i
qjj

2bjðxÞ
�0

� �
;

(B5)

where Âj;oðx; LÞ is defined by Eq. (23). This gives the

desired result.

2. Properties of the source [Eq. (37)]

Here, we want to show that the source [Eq. (37)] produ-

ces a focal spot centered at the point ðx; y; zÞ ¼ ðx0; 0;DÞ.
The unperturbed wavefield transmitted by the source f̂ j

given by Eq. (37) is

p̂oðx; 0; zÞ ¼
e�3ip=4

2
ffiffiffiffiffiffiffiffi
2px
p

XM

j¼1

f̂ j exp ðibjxÞ/jðzÞ:

As @z/jðDÞ ¼
ffiffiffi
2
p

p=D3=2
� �

j� 1
2

� �
ð�1Þj and f̂ j are given by

Eq. (37), we have

@zp̂oðx0 þ x0; 0;DÞ

¼ e�3ip=4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx0 þ x0Þ

p XM

j¼1

f̂ j exp ðibjðx0 þ x0ÞÞ@z/jðDÞ

¼ �i
ffiffiffi
p
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 þ x0
p

D3=2

XM

j¼1

exp ðibjx
0Þ

ffiffiffiffi
bj

q
:

If N � 1 (N ¼ ½kD=p�) and a ¼ M=N ¼ 1, then

@zp̂oðx0 þ x0; 0;DÞ ¼ �i

2
ffiffiffi
p
p k3=2ffiffiffiffiffiffiffiffi

Dx0

p w0ðkx0Þ;

w0ðXÞ ¼
ð1

0

ei
ffiffiffiffiffiffiffiffi
1�s2
p

X
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s24
p

ds;

which shows that the radius of the focal spot is on the order

of the wavelength in the range direction x. If a ¼ M=N � 1,

then

@zp̂oðx0 þ x0; 0;DÞ ’ �i

2
ffiffiffi
p
p k3=2affiffiffiffiffiffiffiffi

Dx0

p eikx0wða2kx0Þ;

with w defined by Eq. (D1). This shows that the radius is on

the order of the wavelength divided by a2 ¼ ðM=NÞ2 in the

range direction x. Similarly, we get

@zp̂oðx0;0;Dþz0Þ¼ e�3ip=4

2
ffiffiffiffiffiffiffiffiffiffi
2px0

p
XM

j¼1

f̂ j expðibjx0Þ@z/jðDþz0Þ

’ �i

2
ffiffiffi
p
p k3=2affiffiffiffiffiffiffiffi

Dx0

p sincðakz0Þ:

This shows that the radius is on the order of the wavelength

divided by a in the depth direction z.

3. Resolution analysis and proof of Eq. (39)

We substitute the second term in the right-hand side of

Eq. (29), which is the perturbed modal amplitude Aper
j , and

the expression of Eq. (37) of the source into Eq. (38),

Iðx0Þ ¼
p3=2

2
ffiffiffi
2
p
D2

XM

j;l¼1

ðL

0

l0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bjxþ blðL� xÞ

q eiðbl�bjÞðx�x0Þdx:

When M � N, we can approximate bj by k in the denomina-

tor, and we find

Iðx0Þ ¼
p3=2

2
ffiffiffi
2
p
D2

ffiffiffiffiffi
kL
p

ðL

0

l0ðxÞ
XM

j¼1

eibjðx�x0Þ



2

dx:

We finally use Lemma D to get the desired result.
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4. Special functions

In this subsection, we state and prove two technical

lemmas used in the paper.

Lemma C. If 1� M � N, then the kernel aF defined
by Eq. (35) satisfies

aF ðx; x0Þ ’
k3D2a6

72p3L
wF a2kjx� x0j
� �

; (C1)

with a ¼ M=N (a� 1), wF ðXÞ ¼ j3
Ð 1

0
s2 exp ðiXs2=2Þdsj2,

which is such that wF ð0Þ ¼ 1; wF ðXÞ ’ 9=X2 as X! þ1,
and

Ð
R

wF ðXÞdX ¼ 9p=2.

Proof. Using M� N, we have bj ’ k � p2

2kD2 ðj� 1
2
Þ2 for

all j  M, and therefore (with N ’ kD=p)

aF ðx; x0Þ ’
XM

j;l¼1

p3

8k3D4L
j� 1

2

� �2

l� 1

2

� �2

� exp i
p2ðx0 � xÞ

2kD2
j� 1

2

� �2

� l� 1

2

� �2
 !" #

’ p3N6a6

72k3D4L

3

a3

ða

0

s2 exp i
kðx0 � xÞ

2
s2

� �
ds



2

’ k3D2a6

72p3L
3

ð1

0

s2 exp i
a2kðx0 � xÞ

2
s2

� �
ds



2

;

which gives the first desired result. The behavior of wF ðXÞ
for large X follows from an integration by parts formula,

wF ðXÞ ¼
3
ffiffiffi
2
p

X3=2

ðX=2

0

ffiffiffi
u
p

exp ðiuÞdu



2

¼ 18

X3

1

i

ffiffiffi
u
p

eiu
	 
X=2

0 þ
i

2

ðX=2

0

eiuffiffiffi
u
p du



2

¼ 9

X2
1þ oð1Þð Þ:

Finally,
Ð

R
dXwF ðXÞ ¼ 18

Ð
R

dX
Ð 1=2

0
dS
Ð 1=2

0
dS0

ffiffiffiffiffiffi
SS0
p

cos½XðS
�S0Þ� ¼ 36p

Ð 1=2

0
SdS ¼ 9p=2. (

Lemma D. If 1� M� N, then

1

M

XM

j¼1

eibjx ’ eikxw a2kxð Þ;

wðXÞ ¼
ffiffiffi
2
p C X=

ffiffiffi
2
p� �
� iS X=

ffiffiffi
2
p� �

X
; (D1)

where a ¼ M=N and C and S are Fresnel integrals
CðXÞ ¼

Ð X
0

cos ðs2Þds, SðXÞ ¼
Ð X

0
sin ðs2Þds.

Proof. We can expand bj because M � N, and we can

replace the discrete sum by a continuous integral because

M � 1, so we obtain

1

M

XM

j¼1

eibjx ’ 1

M
eikx
XM

j¼1

e�iðj�1
2
Þ2 p2x

2D2k ’ eikx

ð1

0

e�is2M2p2x
2D2k ds;

which gives the desired result, as ðM2p2=D2kÞ ’ a2k. (
The function jwðXÞj2 is plotted in Fig. 7. We have

wð0Þ ¼ 1, and straightforward calculation shows thatÐ
R
jwðXÞj2dX ¼ p3=2.
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