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ABSTRACT

We introduce a novel approach to waveform inversion,
based on a data driven reduced order model (ROM)
of the wave operator. The presentation is for the
acoustic wave equation, but the approach can be ex-
tended to elastic or electromagnetic waves. The data
are time resolved measurements of the pressure wave
at the sensors in an active array, which probe the un-
known medium with pulses and measure the generated
waves. The ROM depends nonlinearly on the data
but it can be constructed from them using numerical
linear algebra methods. We show that the ROM can
be used for the inverse problem of velocity estimation.
While the full-waveform inversion approach of nonlin-
ear least-squares data fitting is challenging without low
frequency information, due to multiple minima of the
objective function, the minimization of the ROM misfit
function has a better behavior, even for a poor initial
guess. In fact, the ROM misfit function is demonstra-
bly a convex function for low-dimensional parametriza-
tions of the unknown velocity. We give the construction
of the ROM, introduce the inversion approach based on
the ROM misfit and assess its performance with numer-
ical simulations.

INTRODUCTION

We study the inverse problem of velocity estimation from
reflection data gathered by an array of m sensors. The
proposed methodology applies to any linear wave equa-
tion, for scalar (sound) or vectorial (electromagnetic or
elastic) waves, but for simplicity we work with the acous-
tic wave equation in a medium with constant density and
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unknown wave speed, aka velocity c(x).
Let p(s)(t,x) model the pressure wave generated by the

sth sensor, for s = 1, . . . ,m. It satisfies the initial value
problem[

∂2
t − c2(x)∆

]
p(s)(t,x) = f ′(t)θ(x− xs), t ∈ R, (1)

p(s)(t,x) = 0, t < −tf , (2)

for x ∈ Ω, a simply connected domain in dimension d = 2
or 3, with boundary ∂Ω. This domain arises from the
mathematical truncation of Rd, since over the finite dura-
tion T of the measurements, the waves are not affected by
the medium at distances exceeding T maxx c(x). Thus, we
can set any homogeneous boundary conditions: for exam-
ple Dirichlet or a combination of Dirichlet and Neumann
on disjoint parts of ∂Ω. We refer to these henceforth as
“the homogeneous boundary conditions”.

The sensors in the array are assumed identical, and are
modeled by a function θ(x), with small support around
the origin 0. For example, θ(x) may be equal to one in a
small ball centered at 0 and equal to zero everywhere else.
The right-hand side in (1) models the excitation from the
sth sensor, which emits the probing pulse f(t), supported
in the time interval (−tf , tf ). Prior to the excitation the
medium is quiescent, as stated in the initial condition (2).

The inverse problem is: Find the velocity c(x) from the
measurements

M(r,s)(t) =

∫
Ω

dx θ(x− xr)p(s)(t,x), (3)

for s, r = 1, . . . ,m and t ∈ (0, T ). Here we assume that
each sensor can both emit and record.

Common velocity estimation approaches are: Travel
time tomography (Dines and Lytle (1979)) and its more
general version studied in the mathematics community
(Stefanov et al. (2019)); Linearized, aka Born inversion
(Clayton and Stolt (1981)); Migration velocity analysis
(Symes and Carazzone (1991); Sava and Biondi (2004))
and Full-waveform inversion (Tarantola (1984); Virieux
and Operto (2009)). The first three are based on assump-
tions like: the velocity changes slowly on the scale of the
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wavelength (for travel time tomography), or the velocity
variations are small (for Born inversion) or there is sepa-
ration of scales between the smooth components of the ve-
locity and the rough part that gives the reflectivity of the
medium (for migration). Full-waveform inversion (FWI)
circumvents such assumptions. It is a PDE constrained
optimization that fits the data with its model prediction
in the L2 (least-squares) sense. The increase in computing
power has lead to growing interest in FWI, but there is a
fundamental impediment, which manifests especially for
high-frequency data: The objective function is nonconvex
in the smooth component of c(x) even in the absence of
noise (Gauthier et al. (1986); Santosa and Symes (1989))
and displays numerous local minima. This so-called “cycle
skipping” issue makes any gradient based, i.e., local opti-
mization algorithm unlikely to succeed, in the absence of
an accurate starting guess (Virieux and Operto (2009)).

There are several approaches to mitigate cycle skipping:
Multiscale methods pursue a good starting guess by in-
verting first very low frequency data (Bunks et al. (1995)).
However, such data may not be available and there is no
guarantee that what seems a reasonable starting guess
will not create cycle skipping issues for high-frequency
data. Extended modeling approaches (Symes (2008)) like
the differential semblance method (Symes and Carazzone
(1991); Symes and Kern (1994)) and the source-receiver
extension method (Huang et al. (2017)), introduce in a
systematic way additional degrees of freedom in the op-
timization and then use some objective function to drive
the extended model toward a velocity estimate. There are
also approaches that use a better alternative than the L2

norm for measuring the data misfit (Brossier et al. (2010);
Bozdağ et al. (2011)). A prominent alternative is the op-
timal transport (Wasserstein) metric proposed and ana-
lyzed for seismic inversion in (Engquist and Froese (2014);
Yang et al. (2018)).

We introduce a different approach to velocity estima-
tion, based on a data driven reduced order model (ROM)
of the wave operator. The mapping between the measure-
ments (3) and the ROM is nonlinear and yet, it can be
calculated efficiently with methods from numerical linear
algebra. The main point of the paper is that the objec-
tive function given by the ROM misfit has better behavior
than the FWI objective function, so optimization methods
can converge even for a poor initial guess.

There is an evergrowing list of data driven ROM ap-
proaches to operator inference and dynamical system iden-
tification (Brunton et al. (2016); Peherstorfer and Willcox
(2016)). However, they require data that are not available
in our inverse problem, meaning that they assume knowl-
edge of the state of the system, the wave p(s)(t,x) in our
case, at a finite set of time instants and for all x ∈ Ω. We
only have the measurements (3) of the wave.

The first sensor array data driven ROM for wave propa-
gation was introduced and used in (Druskin et al. (2016))
in one dimension and in (Borcea et al. (2018, 2019, 2020))
in higher dimensions. The ROM in these studies is not

for the wave operator, but for the “propagator” opera-
tor which maps the wave field from one instant to the
next one, on a uniform time grid. The ROM propagator
has proved useful for imaging the reflectivity of a medium
(Druskin et al. (2018); Borcea et al. (2020)). In this paper
we introduce another ROM, for the wave operator, which
is better suited for velocity estimation. In fact, we demon-
strate with explicit computations, carried out for a low-
dimensional velocity model, that the wave operator ROM
misfit objective function is convex. This is not the case
for the FWI and ROM propagator misfit objective func-
tions, computed for the same velocity model. For high-
dimensional models, where it is not possible to display
the objective function, we show via numerical simulations
that the wave operator ROM-based inversion converges
to a good estimate of c(x), even for a poor initial guess,
whereas FWI does not.

THEORY

We begin with the definition and construction of the two
data driven ROMs: for the wave propagator operator and
the wave operator. These two ROMs are related and they
capture the wave propagation in the unknown medium in
complementary ways. Then, we give the ROM-based in-
version algorithm and describe its implementation. The
discussion in this section is for noiseless data. We consider
later the regularization of the data driven ROM construc-
tion, where the two ROMs are used in conjunction to deal
with noisy data.

Setup for the ROM construction

We assume throughout the paper that the pulse f(t) is
given by

f(t) = ϕ(t) ?t ϕ(−t), (4)

in terms of a wavelet ϕ(t) with compact support contained
in (−tf/2, tf/2), where ?t denotes convolution in time.
This can be achieved in practice if the probing pulse emit-
ted by the sensors is actually ϕ(t), and if the form of ϕ
is known or can be estimated (Pratt (1999)). Then, the
measured wave convolved with ϕ(−t) is the same as the
solution of equation (1) evaluated at the sensors, with f(t)
given in (4).

Assumption (4) is a technical requirement used in the
ROM construction. In particular, we use that f(t) is an
even function, with non-negative Fourier transform

f̂(ω) = |ϕ̂(ω)|2 =

∫
R
dt f(t)eiωt ≥ 0, (5)

that is analytic by the Paley-Wiener-Schwartz theorem.
It is convenient for the theory to have a self-adjoint wave

operator. Thus, we write the wave equation (1) in terms
of p(s)(t,x)/c(x), so that the operator −c2(x)∆ becomes

A = −c(x)∆
[
c(x) ·

]
. (6)

This is just a mathematical similarity transformation and
assuming that the velocity is known and constant in the
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support of each θ(x−xr), for r = 1, . . . ,m, we can easily
transform the measurements (3) of the pressure to those
of p(s)(t,x)/c(x).

We work with the even in time wave

w(s)(t,x) =

[
p(s)(t,x) + p(s)(−t,x)]

c(x)
, (7)

where we note that p(s)(−t,x) = 0 for t > tf , due to the
initial condition (2). We call henceforth “the data” the
m×m matrix D(t), with entries

D(r,s)(t) =

∫
Ω

dx
θ(x− xr)
c(xr)

w(s)(t,x)

=
M(r,s)(t) +M(r,s)(−t)

c(xr)c(xs)
, (8)

for s, r = 1, . . . ,m. These can be obtained from the mea-
surements (3), because the velocity is known at the sensors
andM(r,s)(−t) = 0 for t > tf , by equation (2). Moreover,
at t ∈ (−tf , tf ) the wave p(s)(t,x) is affected only by the
medium within an order c(xs)tf distance from the sth sen-
sor. Thus, we can compute it and thereforeM(r,s)(−t) by
solving the wave equation in the vicinity of xs, where we
know the medium.

The ROM propagator is computed from 2n equidistant
time samples of the matrices (8), denoted henceforth by

Dj = D(jτ), j = 0, . . . , 2n− 1. (9)

The ROM of the wave operator is computed from

Dj and D̈j = ∂2
tD(jτ), j = 0, . . . , 2n− 2. (10)

The data sampling interval τ should be chosen according
to the Nyquist sampling rate for the essential* frequency
content of f(t) and the derivatives in (10) can be obtained
from the measurements using the Fourier transform (see
Appendix C).

The mathematical transformations above allow us to
write the wave (7) in the following form derived in (Borcea
et al., 2020, Appendix A)

w(s)(t,x) = f̂
1
2

(√
A
)
u(s)(t,x), (11)

where f̂
1
2 (ω) = |ϕ̂(ω)| by equation (5) and

u(s)(t,x) = cos
(
t
√
A
)
u

(s)
0 (x), (12)

solves the initial value problem[
∂2
t +A

]
u(s)(t,x) = 0, t > 0, x ∈ Ω, (13)

u(s)(0,x) = u
(s)
0 (x), ∂tu

(s)(0,x) = 0, x ∈ Ω, (14)

with the homogeneous boundary conditions at ∂Ω. The
initial state of this wave is given by

u
(s)
0 (x) = f̂

1
2

(√
A
)θ(x− xs)

c(xs)
, (15)

*The Fourier transform f̂(ω) of the pulse is small outside a fre-
quency interval called the “essential frequency content” of f(t). The
largest frequency in this interval is referred to as the “essential
Nyquist frequency”.

and it is shown in (Borcea et al., 2020, Appendix A) that
it is supported in a ball centered at xs, with radius of
order c(xs)tf . Moreover, it can be computed by solving
the wave equation near xs, where the medium is known.

In equations (11)-(12) and (15) we use the standard
definition of a function F of the self-adjoint operator A
(with F : R → R), based on its spectral decomposition
(McLean, 2000, Theorem 4.12). Specifically, if we denote
by {λl, l ≥ 1} the eigenvalues of A, which are positive,

listed in increasing order and satisfying λl
l→∞−→ ∞, and

by {yl(x), l ≥ 1} the corresponding eigenfunctions, which
form an orthonormal basis of L2(Ω) with the homogeneous
boundary conditions, then

F
(
A
)
φ(x) =

∞∑
l=1

F (λl)yl(x)

∫
Ω

dx′yl(x
′)φ(x′),

for any function φ(x) in the domain of A. Since the eigen-
values of A are strictly positive, we work with two analytic
functions of A, F (A) = f̂

1
2

(√
A
)

and cos
(
t
√
A
)
, which

commute. This is why we could factor out the wave as in
equation (11).

An important observation used in the ROM construc-
tion is that the data matrices (9)-(10) can be expressed
in a symmetric inner product form. Indeed, substituting
(11) and (12) into (8) and then using definition (15) we
get

D
(r,s)
j =

∫
Ω

dx
θ(x− xr)
c(xr)

f̂
1
2

(√
A
)
u(s)(jτ,x)

=

∫
Ω

dxu
(r)
0 (x)u(s)(jτ,x)

=

∫
Ω

dxu
(r)
0 (x) cos

(
jτ
√
A
)
u

(s)
0 (x), (16)

and

D̈
(r,s)
j =

∫
Ω

dx
θ(x− xr)
c(xr)

f̂
1
2

(√
A
)
∂2
t u

(s)(jτ,x)

= −
∫

Ω

dxu
(r)
0 (x)Au(s)(jτ ,x)

= −
∫

Ω

dxu
(r)
0 (x)A cos

(
jτ
√
A
)
u

(s)
0 (x), (17)

for r, s = 1, . . . ,m and j = 0, . . . , 2n−2. Here we used that
f̂

1
2

(√
A
)

is self-adjoint and we note thatA and cos
(
jτ
√
A
)

commute.
To avoid cumbersome notation with multiple indexes,

we use henceforth block algebra. Thus, we gather all the
waves (12) evaluated at the time instant jτ into the m-
dimensional row vector field called a snapshot

uj(x) =
(
u(1)(jτ,x), . . . , u(m)(jτ,x)

)
, (18)

and obtain from (12) that

uj(x) = cos
(
jτ
√
A
)
u0(x), j ≥ 0. (19)

By (16-17) the data matrices can be written as

Dj = 〈u0,uj〉 = 〈u0, cos
(
jτ
√
A
)
u0〉, (20)

D̈j = −〈u0,Auj〉, (21)
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where 〈φ,ψ〉 =
∫

Ω
dxφT (x)ψ(x) denotes the integral of

the outer product of any functions φ(x) and ψ(x) with
values in R1×m and superscript T stands for the transpose.

The ROM of the propagator operator

The expression (19) of the snapshots of the wave is funda-
mental to the construction of the ROMs for at least two
reasons: First, we use it in conjunction with the trigono-
metric identity of the cosine

cos(α) cos(β) =
1

2
[cos(α+ β) + cos(α− β)] , (22)

to compute the ROMs from the data. Second, it allows
writing the wave propagation as an exact, discrete in time,
evolution equation driven by the propagator operator

P = cos
(
τ
√
A
)
. (23)

Indeed, the snapshots evolve from the known u0(x) ac-
cording to

uj+1(x) = cos
(
(j + 1)τ

√
A
)
u0(x)

=
[
2 cos

(
τ
√
A
)

cos
(
jτ
√
A
)
− cos

(
(j − 1)τ

√
A
)]
u0(x)

= 2Puj(x)− uj−1(x), j ≥ 0, (24)

where we let u−1(x) = u1(x) and used identity (22).
We now review briefly from (Borcea et al. (2020)) the

construction of the ROM propagator and its properties
relevant to this paper. The ROM is obtained from the
Galerkin projection of (24) onto the nm-dimensional space�

S = span
{
u0(x), . . . ,un−1(x)

}
, (25)

spanned by the first n snapshots. If we gather these snap-
shots into the nm-dimensional row vector field

U(x) =
(
u0(x), . . . ,un−1(x)

)
∈ R1×nm, (26)

then the Galerkin approximation of the wave snapshots is

uGAL

j (x) = U(x)gj , j ≥ 0, (27)

where gj ∈ Rnm×m are matrices of Galerkin coefficients,
calculated so that when substituting (27) into (24), the
residual term is orthogonal to S. This means explicitly

M(gj+1 + gj−1) = 2Sgj , j ≥ 0, (28)

where we introduced the Galerkin mass matrix

M =

∫
Ω

dxUT (x)U(x) ∈ Rnm×nm (29)

and the stiffness matrix

S =

∫
Ω

dxUT (x)PU(x) ∈ Rnm×nm. (30)

�The space S is nm-dimensional because the snapshots uj(x),
for j = 0, . . . , n− 1, are assumed linearly independent.

Galerkin projections on the space spanned by snapshots
are routinely used in ROM constructions (Brunton and
Kutz (2019); Hesthaven et al. (2016)). There are at least
three main differences in our construction: First, our goal
is not to compress the information contained in a large
approximation space, defined by possibly redundant snap-
shots, via some method like the proper orthogonal decom-
position (Kunisch and Volkwein (2010)), as is common in
model order reduction. Our snapshots must be linearly
independent, so the ROM propagator is an nm×nm ma-
trix given by the projection of the propagator operator P
on the nm-dimensional space S defined in (25). Second,
we compute the ROM solely from the data matrices (9),
without knowing the space S. Third, the discrete evolu-
tion equation (24) is exact, i.e., it does not use some finite
difference approximation of the operator ∂2

t , as is typical
in model order reduction (Herkt et al. (2013)). Conse-
quently, our ROM has good approximation properties.

The data driven ROM construction begins with the ob-
servation that the m×m blocks of the mass and stiffness
matrices M and S can be computed as follows

Mi,j = 〈ui,uj〉 = 〈cos
(
iτ
√
A
)
u0, cos

(
jτ
√
A
)
u0〉

= 〈u0, cos
(
iτ
√
A
)

cos
(
jτ
√
A
)
u0〉

=
1

2
〈u0,

[
cos
(
(i+ j)τ

√
A
)

+ cos
(
|i− j|τ

√
A
)]
u0〉

=
1

2

(
Di+j +D|i−j|

)
, (31)

and

Si,j = 〈ui,Puj〉 =
1

2
〈ui,uj+1 + uj−1〉 (32)

=
1

4

(
Di+j+1 +D|i−j−1| +D|i+j−1| +D|i−j+1|

)
,

for i, j = 0, . . . , n− 1. Here we used the identity (22) and
the self-adjointness of A.

By construction, the approximation (27) is exact at the
first n time instants, meaning that the first n Galerkin
coefficients matrices are simply the nm×m column blocks
{ej}n−1

j=0 of the nm× nm identity matrix Inm, i.e.,

gj = ej , j = 0, . . . , n− 1. (33)

Therefore, we can compute everything in the Galerkin
equation (28) just from the data matrices

{
Dj

}2n−1

j=0
.

To get the ROM, we transform equation (28) to a form
that captures the causal progression of the wavefront away
from the sensors. This transformation is obtained using
the square root of the mass matrix M , which is symmet-
ric and positive definite by definition (29). We take the
square root using the block Cholesky factorization (Golub
and Van Loan (2013)):

M = RTR, (34)

where R is an nm × nm block upper triangular matrix,
with m×m sized blocks. The upper triangular structure
is key here, as we can relate the indices j of the nm×m



ROM waveform inversion 5

column blocks of R to the time instants of the snapshots
contained in U(x) and the indices i of the m × nm row
blocks of R to the depth reached by the wave front. In-
deed, defining the ROM snapshots by

uROM

j = Rgj , (35)

we get

uROM

j = Rgj = Rej , j = 0, . . . , n− 1, (36)

which is an nm ×m block column matrix, with nonzero
entries contained in the row blocks indexed by i = 0, . . . , j.
Thus, the jth row block index is the algebraic analogue of
the depth of the wavefront at time instant jτ .

The evolution of the ROM snapshots is governed by
the following equation, obtained by multiplying (28) on
the left by R−T = (RT )−1,

uROM

j+1 = 2PROMuROM

j − uROM

j−1, j ≥ 0. (37)

This equation looks like (24). The initial ROM snapshot
uROM

0 has nonzero entries only in the first row block, thus
capturing the spatial support of the true initial snapshot
u0(x) near the sensor. We also have uROM

−1 = uROM

1 . The
ROM propagator is defined by

PROM = R−TSR−1. (38)

It is an nm×nm symmetric matrix with block-tridiagonal
structure (Borcea et al., 2020, Appendix C).

To see that PROM is in fact the projection of the operator
P, let us introduce the orthonormal basis of the approx-
imation space S, obtained via the block Gram-Schmidt
orthogonalization of the components of U(x)

U(x) = V (x)R. (39)

The basis functions are in the nm-dimensional row vector
field V (x), satisfying

V (x)ej ∈ span{u0(x), . . . ,uj(x)}, (40)

for j = 0, . . . , n− 1 and∫
Ω

dxV T (x)V (x) = Inm. (41)

In equation (39) we can take the same block upper trian-
gular matrix R as in (34), because

M =

∫
Ω

dxUT (x)U(x)

= RT

∫
Ω

dxV T (x)V (x)R = RTR,

and the block Cholesky factorization obtained with (Druskin
et al., 2018, Algorithm 5.2) is unique.

Substituting (39) into definition (30) of S, we get the
projection result

PROM = R−T
∫

Ω

dxUT (x)PU(x)R−1

=

∫
Ω

dxV T (x)PV (x). (42)

We also note that the ROM snapshots are, from (35),

uROM

j =

∫
Ω

dxV T (x)U(x)gj

=

∫
Ω

dxV T (x)uGAL

j (x), (43)

for j = 0, . . . , n− 1.
Finally, we recall from (Borcea et al., 2020, Appendix

B) that the ROM interpolates the data matrices used to
construct it:

Dj = 〈u0,uj〉 = (uROM

0 )TuROM

j , j = 0, . . . , 2n− 1. (44)

The ROM of the wave operator

If we had an approximation of the operator A, given by its
projection on some known space, we would get a matrix
with a simple (quadratic) dependence on c(x), by defi-
nition (6). The ROM of the wave operator described in
this section, and used later for velocity estimation, is the
approximation of A on S, an orthogonal projection

AROM =

∫
Ω

dxV T (x)AV (x)

= −
∫

Ω

dxV T (x)c(x)∆
[
c(x)V (x)

]
. (45)

Note that S depends on c(x) and it is difficult to quan-
tify the mapping c(x) 7→ V (x) except for special cases
discussed in (Borcea et al., 2021, Appendix A). Thus,
we cannot compute analytically the Fréchet derivatives
of AROM with respect to c(x) to study the convexity of the
objective function. Nevertheless, we can expect that for a
rich enough space S, the approximation AROM will inherit
the simple velocity dependence of A. This is why we use
it for velocity estimation.

Let us explain how to compute AROM. It is difficult to
obtain it from PROM, which is according to (42) the projec-
tion of the operator cos

(
τ
√
A
)

on S. In particular, we can-

not approximate AROM by the matrix τ−2
[
arccos(PROM)

]2
,

calculated using the eigenvalues and eigenvectors of PROM,
because these are only the Ritz approximation of the spec-
trum of P (Golub and Van Loan, 2013, Chapter 10). We
compute instead AROM directly from the data matrices
(10), as we now show.

The Galerkin approximation of them− dimensional row
wave field u(t,x) =

(
u(1)(t,x), . . . , u(m)(t,x)

)
in the ap-

proximation space (25) has the form

ũGAL(t,x) = U(x)g̃(t), (46)

where g̃(t) ∈ Rnm×m is the time-dependent matrix of
Galerkin coefficients calculated so that

(
∂2
t +A)ũGAL(t,x)

is orthogonal to S. This gives, explicitly

M∂2
t g̃(t) + S̃g̃(t) = 0, t > 0, (47)

with g̃(0) = e0, ∂tg̃(0) = 0, where the mass matrix is (29)
and the new stiffness matrix is

S̃ =

∫
Ω

dxUT (x)AU(x). (48)
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While the m×m blocks of M are obtained from the data
matrices {Dj}2n−2

j=0 as in (31), the m×m blocks of the new

stiffness matrix are computed from {D̈j}2n−2
j=0 , as follows

S̃i,j = 〈ui,Auj〉 = 〈cos
(
iτ
√
A
)
u0,A cos

(
jτ
√
A
)
u0〉

= 〈u0,A cos
(
iτ
√
A
)

cos
(
jτ
√
A
)
u0〉

=
1

2
〈u0,Aui+j +Au|i−j|〉

= −1

2
〈u0, ∂

2
tu
(
(i+ j)τ

)
+ ∂2

tu
(
|i− j|τ

)
〉

= −1

2

(
D̈i+j + D̈|i−j|

)
, i, j = 0, . . . , n− 1. (49)

We use again the block Cholesky factorization (34) of
M to transform the Galerkin equation to an algebraic
form that captures the causal progression of the wavefront.
Multiplying (47) on the left by R−T we obtain that

ũROM(t) = Rg̃(t), (50)

which takes values in Rnm×m, satisfies the algebraic ana-
logue of the wave equation (13). Explicitly,

∂2
t ũ

ROM(t) + AROMũROM(t) = 0, t > 0, (51)

with ũROM(0) = Re0 = uROM

0 and ∂tũ
ROM(0) = 0, where

AROM is the data driven matrix

AROM = R−T S̃R−1. (52)

Moreover, the Gram-Schmidt orthogonalization (39) and
the definition (48) give that AROM can be written as the
projection (45) of A and that the ROM wave (50) is

ũROM(t) =

∫
Ω

dxV T (x)U(x)g̃(t)

=

∫
Ω

dxV T (x)ũGAL(t,x). (53)

Comparison of the ROMs

Although both PROM and AROM are given by projections on
the same space S, they capture the wave propagation in
complementary ways:

The ROM propagator PROM is a block tridiagonal matrix
that approximates well the wave snapshots in the physical
domain Ω. In fact, we can conclude from equations (27),
(33), (43) and the definition (25) of S that the first n
snapshots are captured exactly,

V (x)uROM

j = uj(x), j = 0, . . . , n− 1, x ∈ Ω. (54)

We also have the data match (44).
The ROM operator AROM does not capture exactly the

wave snapshots, although it approximates them (see for
example Herkt et al. (2013)). Data interpolation relations
like (44) are also not satisfied by ũROM(t). However, since
AROM approximates A, which has a simple dependence on
c(x), it is better suited for velocity estimation. This es-
timation can be carried out in a layer peeling fashion, by

working with data in progressively longer time windows,
because the orthonormal basis in V (x) is causal. Indeed,
equation (40) shows that V (x)ek depends only on the
first k snapshots, so the ROM operator built from data
at time instants {jτ}2k−2

j=0 senses the medium up to the
depth reached by the wavefront at time (k−1)τ . We refer
to Appendix A for more details.

ROM based velocity estimation

We propose to estimate c(x) by minimizing the misfit of
the ROM operator, measured in the Frobenius norm

min
v∈C
O(v), O(v) = ‖AROM(v)−AROM‖2F . (55)

Here v denotes a velocity model in the search space C,
AROM is computed from the measurements (3) with Algo-
rithm 1 given below, and AROM(v) is computed with the
same algorithm, from the analogue of (3) calculated by
solving the wave equation in the medium with the veloc-
ity model v. The search space C is parametrized using
some appropriate basis functions {φl(x)}Nl=1

v(x;η) = co(x) +

N∑
l=1

ηlφl(x), (56)

where co(x) is the initial guess. The optimization is then
N -dimensional, for the vector η = (η1, . . . , ηN )T of coeffi-
cients in the expansion (56).

Algorithm 1 (Data-driven ROM operator)

Input: The measurements (3) at time instants jτ , for
j = 0, . . . , 2n− 2.

1. Compute {Dj}2n−2
j=0 using equation (8).

2. Compute {D̈j}2n−2
j=0 from (8) using, e.g., the Fourier

transform, see Appendix C.

3. Calculate M , S̃ ∈ Rmn×mn with the block entries

Mi,j =
1

2

(
Di+j +D|i−j|

)
∈ Rm×m,

S̃i,j = −1

2

(
D̈i+j + D̈|i−j|

)
∈ Rm×m,

for i, j = 0, 1, . . . , n− 1.

4. Perform the block Cholesky factorization M = RTR
using (Druskin et al., 2018, Algorithm 5.2).

Output: AROM = R−T S̃R−1.

To carry out the inversion in a layer stripping fashion,
from the data at time instants {jτ}2k−2

j=0 , with k ≤ n, we
use the causal construction of the ROM (Appendix A)
and replace AROM(v) and AROM in (57) by the upper left
km×km blocks of these matrices, denoted by

[
AROM(v)

]
k

and
[
AROM

]
k
, respectively. Since AROM and thus

[
AROM

]
k

are symmetric matrices, it is enough to consider their
block upper triangular part in the optimization. Unlike
the ROM propagator PROM, which is block tridiagonal,
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these matrices are full. However, their entries decay away
from the main diagonal (see Appendix B), so we can ease
the computational burden by including only the first few
dm diagonals in the objective function, where d is an in-
teger between 1 and k. For this purpose, we denote by

Restd,k : Rkm×km 7→ Rdm(km−(dm−1)/2)

the mapping that takes a km × km matrix, keeps only
its first dm upper diagonals, including the main one, and
puts their entries into a column vector, of length

dm−1∑
j=0

(km− j) = dm(km− (dm− 1)/2).

The objective function that takes into account both the
time windowing and the restriction of the ROM to a few
diagonals is denoted henceforth by

Od,k(v) =
∥∥Restd,k

(
[AROM(v)−AROM]k

)∥∥2

2
, (57)

where ‖ · ‖2 is the vector Euclidean norm.

Algorithm 2 (Velocity estimation)

Input: The data driven AROM.

1. Set the number of layers for the layer stripping ap-
proach to ` and the number of iterations per layer to q.

2. Choose ` natural numbers {kl}`l=1, satisfying

1 ≤ k1 ≤ k2 ≤ · · · ≤ k` = n.

The data subset for the lth layer is {Dj , D̈j}2kl−2
j=0 .

3. Starting with the initial vector η(0) = 0, proceed:

For l = 1, 2, . . . , `, and j = 1, . . . , q, set the update index
i = (l− 1)q+ j. Compute η(i) as a Gauss-Newton update
for minimizing the functional

Fi(η) = Od,kl
(
v(·;η)) + F reg

i (η),

linearized about η(i−1). The term F reg
i (η) introduces a

user defined regularization penalty in the optimization.

Output: The velocity estimate cest(x) = v(x;η(`q)).

Implementation of the inversion algorithm

In principle, the update computation at step 3 of Algo-
rithm 2 could have a constraint on η to ensure that the
search velocity (56) is positive. We did not need such a
constraint in our numerical simulations.

There are many possible regularization penalties. For
simplicity, we use the adaptive Tikhonov regularization

F reg
i (η) = µi‖η‖22, (58)

where ‖ · ‖2 is the Euclidean norm and µi is chosen adap-
tively with the following procedure: Let

R(η; d, kl) = Restd,kl
(
[AROM(v(·;η))−AROM]kl

)
(59)

be the md(2k−d+1)/2-dimensional residual vector, whose
Euclidean norm squared appears in the objective function.
Its Jacobian evaluated at η = η(i−1) is the matrix

J (i) = ∇ηR(η(i−1); d, kl) ∈ Rdm(km−(dm−1)/2)×N .

We always choose the parametrization (56) of the velocity
so that the Jacobian has more rows than columns. Let
σ

(i)
1 ≥ σ

(i)
2 ≥ · · · ≥ σ

(i)
N be the singular values of J (i). For

a fixed parameter γ ∈ (0, 1), with smaller values corre-
sponding to stronger regularization, we set

µi =
(
σ

(i)
bγNc

)2
. (60)

The choice of γ depends on the parametrization (56).
Since it is not clear what is the resolution of the inversion,
we choose to over-parametrize the velocity, and stabilize
the inversion with a small γ, in the range (0.2, 0.4).

The Gauss-Newton update direction for the objective
function is

d(i) = −
((
J (i)

)T
J (i) + µiIN

)−1 (
J (i)

)T
r(i),

where IN is the N × N identity matrix and r(i) is the
residual vector (59) evaluated at η(i−1). Given the update
direction d(i), we use a line search

α(i) = argmin
α∈(0,αmax)

Fi
(
η(i−1) + αd(i)

)
to compute the step length α(i), where we take αmax = 3.
Then, the Gauss-Newton update is η(i) = η(i−1)+α(i)d(i).

NUMERICAL ILLUSTRATION

In this section we give two numerical illustrations of the
benefits of the velocity estimation with the ROM opera-
tor vs. FWI. The first illustration is for a two-parameter
velocity model, where we can plot the objective function
over the search space. The second is for the “Camem-
bert example” introduced in (Gauthier et al. (1986)) to
demonstrate the cycle skipping challenge in FWI. More
numerical results are shown in the next section, where we
consider noisy data.

All the results are for the source pulse

f(t) = cos(ωot) exp
[
− (2πB)2t2

2

]
, (61)

with central frequency ωo/(2π) = 6Hz and bandwidth
B = 4Hz. See Appendix C for details on the numeri-
cally simulated data, including the homogeneous bound-
ary condition.

The array of m sensors is at 150m below the top bound-
ary. The sensor spacing is 160.3m for the two-parameter
velocity model and 155.5m for the Camembert example.
For each simulation we specify m, the size of the rectangu-
lar domain Ω, the data sampling interval τ and the num-
ber n of snapshots that define the approximation space.

Note that to calculate τ we use ωo/(2π) + B = 10Hz
as the essential Nyquist frequency. Thus, for τ = 1/(2.3 ·
10Hz) = 0.0435s , the data are sampled at “2.3 points per
wavelength”.
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Topography of the objective function

Figure 1: Velocity model used to display the topography
of the objective functions. The middle dashed line shows
the actual interface location, while the top and bottom
dashed lines show the extent of interface location param-
eter sweep. All m = 30 sensors are shown as yellow ×.
Distances are given in km and the velocity in m/s.

Consider the velocity model displayed in Fig. 1, in the
domain Ω = [0, 5km] × [0, 3km]. It consists of two ho-
mogeneous regions separated by a slanted interface. The
top region has the slower velocity ct = 1500m/s, while the
bottom region has the faster velocity cb = 3000m/s. To
plot the objective functions, we sweep a two-parameter
search space C: The first parameter is the depth of the
interface in the domain [0.47km, 1.95km], as measured at
the leftmost point of the interface. The actual depth is at
1.2km. The second parameter is the contrast cb/ct in the
interval [1, 3]. The actual contrast is 2. The angle of the
interface in the search space is constant and equal to the
actual angle. Note that in this exercise the search velocity
is not of the form (56), as we do not run Algorithm 2. We
consider a two-parameter space, so we can visualize the
convexity properties of the objective functions.

In Fig. 2 we display three objective functions, calculated
for m = 30 sensors in the array, for n = 39, and for the
two-parameter search space C described above. The data
sampling interval is τ = 0.0435s.

The first objective function is for the FWI approach,
and measures the data misfit

OFWI(v) =

2n−1∑
k=0

∥∥Triu
(
Dk(v)−Dk

)∥∥2

2
, (62)

where Dk(v) are the m×m data matrices for the search
velocity and Triu : Rm×m 7→ Rm(m+1)/2 is the mapping
that takes a symmetric m×m matrix, extracts its upper
triangular part, including the main diagonal, and arranges
its entries into a m(m+ 1)/2-dimensional column vector.

The second objective function measures the misfit of
the ROM propagator

OPROM(v) =
∥∥Triu

(
PROM(v)−PROM

)∥∥2

2
, (63)

where PROM is computed from the measurements
{
Dj

}2n−1

j=0

via (31)–(32) followed by (34) and (38), while PROM(v) is

computed from
{
Dj(v)

}2n−1

j=0
using the same formulas.

Log of FWI misfit (62)

Log of ROM propagator misfit (63) Log of ROM operator misfit (64)

Figure 2: Logarithm of objective functions vs. the inter-
face position and velocity contrast. The true parameters
(shown in Figure 1) are indicated by ©.

The third objective function is what we propose in this
paper, and measures the misfit of the ROM operator

OROM(v) =
∥∥Triu

(
AROM(v)−AROM

)∥∥2

2
. (64)

This corresponds to the particular case d = k = n of the
objective function (57).

We observe in Fig. 2 that both the FWI and ROM prop-
agator objective functions display numerous local minima,
at points in the search space that are far from the true one,
marked in the plots by the magenta circle. The clearly vis-
ible horizontal stripes in the plots of these objective plots
are manifestations of cycle skipping. The ROM opera-
tor misfit function is smooth and has a single minimum,
at the true depth and contrast. This confirms the expec-
tation that the ROM operator misfit objective (64) and
therefore (57), are superior to the FWI objective (62) for
velocity estimation.

The “Camembert” example

We follow (Yang et al. (2018)) and model the “Camem-
bert” inclusion as a disk with radius of 600m, centered at
point (1km, 1km) in the domain Ω = [0, 2km]× [0, 2.5km].
The setup is illustrated in Fig. 3, where c(x) equals 4000m/s
in the inclusion and 3000m/s outside. The data sampling
interval is τ = 0.0435s, the number of sensors is m = 10
and n = 16.

The search space C has dimension N = 20× 20 = 400,
and the velocity is parametrized as in equation (56), with
the constant initial guess co(x) = 3000m/s and the Gaus-
sian basis functions

φl(x) =
1

2πσφσ⊥φ
exp

[
− (x⊥ − x⊥l )2

2(σ⊥φ )2
− (x− xl)2

2σ2
φ

]
, (65)
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Figure 3: “Camembert” velocity model. All m = 30 sen-
sors are shown as yellow ×. The axes are in km and the
velocity shown in the colorbar is in m/s.

with standard deviation σ⊥φ = 55.5m in the horizontal
(cross-range) direction and σφ = 69.4m in the range ver-
tical (range) direction. Here we use the system of coordi-
nates x = (x⊥, x), with cross-range x⊥ and range x. The
centers of the Gaussians are at the locations xl = (x⊥l , xl)
on a uniform 20× 20 grid that discretizes the imaging do-
main Ωim = [95m, 1905m] × [119m, 2381mm] ⊂ Ω. Note
that 2σφ and 2σ⊥φ are smaller than half the wavelength
co/(10Hz) = 300m corresponding to the essential Nyquist
frequency. Hence, the problem is over-parametrized and
we stabilize the inversion with the adaptive Tikhonov reg-
ularization (58) with γ = 0.25.

We show in the left column of Fig. 4 the results of the
inversion obtained with Algorithm 2, implemented with
` = 9, the number of iterations per layer q = 4, and with
the restriction parameter d = n.

The plots in the right column of Fig. 4 are for the FWI
approach, with the same time windowing of the data as in
the ROM based inversion. Here we minimize the objective
function

F FWI

i (η) = OFWI
(
v(·;η)

)
+ µFWI

i ‖η‖22, (66)

with the Tikhonov regularization parameter µFWI

i computed
with a similar procedure to that used for the ROM inver-
sion: If we let RFWI(η) ∈ Rnm(m+1) be the residual vector,
with entries(

RFWI

j (η)
)(k+1)m(m+1)/2

j=km(m+1)/2+1
= Triu

(
Dk(v)−Dk

)
,

for k = 0, . . . , 2n−1, its Jacobian evaluated at η = η(i−1)

is the nm(m + 1) × N matrix J FWI,(i) = ∇ηRFWI(η(i−1)).
We assume N ≤ nm(m + 1). Then, for the same fixed

parameter γ used in Algorithm 2, we set µFWI

i =
(
σ

FWI,(i)
bγNc

)2
,

where
{
σ

FWI,(i)
j

}N
j=1

are the singular values of J FWI,(i), sorted
in decreasing order.

The results in Fig. 4 show that the ROM inversion gives
a much better estimate of c(x). This estimate improves as
we iterate, and by the time we reach the 60th step, the cir-
cular inclusion is reconstructed well. The FWI approach
does not improve much after the 10th step, indicating that
the optimization is stuck in a local minimum. While the
top and arguably the bottom of the inclusion are correctly

ROM inversion, iteration 10 FWI, iteration 10

ROM inversion, iteration 20 FWI, iteration 20

ROM inversion, iteration 40 FWI, iteration 40

ROM inversion, iteration 60 FWI, iteration 60

Figure 4: Estimated velocity after 10− 60 Gauss-Newton
iterations. The left column is for the ROM operator based
inversion. The right column is for FWI. The true inclusion
boundary is shown as a black circle. The axes, color scale
and units in the colorbar are as in Fig. 3.

located, FWI fails to fill in the inclusion with the correct
velocity, overestimating it in the upper half of the disk
and underestimating it in the lower half.

INVERSION WITH NOISY DATA

In this section we discuss how to mitigate noise effects in
the ROM based velocity estimation. Algorithm 2 has a
regularization penalty on the search velocity built into it,
but when the data are noisy, we also need the regularize
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the construction of AROM. This is not a straightforward
modification of Algorithm 1, as the success of the inversion
depends on the ROM having an algebraic structure that
captures the causal propagation of the wavefront inside
the medium. We explain the ROM regularization next,
and then show inversion results with noisy data.

Regularization of the ROM operator

Let us denote by {DN

j}
2n−1
j=0 the data matrices contami-

nated with noise (see Appendix C). These matrices should
be symmetric, due to the source-receiver reciprocity, but
the noisy matrices are not symmetric, so we first sym-
metrize them by transforming DN

j into 1
2 (DN

j +DN
T

j ).
The mass and stiffness matrices computed from the

noisy data as in step 3 of Algorithm 1, are denoted by
M N and S̃N. In theory, they should be positive definite
matrices, but due to noise they may have a number of
eigenvalues that are negative or zero. This is critical in
the case of M N, because we need the inverse of its block
Cholesky square root to compute AROM.

A natural way of regularizing M N is via projection on
the space spanned by the leading eigenvectors. Thus, let

M N = ZNΛN(ZN)T , (67)

be the eigendecomposition ofM N, where ZN is the orthog-
onal matrix of eigenvectors and ΛN = diag(λN

1, . . . , λ
N

nm

)
is the diagonal matrix of eigenvalues, in descending order.
We wish to keep the eigenvalues that are larger than the
noise contribution (see Appendix D). Since we work with
m×m blocks, we choose the cut-off at index rn, for integer
r satisfying 1 ≤ r < n, and use the first rm eigenvectors,
stored in

ZN,r = (ZN

jl)1≤j≤nm,1≤l≤rm ∈ Rnm×rm (68)

to define the projected mass matrix

ΛN,r = (ZN,r)TM NZN,r = diag
(
λN

1, . . . , λ
N

rm

)
. (69)

The resulting ΛN,r is well-conditioned, but it does not
have the block Hankel + Toeplitz structure deduced from
the causal propagation of the wave (recall equation (31)).
Thus, we need an additional transformation to recover the
algebraic causal structure of the regularized mass matrix.
The desired transformation cannot be obtained by look-
ing at the ROM operator construction alone, because all
we know about the algebraic structure of AROM is that its
entries decay away from the main diagonal. However, we
can get the transformation using the ROM propagator,
because of the following facts:

1. Both the ROM propagator PROM and the ROM op-
erator AROM are built from the same mass matrix, so
the projection (69) affects both these ROMs.

2. We have the time stepping scheme (37) where PROM

propagates the snapshots in the ROM space from
one time instant to the next.

3. Algebraic causality means that the first n snapshots
in the ROM space form a block upper triangular ma-
trix. From (37) we conclude that this is equivalent
to saying that PROM is block tridiagonal, because by
construction uROM

0 is an nm×m matrix with all but
the first m rows equal to zero.

Thus, we proceed as follows: First, we compute the
ROM propagator stiffness matrix SN, with blocks given
in terms of the noisy data

{
DN

j

}2n−1

j=0
as in equation (32).

Then, we project this matrix onto the range of ZN,r:

SN,r = (ZN,r)TSNZN,r, (70)

and we compute the analogue of the operator ROM (38)

P N,r = (ΛN,r)−1/2SN,r(ΛN,r)−1/2. (71)

This is a symmetric, positive definite matrix that can be
put in block tridiagonal form using the block-Lanczos al-
gorithm (Golub and Van Loan, 2013, Chapter 10) on P N,r,
with starting rm × m matrix (ΛN,r)−1/2(ZN,r)Te0. This
generates an orthogonal matrix QN,r ∈ Rrm×rm such that

PROM,r = (QN,r)TP N,rQN,r (72)

is an rm× rm block tridiagonal matrix, which we call the
regularized ROM propagator.

The matrix PROM,r itself is irrelevant for our velocity
estimation approach. It is the orthogonal transformation
given by QN,r that we need, which restores the desired
algebraic causality of the regularized mass matrix. Using
this transformation we can obtain the noisy ROM oper-
ator with the following procedure: Compute the block
Cholesky factorization of the transformed mass matrix

(QN,r)TΛN,rQN,r = (ΠN,r)TM NΠN,r = (RN,r)TRN,r, (73)

where
ΠN,r = ZN,rQN,r. (74)

and RN,r ∈ Rrm×rm is block upper triangular and well
conditioned, due to the spectral truncation in (69). Then,
using the data driven stiffness matrix S̃N we obtain the
regularized operator ROM as

AROM,r = (RN,r)−T (ΠN,r)T S̃NΠN,r(RN,r)−1. (75)

Equation (75) gives the regularization of the data driven
ROM operator construction. For the inversion, we also
need the ROM operator for the search velocity v(x;η)
computed via the same chain of transformations, using the
same matrix (74): Let M(v) and S̃(v) be the mass and
stiffness matrices calculated as in step 3 of Algorithm 1
from the data computed numerically in the medium with
velocity v(x,η). We compute the block Cholesky factor-
ization

(ΠN,r)TM(v)ΠN,r = Rr(v)TRr(v), (76)

where r is an index (not a power). Then, the ROM oper-
ator at the search velocity v is given by

AROM,r(v) = Rr(v)−T (ΠN,r)T S̃(v)ΠN,rRr(v)−1. (77)



ROM waveform inversion 11

r = n r = n− 4

Figure 5: Logarithm of objective function (78) vs. the
interface position and velocity contrast. The true param-
eters (shown in Fig. 1) are indicated by ©.

The velocity inversion is carried out as in Algorithm 2,
with AROM and AROM(v) in (57) replaced by the regularized
AROM,r and AROM,r(v), respectively.

Note that due to the block algebra, even if we do not
use a spectral truncation, i.e., set r = n, the ROM oper-
ator (76) is not identical to the one computed with Algo-
rithm 1. Nevertheless, they behave the same with respect
to the inversion, as illustrated in Fig. 5, where we plot the
logarithm of the objective function

OROM,r(v) =
∥∥Triu

(
AROM,r(v)−AROM,r

)∥∥2

2
(78)

for the same experiment as in Figs. 1 and 2, for the cases
r = n and r = n − 4. There is little difference between
the bottom right plot in Fig. 2 and the left plot in Fig. 5.

Numerical results: Marmousi model

True velocity Initial velocity

Figure 6: The section of the Marmousi model (left) and
the initial guess co(x) (right). All m = 30 sensors are
shown as yellow ×. The axes are in km and the units in
the colorbar are in m/s.

We now present the velocity estimation results for a
section of the Marmousi model shown in Fig. 6, where we
exclude the portion of the water down to depth 266m. The
domain is Ω = [0, 5.25km] × [0, 3km]. There are m = 30
sensors located at depth 150m and they emit the same
pulse (61). The data sampling for the ROM construction
is τ = 0.0435s and the number of snapshots that span the
approximation space is n = 40.

ROM estimate, iteration 6 FWI, iteration 6

ROM estimate, iteration 12 FWI, iteration 12

ROM estimate, iteration 18 FWI, iteration 18

Figure 7: Velocity estimates for the Marmousi model after
6, 12 and 18 Gauss-Newton iterations. Left column: ROM
based approach. Right column: FWI approach. The axes
and colorbar are as in Fig. 6.

In the left plots of Fig. 7 we show the ROM based in-
version results obtained from data contaminated with 1%
additive noise described in Appendix C. We used ` = 6
layers in Algorithm 2, with q = 3 iterations per layer, and
the restriction parameter d = 10. The ROM operator is
regularized as explained above and the spectral thresh-
old parameter is set at r = n− 9 = 31. The velocity is
parametrized as in equation (56), with the initial guess
co(x) displayed in the right plot of Fig. 6. We used N =
50 × 30 = 1500 Gaussian basis functions (65), with stan-
dard deviations σ⊥φ = 60m, and σφ = 56.4m. The peaks of
the Gaussians are on a uniform 50×30 grid discretizing the
imaging domain Ωim = [103m, 5147m] × [97m, 2903m] ⊂
Ω.

The right plots in Fig. 7 show the FWI results computed
for noiseless data. We use the same parametrization of the
search velocity and invert in ` = 6 layers with the same
data windowing as in the ROM based inversion.

We note that the ROM based inversion captures cor-
rectly many features of the Marmousi model, and contin-
ues to improve with the iterations. The imaging near the
bottom boundary can be improved further by extending
the depth of the domain Ω. Because in the ROM con-
struction we need the wavefront to progress downward at
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Gaussian basis Hat basis

Figure 8: Comparison of the ROM based velocity esti-
mates for the Marmousi model, after 18 Gauss-Newton
iterations, for the velocity parametrized with Gaussian
basis functions (left) and hat functions (right). The axes
and colorbar are as in Fig. 6.

all times�, we limit the recording of the data to less than
the estimated round trip travel time from the sensors to
the bottom boundary, so we lose resolution there.

We also note that the FWI approach recovers the top
features of the Marmousi model. However, the velocity
estimate does not improve much after the 12th iteration
and the result is far from the true model. Effectively, FWI
is stuck in a local minimum.

In Fig. 8 we give a side-by-side comparison of the ROM
based inversion result obtained with two different choices
of the basis functions in the parametrization (56) of the
search velocity. The Gaussian ones given in (65) and the
commonly used piecewise linear hat functions, which in-
terpolate between the values of 0 and 1 on the same 50×30
inversion grid. The result with the Gaussian basis looks
smoother, as expected, but the point of the plot is to illus-
trate that the inversion is not sensitive to the parametriza-
tion of the search velocity, once the inversion grid is fixed.

Initial estimate Refined estimate

Figure 9: Velocity estimate for the Marmousi model
obtained from data gathered with more sensors and at
smaller time interval τ (right plot). The initial estimate
(left plot) is the ROM estimate in the bottom left plot of
Fig. 8. The axes and colorbar are as in Fig. 6.

We show in Fig. 9 how the velocity estimation improves
if we double the number of sensors (m = 60), decrease the

�If this does not hold, the snapshots that define the approxima-
tion space S may be linearly dependent.

time sampling to τ = 0.0333s and increase n to 50, while
also setting r = n− 17 = 33. The inversion is carried out
as above, except that the parametrization of the veloc-
ity is with N = 75 × 38 = 2850 Gaussian functions with
σ⊥φ = 40.2m, and σφ = 44.8m. The initial guess of the ve-
locity is shown in the left plot, and it corresponds to ROM
estimate shown in Fig 7. Since the initial velocity esti-
mate is already very good, it is sufficient to perform q = 4
Gauss-Newton iterations for a single layer ` = 1 using all
the available data, i.e., k1 = r. We note that the resulting
refined velocity estimate sharpens the boundaries of the
features and improves their contrast.

Cross-range 1.4km Cross-range 2.8km

Cross-range 3.566km

Figure 10: Vertical slices of the true velocity (red lines)
and refined ROM estimate (blue lines) at cross-ranges
shown as dashed lines in the right plot in Fig. 9. The
abscissa is in m and the ordinate in m/s.

Finally, to illustrate better the quality of the refined
ROM estimate in the 225 of Fig. 9, we display in Fig. 10
the true and reconstructed velocity for three vertical slices,
at cross-ranges 1.4km, 2.8km and 3.566km. We note again
that the reconstruction is accurate away from the bottom
boundary, where the results can be improved by extending
the depth of the domain Ω and the recording time, as
explained above.

SUMMARY

We introduced a novel approach for velocity estimation
based on a reduced order model (ROM) of the wave op-
erator. The ROM is computed from the data gathered by
an array of sensors that play the dual role of sources and
receivers. No prior information of the medium is used,
except for the assumption that the velocity is known in
the immediate vicinity of the sensors. While the mapping
from the data to the ROM is nonlinear, we can compute
it using efficient numerical linear algebra algorithms. We
explain that the ROM is an approximation of the wave
operator on a space defined by the snapshots of the wave
field at uniformly spaced time instants. This space is not
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known and neither is the wave operator. Yet, we can
compute its approximation, the ROM, from the data. We
describe the properties of the ROM and formulate a veloc-
ity estimation algorithm that minimizes the ROM misfit.
We also explain how to regularize the ROM in order to
mitigate additive noise. We demonstrate with numeri-
cal simulations that the ROM misfit objective function is
better than the nonlinear least squares data misfit used
in full waveform inversion (FWI). In particular, for a low-
dimensional velocity model where we can plot the objec-
tive functions, we obtain that the ROM misfit objective
function is convex, while the FWI objective function dis-
plays multiple local minima. We present velocity esti-
mation results for two well known models where FWI is
known to fail in the absence of an excellent initial guess:
the “Camembert” model and the “Marmousi” model.
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APPENDIX A

CAUSAL CONSTRUCTION OF THE ROM

Here we prove that the upper left km×km block of AROM,
denoted by

[
AROM

]
k
, is the ROM operator computed by

Algorithm 1 from the data subset {Dj , D̈j}2k−2
j=0 , for any

k = 1, . . . , n.
Let us begin by writing

[
AROM

]
k

from equation (52)

[
AROM

]
k

=
(
Ikm 0

)
R−T S̃R−1

(
Ikm
0

)
=
([
R
]−T
k

0
)
S̃

([
R
]−1

k
0

)
=
[
R
]−T
k

[
S̃
]
k

[
R
]−1

k
(A-1)

where Ikm is the km× km identity matrix and
[
S̃
]
k

and[
R
]
k

are the upper left km× km blocks of S̃ and R, re-
spectively. Here we used that R is block upper triangular,
and so is its inverse. Moreover, the upper left km × km
block of R−1 is the same as the inverse of

[
R
]
k
.

At step 3, Algorithm 1 computes from {Dj , D̈j}2k−2
j=0

the upper left km × km block of M , denoted by
[
M
]
k
,

and also
[
S̃
]
k
. From the Cholesky factorization (34) and

the block upper triangular structure of R we get[
M
]
k

=
(
Ikm 0

)
RTR

(
Ikm
0

)
=
[
R
]T
k

[
R
]
k
. (A-2)

Thus,
[
R
]
k

is the Cholesky square root of
[
M
]
k
, com-

puted in Algorithm 1, and the result follows from (A-1).

APPENDIX B

ALGEBRAIC STRUCTURE OF THE ROM

We explain here that the entries of the ROM operator
AROM decay away from the main diagonal, which is why
we can use the restriction mapping Restd,k to reduce the
computational cost of inversion. Let us write

V (x) =
(
v0(x), . . . ,vn−1(x)

)
,

where vj(x) ∈ R1×m, for j = 0, . . . , n−1. We obtain from
(45) that the m×m blocks of AROM are

AROM

i,j =

∫
Ω

dxvTi (x)Avj(x), i, j = 0, . . . , n− 1.

(B-1)
Moreover, the Gram-Schmidt orthogonalization (39) gives
uj(x) =

∑j
q=0 vq(x)Rq,j , and conversely

vj(x) =

j∑
q=0

uq(x)Γq,j , (B-2)

where

Γ = R−1 =

Γ0,0 Γ0,1 . . . Γ0,n−1

0 Γ1,1 . . . Γ1,n−1

...
...

... Γn−1,n−1

 . (B-3)

Now let us substitute (B-2) into (B-1), to obtain

AROM

i,j =

j∑
q=0

∫
Ω

dxvTi (x)Auq(x)Γq,j

= −
j∑
q=0

∫
Ω

dxvTi (x)∂2
tu(qτ,x)Γq,j , (B-4)

where the last equality is due to the wave equation (13).
We use next the Whittaker-Shannon interpolation for-
mula, which says that if τ satisfies the Nyquist criterion,

u(t,x) =

∞∑
s=−∞

u|s|(x)sinc
[π(t− sτ)

τ

]
. (B-5)

Differentiating twice and evaluating at t = qτ we get

τ2∂2
t u(qτ,x) =

∞∑
s=−∞,s6=0

2(−1)s+1

s2
u|q−s|(x)− π2

3
uq(x),

and substituting into (B-4) we obtain

AROM

i,j =
1

τ2

j∑
q=0

Γq,j

{∫
Ω

dxvTi (x)uq(x)

−
∞∑

s=−∞,s 6=0

2(−1)s+1

s2

∫
Ω

dxvTi (x)u|q−s|(x)
}

=
1

τ2

j∑
q=0

Γq,j

{
Ri,q −

∞∑
s=−∞,s 6=0

2(−1)s+1

s2
Ri,|q−s|

}
.

(B-6)
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To avoid boundary terms, we have assumed in this formula
a large n so we can take n→∞.

Since Γq,j = 0 for q > j, andRi,q = 0 for i > q, the first
term on the right-hand side of (B-6) is zero for i > j. But
we are interested only in the block upper triangular part
of AROM (i.e., i ≤ j), due to symmetry, so this first term
contributes only to the main block diagonal. The other
block diagonals are due to the series in (B-6). Each term
in this series adds an sth diagonal, whose entries decay as
1/s2. Thus, only the first few block diagonals are large.

APPENDIX C

NUMERICALLY SIMULATED DATA

The data for the numerical experiments are computed
with a time-domain wave equation solver for (13)–(14),
with A discretized on a uniform grid with a five point
finite difference stencil. We use homogeneous Dirichlet
boundary conditions at ∂Ω. The second time derivative is
approximated by a three point finite difference scheme, on
a fine time grid with step τf = τ/20. We get the finely sam-
pled data Df

k, for k = 0, 1, . . . , nf, where nf = 20(2n− 1).
The noisy data are computed as follows: Define

β =
b

m
√
nf + 1

(
nf∑
k=0

‖Df
k‖2F

)1/2

, (C-1)

where b is the desired noise level, e.g., b = 10−2 for 1%
noise. Then, the contaminated finely sampled data is ob-
tained by adding to Df

k a realization of an m × m ran-
dom matrix with independent, normally distributed en-
tries with mean zero and standard deviation β for each
k = 1, . . . , nf. Since the data at time zero is computed in
the known medium near the sensors, we exclude k = 0.
To simplify notation, hereafter we denote by Df

k both the
noiseless and the noise contaminated case.

We now explain how we compute the second derivative
data matrices. We begin by extending the finely sampled
data evenly in discrete time to get Dfe

j , j = −nf, . . . , nf,
with Df

k = Dfe
±k, k = 0, 1, . . . , nf. Then, we take the

discrete Fourier transform of
(
Dfe
j

)nf

j=−nf
and differentiate

in the Fourier domain after using a sharp cutoff low-pass
filter intended to stabilize the calculation. The cutoff fre-
quency is at ωo/(2π) + 4B = 22Hz. We take the inverse
Fourier transform to obtain D̈fe

j , at j = −nf, . . . , nf, the
finely sampled second derivative data. Finally, we sub-
sample both Dfe

j and D̈fe
j to get

Dk = Dfe
20k, D̈k = D̈fe

20k, k = 0, 1, . . . , 2n− 1. (C-2)

APPENDIX D

CHOICE OF THE REGULARIZATION
THRESHOLD

Here we explain how we choose the regularization thresh-
old r for the ROM regularization procedure (68)–(77).
The idea is that r can be determined from the part of

Singular values of mass matrices
∣∣∣σN

j/σ
o
j − 1

∣∣∣ and εσ

Figure D.1: Regularization threshold illustration. Left
plot shows the singular values of mass matrices: M (solid
red), M N (dotted red), M(co) (solid blue) and M N(co)
(dotted blue); the circles correspond to j = RN. Right
plot: left-hand side of (D-2) (solid blue) and εσ (dashed
red). The abscissa is the singular value index j.

the spectrum of the noisy mass matrix M N that is per-
turbed little by the noise. This can be estimated using
the background mass matrix M(co) corresponding to the
initial guess velocity co(x), and an estimation of the ad-
ditive noise. For the latter, we make the key observation
that the matrices

EN

j =
1√
2

(
DN

j − (DN

j )
T
)
, j = 0, . . . , 2n− 1, (D-1)

can be considered as realizations of the additive noise.
Indeed, the true wave signals are reciprocal, i.e., Dj are
symmetric matrices, while the additive noise is not.

Consider the mass matrices M(co) and M N(co) com-
puted by Algorithm 1 from the noiseless background data
{Dj(co)}2n−1

j=0 and the artificially generated contaminated

background data {Dj(co) + EN

j}
2n−1
j=0 , respectively. Let

{σoj}nmj=1 be the singular values of M(co), and {σN

j}nmj=1

the singular values of M N(co), sorted in decreasing order.
Choose a small εσ, the largest relative deviation of singu-
lar values past which we consider them contaminated by
noise. Let RN be the smallest among j such that∣∣∣σN

j

σoj
− 1
∣∣∣ ≥ εσ. (D-2)

Then, we can estimate r = bRN/mc.
Note that the estimation can be adaptive: we can choose

at iteration i in Algorithm 2 the value ri obtained as above
but with M(v(·;η(i))) instead of M(co). However, in
our examples this was not necessary, since using M(co)
provided a robust if somewhat conservative estimate, as
shown in the numerical example described below.

In Fig. D.1 we illustrate the choice of regularization
threshold for the Marmousi model in the setting outlined
in the numerical results section (m = 30, n = 40, 1% addi-
tive noise). The left plot shows the singular values σoj and
σN

j for a range j = 900, 901, . . . , 1025, while also compar-
ing them to the singular values of M and M N. Setting
εσ = 10−2, we obtain RN = 944 from (D-2), as shown
in the right plot. This gives the value r = b944/30c = 31
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used in the numerical experiments. Note that this process
estimates well the point after which the singular values of
M N diverge from those of M , as seen in the left plot.
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