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Abstract

This paper addresses estimates of climate risk embedded within a
bank credit portfolio. The proposed Climate Extended Risk Model
(CERM) adapts well known credit risk models and makes it possi-
ble to calculate incremental credit losses on a loan portfolio that are
rooted into physical and transition risks. The paper provides detailed
description of the model hypotheses and steps.

1 Introduction

During the 21st century, man-made green house gases (GHGs) emissions
will raise global temperatures, resulting in severe and unpredictable physi-
cal damage across the globe. Another uncertainty associated with climate,
known as the energy transition risk, comes from the unpredictable pace of
political and legal actions to limit this impact. Both risks will impact the
risk assessment of bank loan portfolios. Credit risk modeling and assessment
have been studied for a long time. An extensive review can be found in [19].
It is also subjected to regulations [2, 3]. Those models and regulations take
into account the economic risk but neglect -so far- the physical and transi-
tion risks. The goal of this paper is to assess the loss of a credit portfolio
under stressed conditions taking into account economic, physical and tran-
sition risks. The idea is to develop a model that is a direct extension of the
models used in the current regulations. Within a bank the model can be
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used internally to manage capital buffers, as well as in a regulatory context
for Pillar 1 and Pillar 2 requirements of the Basel regulatory framework.
Within an investing company it can be used to better assess the risk/return
relationship. Even-though we refer to loans hereafter, the model applies to
debt instruments in general, in particular to loans and to bonds.

A loan portfolio comprises loans from a large number of borrowers, made
up of different groups representing geographic regions, and/or economic sec-
tors, and/or climate risk mitigation and adaptation strategies, and/or col-
lateral types and which have different ratings1 at the initial time. The in-
dividual losses of the borrowers are random and may depend on systematic
risk factors and on idiosyncratic risk factors. The systematic risk factors
model economic, transition, and physical risks. They may be correlated and
they influence all borrowers. The idiosyncratic risk factors are specific to
each borrower and they are independent from each other (and independent
from the systematic risk factors). The loss of a portfolio is the sum of the
random losses of the borrowers. It is, therefore, random. We are typically
interested in the expected loss and in the loss quantiles.

The expected loss of the portfolio is simply the sum of the expected
individual losses. There is no need to describe the dependence structure
between the individual losses to get the expected loss of the portfolio. As
a result, the expected loss can be expressed in terms of probability of de-
fault, exposure at default, and average loss given default. The probability
of default can be obtained from unconditional migration matrices. Those
matrices express the probabilities for one borrower to move from one rat-
ing to another one (until the ultimate rating which corresponds to default)
during a unit time interval. They are unconditional in the sense that they
are averaged over idiosyncratic and systematic risk factors. The loss given
default can be based on a deterministic or random recovery model that also
depends on idiosyncratic and systematic risk factors. The correlation be-
tween default occurrence and recovery rate is only through the systematic
risk factors. The exposure at default (given default at a certain time) is
deterministic and independent from the migration and recovery processes.
It can model various banking portfolio dynamics (flat, amortizing...).

The unexpected loss is defined as a quantile of the loss of the portfolio
(value at risk). In contrast with the expected loss that is the sum of the
expected individual losses, the quantile of the loss of the portfolio cannot
be expressed in terms of the quantiles of the individual losses, because the

1Credit ratings are external and depend on credit rating agencies. The most famous
are Standard & Poor’s, Moody’s and Fitch Ratings.
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quantile of a sum is not the sum of the quantiles. A model is, therefore,
necessary to describe the dependence structure between the random losses
of the borrowers.

The Asymptotic Single Risk Factor (ASRF) model is a default-mode
(Merton-type) model proposed by Vasicek in 1991 [20]. It has played a
central role for its regulatory applications in the Basel Capital Adequacy
Framework (BCAF) [2]. The Basel IRB (Internal ratings-based) ASRF
model calculates the loss conditional to a single systematic economic risk
factor. It is based on the following assumptions:
- a unique systematic risk factor (single-factor model): economic risk, so
that the losses of the borrowers are correlated only through one systematic
factor,
- an infinitely granular portfolio characterized by a large number of small
size loans, so that the idiosyncratic risks are diversified, but not the system-
atic risk,
- a dependence structure by a Gaussian copula.
The ASRF model can be used to express unconditional and conditional mi-
gration matrices and it can give closed-form expressions for the expected
and unexpected losses [4, 19].

The Climate-extended risk model (CERM) introduced in this paper is a
multi-factor Merton-type model [17]. It is based on the following assump-
tions:
- several systematic risk factors (multi-factor model): economic, physical,
transition risks,
- an infinitely granular portfolio,
- a dependence structure described by a Gaussian copula.
The CERM makes it possible to build efficient and rapid Monte-Carlo esti-
mations of the expected and unexpected losses. Its definition is constrained
by the fact that we wish to design a model that:
- is an extension of the ASRF model and should not give rise to any discon-
tinuity when switching from the version used in the BCAF or derived from
the BCAF,
- can be calibrated given a comprehensive rating system that provides the
relative exposures of borrowers to each systematic risk,
- makes it possible to estimate portfolio loss distributions conditional to a
physical and transition scenario (temperature rise and GHGs pathway).
The main challenge facing the CERM compared to classical multi-factor
Merton-type models is to address non-stationarities due to the evolutions
of the physical and transition risk intensities. In the CERM the physical
and transition scenario gives the evolution of the physical and transition
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systematic risk intensities. They can be based on scenarios proposed by the
Network for Greening the Financial System (NGFS, a group of 100 central
banks and supervisors) or by the International Energy Agency (IEA), both
derived from the work done by the Intergovernmental Panel on Climate
Change (IPCC2) (NGFS3) (IEA4). We would like to consider different sce-
narios such as “Stated Policies Scenario”, “Announced Pledges Scenario”,
“Sustainable Development Scenario”, “Net Zero Scenario” in the IEA report
and to show that they may have very different impacts on the expected and
unexpected losses, so as to motivate the relevance of political decision.

The paper is organized as follows. In Section 2 we present the portfolio
loss. In Section 3 we give the expected loss of a portfolio. In Section 4 we
present the model for the default occurrence and the recovery rate that is
used to determine the dependence structure between the individual losses.
In Section 5 we give the conditional loss of a portfolio under stressed con-
ditions for a given systematic risk trajectory. We specify the model for the
systematic risk factors in Section 6. We describe the calibration of the risk
factors using dynamic macro and micro correlations coming from climate
models and climate analysts in Section 7. We propose a sensitivity and risk
allocation analysis in Section 8. We give some additional perspectives in
Section 9 and we present an application to a pilot portfolio in Section 10.

2 Portfolio loss

The loss of a loan portfolio of N loans can be written as:

L =
T∑
t=1

N∑
q=1

l
(q)
t χ

(q)
t .

The time is discretized as integers t = 0, . . . , T , where t = 0 is present and

t = T is the time horizon of the stress test analysis. χ
(q)
t is an indicator

function that is equal to one if the q-th borrower defaults at time t and 0

otherwise. The loss is then denoted by l
(q)
t and has the form

l
(q)
t = EAD

(q)
t

[
1− RR

(q)
t

]
, (1)

where

2https://www.ipcc.ch/
3https://www.ngfs.net/
4https://www.iea.org/
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• EAD
(q)
t is the exposure (the total balance owed by the borrower at

time of default) of the q-th borrower given default at time t,

• RR
(q)
t is the recovery rate (the proportion of the exposure that is re-

covered by way of liquidation of collateral and other resolution or
post-default collection actions) of the q-th borrower given default at
time t. The loss given default (the proportion of the exposure that is

lost if the borrower defaults) is 1− RR
(q)
t .

The exposure at default is deterministic and independent from the de-
fault and recovery processes. It is determined by the principal and the
amortization profile of the loan. For instance, for an amortizing loan with
principal K(q), maturity T (q), interest rate r(q) and equal payments, we have

EAD
(q)
t = K(q) (1 + r(q))T

(q) − (1 + r(q))t

(1 + r(q))T
(q) − 1

1t≤T (q) . (2)

Note that T (q) can be larger or smaller than T , which means there is no
constraint on the distribution of the loan maturities.

Each borrower belongs to a group and has a rating. We assume that:

• There areG groups. A group can represent a geographic region, and/or
an economic sector, and/or a climate risk mitigation and adaptation
strategy5 and/or a collateral type.

• There are K rating levels {1, . . . ,K}. The rating K corresponds to
default.

5Climate change mitigation consists of actions to lessen the magnitude or the rate of
global warming and its related effects. This generally involves reductions in emissions of
greenhouse gases. Climate change adaptation consists of incremental adaptation actions
where the central aim is to maintain the essence and integrity of a system or of transforma-
tional adaptation actions that change the fundamental attributes of a system in response
to climate change and its impacts.
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3 Expected loss

The expected loss of the portfolio is the sum of the expected individual
losses. By grouping these terms into groups, it is given by

Le =

T∑
t=1

Le
t , (3)

Le
1 =

G∑
g=1

K−1∑
i=1

(Mg,1)iKLGDe
g,i,1EADg,i,1, (4)

Le
t =

G∑
g=1

K−1∑
i,j=1

(
Mg,1 · · ·Mg,t−1

)
ij

(Mg,t)jKLGDe
g,j,tEADg,i,t, t ≥ 2, (5)

where:

• Le
t is the expected loss due to the defaults that occur at time t. The

first term Le
1 in (3) is the loss due to the borrowers who default at

time 1. It is decomposed in (4) over all possible groups g and initial
rating i. The t-th term Le

t in (3) is the loss due to the borrowers who
default at time t. It is decomposed in (5) over all possible groups g,
initial rating i, and rating j < K that the borrowers may have at time
t− 1.

• EADg,i,t is the total exposure at default, given default at time t due
to the borrowers in group g and with initial rating i:

EADg,i,t =

N∑
q=1

EAD
(q)
t 1q-th borrower is in group g and has initial rating i.

(6)
EADg,i,t can be seen as the maximal loss at time t from the borrowers
in group g and with initial rating i (in the worst case scenario when
they all default at time t with zero recovery rate).

• Mg,t is the unconditional migration matrix (of size K ×K) at time t;
(Mg,t)ij is the probability for a borrower in group g and with rating i
at time t− 1 to migrate to rating j at time t (see Subsection 4.1). In
particular the i-th entry of the last column (Mg,t)iK gives the prob-
ability of default at time t for a borrower in group g and with rating
i ∈ {1, . . . ,K − 1} at time t− 1.(
Mg,1 · · ·Mg,t−1

)
ij

(Mg,t)jK can be interpreted as the probability that
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a borrower in group g and with rating i at time zero has rating j at
time t− 1 and defaults at time t. If we sum over j = 1, . . . ,K − 1, we
obtain the probability that a borrower in group g and with rating i at
time zero defaults at time t (and not before).

• LGDe
g,j,t is the average Loss Given Default for a borrower in group g

and with rating j at time t−1 who defaults at time t (its rating jumps
from j to K) (see Subsection 4.2).

The framework proposed in this paper can be used when new loans are
added to the portfolio at different times. Indeed, if new loans are added
at time t0 > 0, then they can be incorporated into the model by creating
new groups g′ which are such that the migration matrices Mg′,t are equal
to the identity matrix I for t ≤ t0. This would make it possible to address
various dynamic balance sheet strategies (where the composition or risk pro-
file of the portfolio is allowed to vary over the stress test horizon), as long
as these strategies depend only on the expected losses of the different groups.

The framework proposed in this paper can be used when the portfolio
amortizes and adds new loans in a balanced way: at any time, the amortiza-
tion of the previous loans is compensated for by the addition of fresh loans.
More precisely, let us address the case where, for each group g:
- the initial rating profile and the rating profile of the new loans is described
by the vector wg: wg,i is the proportion of loans with rating i in the group

g at time 0, with wg,K = 0 and
∑K−1

i=1 wg,i = 1.
- a fraction 1− κg of loans is amortized every unit time and a fraction κg of
new loans with the rating profile wg is added every unit time.
- the exposure at default for the group is kept constant at EADg (it is of
course possible to consider a time-dependent evolution).
This situation can be modelled in the proposed framework, provided we use
the updated migration matrices

Mw
g,t =(1− κg)Mg,t + κgM

w
g , (7)

Mw
g =1wT

g =

wg,1 . . . wg,K−1 0
...

...
...

wg,1 . . . wg,K−1 0

 , (8)

where 1 is the K-dimensional vector full of ones. The expected loss is
then given by (3-5) with the matrices Mw

g,t instead of Mg,t and EADw
g,i,t =

EADgwg,i. The unexpected loss that we address in the next section is then
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given by (20-22) with the conditional matrices Mw
g,t(Zt) = (1−κg)Mg,t(Zt)+

κgM
w
g where Mg,t(Zt) is given by (28) and Mw

g is given by (8).

We would like now to consider the unexpected loss that is a quantile of
the portfolio loss distribution. As the quantile of a portfolio loss cannot be
expressed simply in terms of the quantiles of the individual losses (contrarily
to the expectation), a model is needed to determine the dependence structure
of the individual losses.

4 The model for default and recovery

We consider a structural model such as the one proposed by Merton [16],
and considerably extended in the literature [14, 20, 21], where a borrower
defaults when its (normalized log) asset value falls below an unconditional
threshold value that corresponds to the unconditional probability of default
of its group and rating. Default correlation is introduced by assuming that
the assets of the borrowers are correlated stochastic processes. The Basel
IRB ASRF framework assumes a Gaussian copula modal with the same asset
correlations between the borrowers. We here adopt a Gaussian copula model
by following the extension with a general correlation matrix as proposed by
[15]. After normalization, we can write the log asset value at time t of the
q-th borrower that belongs to the g-th group and has rating i at time t− 1
in the form [17]

X
(q)
t = ag,i,t ·Zt +

√
1− ag,i,t ·Cag,i,tε(q)t (9)

where

• The random vector Zt contains the systematic (economic, physical,
and transition) risk factors at time t. The vector Zt is assumed to
have multivariate normal distribution with mean 0 and correlation
matrix C. If the systematic risk factors are uncorrelated, then they are
independent and identically distributed (i.i.d.) with standard normal
distribution C = I. If the systematic risk factors are correlated, then
this general model is necessary (see Section 6).

• The vectors ag,i,t are the factor loadings (the correlations between the
systematic risk factors and the assets) for the borrowers that belong
to group g and have rating i at time t− 1 (see Section 7).
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• The idiosyncratic factors ε
(q)
t are i.i.d. with standard normal distri-

bution and independent from Zt; they model the risk specific to each
borrower.

The recovery rate of the q-th borrower that belongs to group g and has
rating i at time t− 1 has the general form inspired from [1]

RR
(q)
t = Φ

(
µg,i,t + σg,i,t

(
bg,i,t ·Zt +

√
1− bg,i,t ·Cbg,i,tε̃(q)t

))
, (10)

where Φ is the cumulative distribution function of the standard normal dis-
tribution. The recovery rate RR

(q)
t can be influenced by the same systematic

risk factors Zt as the assets:

• The vectors bg,i,t are the factor loadings (the correlations between
the systematic risk factors and the recovery rates). We may take
bg,i,t = λg,i,tag,i,t in order to simplify the model, which means that the
collateral is of the same type as the principal, and then λg,i,t determines
the dependence between the default occurrence and the recovery rate.
The collateral, however, may be taken of a different type from the
principal and then bg,i,t is not collinear to ag,i,t.

• The idiosyncratic factors ε̃
(q)
t are i.i.d. with standard normal distribu-

tion and independent from Zt and ε
(q)
t ; they model the risk affecting

the recovery rate specific to each borrower.

• The parameters µg,i,t and σg,i,t make it possible to fit observed dis-
tributions of recovery rates given default. Note that the distribution

of RR
(q)
t given default is the distribution of RR

(q)
t given X

(q)
t is below

the threshold value corresponding to default, as explained in Appendix
A.2.

• In the simple case when the recovery rates are deterministic and equal
to RRg,i,t that depend only on the group g, the rating i, and time t,
we have

µg,i,t = Φ−1(RRg,i,t) and σg,i,t = 0, (11)

and bg,i,t plays no role (we may take bg,i,t = 0).

• If bg,i,t = 0, then the recovery rates are random but only through the

idiosyncratic risk factor. The recovery rate RR
(q)
t = Φ

(
µg,i,t+σg,i,tε̃

(q)
t

)
is independent from X

(q)
t and the distribution of RR

(q)
t given default

is of the form P(RR
(q)
t ≤ r|default) = Φ[(Φ−1(r)− µg,i,t)/σg,i,t].
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• If bg,i,t · Cbg,i,t = 1, then the recovery rates are random but only

through the systematic risk factors. We have RR
(q)
t = Φ

(
µg,i,t +

σg,i,tbg,i,t ·Zt
)

is correlated to X
(q)
t and the distribution of RR

(q)
t given

default is complex (see Appendix A.2).

• The choice of the function Φ (the cdf of the standard normal dis-
tribution) is convenient to get closed form expressions and it allows
(with the two parameters µg,i,t and σg,i,t) to match a large diversity
of recovery rate distributions.

Note that, in this random recovery model, the loss given default and the
default occurrence are correlated only through the systematic risk factors.

4.1 Unconditional migration matrices

We follow the widely adopted approach to express the relationship between
migration matrices and the normalized log asset values [4]. The rating K
corresponds to default, it is an absorbing state.6 The K ×K matrix Mg,t

has non negative entries, it satisfies
∑K

j=1(Mg,t)ij = 1 and (Mg,t)KK = 1
(see Fig. 3). (Mg,t)ij is the probability for a borrower in group g and with
rating i at time t− 1 to migrate to rating j at time t. A borrower in group
g with rating i at time t− 1 will migrate to a rating in the interval [j,K] if
its normalized log asset value falls below the unconditional threshold value
zg,t,ij . The unconditional distribution of the normalized log asset value (9)
of a borrower is standard normal,

P
(
X

(q)
t ≤ zg,t,ij

)
= Φ(zg,t,ij), (12)

so the unconditional threshold values are given in terms of quantiles of the
standard normal distribution:

zg,t,ij = Φ−1
( K∑
j′=j

(Mg,t)ij′
)
. (13)

Note that:
- zg,t,i1 = +∞ for all i ≤ K because

∑K
j′=1(Mg,t)ij′ = 1.

- The term zg,t,iK is the unconditional threshold value that corresponds to
the unconditional probability of default at time t for a borrower in group g
with rating i at time t− 1.

6A specific approach could be developed when default is a non-absorbing state, as is
the case for Sovereigns, as a Sovereign might move in and out of a default rating.
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- zg,t,Kj = +∞ for j ≤ K because (Mg,t)KK = 1.

4.2 Average loss given default

By (1)-(10) the average Loss Given Default for the borrowers in group g
with rating i at time t− 1 that default at time t is

LGDe
g,i,t = E

[
1− RR

(q)
t |X

(q)
t ≤ zg,t,iK

]
, (14)

because the event “X
(q)
t ≤ zg,t,iK” corresponds to default for the q-th bor-

rower (which belongs to group g and has rating i at time t− 1). As shown
in Appendix A.2, the average Loss Given Default for the borrowers from
group g and with rating i at time t − 1 who default at time t depends on
the rating i:

LGDe
g,i,t = 1− 1

(Mg,t)iK
Φ2

( µg,i,t√
1 + σ2g,i,t

, zg,t,iK ;
−ρg,i,tσg,i,t√

1 + σ2g,i,t

)
, (15)

ρg,i,t = ag,i,t ·Cbg,i,t, (16)

where Φ2(·, ·; ρ) is the bivariate cumulative Gaussian distribution with cor-
relation ρ. As seen in Appendix A.1, ρg,i,t is related to the Kendall rank cor-
relation coefficient (Kendall’s Tau) between the normalized log asset value

X
(q)
t and the recovery rate RR

(q)
t by:

τ(X
(q)
t ,RR

(q)
t ) =

2

π
arcsin

(
ρg,i,t

)
. (17)

Of course:

• If the recovery rate and the default occurrence are independent (i.e. if
ρg,i,t = 0), then

LGDe
g,i,t = 1− Φ

( µg,i,t√
1 + σ2g,i,t

)
is equal to one minus the expected recovery rate for a borrower that
belongs to group g and has rating i at time t− 1:

LGDe
g,i,t = E[1− RR

(q)
t ].

• If the recovery rate is deterministic and equal to RRg,i,t (i.e. if σg,i,t =
0) then

LGDe
g,i,t = 1− RRg,i,t. (18)
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5 Conditional loss

We assume that the portfolio is large. More exactly, we assume that the
portfolio contains a large number N of loans without it being dominated by
a few loans much larger than the rest. This hypothesis can be formulated
as the non-concentration condition∑N

q=1(EAD
(q)
t )2[∑N

q=1(EAD
(q)
t )
]2 N→∞−→ 0. (19)

The left-hand side is known as the Herfindahl index, or the reciprocal of the
effective number of loans [19]. This hypothesis implies that the idiosyncratic
risks are diversified, but not the systematic risks. Then the conditional loss
given a trajectory Z of the systematic (economic, physical and transition)
risk factors is

L(Z) =

T∑
t=1

Lt(Z), (20)

L1(Z) =

G∑
g=1

K−1∑
i=1

(Mg,1(Z1))iKLGDg,i,1(Z1)EADg,i,1, (21)

Lt(Z) =
G∑
g=1

K−1∑
i,j=1

(
Mg,1(Z1) · · ·Mg,t−1(Zt−1)

)
ij

(Mg,t(Zt))jKLGDg,j,t(Zt)EADg,i,t,

(22)

for t ≥ 2, where:

• Lt(Z) is the conditional loss due to the defaults that occur at time t.

• Z = (Z1, . . . ,ZT ) is the trajectory of the systematic risk factors.

• EADg,i,t is the total exposure at default (6) given default at time t due
to the borrowers in group g and with initial rating i.

• Mg,t(Zt) is the conditional migration matrix (of sizeK×K); (Mg,t(Zt))ij
is the probability for a borrower in group g and with rating i at time
t− 1 to migrate to rating j at time t, given the systematic risk factors
Zt during this period (see Eq. (28)).

• LGDg,i,t(Zt) is the conditional Loss Given Default for a borrower in
group g and with rating i at time t − 1 who defaults at time t (its
rating jumps from i to K), given the systematic risk factors Zt during
this period (see Eq. (29)).
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In the next subsections we present closed form expressions for the con-
ditional migration matrix Mg,t(Zt) and the conditional Loss Given Default
LGDg,i,t(Zt). As a result we have closed form expressions for the conditional
loss L(Z) and the conditional partial losses Lt(Z).

Given a distribution for the process Z, the conditional loss in stressed
conditions L1−α

stress is the 1− α-quantile of L(Z):

P(L(Z) ≤ L1−α
stress) = 1− α, (23)

with typically α = 10−3 (1−α = 99.9%) or α = 10−3T (with T expressed in
time units). A straightforward method to estimate this quantile is a Monte
Carlo method with a sample size (Z(k))NMC

k=1 of the order of NMC = 100/α.

The estimator is the empirical 1 − α-quantile of the sample (L(Z(k)))NMC
k=1 .

Variance reduction techniques, (such as importance sampling), can be im-
plemented to reduce the required sample size.

Given a distribution for the process Z, the conditional loss in stressed
conditions L1−α

t,stress during the t-th period (the t-th year when the time unit
is one year), is the 1− α-quantile of Lt(Z):

P(Lt(Z) ≤ L1−α
t,stress) = 1− α. (24)

Note that Lt(Z), t = 1, . . . , T are correlated and are, of course, correlated
with L(Z) since L(Z) =

∑T
t=1 Lt(Z). We have:

T∑
t=1

L
1−α/T
t,stress ≥ L

1−α
stress. (25)

The regulatory capital charge Kt at time t for the portfolio is

Kt = L1−α
stress,t − Le

t , (26)

with the expected loss Le
t given by (5) and the unexpected loss L1−α

stress,t given
by (24). It can be multiplied by a maturity adjustment factor, given by the
foundation IRB model when the unit time is one year for instance [2]. It
could also be possible to compute an average capital charge, that would be
K/T where K = L1−αT

stress − Le, with the expected loss Le given by (3) and
the unexpected loss L1−αT

stress given by (23).

5.1 Conditional migration matrices

Here we assume that the unconditional migration matrices Mg,t for each
group g are known and we can then express the conditional migration ma-
trices [4]. Given Zt, a borrower in group g with rating i at time t − 1 will
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migrate to a rating in the interval [j,K] at time t if its normalized log asset
value (given Zt) falls below the threshold zg,t,ij . This event has probability

P
(
X

(q)
t ≤ zg,t,ij |Zt

)
= Φ

( zg,t,ij − ag,i,t ·Zt√
1− ag,i,t ·Cag,i,t

)
. (27)

As a consequence, the conditional migration matrix Mg,t(Zt) is given by

(Mg,t(Zt))ij =



1− Φ
( zg,t,i2 − ag,i,t ·Zt√

1− ag,i,t ·Cag,i,t

)
, if j = 1,

Φ
( zg,t,ij − ag,i,t ·Zt√

1− ag,i,t ·Cag,i,t

)
−Φ
(zg,t,ij+1 − ag,i,t ·Zt√

1− ag,i,t ·Cag,i,t

)
, if 2 ≤ j ≤ K − 1,

Φ
( zg,t,iK − ag,i,t ·Zt√

1− ag,i,t ·Cag,i,t

)
, if j = K.

(28)

The entries of the last column (Mg,t(Zt))iK gives the conditional probability
of default for a borrower in group g with rating i = 1, . . . ,K − 1 at time
t− 1.

5.2 Conditional loss given default

The particular form of the loss (1)-(10) makes it possible to give a simple
closed form formula for the conditional Loss Given Default LGDg,i,t(Zt):

LGDg,i,t(Zt) = 1− Φ
( µg,i,t + σg,i,tbg,i,t ·Zt√

1 + σ2g,i,t(1− bg,i,t ·Cbg,i,t)

)
. (29)

Of course, if the recovery rate is deterministic and equal to RRg,i,t (i.e. if
σg,i,t = 0) then

LGDg,i,t(Zt) = 1− RRg,i,t. (30)

5.3 An explicit and simple case

If T = 1, G = 1, C = I, σ1,i,1 = 0 (the LGD is deterministic), and a1,i,1 = a1
(all borrowers have the same exposition with respect to the systematic risks
whatever their inital rating), then we can get a closed form expression for
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the conditional loss in stressed conditions L1−α
stress. Indeed we have

L(Z) =
K−1∑
i=1

(M1,1(Z1))iK(1− RR1,i,1)EAD1,i,1

= L(a1 ·Z1), (31)

where

L(z) =
K−1∑
i=1

Φ
( z1,1,iK − z√

1− ‖a1‖2
)

(1− RR1,i,1)EAD1,i,1. (32)

The function z 7→ L(z) is decreasing, so we have for any `:

P
(
L(Z) ≤ `

)
= P

(
a1 ·Z1 ≥ L−1(`)

)
= 1− Φ

(L−1(`)
‖a1‖

)
= Φ

(
− L

−1(`)

‖a1‖

)
, (33)

because the random variable a1 · Z1, has distribution N (0, ‖a1‖2). The
conditional loss in stressed conditions (23) is therefore with α = 10−3 (as in
[19]):

L0.999
stress = L

(
− Φ−1(0.999)‖a1‖

)
=

K−1∑
i=1

Φ
(z1,1,iK + Φ−1(0.999)‖a1‖√

1− ‖a1‖2
)

(1− RR1,i,1)EAD1,i,1.

6 Model for the systematic risk factors

The vector Zt contains d systematic risk factors.

6.1 Independent risk factors

Here we consider models in which Zt has i.i.d. entries with standard normal
distribution, i.e. C = I.

When one wishes to study economic systematic risk, one usually uses
a one-factor model. In this model the Zt are i.i.d. with standard normal
distribution.

Here we want to study economic, physical, and transition systematic
risks. One can therefore consider a three-factor model Zt = (Zt,1, Zt,2, Zt,3)
where Zt,1 is the economic risk factor, Zt,2 is the transition risk factor,
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and Zt,3 is the physical risk factor. We can take them independently with
standard normal distribution.

We can also make the model more complex by considering several in-
dependent physical risk factors, one per geographical region. If we want to
model groups that are exposed to only one regional physical risk, then we
would need to index the group as follows: g = (e, r), where e = 1, . . . , E is
the index of the non-geographical sector (economic sector and/or climate risk
mitigation and adaptation strategy and/or collateral type), and r = 1, . . . , R
the index of the geographical region, so that there are G = ER groups in
total. The vector Zt would then be of the form Zt = (Zt,j)

2+R
j=1 where Zt,1

is the economic risk factor, Zt,2 is the transition risk factor, and Zt,(2+r) is
the physical risk factor of the r-th region, r = 1, . . . , R. The factor loadings
would then be of the form ae,r,i,t = (ae,r,i,t,j)

2+R
j=1 , where ae,r,i,t,1 is the factor

loading associated to the economic risk at time t of a borrower with rating
i in non-geographical sector e and region r, ae,r,i,t,2 is the factor loading
associated to the transition risk for such a borrower, ae,r,i,t,2+r is the factor
loading associated to the physical risk of the r-th region for such a borrower,
the factor loadings associated to the physical risks of the other regions are
zero: ae,r,i,t,2+r′ = 0 for r′ 6= r. We can, for instance, also introduce other
groups that are exposed to several regional physical risks simultaneously.

6.2 Correlated risk factors

Here we consider models in which Zt has multivariate normal distribution
with mean 0 and correlation matrix C. These models are necessary if we
want to model correlations between some systematic risk factors.

We may think at an example where Zt = (Zt,j)
2+R
j=1 , Zt,1 is the economic

risk factor, Zt,2 is the transition risk factor, and Zt,2+r is the physical risk
factor of the r-th region, r = 1, . . . , R:

Zt ∼ N (0,C) i.i.d., (34)

with

C =



1 −ρ 0 0 · · · 0
−ρ 1 0 0 · · · 0
0 0 1 ρo · · · ρo
0 0 ρo 1 · · · ρo

0 0 ρo ρo
. . . ρo

0 0 ρo ρo ρo 1


, (35)

which means that:
1) the physical risks of different geographical regions are positively correlated
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(ρo ∈ (0, 1)) and independent from the economic and transition risks,
2) the transition risk is negatively correlated with the economic risk (ρ ∈
(0, 1)). This comes from the observation that an economic downturn may
involve a reduction in emissions of greenhouse gases.
The covariance matrix (35) can be made more complex, for instance, if
correlations between physical risks in different regions are known (based on
distances for instance).

7 Model for the loading factors

7.1 The model with a unique systematic risk factor

Under the foundation IRB (Internal Rating Based) approach [2]:
- The time unit is one year.
- The LGD model is deterministic and imposed by the regulator. That is to
say, LGDg,i,t are given by LGDreg

g,i that do not depend on t, but that depend
on the group g and the rating i before default.
- The EAD model is deterministic and determined by the loan composition
of the portfolio.
- The unconditional migration matrices Mg,t are given by Mreg

g that do not
depend on t, but depend on the group g. The matrices Mreg

g are typically
estimated from historical data and provided by rating agencies.
- The correlation model to economic risk (assumed to be the unique system-
atic risk factor) is determined by a formula that is imposed by the regulator
and that is a function of the probability of default [2, 3]:

Rreg
g,i =R(PDreg

g,i ), (36)

R(PD) =0.12
1− e−50PD

1− e−50
+ 0.24

(
1− 1− e−50PD

1− e−50
)
, (37)

where PDreg
g,i = (Mreg

g )iK is the probability of default at time t of a borrower

in group g and with rating i at time t − 1.7 There is a unique systematic
risk factor Zt,1 and the loading factor does not depend on t and is equal to
ag,i,t,1 = aregg,i , with

aregg,i =
√
Rreg
g,i . (38)

7The formula (37) is proposed in the Basel II IRB approach [2]. It was updated in the
Basel III IRB approach and multiplied by 1.25 [3].
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Under these hypotheses, the expected loss is given by (3):

Le =
T∑
t=1

Le
t ,

Le
1 =

G∑
g=1

K−1∑
i=1

(Mreg
g )iKLGDreg

g,i EADg,i,1,

Le
t =

G∑
g=1

K−1∑
i,j=1

(
(Mreg

g )t−1
)
ij

(
Mreg

g

)
jK

LGDreg
g,jEADg,i,t,

for t ≥ 2, and the conditional loss given a trajectory Z = (Z1,1, . . . , ZT,1) of
the economic risk factor is given by (20):

L(Z) =
T∑
t=1

Lt(Z),

L1(Z) =
G∑
g=1

K−1∑
i=1

(Mreg
g (Z1,1))iKLGDreg

g,i EADg,i,1,

Lt(Z) =
G∑
g=1

K−1∑
i,j=1

(
Mreg

g (Z1,1) · · ·Mreg
g (Zt−1,1)

)
ij

(
Mreg

g (Zt,1)
)
jK

LGDreg
g,jEADg,i,t,

for t ≥ 2, where the conditional migration matrices are given by (28). The
conditional loss in stressed conditions L1−α

stress is the 1 − α-quantile of L(Z)
when the Zt,1 are independent and identically distributed with the standard
normal distribution.

7.2 The model with multiple systematic risk factors

We need to extend the previous model to take into account transition and
physical risks. We still assume that LGDreg

g,i and Mreg
g are given. We need

to extend the correlation model and its relation to the loading factors ag,i,t
for the systematic risk factors Zt = (Zt,j)

R+2
j=1 described in Section 6.2.

We introduce the macro-correlation parameters ζt = (ζt,j)
R+2
j=1 . They

give the evolution of the intensities of the R + 2 systematic risk factors
(economic, transition, physical divided into R regions). ζt,1 is associated to
the economic risk and assumed to be constant and equal to ζ1. ζt,2 and ζt,2+r
are associated to the transition and physical risks and evolve in time. These
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parameters are relative to each other and should be expressed in the same
“units”. For instance, we may express all macro-correlation parameters in
terms of GDP growth rates. ζ1 can be the GDP growth rate involved by an
economic downturn. ζt,2 can be calibrated from the Intergovernmental Panel
on Climate Change (IPCC) carbon emission pathway expressed in impact
to GDP growth rate. ζt,2+r can be calibrated from the IPCC GDP growth
rate assessment for the region r. Macro-economic and macro-climatic data
can also be obtained from the Network for Greening the Financial System
(NGFS) or the International Energy Agency (IEA). From now on we assume
that ζt is given.

We introduce the micro-correlation adjustment parameters αg,i,t,j . Each
borrower in group g and with rating i at time t− 1 has a micro-correlation
adjustment parameter αg,i,t,j to the j-th systematic risk factor. This micro-
correlation parameter depends on the group. It may depend on the rating.
It may be time-dependent in order to take into account mitigation and adap-
tation efforts by the borrowers. Note that a micro-correlation adjustment
parameter can be negative (for instance, transition risk may favour a green
economic sector). From now on we assume that αg,i,t = (αg,i,t,j)

R+2
j=1 are

given.
We introduce the correlation Rg,i,t. The correlation is the proportion of

the variance of the normalized log asset value that is due to the systematic
risks. Equivalently, 1 − Rg,i,t is the proportion of the variance of the nor-
malized log asset value that is due to the idiosyncratic risk of a borrower.
From (9) it is related to the factor loadings through the relation:

Rg,i,t = ag,i,t ·Cag,i,t. (39)

The approach that we propose is described in subsection 7.2.3. We first
describe two tentative approaches that turned out to be inconsistent and
that motivate the approach proposed in subsection 7.2.3.

7.2.1 First tentative approach (approach T1) for the correlation model and
factor loadings.

We consider here that:
- the time unit is one year,
- the migration matrices Mg,t do not depend on t and are equal to Mreg

g ,
- the correlation Rg,i,t at any time t is determined by the regulator’s formula
which does not depend on t,
- the factor loadings ag,i,t,j are proportional to the product of the macro-
correlation and micro-correlation adjustment parameters.
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As a result, we have

Rg,i,t = Rreg
g,i , Rreg

g,i = R(PDreg
g,i ), (40)

with PDreg
g,i = (Mreg

g )iK , R defined by (37), and

ag,i,t,j =
√
Rreg
g,i

ãg,i,t,j√
ãg,i,t ·Cãg,i,t

, (41)

with
ãg,i,t,j = αg,i,t,jζt,j . (42)

Proof. The factor loadings ag,i,t,j are proportional to the product ãg,i,t,j of
the macro-correlation and micro-correlation adjustment parameters. From
(9) the factor loadings also satisfy ag,i,t · Cag,i,t = Rreg

g,i . This imposes the
form (41) of the factor loadings.

Discussion. In the approach T1, when the intensities ζt,2 and/or ζt,2+r
increase (compared to ζ1 that is constant), then the correlation Rg,i,t is not
affected because it is determined by the regulator’s formula, which depends
only on the given unconditional migration matrices. The only effect of the
increase of the intensities ζt,2 and/or ζt,2+r is to modify the proportions
of the economic and climate contributions to the constrained value of the
correlation Rreg

g,i . To sum-up, if the climatic risk intensities increase, then
the economic risk intensity decays in order to maintain the correlation value
Rreg
g,i . This makes the approach T1 not appropriate.

7.2.2 Second tentative approach (approach T2) for the correlation model
and loading factors.

We consider here that:
- the time unit is one year,
- the migration matrices Mg,t do not depend on t and are equal to Mreg

g ,
- the correlation Rg,i,1 at time 1 is determined by the regulator’s formula,
but this formula is updated at time t ≥ 2 because, contrary to the economic
risk, which is stationary, the physical and transition risks evolve in time.
- the factor loadings ag,i,t,j are proportional to the product of the macro-
correlation and micro-correlation adjustment parameters.

As a result we have

Rg,i,t =
ãg,i,t ·Cãg,i,tRreg

g,i

ãg,i,t ·Cãg,i,tRreg
g,i + ãg,i,1 ·Cãg,i,1(1−Rreg

g,i )
, (43)
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and

ag,i,t,j =
√
Rreg
g,i

ãg,i,t,j√
ãg,i,t ·Cãg,i,tRreg

g,i + ãg,i,1 ·Cãg,i,1(1−Rreg
g,i )

, (44)

with
ãg,i,t,j = αg,i,t,jζt,j . (45)

Proof. At time 1 (see the approach T1) the normalized log asset value
is given by

X
(q)
1 = aregg,i ·Z1 +

√
1− aregg,i ·Ca

reg
g,i ε

(q)
1 , (46)

with

aregg,i,j =

√
Rreg
g,i ãg,i,1,j√

ãg,i,1 ·Cãg,i,1
, ãg,i,1,j = αg,i,1,jζ1,j , Rreg

g,i = R((Mreg
g )iK).

If the loading factors were stationary (time-independent), we would have for
any time t

X
(q)
t = aregg,i ·Zt +

√
1− aregg,i ·Ca

reg
g,i ε

(q)
t ,

and the approach T1 would be valid. However, the micro-correlation and
macro-correlation parameters evolve in time so we need to update this rep-
resentation.
The unnormalized log asset value is given by

X̃
(q)
t = ãg,i,t ·Zt + σ̃g,iε

(q)
t ,

which is a Gaussian variable with mean zero and variance ãg,i,t ·Cãg,i,t+σ̃2g,i.
Here ãg,i,t,j = αg,i,t,jζt,j and σ̃g,i does not depend on t because the unnor-
malized idiosyncratic risk is assumed to be stationary.

The normalized log asset value X
(q)
1 needs to be of variance one so that

the migration matrix Mg,1 is equal to Mreg
g . This means that X

(q)
1 =

X̃
(q)
1 /

√
ãg,i,1 ·Cãg,i,1 + σ̃2g,i. Since X

(q)
1 is of the form (46), the variance

σ̃2g,i solves

1− aregg,i ·Ca
reg
g,i =

σ̃2g,i
ãg,i,1 ·Cãg,i,1 + σ̃2g,i

,

which gives, with the identity Rreg
g,i = aregg,i ·Ca

reg
g,i ,

σ̃2g,i = ãg,i,1 ·Cãg,i,1
1−Rreg

g,i

Rreg
g,i

.
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The normalized log asset value X
(q)
t needs to be of variance one so that

the migration matrix Mg,t is equal to Mreg
g . This means that X

(q)
t =

X̃
(q)
t /

√
ãg,i,t ·Cãg,i,t + σ̃2g,i. Since X

(q)
t is of the form (9), we find that the

factor loadings ag,i,t,j are of the form

ag,i,t,j =
ãg,i,t,j√

ãg,i,t ·Cãg,i,t + σ̃2g,i

,

which gives (44), and the correlation is of the form

Rg,i,t =
ãg,i,t ·Cãg,i,t

ãg,i,t ·Cãg,i,t + σ̃2g,i
.

which gives (43).
Discussion. In the approach T2, the correlation Rg,i,t is different from

(typically, larger than) Rreg
g,i , which means that the exposition to the sys-

tematic risk factors is different from (typically larger than) the exposition
defined by the regulator. As the migration matrices are assumed to be con-
stant and given by Mreg

g , this means that the exposition to the idiosyncratic

risks
√

1−R2
g,i,t is different (typically, smaller than) the exposition defined

by the regulator. To sum-up, if the climatic risk intensities increase, then
the idiosyncratic risk decays in order to maintain the same unconditional
migration matrices. This makes the approach T2 not appropriate.

7.2.3 Proposed approach for the correlation model and loading factors.

We consider here that:
- the time unit is one year,
- at time 1 the migration matrix Mg,1 is equal to Mreg

g and the correlation
Rg,i,1 is determined by the regulator’s formula,
- the migration matrices and the regulator’s formula for the correlation are
updated at time t ≥ 2 because, contrary to the economic and idiosyncratic
risks, which are stationary, the physical and transition risks evolve in time.
- the factor loadings ag,i,t,j are proportional to the product of the macro-
correlation and micro-correlation adjustment parameters.

As a result, at time 1, the formulas are reduced to the formulas of the
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approach T1:

Mg,1 =Mreg
g , (47)

Rg,i,1 =Rreg
g,i , Rreg

g,i = R((Mreg
g )iK), (48)

ag,i,1,j =aregg,i,j , aregg,i,j =
√
Rreg
g,i

ãg,i,1,j√
ãg,i,1 ·Cãg,i,1

, (49)

with R defined by (37) and

ãg,i,t,j = αg,i,t,jζt,j . (50)

At time t ≥ 1, we have

(Mg,t)ij =


1− Φ(zg,t,i2) if j = 1,
Φ(zg,t,ij)− Φ(zg,t,ij+1) if 2 ≤ j ≤ K − 1,
Φ(zg,t,iK) if j = K,

(51)

with

zg,t,ij =
zregg,ij√

1 + cg,i,t ·Ccg,i,t − aregg,i ·Ca
reg
g,i

, (52)

zregg,ij =Φ−1
( K∑
j′=j

(Mreg
g )ij′

)
, (53)

cg,i,t,j =aregg,i,j
ãg,i,t,j
ãg,i,1,j

, (54)

and we have

Rg,i,t =
cg,i,t ·Ccg,i,t

1 + cg,i,t ·Ccg,i,t − aregg,i ·Ca
reg
g,i

, (55)

ag,i,t,j =
cg,i,t,j√

1 + cg,i,t ·Ccg,i,t − aregg,i ·Ca
reg
g,i

. (56)

Note that the formulas (56) and (44) for the loading factors coincide, and
the formulas (55) and (43) for the correlations coincide. The difference
between this approach and the approach T2 is that the migration matrices
are constant in the approach T2 (which makes the approach not consistent
as discussed above) while they evolve in a consistent way in this approach.
Proof. At time 1 (see the approach T1) the normalized log asset value is
given by

X
(q)
1 = aregg,i ·Z1 +

√
1− aregg,i ·Ca

reg
g,i ε

(q)
1 .
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If the loading factors were stationary (time-independent), we would have for
any time t

X
(q)
t = aregg,i ·Zt +

√
1− aregg,i ·Ca

reg
g,i ε

(q)
t ,

and the approach T1 would be valid. However, the idiosyncratic risk is sta-
tionary but the micro-correlation and macro-correlation parameters evolve
in time. This means that, using (54), we have in fact

X
(q)
t = cg,i,t ·Zt +

√
1− aregg,i ·Ca

reg
g,i ε

(q)
t ,

which is a Gaussian variable with mean zero and variance 1−aregg,i ·Ca
reg
g,i +

cg,i,t ·Ccg,i,t. As a consequence, the probabilities of rating change are

(Mg,t)ij = P
(
X

(q)
t ∈ [zregg,ij+1, z

reg
g,ij ]
)
,

where the zregg,ij ’s are the threshold values associated to the given uncondi-
tional migration matrix Mreg

g . This gives (51). Furthermore, after normal-

ization, the log asset value X
(q)
t = X

(q)
t /
√

1− aregg,i ·Ca
reg
g,i + cg,i,t ·Ccg,i,t

has now the form

X
(q)
t = ag,i,t ·Zt +

√
1− ag,i,t ·Cag,i,tε(q)t ,

with ag,i,t given by (56), which also gives (55).
Discussion. In this approach, if the climatic (physical and/or transi-

tion) risk intensities increase, then the idiosyncratic risk and the economic
risk stay constant, so that the overall risk increases and the unconditional
migration matrices change. These changes are evaluated automatically from
the climate scenario.

Under these hypotheses, the expected loss is given by (3):

Le =

T∑
t=1

Le
t , (57)

Le
1 =

G∑
g=1

K−1∑
i=1

(Mg,1)iKLGDreg
g,i EADg,i,1, (58)

Le
t =

G∑
g=1

K−1∑
i,j=1

(
Mg,1 · · ·Mg,t−1

)
ij

(
Mg,t

)
jK

LGDreg
g,jEADg,i,t, (59)
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for t ≥ 2, and the conditional loss given a trajectory Z = (Z1, . . . ,ZT ) of
the systematic risk factors is given by (20):

L(Z) =
T∑
t=1

Lt(Z), (60)

L1(Z) =
G∑
g=1

K−1∑
i=1

(Mg,1(Z1))iKLGDreg
g,i EADg,j,1, (61)

Lt(Z) =
G∑
g=1

K−1∑
i,j=1

(
Mg,1(Z1) · · ·Mg,t−1(Zt−1)

)
ij

(
Mg,t(Zt)

)
jK

LGDreg
g,jEADg,i,t,

(62)

for t ≥ 2, where the conditional migration matrices are given by (28). The
conditional loss in stressed conditions L1−α

stress is the 1 − α-quantile of L(Z)
when the Zt are independent and identically distributed with the multivari-
ate normal distribution N (0,C) (with C given by (35) for instance).

8 Sensitivity analysis and risk allocation

Risk allocation consists in decomposing a portfolio risk measure (here, the
expected or unexpected loss) into a sum of risk contributions by sub-portfolios
(the sub-portfolios can be the groups discussed above in the paper or other
groups, provided the portfolio loss can be expressed as (63)). It makes it
possible to determine the risk profile of the portfolio and to identify the most
risky components of the portfolio. Following [5] we use the Euler principle
to obtain the decomposition.

The random loss of the portfolio is

L(Z) =

P∑
p=1

Kp`p(Z), (63)

where `p(Z) is the random loss of sub-portfolio p per unit principal and Kp

is the principal of sub-portfolio p.
The expected loss is

Le =

P∑
p=1

Kp`
e
p, (64)
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with `ep = E[`p(Z)]. We can then define the risk contribution, resp. sensi-
tivity, of the expected loss to sub-portfolio p by

RCe
p = Kp`

e
p, Se

p =
Kp`

e
p∑P

p′=1Kp′`
e
p′

. (65)

The unexpected loss is

Lu such that P(L(Z) ≤ Lu) = 1− α. (66)

Applying Euler’s theorem to the homogeneous function of degree one (Kp)
P
p=1 7→

Lu (see Appendix B), we obtain

Lu =

P∑
p=1

Kp∂KpL
u, (67)

and (see Appendix B) we have ∂KpL
u = E[`p(Z)|L(Z) = Lu]. We can then

define the risk contribution, resp. sensitivity, of the unexpected loss to sub-
portfolio p by

RCu
p = KpE[`p(Z)|L(Z) = Lu], Su

p =
KpE[`p(Z)|L(Z) = Lu]∑P

p′=1Kp′E[`p′(Z)|L(Z) = Lu]
.

(68)
These risk contributions and sensitivity indices can be estimated as fol-

lows. Let us assume that we have a Monte Carlo sample (`p(Z
(k)))Pp=1 of

size NMC that is independent and identically distributed as (`p(Z))Pp=1.
We can estimate Le by the empirical mean

L̂e =
1

NMC

NMC∑
k=1

P∑
p=1

Kp`p(Z
(k)),

and we can estimate RCe
p and Se

p by

R̂C
e

p =
1

NMC

NMC∑
k=1

Kp`p(Z
(k)), Ŝe

p =

∑NMC
k=1 Kp`p(Z

(k))∑NMC
k=1

∑P
p′=1Kp′`p′(Z(k))

.

We can estimate Lu by the 1 − α-empirical quantile L̂u of the sample
(L(k))NMC

k=1 , with L(k) =
∑P

p=1Kp`p(Z
(k)). We can estimate RCu

p and Su
p by

R̂C
u

p = Kpŝp, Ŝu
p =

Kpŝp∑P
p′=1Kp′ ŝp′

, (69)
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where ŝp is an estimator of E[`p(Z)|L(Z) = Lu]. We can use the Nadaraya-
Watson estimator [13, Chapter 6]:

ŝp =

∑NMC
k=1 `p(Z

(k))Kh(L(k) − L̂u)∑NMC
k=1 Kh(L(k) − L̂u)

,

where Kh(x) = K(xh), with K(x) = 1√
2π

exp(−x2

2 ) the Gaussian kernel (we

could take the Epanechnikov quadratic kernel) and h the bandwidth.

9 Perspectives

9.1 Reverse stress test

The strategy developed in Section 5 makes it possible to estimate the con-
ditional loss under stressed conditions L1−α

stress. We may want to determine
which systematic risk is the most important or which types of trajectories
are the most likely to lead to a loss that exceeds L1−α

stress. For this, we can look
for the conditional distribution of the process Z given L(Z) ≥ L1−α

stress. We
may in particular want to determine E[Zt|L(Z) ≥ L1−α

stress] for t = 1, . . . , T .
This could be estimated by a straightforward use of the Monte Carlo sample
generated for the estimation of the quantile L1−α

stress.

9.2 Systematic risk factor models

In this paper we have proposed a climate-extended portfolio credit risk model
that gives portfolio loss distributions conditional to a climate scenario. If
one wants to probabilize the scenarios, then one would need a model for the
joint process of the systematic risk factors. This could be possible within
the framework proposed in this paper if the process is Gaussian. In other
words, it could be possible to design a parametric VAR(1) model (vector
auto-regressive) for Z and to exploit it with the general credit risk modeling
developed in the paper. This work (including the calibration aspects) is
under progress [6].

9.3 Climatic idiosyncratic risk models

In this paper we have modeled the transition risk and physical risk as sys-
tematic risk factors. This seems well motivated for the transition risk that
affects globally all borrowers. We may think, however, that the physical
risks may have systematic and idiosyncratic components. In such a case,
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the macro-correlations (ζt,2+r)
R
r=1 given by the climate scenario could also

affect the variances of the idiosyncratic risks that are assumed to be time-
independent in the paper. It is possible to incorporate such an effect within
the framework proposed in this paper because the Gaussian copula model
would not be affected.

9.4 Granularity adjustment

If the non-concentration condition (19) is not fulfilled, then granularity ad-
justment is necessary to take into account that the portfolio may carry some
undiversified idiosyncratic risk. Granularity adjustment can be carried out
by a Monte Carlo approach or by an analytical approach (through Taylor
series expansions of the quantiles) and it has been the subject of intense
research for the single-factor model [22, 21, 18, 10, 8, 11, 19] and also for
multi-factor models [10, 7, 9]. It would require some more work to get an
appropriate version for the multi-factor model addressed in this paper.

10 Application

In this section we apply the CERM-based method to estimate the portfolio
loss distributions of a pilot portfolio for three climate scenarios.

The book is made of corporate loans of borrowers from various sectors
and sub-sectors spread across regions (see Figs. 1-2).

We use credit ratings from Standard & Poor’s on a simplified scale with
K = 8 and the unconditional migration matrix given in Fig. 3.

In this work we look at different possible outcomes, looking forward
up to the end of the century. We take climate scenarios from the NGFS
framework. The NGFS is the Network for Greening the Financial System, a
global network of 100 central banks and supervisors. The NGFS developed a
matrix to classify scenarios (see Fig. 4). We consider three climate scenarios
from the framework : Orderly (Below 2°C), Disorderly (Delayed transition)
and Hot House World (Current policies). Each scenario is characterized by
a temperature rise, a GHG budget and a pathway to spend this budget.
For instance, to reach a temperature increase of less than 2°C by 2100, we
have to go from circa 55 gigatons of CO2 equivalent per year to 0 within the
next 30 years. This implies massive transformations across all areas of the
economy leading to massive value adjustments. This risk has very material
impacts on the 2020-2050 time window (see Fig. 5).
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Figure 1: Pilot portfolio, heatmap with the EAD per sector and subsector
(the EAD is proportional to the area of the sector in this figure).

Figure 2: Pilot portfolio, geographic distribution of the EAD. The colour
coding depends upon the vulnerability to climate change of the bor-
rower’s main country using ND Gain data sets (see https://gain.nd.edu/our-
work/country-index/).
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Figure 3: 1-year migration matrix with K = 8. Each row corresponds to an
initial rating. Each column corresponds to a rating at the end of one year.
As ”Default” is absorbing, the last line is of the form (0, . . . , 0, 1).

We apply the CERM-based method with the macro-correlations ex-
pressed in GDP growth rate determined by these scenarios (see Fig. 6).
In the three scenarios the economic risk intensity is constant. In the Or-
derly scenario the transition starts now in a progressive way. In the Delayed
scenario the transition occurs later with a more disruptive impact. In the
Hot House World scenario the transition risk is zero as there is almost no
regulation, but the physical risk intensity dramatically increases.

We use flat micro-correlations across time using the simplified grid with
13 groups given in Fig. 7. For a more granular analysis micro-correlation
parameters can be calibrated to GHG intensity data sets from specialised
providers such as Carbon4 Finance8 or MSCI9. Micro-correlation parameters
can also evolve with time to account for mitigation and adaptation Capex
plans.

We use 7 risk factors: economic risk, transition risk, and physical risk
for 5 regions. The physical risk factors have the same intensity (plotted in
Fig. 6). Their covariance matrix is given in Fig. 8.

We can easily convert the expected loss into a credit spread impact.
We do the same for the cost to maintain buffers against unexpected loss
quantiles. We use a parameter which is the cost to raise sufficient capital
from shareholders, thus providing extra loss absorption capacity, 10pct in
this example. We get an overall impact from the climate on credit spreads,

8https://www.carbon4finance.com/
9https://www.msci.com/
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Figure 4: NGFS scenarios. On the horizontal axis it is organized by climate
outcomes. On the left we meet the climate targets set out in the Paris
agreement. On the right we fail to do so and get substantial physical risk.
On the vertical axis we look at the type of transition. Orderly on the bottom
row or disorderly on the top row, reflecting whether policy actions are taken
early or late and whether technological progress is able to mitigate some of
the costs. There are two successive versions 2020 and 2021.
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Figure 5: NGFS GHG pathways expressed in CO2 equivalent emissions, in
billion tons of CO2 per year.

which we call the climate risk premium.
The portfolio loss distributions and the climate risk premiums for one

particular sector are plotted in Figs. 9 and 10 for the three climate scenarios
of Fig. 6. As can be easily understood, if the Hot House World scenario
seems to be reasonable in the short term (2050), it becomes unsustainable
in the long term (2100). In Fig. 11 we can compare side by side obligors
and see the impact from different micro-correlations.
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Figure 6: Example of macro-correlation parameters from 2020 to 2100 for
three NGFS climate scenarios: Below 2°C (top), Disorderly (center), and
Current Policies (bottom). The blue lines stand for the economic risk inten-
sity, the magenta lines stand for the transition risk intensity, and the yellow
lines stand for the physical risks intensity (all physical risks share the same
intensity).
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Figure 7: Micro-correlation parameters by group. In this simplified version
the most difficult borrowers when it comes to low-carbon transition are
classified as ”high stake”, the others are classified as ”low stake”. Physical
risk impact is linked to the borrower’s main country, either in terms of
location or of market, depending on the sector. Sector specificities and sub-
country spatial resolution are introduced in more advanced setup.

Figure 8: Covariance matrix for the 7 risk factors with an anti-correlation
between the economic risk and the transition risk and a positive correlation
between the 5 regional risk factors (here the index 0 corresponds to the
economic risk, 1 corresponds to the transition, and 2–6 correspond to the 5
regions: Europe, America, Asia, Australia, Middle East & Africa).
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Figure 9: Loss distributions with the CERM-based approach on the pilot
portfolio and on the three NGFS climate scenarios: Current Policy (top),
Disorderly (center), and Below 2°C (bottom). In the left column the horizon
is 2042, in the right column it is 2082. The blue distributions are obtained
with only economic risk, in absence of transition and physical risks, and are,
therefore, identical for the three scenarios (up to Monte Carlo fluctuations).
The orange distributions are obtained in presence of economic, transition
and physical risks.
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Figure 10: Climate risk premium in Basis Points per time horizon on the
same sample portfolio, computed as the sum of Le and the cost of additional
capital from shareholders times L1−α

stress and on the three NGFS climate sce-
narios: Current Policy (blue), Disorderly (orange), and Below 2°C (red)
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Figure 11: Climate risk premium in Basis Points for two obligors on the
three NGFS climate scenarios: Current Policy (blue), Disorderly (orange),
and Below 2°C (red). The horizon is 60 years. The first obligor belongs
to the ”low stake” category, the second one belongs to the ’high stake”
category.
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A The special recovery model (10)

In this appendix we give more detailed results about the recovery model (10)
which is inspired from [1]. This model allows for flexibility, easy manipu-
lation, and (relatively) easy calibration. It uses the cumulative Gaussian
distribution function Φ for easy calculations, by the two following Gaussian
formulas:

1√
2π

∫ ∞
−∞

Φ(ax+ b) exp
(
− x2

2

)
dx = Φ

( b√
1 + a2

)
, (70)

1√
2π

∫ c

−∞
Φ(ax+ b) exp

(
− x2

2

)
dx = Φ2

( b√
1 + a2

, c;− a√
1 + a2

)
, (71)

where Φ is the cdf of the standard Gaussian distribution and Φ2(·, ·; ρ) is
the bivariate cumulative Gaussian distribution with correlation ρ.

Eq. (15) (and also (17)) can be used to calibrate the parameters of the
recovery model from default swap market data. More elaborate moment
matching can be used because it is also possible to express, in simple closed

forms, the moments E
[
Φ−1(RR

(q)
t )n|X(q)

t ≤ zg,t,iK
]

of the recovery rate for
a borrower with rating i at time t− 1 who defaults at time t (see Appendix
A.2).

A.1 The rank correlation

The Kendall’s Tau (rank correlation) of a pair of random variables (X,Y )
is defined by

τ(X,Y ) = P
(
(X − X̃)(Y − Ỹ ) > 0

)
− P

(
(X − X̃)(Y − Ỹ ) < 0

)
, (72)
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when (X,Y ) and (X̃, Ỹ ) are independent and identically distributed.
From (9) and (1)-(10), we get that the Pearson (linear) correlation coef-

ficient between X and Φ−1(R) is

ρ(X
(q)
t ,Φ−1(RR

(q)
t )) = ag,i,t ·Cbg,i,t. (73)

Since (X,Φ−1(R)) is a Gaussian vector, the Kendall’s Tau is related to the
Pearson correlation coefficient through the Greiner’s equality:

τ(X
(q)
t ,Φ−1(RR

(q)
t )) =

2

π
arcsin

(
ρ(X

(q)
t ,Φ−1(RR

(q)
t ))

)
. (74)

The Kendall’s Tau is invariant under strictly increasing transform, so

τ(X
(q)
t ,RR

(q)
t ) = τ(X

(q)
t ,Φ−1(RR

(q)
t ))

=
2

π
arcsin

(
ag,i,t ·Cbg,i,t

)
. (75)

A.2 The Loss Given Default

It is important to note (for calibration purposes) that the recovery rate and
the default occurrence are correlated. This means that the unconditional
expectation of (one minus) the recovery rate

E
[
1− RR

(q)
t

]
= 1− Φ

( µg,i,t√
1 + σ2g,i,t

)
(76)

is not the expected Loss Given Default, that is observed for the borrowers
who default. The expected Loss Given Default for the borrowers from group
g and with rating i at time t− 1 who default at time t is

E
[
1− RR

(q)
t |X

(q)
t ≤ zg,t,iK

]
, (77)

because the event “X
(q)
t ≤ zg,t,iK” corresponds to default for such borrowers.

The expected Loss Given Default for the borrowers from group g and with
rating i at time t− 1 who default at time t actually depends on the rating i:

E
[
1− RR

(q)
t |X

(q)
t ≤ zg,t,iK

]
= 1− 1

(Mg,t)iK
Φ2

( µg,i,t√
1 + σ2g,i,t

, zg,t,iK ;
−ρg,i,tσg,i,t√

1 + σ2g,i,t

)
,

(78)

where ρg,i,t = ag,i,t ·Cbg,i,t.
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Proof. The distribution ofX
(q)
t isN (0, 1). The distribution of Φ−1(RR

(q)
t )

is N (µg,i,t, σ
2
g,i,t). The correlation coefficient between X

(q)
t and Φ−1(RR

(q)
t )

is ρg,t. The vector (X
(q)
t ,Φ−1(RR

(q)
t )) is Gaussian, so the conditional distri-

bution of Φ−1(RR
(q)
t ) given X

(q)
t = x is N (µg,i,t+ρg,i,tσg,i,tx, σ

2
g,i,t(1−ρ2g,i,t))

and we get

E[RR
(q)
t |X

(q)
t = x] =

1√
2πσ2g,i,t(1− ρ2g,i,t)

∫ ∞
−∞

Φ(r) exp
(
− (r − µg,i,t − ρg,i,tσg,i,tx)2

2σ2g,i,t(1− ρ2g,i,t)

)
dr

= Φ
( µg,i,t + ρg,i,tσg,i,tx√

1 + σ2g,i,t(1− ρ2g,i,t)

)
and

E
[
RR

(q)
t |X

(q)
t ≤ zg,t,iK

]
=

E
[
RR

(q)
t 1

X
(q)
t ≤zg,t,iK

]
P(X

(q)
t ≤ zg,t,iK)

=

1√
2π

∫ zg,t,iK
−∞ Φ

(
µg,i,t+ρg,i,tσg,i,tx√
1+σ2

g,i,t(1−ρ2g,i,t)

)
exp

(
− x2

2

)
dx

(Mg,t)ik
,

which gives (78).
Similarly, we have

E
[
Φ−1(RR

(q)
t )|X(q)

t ≤ zg,t,iK
]

=µg,i,t − ρg,i,tσg,i,t
exp(−z2g,t,iK/2)
√

2π(Mg,t)iK
, (79)

E
[
Φ−1(RR

(q)
t )2|X(q)

t ≤ zg,t,iK
]

=µ2g,i,t − 2ρg,i,tσg,i,tµg,i,t
exp(−z2g,t,iK/2)
√

2π(Mg,t)iK

− σ2g,i,tρ2g,i,tzg,t,iK
exp(−z2g,t,iK/2)
√

2π(Mg,t)iK
+ σ2g,i,t.

(80)

Proof. These formulas follow from the fact that the conditional distribu-

tion of Φ−1(RR
(q)
t ) given X

(q)
t = x is N (µg,i,t + ρg,i,tσg,i,tx, σ

2
g,i,t(1− ρ2g,i,t)),

so that

E
[
Φ−1(RR

(q)
t )|X(q)

t = x
]

=µg,i,t + ρg,i,tσg,i,tx,

E
[
Φ−1(RR

(q)
t )2|X(q)

t ≤ zg,t,iK
]

=µ2g,i,t + 2ρg,i,tσg,i,tµg,i,tx

+ ρ2g,i,tσ
2
g,i,tx

2 + σ2g,i,t(1− ρ2g,i,t).
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We get the desired results by using the following Gaussian identities:

1√
2π

∫ zg,t,iK

−∞
exp

(
− x2

2

)
dx = (Mg,t)iK ,

1√
2π

∫ zg,t,iK

−∞
x exp

(
− x2

2

)
dx = − 1√

2π
exp

(
−
z2g,t,iK

2

)
,

1√
2π

∫ zg,t,iK

−∞
x2 exp

(
− x2

2

)
dx = −

zg,t,iK√
2π

exp
(
−
z2g,t,iK

2

)
+ (Mg,t)iK .

The formulas (75), (78), (79), and (80) can be used to calibrate the
parameters µg,i,t, σg,i,t, and bg,i,t (or λg,i,t if we use the simplified model
bg,i,t = λg,i,tag,i,t) of the recovery model.

The conditional Loss Given Default for the borrowers from group g and
with rating i at time t− 1 who default at time t given Zt is simple, because
the correlation between the recovery rate and the default occurrence happens

only through the systematic risk factors, so X
(q)
t and RR

(q)
t are independent

given Zt. The conditional loss given default for the borrowers from group g
and with rating i who default at time t given Zt is given by (29):

LGDg,i,t(Zt) := E
[
1− RR

(q)
t |X

(q)
t ≤ zg,t,iK ,Zt

]
= E

[
1− RR

(q)
t |Zt

]
= 1− Φ

( µg,i,t + σg,i,tbg,i,t ·Zt√
1 + σ2g,i,t(1− bg,i,t ·Cbg,i,t)

)
. (81)

B Euler allocation principle

Let X = (X1, . . . , XP ) be a random vector, w = (w1, . . . , wP ) a determin-
istic vector. We introduce the random variable L = w ·X =

∑P
p=1wpXp.

We denote by Lα(w) the 1−α-quantile of L. The following statements then
hold true:
1) w 7→ Lα(w) is a homogeneous function of degree one.
2) For any p = 1, . . . , P :

∂Lα

∂wp
(w) = E

[
Xp|L = Lα(w)]. (82)

Proof. The proof is standard and we give it here for completeness. We
have P(w ·X ≤ Lα(w)) = 1−α and therefore P(cw ·X ≤ cLα(w)) = 1−α,
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which shows Lα(cw)) = cLα(w). This proves the first item.
Let us denote by f(·;w), resp. F (·;w), the probability density function,
resp. the cumulative distribution function, of L = w ·X:

F (z;w) = P(L ≤ z) = P(w ·X ≤ z).

We have for all w: F (Lα(w);w) = 1− α. Therefore we have for any p:

∂zF (Lα(w);w)∂wpL
α(w) + (∂wpF )(Lα(w);w) = 0,

and (since ∂zF = f and denoting x+ = max(x, 0), x− = −min(x, 0), and
fXp,L the probability density function of (Xp, L) assumed to be continuous)

∂wpL
α(w) = −

(∂wpF )(Lα(w);w)

f(Lα(w);w)

= − lim
δ→0

F (Lα(w);w + δep)− F (Lα(w);w)

f(Lα(w);w)δ

= − lim
δ→0

P(w ·X + δXp ≤ Lα(w))− P(w ·X ≤ Lα(w))

f(Lα(w);w)δ

= − lim
δ→0

P(Lα(w) ≤ L ≤ Lα(w) + δ(Xp)−)− P(Lα(w)− δ(Xp)+ ≤ L ≤ Lα(w))

f(Lα(w);w)δ

= − lim
δ→0

∫ 0

−∞
dx

∫ Lα(w)−δx

Lα(w)
dz
fXp,L(x, z;w)

f(Lα(w);w)δ
−
∫ +∞

0
dx

∫ Lα(w)

Lα(w)−δx
dz
fXp,L(x, z;w)

f(Lα(w);w)δ

=

∫ 0

−∞
dxx

fXp,L(x, Lα(w);w)

f(Lα(w);w)
+

∫ +∞

0
dxx

fXp,L(x, Lα(w);w)

f(Lα(w);w)

=

∫ +∞

−∞
dxxfXp|L=Lα(w)(x;w) = E

[
Xp|L = Lα(w)],

which completes the proof of the second item.
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