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We consider the propagation of temporally incoherent waves in multimode optical fibers (MMFs) in the frame-
work of the multimode nonlinear Schrödinger (NLS) equation accounting for the impact of the natural structural
disorder that affects light propagation in standard MMFs (random mode coupling and polarization fluctuations).
By averaging the dynamics over the fast disordered fluctuations, we derive a Manakov equation from the
multimode NLS equation, which reveals that the Raman effect introduces a previously unrecognized nonlinear
coupling among the modes. Applying the wave turbulence theory on the Manakov equation, we derive a very
simple scalar kinetic equation describing the evolution of the multimode incoherent waves. The structure of
the kinetic equation is analogous to that developed in plasma physics to describe weak Langmuir turbulence.
The extreme simplicity of the derived kinetic equation provides physical insight into the multimode incoherent
wave dynamics. It reveals the existence of different collective behaviors where all modes self-consistently
form a multimode spectral incoherent soliton state. Such an incoherent soliton can exhibit a discrete behavior
characterized by collective synchronized spectral oscillations in frequency space. The theory is validated by
accurate numerical simulations: The simulations of the generalized multimode NLS equation are found in
quantitative agreement with those of the derived scalar kinetic equation without using adjustable parameters.
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I. INTRODUCTION

Multimode optical fibers (MMFs) constitute ideal test beds
for the study of complex spatiotemporal nonlinear optical
phenomena. The phenomena that can be tested include multi-
octave spanning supercontinuum generation involving intense
visible frequency combs, multiple filamentation processes, or
multimode solitons [1–6]. Actually, light dynamics in MMFs
involves a variety of nonlinear effects whose complexity
requires a deep understanding of spatiotemporal nonlinear
propagation, with a multitude of applications such as the im-
provement of optical signal processing techniques for spatial
division multiplexing [7], or the development of novel high-
energy versatile fiber sources [8].

Aside from potential applications, MMFs also provide a
natural platform for the study of the interplay of nonlinear-
ity and disorder [9–11], which is a fundamental problem of
general interest [12–15]. As a matter of fact, light propagation
in a conventional MMF is known to be affected by a struc-
tural disorder of the material due to inherent imperfections
and external perturbations (e.g., bending, twisting, tensions,
or core-size variations in the fabrication process) [7], a fea-
ture which is relevant to endoscopic imaging for instance
[16]. When such a natural disorder of the fiber dominates
over nonlinear effects, the nonlinear Schrödinger (NLS) equa-
tion describing the propagation of light can be reduced to an
effective equation through the so-called Manakov approxima-
tion, a procedure originally developed for single-mode fibers
[17] and more recently extended to MMFs [18–23].

From a different perspective, a fundamental phenomenon
of spatial beam self-organization, termed “beam self-
cleaning,” has been recently discovered in (graded-index)
MMFs [24,25]. At variance with an apparently similar phe-
nomenon driven by the dissipative Raman effect in MMFs,
known as Raman beam cleanup [26], this self-organization
process is due to a purely conservative Kerr nonlinearity [25].
While the detailed understanding of spatial beam cleaning
is still debated, different works indicate that certain regimes
of beam self-cleaning can be described as a natural pro-
cess of optical wave thermalization to thermal equilibrium
[27–31], a feature that has been recently demonstrated ex-
perimentally [32–34]. This has motivated the development
of a wave turbulence formalism that takes into account the
structural disorder inherent to light propagation in MMFs.
Following this approach, a wave turbulence kinetic equa-
tion has been derived, which revealed that the structural
disorder leads to a significant acceleration of the process
of thermalization and condensation, a feature that can help
to understand some regimes of spatial beam cleaning in
MMFs [28].

Our aim in this paper is to study the interplay of disorder
and nonlinearity in the framework of a different regime of
light propagation in MMFs. At variance with the previous the-
oretical works describing the purely spatial dynamics [27,28],
here we consider the spatiotemporal multimode dynamics
where temporally incoherent waves propagate through the
MMF. On the basis of the wave turbulence theory [35–47],
we show that the temporal multimode turbulent dynamics
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is dominated by the Raman effect. More precisely, under
the assumption that the structural disorder dominates over
nonlinear effects, we derive a multimode Manakov equa-
tion from the multimode NLS equation. The new Raman term
in this Manakov equation unveils a previously unrecognized
nontrivial coupling among the modes, which is responsible
for a collective behavior of the multimode incoherent field.
Indeed, applying the wave turbulence theory to the multi-
mode Manakov equation, we derive a simple scalar kinetic
equation that governs the evolution of the temporal aver-
aged spectrum of the multimode optical field. The kinetic
equation has a form analogous to that developed in plasma
physics to describe weak Langmuir turbulence in plasma
[47–50]. The derived kinetic equation then greatly simplifies
the multimode NLS equation and provides physical insight
into the incoherent wave dynamics. It reveals the existence
of several multimode collective behaviors of the incoherent
waves that propagate through the MMF. As a general rule,
the multimode turbulent system exhibits a self-organization
process, in which all modes self-consistently form a vector
spectral incoherent soliton (VSIS). This provides a generaliza-
tion of the scalar (or bimodal) spectral incoherent solitons that
were previously investigated by always ignoring the structural
disorder of the fiber [6,41,51–53]. The reported VSIS can
also exhibit a discrete behavior, which is characterized by
collective synchronized spectral oscillations of the discrete
soliton in frequency space. The numerical simulations of the
generalized multimode NLS equation are found in remarkable
quantitative agreement with the derived kinetic equation with-
out using adjustable parameters.

From a broader perspective, we remark that Langmuir
turbulence in the strongly nonlinear regime has been widely
studied both theoretically and experimentally [54,55], in par-
ticular in hydrodynamics [55–57], or in laboratory [58,59] and
space plasma experiments [60,61], while cavitating Langmuir
turbulence has been evidenced in Earth’s natural aurora driven
by solar wind [61]. However, aside from preliminary experi-
ments in Ref. [53], experimental evidence of weak Langmuir
turbulence has not been reported in the context of nonlinear
optics [41]. In this work we show that random mode coupling
in optical fibers has a stabilizing role in the dynamics of
spectral incoherent solitons, which makes disordered MMFs
promising for the experimental study of weak Langmuir tur-
bulence in optics.

II. MULTIMODE NLS EQUATION

We consider the generalized NLS equation describing the
propagation of the optical field in a multimode fiber with N
modes (i.e., 2N modes accounting for polarization effects)
[62]. Following the notations of Ref. [62], the vector electric
field can be expanded into a superposition of the individual
modes E(r, z, t ) = ∑

p F p(r)Ap(z, t ), where F p(r) denotes
the normalized transverse vector mode profile and Ap(z, t )
the modal envelope with z the longitudinal propagation vari-
able, r = (x, y) the vector in the transverse plane, and t the
time variable. The modal vector can be written A(z, t ) =
(Ap(z, t ))2N

p=1, where the components A2 j−1, A2 j refer to the or-
thogonal linear polarization components of the jth mode. The

field satisfies the generalized multimode NLS equation [62]:

i∂zA + D(z)A + D0A + iV∂t A − W∂tt A

+ γ (1 − fR)P(A) + γ fRQ(A) = 0. (1)

Here, D0, V, and W are deterministic 2N × 2N diagonal
matrices that model respectively the propagation constants,
the modal inverse group velocity, and the modal dispersion
(relative to the fundamental fiber mode). The terms P(A) and
Q(A) are, respectively, the Kerr nonlinearity and the Raman
nonlinearity, which have the general forms

[P(A)]p =
2N∑

l,m,n=1

SK
plmnAlAmA∗

n, (2)

[Q(A)]p =
2N∑

l,m,n=1

SR
plmnAl [R � (AmA∗

n )], (3)

where R(t ) is the Raman response function that is constrained
by the causality condition [R(t ) = 0 for t < 0]. The super-
script ∗ stands for complex conjugation and the symbol �

denotes the convolution product. The Raman term contributes
with a fraction fR to the overall nonlinearity ( fR = 0.18
for silica glass fibers) [6]. The nonlinear coefficient is γ =
n2ω0/c = n2k0, where ω0 is the laser carrier frequency and
λ = 2π/k0 the corresponding wavelength. The tensors SK

plmn

and SR
plmn are given in explicit form in Ref. [62].

We consider the regime of strong random coupling among
the spatial modes and polarization states, which is relevant
for large propagation lengths in the MMF, typically larger
than a few hundred meters [63]. The most general form of
random mode coupling that conserves the total power P =∑2N

p=1 |Ap|2 is provided by a 2N × 2N random matrix-valued
process D(z) that is Hermitian. Note that the structural disor-
der of the MMF may also affect the group velocity and the
group-velocity dispersion of the propagating modes, which
can be modeled by considering random matrices V(z) and
W(z) in Eq. (9) as will be discussed later.

III. MANAKOV REDUCTION

We consider the so-called Manakov regime where the
impact of strong linear random coupling dominates over non-
linear effects [20], i.e., Lnl � �c, 2π/σ , where Lnl = 1/(γP )
is the nonlinear length, while �c and σ denote the correlation
length and standard deviation of the random process D(z)
that models the structural disorder. We recall that the Man-
akov reduction has already been applied to the multimode
NLS equation without the Raman effect [18–20,22]. On the
other hand, the Manakov approximation has been considered
to study the Raman amplification process in Ref. [21], and
applied to the multimode NLS equation accounting for the
first-order correction of the Raman response [23]. Here, we
generalize the derivation of the Manakov equation, which
reveals that the Raman effect introduces a nontrivial coupling
among the modes that plays a key role for the incoherent
propagation regime.

Let us introduce the unitary matrix U(z) solution of
i∂zU = DU, with U(0) = I, and define the mode amplitudes
in the local disordered axes B(z, t ) = U−1(z)A(z, t ), with

013528-2



WEAK LANGMUIR TURBULENCE IN DISORDERED … PHYSICAL REVIEW A 105, 013528 (2022)

U−1(z) = U†(z), where the superscript † denotes the conju-
gate transpose. We now follow the idea originally introduced
for single-mode fibers by Wai and Menyuk [17], in which
birefringence fluctuations are assumed so strong that the prob-
ability density of the polarization state uniformly covers the
surface of the Poincaré sphere, so that one can average the
propagation equation over all polarization states. By general-
izing to MMFs, we assume that the linear coupling among
the modes due to D(z) is the dominant effect, so that the
random matrix-valued process U(z) becomes uniformly dis-
tributed in the set of unitary matrices. In this way, we derive in
Appendix A the following homogenized Manakov multimode
NLS equation:

i∂zB + d̃B + i

ṽ
∂t B − β̃

2
∂tt B

+ γ (1 − fR)P̃(B) + γ fRQ̃(B) = 0, (4)

with

[P̃(B)]p = (
S̃K

(1) + S̃K
(2)

)[ 2N∑
l=1

|Bl |2
]

Bp, (5)

[Q̃(B)]p = S̃R
(1)

2N∑
l=1

Bl [R � (BpB∗
l )]

+ S̃R
(2)Bp

[
R �

(
2N∑
l=1

|Bl |2
)]

, (6)

and we have for X ∈ {K, R}

S̃X
(1) = 1

4N2 − 1

∑
p′,l ′

SX
p′l ′ p′l ′ − 1

2N (4N2 − 1)

∑
p′,l ′

SX
p′ p′l ′l ′ ,

S̃X
(2) = 1

4N2 − 1

∑
p′,l ′

SX
p′ p′l ′l ′ −

1

2N (4N2 − 1)

∑
p′,l ′

SX
p′l ′ p′l ′ .

As already discussed in previous works [18–20], Eq. (5)
shows that any instantaneous cubic nonlinearity gives rise to
an effective (phase-insensitive) deterministic Manakov-type
nonlinear term. Equation (6) also shows the contribution of
the Raman effect, which gives rise to an effective Raman-type
nonlinear term that depends only on two parameters, S̃R

(1)

and S̃R
(2).

Note that, as a result of the Manakov averaging procedure,
the propagation constant, the group velocity, and the disper-
sion coefficients have been homogenized in Eq. (4):

d̃ = 1

2N
Tr(D0),

1

ṽ
= 1

2N
Tr(V), β̃ = 1

N
Tr(W).

Accordingly, all of the modes evolve with the same prop-
agation constant, group velocity, and dispersion coefficient.
Note, however, that this results from the assumption that the
matrices V and W in Eq. (1) are deterministic and constant. If
the matrix V(z) in Eq. (1) was randomly varying, with random
fluctuations that could be correlated to those of D(z), then the
transport term in Eq. (4) would have the form Ṽ∂t B instead of
1
ṽ
∂t B, with the effective matrix Ṽ = 〈U†(z)V(z)U(z)〉, where

〈·〉 stands for the average with respect to the stationary dis-
tribution of (U(z), V(z)). The same argument holds for the

dispersion effects W, and the corresponding effective matrix
W̃ = 〈U†(z)W(z)U(z)〉.

We finally remark that the nonlinear Raman-type terms in
Eq. (4) are different from those reported in Ref. [23], because
in this latter work the authors made use of the assumption
that the nonlinear terms are co-polarized with the field, which
is not justified in general. In particular, when one considers
the propagation of incoherent waves, the terms that are not
co-polarized [i.e., the ones associated with S̃R

(1) in Eq. (6)] are
the only ones that give rise to a coupling among the modes.
These terms should not be neglected in our framework, a
feature that will become apparent from the weak Langmuir
turbulence kinetic equation discussed in the next section.

IV. WEAK LANGMUIR TURBULENCE
KINETIC EQUATION

In the following we derive the weak Langmuir turbu-
lence kinetic equation governing the evolution of the averaged
spectra of the incoherent waves that propagate in the MMF.
For this purpose, we consider the weakly nonlinear regime
where linear dispersion effects dominate over nonlinear ef-
fects Llin, j � Lnl , where Llin,1 = tc̃v and Llin,2 = 2t2

c /β̃ denote
the characteristic propagation lengths associated to the first-
and second-order dispersion effects in the modal NLS equa-
tion [Eq. (1)], and tc is the correlation time of the incoherent
waves. Note that the regime of weak nonlinear interaction is
also analyzed by considering an improved criterion of appli-
cability of the wave turbulence kinetic equation, a feature that
is discussed in Appendix C in relation with the numerical
simulations in Sec. V.

We are interested in the propagation of incoherent
waves, where Ap(z = 0, t ) are random functions with fluc-
tuations that are statistically stationary in time. Then the
components Bp(z = 0, t ) are also random functions with
statistically stationary fluctuations, and this property is
preserved in the evolution. By taking an average over
the random initial conditions Bp(z = 0, t ), we can derive
the wave turbulence Langmuir kinetic equation by fol-
lowing the procedure of Ref. [41]. More precisely, we
show in Appendix B that the (statistically stationary) spec-
tra of the waves nBp (ω, z) = ∫ 〈Bp(z, t + τ/2)B∗

p(z, t − τ/2)〉
exp(−iωτ )dτ verify the multimode weak Langmuir turbu-
lence kinetic equations:

∂znBp (ω) = γ1nBp (ω)
2N∑
j=1

∫
g(ω − ω′)nBj (ω

′)dω′

+ γ2nBp (ω)
∫

g(ω − ω′)nBp (ω′)dω′, (7)

where γ j = γ fRS̃R
( j)/π for j = 1, 2, and g(ω) = Im[R̃(ω)] de-

notes the Raman gain function, R̃(ω) = ∫ ∞
0 R(t ) exp(−iωt )dt

being the Fourier transform of the response function. Note
that the Raman gain g(ω) is an odd function [see the inset
of Fig. 1(a)], reflecting the fact that the low-frequency com-
ponents are amplified to the detriment of the high-frequency
components.

It becomes apparent in kinetic equation (7) that only the
first term proportional to γ1 = γ fRS̃R

(1)/π gives rise to a non-
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FIG. 1. Multimode discrete spectral incoherent soliton: Evolu-
tion of the spectrum of the field during the propagation obtained by
simulation (a) of the generalized multimode NLS equation [Eq. (1)],
and (b) of the scalar weak Langmuir turbulence kinetic equa-
tion [Eq. (9)]. Spectral profiles in (c) normal scale and (d) logarithmic
scale, at the propagation length z = 16 km: The blue line reports the
result of the simulation of the NLS equation [Eq. (1)] (averaged over
the six fiber modes), and the red line reports the result of the sim-
ulation of the weak Langmuir turbulence kinetic equation [Eq. (9)].
The gray solid lines in (c) and (d) report the initial conditions of the
six modes, while the dashed black lines denote the corresponding
average. (e) Evolution during the propagation (z is in logarithmic
scale) of the relative amount of power of the six fiber modes from
the simulation of the generalized NLS equation [Eq. (1)]: Random
mode coupling induces an equipartition of power among the 2N = 6
modes after a propagation length z � �c (�c = 10 cm, σ = 63 m−1,
P = 17 W). The inset in (a) shows the Raman gain spectrum g(ν ),
with ν = ω/(2π ). The quantitative agreement between the NLS
[Eq. (1)] and kinetic [Eq. (9)] simulations is obtained without ad-
justable parameters.

linear coupling among the modes. In other terms, only the
new terms in the derived Manakov equation [i.e., the ones
associated with S̃R

(1) in Eq. (6)] give rise to a mode coupling
in kinetic equation (7).

More generally, we note that the instantaneous Kerr non-
linearity does not contribute to kinetic equation (7); solely the
noninstantaneous Raman nonlinearity ( fR 
= 0) contributes to
the kinetic equation. Actually, the derivation of a kinetic
equation with a pure Kerr nonlinearity (i.e., fR = 0) re-
quires a higher-order closure of the hierarchy of the moments
equations, which leads to a collision term in the kinetic equa-
tion that is characterized by a cubic nonlinearity. Because of
degenerate resonances, such a collision term vanishes identi-
cally in one spatial dimension (see, e.g., Sec. 6 of Ref. [41]).
As discussed in detail in Appendix B, in the present study the
causality condition inherent to the noninstantaneous Raman
response function [R(t ) = 0 for t < 0] fundamentally changes
the derivation of the kinetic equation: Because the Fourier
transform of R(t ) is not real valued [g(ω) 
= 0], the closure

of the moments equations is achieved at the lowest order, then
leading to the quadratic nonlinear kinetic equation [Eq. (7)],
which is also relevant to purely one-dimensional systems
[41,47].

It is important to note that the initial conditions in
the basis Bp can be homogenized. Indeed, let the field
propagate over a few correlation lengths �c, in such a
way that the matrix U becomes uniformly distributed
while other linear and nonlinear effects are still neg-
ligible. Under such circumstances, the initial conditions
for Bp(z, t ) are such that 〈Bp(z = 0+, t )B∗

l (z = 0+, t ′)〉 =
δK

pl
1

2N

∑2N
j=1〈Aj (z = 0, t )A∗

j (z = 0, t ′)〉, where δK
pl = 1 if p =

l and zero otherwise. Taking the Fourier transform, we obtain
a homogeneous initial condition for the spectra nBp (ω, z =
0+) = 1

2N

∑
j nAj (ω, z = 0) for p = 1, . . . , 2N . Another im-

portant point to stress is that this homogeneous initial
condition is preserved during the propagation: As a con-
sequence of the averaging Manakov procedure, the modal
coupling coefficients γ1 and γ2 in kinetic equation (7) are
identical for all the modes, so that the spectra nBp (ω, z) verify

nBp (ω, z) = nB(ω, z) for p = 1, . . . , 2N.

The multimode kinetic equation (7) then reduces to a single
scalar kinetic equation:

∂znB(ω) = (2Nγ1 + γ2)nB(ω)
∫

g(ω − ω′)nB(ω′)dω′, (8)

with nB(ω, z = 0+) = 1
2N

∑
j nAj (ω, z = 0).

Following a similar argument, the spectra nAp (ω, z) =∫〈Ap(z, t+τ/2)A∗
p(z, t−τ/2)〉 exp(−iωτ )dτ verify nAp (ω, z)=

1
2N

∑2N
j=1 nBj (ω, z) = nB(ω, z) for any p and for z � �c, even

if the initial modal spectra nAp (ω, z = 0) are different from
each other (see Appendix A). Then we arrive at the main
conclusion that the averaged spectra in the original basis A
verify the scalar weak Langmuir turbulence kinetic equation:

∂znA(ω) = (2Nγ1 + γ2)nA(ω)
∫

g(ω − ω′)nA(ω′)dω′. (9)

We stress the remarkable simplicity of kinetic equation (9) as
compared to the original multimode NLS equation [Eq. (1)].
First, as in the usual scalar case, both effects of linear dis-
persion and instantaneous Kerr nonlinearity do not enter the
kinetic equation, a property that has been confirmed by sev-
eral previous works in different circumstances [41]. Second,
the structural disorder leads to an effective homogenization
that is characterized by an equipartition of the power among
the modes, which further simplifies the vector kinetic equa-
tion [Eq. (7)] to the scalar kinetic equation [Eq. (9)]. The
kinetic equation (9) has two conserved quantities, the power
P = ∫

nA(ω, z)dω and the “entropy” S = ∫
ln[nA(ω, z)]dω

[41].
Finally, we recall the formal analogy between the universal

form of the kinetic equation describing the weakly nonlinear
regime of Langmuir turbulence [47] and the kinetic equa-
tions derived in this work. The formal mathematical similarity
mainly relies on the analogy between the molecular vibrations
mediated by the optical Raman effect in optical fibers and
the excitations of ion sound waves mediated by the decay of
plasma oscillations [41].
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V. NUMERICAL SIMULATIONS

We have tested the validity of the theory by performing
numerical simulations of the original NLS equation [Eq. (1)]
and of the derived scalar weak Langmuir turbulence kinetic
equation [Eq. (9)]. We have considered a step-index bimodal
fiber (core diameter 6 μm, index difference � = 0.005, wave-
length λ = 1.55 μm) in which the fundamental LP01 mode is
coupled to two degenerate modes LP01a and LP01b, which
results in a total of 2N = 6 coupled equations for the mul-
timode NLS equation [Eq. (1)]. As described in the theory,
we have considered the regime of strong random linear cou-
pling among all modes, with variance σ 2 and correlation
length �c. We have also considered the standard form of the
damped harmonic oscillator Raman function in silica optical
fibers, R(t ) = H (t )(τ−2

1 + τ−2
2 )τ1 exp(−t/τ2) sin(t/τ1) with

τ1 = 12.2 fs and τ2 = 32 fs, H (t ) being the Heaviside func-
tion [νR = 1/(2πτ1) � 13 THz denoting the resonant Raman
frequency] [6]. The corresponding Raman gain function then
reads

g(ω) = 1 + η2

2η

(
1

1 + (η + τ2ω)2
− 1

1 + (η − τ2ω)2

)
, (10)

with the time ratio η = τ2/τ1.
We consider a partially coherent optical field that is in-

jected in the MMF and populates different modes. In the
following, for simplicity, we assume that the different modes
are initially populated with partially coherent waves with a
Gaussian spectrum and random spectral phases, i.e., Ap(z =
0, t ) has stationary Gaussian statistics with mean zero and
Gaussian covariance function and the modes p = 1, . . . , 2N
are independent from each other. Note that, because of the
strong random coupling regime, this latter assumption is veri-
fied in practice after a propagation length z � �c that remains
smaller than the nonlinear length z < Lnl . This latter property
has been verified by numerical simulations of the generalized
NLS equation [Eq. (1)].

We recall that, as discussed above, we consider in the
numerical simulations the weakly nonlinear regime of prop-
agation, Llin,p � Lnl,p, where Llin,p (Lnl,p) is the typical
propagation length associated to linear (nonlinear) effects,
for the mode p. We have verified this property by consid-
ering an improved criterion of applicability of the kinetic
equation [36,37], which compares the linear and nonlinear
evolution frequencies [see Eq. (C1) below]. In all simula-
tions presented in this paper, we have verified that the linear
dispersive dynamics dominates the nonlinear dynamics, as
evidenced in Fig. 4 discussed in Appendix C.

A. Multimode discrete spectral incoherent soliton

In the following we illustrate different turbulent regimes of
the system that depend on the spectral widths of the launched
optical field. Figure 1 reports a typical example of the evolu-
tion for a spectral width of the initial condition of the order
of �ν � 15 THz. Since this spectral width is of the same
order as the spectral width of the Raman gain, the redshift
of the wave spectrum exhibits a discrete behavior, because the
leading edge of the low-frequency tail of the spectrum exhibits
a larger gain as compared to the mean gain of the whole front
of the spectrum [see the inset in Fig. 1(a)]. As a result of

cascaded Raman scattering [6,64], the spectrum exhibits a dis-
crete spectral shift that is determined by the Raman frequency
νR. The remarkable result is that the global spectral redshift of
the field is regular and exhibits a discrete solitonlike behavior.
As already discussed in the literature [53,65], the discrete soli-
ton propagates with a constant velocity in frequency space for
arbitrary long distances, without emitting apparent radiation.
We recall that the spectral incoherent soliton is “hidden” in
frequency space, in the sense that the soliton behavior cannot
be identified in the temporal domain, where the field A(t, z) is
a random wave featured by a stationary statistics [51]. In this
respect, the VSISs are fundamentally different in nature from
optical solitons recently investigated in MMFs [66,67]. Also
note that a constant noise background has been added in the
simulations. Such a spectral noise is important in order to sus-
tain a steady incoherent soliton propagation [41]; otherwise,
the soliton would undergo a slow adiabatic reshaping so as to
adapt its shape to the local value of the noise background. This
noise background can also simulate the presence of a quantum
noise background.

We stress the remarkable quantitative agreement that has
been obtained between the simulation of the multimode NLS
equation [Eq. (1)] and of the scalar kinetic equation [Eq. (9)],
without using any adjustable parameter. Such a good agree-
ment is clearly visible in the normal and logarithmic plots
reported in Figs. 1(c) and 1(d) at a particular propagation
length. In this simulation, the different modes are initially
populated with a different amount of powers, as illustrated
in Fig. 1(c) (gray solid lines). As expected from the the-
ory, we can observe in Fig. 1(e) that random mode coupling
leads to an equipartition of power among the modes, after
a propagation length of the order of the correlation length
z � �c = 10 cm.

B. Multimode continuous spectral incoherent soliton

In this section we illustrate a turbulent regime character-
ized by the emergence of a continuous spectral incoherent
soliton. Indeed, when the spectral width of the initial field
becomes larger than the resonant Raman frequency, then
the low-frequency tail of the spectrum sees a gain compa-
rable to the mean gain of the spectral front as a whole. In
the example of Fig. 2 we have considered a spectral width
�ν � 50 THz, which is much larger than in Fig. 1. As a
consequence, we can see in Figs. 2(a) and 2(b) that the redshift
of the wave spectrum is no longer discrete, but continuous,
giving rise to a continuous VSIS behavior. We remark that, for
the broad spectral widths considered in Fig. 2, higher-order
terms should be included in the NLS model to accurately
describe light propagation in the fiber [62] (also see Ref. [68]).
However, our purpose here is just to provide a qualitative
overview of different possible incoherent dynamics, while a
more realistic regime of light propagation in MMFs will be
considered in the next section.

The continuous spectral incoherent soliton reported in
Fig. 2 can be described theoretically as a stationary soliton
solution of the Langmuir kinetic equation [Eq. (9)] [69]:

nsol
A (ω̃) = n0

A + (
nm

A − n0
A

)
exp

[
− ln

(
nm

A

n0
A

)
ω̃2

ω2
0

]
, (11)
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FIG. 2. Multimode continuous spectral incoherent soliton: Evo-
lution of the spectrum of the field during the propagation obtained
by simulation (a) of the generalized NLS equation [Eq. (1)] and
(b) of the derived scalar weak Langmuir turbulence kinetic equa-
tion [Eq. (9)]. Spectral profiles in (c) normal scale and (d) logarithmic
scale, at the propagation length z = 26 km: The blue line reports the
result of the NLS equation [Eq. (1)] simulation (averaged over the
six modes), and the red line reports the result of the weak Langmuir
turbulence kinetic equation [Eq. (9)] simulation. The dashed black
line reports the initial condition. Parameters are the same as in Fig. 1
(�c = 10 cm, σ = 63 m−1, P = 17 W). The spectral width is larger
than in Fig. 1, which induces a continuous motion of the VSIS. The
dashed green lines in (c) and (d) report the analytical soliton solution
from Eq. (11). The dashed white lines in (a) and (b) denote the soliton
velocity V from Eq. (12) (see the text for details). The quantitative
agreement between the NLS [Eq. (1)] and kinetic [Eq. (9)] simula-
tions is obtained without adjustable parameters.

where ω̃ = ω − V z, n0
A refers to the constant background

noise, nm
A (� n0

A) is the soliton spectral amplitude, and ω0

denotes the typical spectral width of Raman gain defined
by ω0 = √

2[−∂ωg(0)]−1/2[− ∫ ∞
0 g(ω)dω]1/2. The soliton

[Eq. (11)] propagates in frequency space with a constant ve-
locity given by

V = −(2Nγ1 + γ2)

∫
nA(ω) − n0

Adω∫
ln(nA(ω)/n0

A)dω

∫
ωg(ω)dω. (12)

We can observe a remarkable agreement between the ana-
lytical soliton solution given by Eq. (11) and the numerical
simulations of both the generalized NLS equation [Eq. (1)]
and the kinetic equation [Eq. (9)], as illustrated in Figs. 2(c)
and 2(d). Note, however, in the logarithmic plot in Fig. 2(d)
a discrepancy between solution (11) and the simulations in
the tails of the soliton, a feature that can be explained by the
fact that Eq. (11) is valid in the vicinity of the soliton peak.
As a matter of fact, the computation of the soliton velocity
is very sensitive to the tails of the soliton profile, as revealed
by the expression of V in Eq. (12), whose denominator in-
volves the logarithm of the soliton profile. Consequently, the
computation of V with analytical solution (11) matches the
numerics qualitatively but not quantitatively, while a very
good agreement of the soliton velocity [Eq. (12)] with the nu-
merics is obtained by considering the soliton profile generated
in the simulation, as illustrated by the dashed white lines in
Figs. 2(a) and 2(b) that are parallel to the soliton trajectory.

FIG. 3. Synchronization of incoherent spectral oscillations: Evo-
lution of the spectrum of the field during the propagation obtained
by simulation (a) of the generalized NLS equation [Eq. (1)] and
(b) of the derived scalar weak Langmuir turbulence kinetic equa-
tion [Eq. (9)]. Fiber losses (0.2 dB/km) have been included in (a) and
(b). Panels (c) and (d) report the simulation in (a) and (b) but in the
absence of the fiber losses, so as to improve the visualization of the
multimode collective behavior of the spectral oscillations of the dis-
crete soliton. Spectral profiles in (e) normal scale and (f) logarithmic
scale, at the propagation length z = 25 km corresponding to (c) and
(d): The blue line reports the result of the NLS equation [Eq. (1)]
simulation (averaged over the six fiber modes), the red line reports
the result of the weak Langmuir turbulence kinetic equation [Eq. (9)]
simulation, and the dashed black line the initial condition. Param-
eters are �c = 2 m, σ = 3.1 m−1, P = 8.5 W. The good agreement
between the simulations of the NLS equation [Eq. (1)] and the kinetic
equation [Eq. (9)] is obtained without adjustable parameters.

C. Synchronization of incoherent spectral oscillations

To complete our study, we consider a more realistic nu-
merical simulation in which the incoherent source launched
into the MMF is characterized by a relatively narrow fre-
quency bandwidth, �ν � 2 THz, which can be accessible
from an amplified spontaneous emission (ASE) source (see,
e.g., Ref. [70]). In addition, we have included the impact of
the fiber losses in the numerical simulations, with a typical
value of 0.2 dB/km.

The results of the numerical simulations of the generalized
NLS equation [Eq. (1)] and the kinetic equation [Eq. (9)]
are reported in Figs. 3(a) and 3(b). As a consequence of
the narrowness of the initial spectrum, the discrete nature
of the spectral shift gets more apparent as compared to the
discrete VSIS discussed above through Fig. 1. This reinforces
the idea of synchronization of the spectral oscillations of the
fiber modes in the simulation of the NLS equation [Eq. (1)].
Indeed, we have reported in Fig. 3(a) the spectrum averaged
over the six fiber modes. If the spectral oscillations were not
synchronized, then the average among the six modes would be
characterized by a significant spectral broadening. The good
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agreement between the NLS and kinetic simulations shown
in Figs. 3(a) and 3(b) reflects the accurate synchronization
among the spectral oscillations of the fiber modes. Note that
the fiber losses naturally induce a significant reduction of the
nonlinear effects during the propagation, which thus limits
the spectral redshift of the field. Accordingly, we have re-
moved the fiber losses in the simulation reported in Figs. 3(c)
and 3(d), which considerably improves the visualization of
the synchronization of the spectral oscillations of the fiber
modes.

VI. CONCLUSION AND DISCUSSION

In summary, we have studied the propagation of spatiotem-
poral incoherent waves in MMFs in the presence of a random
coupling among the modes. By averaging over the fast disor-
dered fluctuations, we have derived the multimode Manakov
equations [Eqs. (4)–(6)]. The new Raman term (6) in the
multimode Manakov equation unveils a coupling among the
modes, which is responsible for the emergence of a collec-
tive multimode behavior of the incoherent waves. Indeed,
applying the wave turbulence theory to the multimode Man-
akov equation, we have derived a very simple scalar kinetic
equation governing the evolution of the averaged spectrum
of the multimode field. The theory has been validated by the
numerical simulations, which confirm the robustness of the
process of modal attraction toward the dynamics described by
the scalar kinetic equation: A quantitative agreement between
the simulations of the NLS equation [Eq. (1)] and the kinetic
equation [Eq. (9)] has been obtained, without using any ad-
justable parameters. The simulations reveal that the fields that
propagate in different modes of the MMF self-organize and
self-trap to form a VSIS. In particular, the VSIS can exhibit
a discrete behavior characterized by collective synchronized
spectral oscillations in frequency space. This work should
stimulate the realization of optical experiments in MMFs.
Aside from the discrete multimode spectral solitons, the re-
duction of the multimode NLS equation to the effective scalar
kinetic equation [Eq. (9)] can be exploited to study different
turbulent regimes predicted in the scalar case, such as the
formation of incoherent spectral shock waves [71].

We recall that we have considered in this work the case of
strong random coupling among the modes. A similar analy-
sis can be carried out by considering a weak random mode
coupling, where only (quasi)degenerate modes are coupled to
each other. Actually, weak random mode coupling is known
to be relevant when relatively short propagation lengths in
optical fibers are considered [63]. However, the validity of the

kinetic approach requires a weak nonlinear regime, Llin � Lnl ,
so that large propagation lengths, typically larger than a few
hundred meters, are required to observe the formation of
multimode spectral incoherent solitons in optical fibers. For
such a large propagation length, it is commonly admitted
that random coupling among nondegenerate modes should
not be neglected and must be taken into account [63], which
legitimizes the consideration of strong mode coupling in our
work.

We remark that the validity of the derived kinetic equa-
tion [Eq. (9)] becomes questionable when the optical spectrum
feels the presence of a zero-dispersion frequency of the
optical fiber. Near a zero-dispersion frequency, linear dis-
persive effects become perturbative. The dynamics turns
out to be dominated by nonlinear effects, which invalidates
the weakly nonlinear assumption underlying the derivation
of the kinetic equation. In this case one needs to include
higher-order contributions in the closure of the hierarchy
of the moments equation in the wave turbulence theory.
To next order, the instantaneous Kerr nonlinearity coupled
to higher-order dispersion effects leads to a collision term
in the kinetic equation that describes an incoherent (turbu-
lent) regime of supercontinuum generation [41]. It would be
interesting to develop a generalized kinetic formulation of
spatiotemporal effects in MMFs, which would unify the Lang-
muir formulation discussed here with the wave turbulence
formulation accounting for random mode coupling discussed
in Refs. [27,28]. Such a generalized theory can also shed new
light on the recent experiments of supercontinuum generation
that can be characterized by spatial beam cleaning effects
[72–75]. From a broader perspective, this would contribute to
the development of a wave turbulence theory that accounts for
the presence of a structural disorder of the nonlinear medium
[27,28,76–78].
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APPENDIX A: DERIVATION OF THE MANAKOV EQUATION

We derive the Manakov multimode NLS equation [Eq. (4)]. Without approximations, the vector field B(z, t ) is a solution of

i∂zB + U†D0UB + iU†VU∂t B − U†WU∂2
t B + γ (1 − fR)U†P(UB) + γ fRU†Q(UB) = 0, (A1)

where

[U†D0UB]p =
∑

l

[∑
p′,n′

U ∗
p′ pD0

p′n′Un′l

]
Bl ,
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[U†VU∂t B]p =
∑

l

[∑
p′,n′

U ∗
p′ pVp′n′Un′l

]
∂t Bl ,

[U†WU∂2
t B]p =

∑
l

[∑
p′,n′

U ∗
p′ pWp′n′Un′l

]
∂2

t Bl ,

[U†P(UB)]p =
∑
l,m,n

⎡⎣ ∑
p′,l ′,m′,n′

SK
p′l ′m′n′U ∗

p′ pUl ′lUm′mU ∗
n′n

⎤⎦Bl BmB∗
n,

[U†Q(UB)]p =
∑
l,m,n

⎡⎣ ∑
p′,l ′,m′,n′

SR
p′l ′m′n′U ∗

p′ pUl ′lUm′mU ∗
n′n

⎤⎦Bl [R � (BmB∗
n )].

We assume here that the linear coupling between modes due to D(z) is strong enough so that this effect dominates and the
random matrix-valued process U(z) becomes uniformly distributed in the set of unitary matrices. We can then replace the linear
and nonlinear terms by the homogenized coefficients

[U†D0UB]p =
∑

l

[∑
p′,n′

〈
U ∗

p′ pUn′l
〉
D0

p′n′

]
Bl ,

[U†VU∂t B]p =
∑

l

[∑
p′,n′

〈
U ∗

p′ pUn′l
〉
Vp′n′

]
∂t Bl ,

[U†WU∂2
t B]p =

∑
l

[∑
p′,n′

〈
U ∗

p′ pUn′l
〉
Wp′n′

]
∂2

t Bl ,

[U†P(UB)]p =
∑
l,m,n

⎡⎣ ∑
p′,l ′,m′,n′

SK
p′l ′m′n′

〈
U ∗

p′ pUl ′lUm′mU ∗
n′n

〉⎤⎦Bl BmB∗
n,

[U†Q(UB)]p =
∑
l,m,n

⎡⎣ ∑
p′,l ′,m′,n′

SR
p′l ′m′n′

〈
U ∗

p′ pUl ′lUm′mU ∗
n′n

〉⎤⎦Bl [R � (BmB∗
n )],

where the expectation is taken with respect to the stationary distribution of the random process U(z), that is the Haar measure
on the unitary group in dimension 2N . Integration with respect to the Haar measure on the unitary group has been studied in
the mathematical physics literature for a long time [79,80]. A general formula for calculating monomial integrals is given in
Ref. [81]. In the case of monomials of rank 2 and 4, we have (see Proposition 4.2.3 of Ref. [82])

〈Ui jU
∗
i′ j′ 〉 = 1

2N
δii′δ j j′ , (A2)〈

Ui1 j1Ui2 j2U
∗
i′1 j′1

U ∗
i′2 j′2

〉 = 1

4N2 − 1

(
δi1i′1δi2i′2δ j1 j′1δ j2 j′2 + δi1i′2δi2i′1δ j1 j′2δ j2 j′1

)
− 1

2N (4N2 − 1)

(
δi1i′1δi2i′2δ j1 j′2δ j2 j′1 + δi1i′2δi2i′1δ j1 j′1δ j2 j′2

)
. (A3)

Using these formulas we find

[U†D0UB]p = d̃Bp,[
U†VU∂t B

]
p = 1

ṽ
∂t Bp,

[U†WU∂2
t B]p = β̃

2
∂2

t Bp,

[U†P(UB)]p =
∑
l,m,n

S̃K
plmnBlBmB∗

n,

[U†Q(UB)]p =
∑
l,m,n

S̃R
plmnBl [R � (BmB∗

n )],
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with

d̃ = 1

2N
Tr(D0), (A4)

1

ṽ
= 1

2N
Tr(V), (A5)

β̃ = 1

N
Tr(W), (A6)

S̃X
plmn = δlnδmp

⎧⎨⎩ 1

4N2 − 1

∑
p′,l ′

SX
p′l ′ p′l ′ −

1

2N (4N2 − 1)

∑
p′,l ′

SX
p′ p′l ′l ′

⎫⎬⎭
+ δl pδmn

⎧⎨⎩ 1

4N2 − 1

∑
p′,l ′

SX
p′ p′l ′l ′ − 1

2N (4N2 − 1)

∑
p′,l ′

SX
p′l ′ p′l ′

⎫⎬⎭, X ∈ {K, R},

or equivalently

S̃X
plmn = S̃X

(1)δlnδmp + S̃X
(2)δl pδmn, X ∈ {K, R},

with

S̃X
(1) = 1

4N2 − 1

∑
p′,l ′

SX
p′l ′ p′l ′ −

1

2N (4N2 − 1)

∑
p′,l ′

SX
p′ p′l ′l ′ , X ∈ {K, R}, (A7)

S̃X
(2) = 1

4N2 − 1

∑
p′,l ′

SX
p′ p′l ′l ′ −

1

2N (4N2 − 1)

∑
p′,l ′

SX
p′l ′ p′l ′ , X ∈ {K, R}. (A8)

In other words the mode amplitudes B satisfy

i∂zB + d̃B + i

ṽ
∂t B − β̃

2
∂tt B + γ (1 − fR)P̃(B) + γ fRQ̃(B) = 0, (A9)

with

[P̃(B)]p = (
S̃K

(1) + S̃K
(2)

)[ 2N∑
l=1

|Bl |2
]

Bp, (A10)

[Q̃(B)]p = S̃R
(1)

2N∑
l=1

Bl [R � (BpB∗
l )] + S̃R

(2)Bp

[
R �

(
2N∑
l=1

|Bl |2
)]

. (A11)

We remark that, if the initial conditions in Eq. (4) are deterministic, then the components |Bp|2(z, t ) are determin-
istic and the components Ap(z, t ) of the field are random and given by A = UB, so that they verify |Ap|2(z, t ) =∑

j,k Upj (z)U ∗
pk (z)Bj (z, t )B∗

k (z, t ) and, using Eq. (A2), 〈|Ap|2(z, t )〉 = 1
2N

∑
j |Bj |2(z, t ) for any t and z much larger than the

correlation length of D(z), say, �c. In other words, we have equipartition in the A basis. Note that this result is obtained for the
expectation [with respect to the distribution of (D(z))z�0] of the components |Ap|2(z, t ).

We also remark that, if the initial conditions are random [and independent of (D(z))z�0], then the components |Bp|2(z, t ) are
governed by the deterministic equation (4) and the components Ap(z, t ) are given by A = UB, so that they verify |Ap|2(z, t ) =∑

j,k Upj (z)U ∗
pk (z)Bj (z, t )B∗

k (z, t ) and, using Eq. (A2), 〈|Ap|2(z, t )〉 = 1
2N

∑
j〈|Bj |2(z, t )〉 for any t and z much larger than �c.

Following the same remark, we have 〈Ap(z, t + τ/2)A∗
p(z, t − τ/2)〉 = 1

2N

∑
j〈Bj (z, t + τ/2)B∗

j (z, t − τ/2)〉 for any p for z �
�c.

APPENDIX B: DERIVATION OF THE WEAK LANGMUIR KINETIC EQUATION [EQ. (7)]

In this Appendix we derive the kinetic equation [Eq. (7)] from the Manakov equation [Eq. (4)]. We define the Fourier
transforms B̃p(ω, z) = ∫

Bp(t, z) exp(−iωt )dt , R̃(ω) = ∫
R(t ) exp(−iωt )dt , then taking the Fourier transform of Eq. (4), we

obtain

i∂zB̃p(ω) + d̃B̃p(ω) − 1

ṽ
ωB̃p(ω) + β̃

2
ω2B̃p(ω) = −γ (1 − fR)

(
S̃K

(1) + S̃K
(2)

)
T (1)

p (ω) − γ fRS̃R
(1)T (2)

p (ω) − γ fRS̃R
(2)T (3)

p (ω), (B1)
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with

T (1)
p (ω) =

∫
e−iωt

2N∑
l=1

|Bl |2Bpdt = 1

(2π )2

2N∑
l=1

∫∫∫
B̃p(ω1)B̃l (ω2)B̃∗

l (ω3)δ(ω1 + ω2 − ω3 − ω)dω1,2,3,

T (2)
p (ω) =

∫
e−iωt

2N∑
l=1

Bl
(
R � BpB∗

l

)
dt = 1

(2π )2

2N∑
l=1

∫∫∫
B̃l (ω1)B̃p(ω2)B̃∗

l (ω3)R̃(ω2 − ω3)δ(ω1 + ω2 − ω3 − ω)dω1,2,3,

T (3)
p (ω) =

∫
e−iωt BpR �

(
2N∑
l=1

|Bl |2
)

dt = 1

(2π )2

2N∑
l=1

∫∫∫
B̃p(ω1)B̃l (ω2)B̃∗

l (ω3)R̃(ω2 − ω3)δ(ω1 + ω2 − ω3 − ω)dω1,2,3,

where dω1,2,3 = dω1dω2dω3. Because of the cubic nonlinearity, the equation for the second-order moment 〈B̃p(ω)B̃∗
q(ω′)〉

depends on the fourth-order moment. In the same way, the equation for the fourth-order moment depends on the sixth-order
moment, and so on. One then obtains an infinite hierarchy of moment equations, in which the nth-order moment depends on the
(n + 2)th-order moment of the field. This makes the equations impossible to solve unless some way can be found to truncate the
hierarchy. This refers to the fundamental problem of achieving a closure of the infinite hierarchy of the moment equations [35].
In the weakly nonlinear regime, linear dispersive effects dominate the nonlinear interaction and bring the fields close to Gaussian
statistics [38]. By virtue of the factorizability property of statistical Gaussian fields, the fourth-order moments can be factorized
as a product of second-order moments, which achieves the closure of the hierarchy.

In the present case, the statistics is stationary (homogeneous in time), the modes are decorrelated, and we have
〈B̃p(ω)B̃∗

q(ω′)〉 = nBp (ω)2πδ(ω′ − ω)δK
p,q, where δK

p,q denotes the Kronecker symbol, nBp (ω) = ∫ 〈Bp(t + τ/2)B∗
p(t − τ/2)〉

exp(−iωτ )dτ . The fourth-order moments can be factorized as〈
B̃l (ω1)B̃p(ω2)B̃∗

l (ω3)B̃∗
p(ω4)

〉 = nBl (ω1)nBp (ω2)(2π )2δ(ω1 − ω3)δ(ω2 − ω4)

+ nBp (ω1)nBp (ω2)(2π )2δ(ω1 − ω4)δ(ω2 − ω3)δK
p,l . (B2)

Starting from Eq. (B1), we compute the equation for the second-order moment 〈B̃p(ω)B̃∗
q(ω′)〉. In this equation, the contributions

of the linear dispersive terms on the left-hand side of Eq. (B1) vanish identically. On the other hand, using Eq. (B2), the term
T (2) contributes to the equation for i∂z〈B̃p(ω)B̃∗

q(ω′)〉 with a term proportional to

〈
T (2)

p (ω)B̃∗
q(ω′)

〉 − 〈
B̃p(ω)T (2)

q (ω′)∗
〉 =

2N∑
l=1

∫
nBl (ω1)nBp (ω)(R̃(ω − ω1) − R̃∗(ω − ω1))dω1 δ(ω′ − ω)δK

p,q

+
∫

nBp (ω1)nBp (ω)(R̃(0) − R̃∗(0))dω1 δ(ω′ − ω)δK
p,q. (B3)

The last term is zero because R̃(0) is real valued. The contribution of the term T (1) has the same form as Eq. (B3), but with
R̃(ω) = 1 that is real valued, so that the contribution vanishes and the instantaneous Kerr nonlinear term T (1) does not contribute
to the kinetic equation. The contribution of the term T (3) to i∂z〈B̃p(ω)B̃∗

q(ω′)〉 provides the modal self-interaction:

〈
T (3)

p (ω)B̃∗
q(ω′)

〉 − 〈
B̃p(ω)T (3)

q (ω′)∗
〉 =

2N∑
l=1

∫
nBl (ω1)nBp (ω)(R̃(0) − R̃∗(0))dω1 δ(ω′ − ω)δK

p,q

+
∫

nBp (ω1)nBp (ω)(R̃(ω − ω1) − R̃∗(ω − ω1))dω1 δ(ω′ − ω)δK
p,q. (B4)

The first term is zero because R̃(0) is real valued. Collecting the contributions of T (2) in Eq. (B3), and T (3) in Eq. (B4), we
obtain the kinetic equation [Eq. (7)]:

∂znBp (ω) = γ fRS̃R
(1)

π
nBp (ω)

2N∑
l=1

∫
g(ω − ω1)nBl (ω1)dω1 + γ fRS̃R

(2)

π
nBp (ω)

∫
g(ω − ω1)nBp (ω1)dω1.

APPENDIX C: CRITERION FOR THE APPLICABILITY OF THE KINETIC EQUATION

We have verified that the propagation of the multimode beam takes place in the weakly nonlinear regime, which validates
the applicability of the weak turbulence kinetic equation [Eq. (9)]. Note that, because the noninstantaneous Raman effect breaks
the Hamiltonian structure of the NLS equation [Eq. (1)], we cannot proceed as usual by comparing the linear and nonlinear
contributions to the Hamiltonian. Here, we resort to an improved criterion of applicability of the wave turbulence theory [36,37],
which compares the linear frequency klin

p (ω) = Vpω − Wpω
2 [see the linearized NLS equation, Eq. (1)] to the nonlinear frequency
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FIG. 4. Criterion of weak nonlinear regime: Evolution during the propagation of the maximum value maxω(Rp(ω, z)) for the three
simulations reported in Fig. 1 (solid blue line), Fig. 2 (dashed red line), and Fig. 3 (dot-dashed yellow line), for the mode LP11 (p = 3).
In all cases Rp(ω, z) � 1, which confirms the applicability of the kinetic equation in the weakly nonlinear regime.

knl
p (ω) = ∂znp(ω, z)/np(ω, z):

Rp(ω, z) =
∣∣knl

p (ω)
∣∣∣∣klin

p (ω)
∣∣ = |∂znp(ω, z)|

np(ω, z)
∣∣klin

p (ω)
∣∣ . (C1)

When Rp(ω, z) � 1, then linear effects dominate nonlinear effects. Note that a major advantage of this criterion with respect
to the usual one is that it depends explicitly on the frequency ω. We have computed Rp(ω, z) from the simulations of the NLS
equation [Eq. (1)] [np(ω, z) denoting the spectrum |Ãp|2(ω, z)] reported in Figs. 1–3, where the z derivative has been computed
by finite difference with a z step of the order of the nonlinear characteristic length Lnl . We report in Fig. 4 the evolutions during
the propagation z of the maximum value maxω(Rp(ω, z)) for the mode LP11 (p = 3) [note that similar evolutions of Rp(ω, z)
are obtained for the other modes]. We can verify that in all cases Rp(ω, z) � 1 throughout the propagation, which confirms the
applicability of the weakly nonlinear kinetic equation.
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