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Abstract

The key elements of seismic probabilistic risk assessment studies are the fragility

curves which express the probabilities of failure of structures conditional to a

seismic intensity measure. A multitude of procedures is currently available to

estimate these curves. For modeling-based approaches which may involve com-

plex and expensive numerical models, the main challenge is to optimize the calls

to the numerical codes to reduce the estimation costs. Adaptive techniques can

be used for this purpose, but in doing so, taking into account the uncertainties

of the estimates (via confidence intervals or ellipsoids related to the size of the

samples used) is an arduous task because the samples are no longer independent

and possibly not identically distributed. The main contribution of this work is

to deal with this question in a mathematical and rigorous way. To this end,

we propose and implement an active learning methodology based on adaptive

importance sampling for parametric estimations of fragility curves. We prove

some theoretical properties (consistency and asymptotic normality) for the es-

timator of interest. Moreover, we give a convergence criterion in order to use

asymptotic confidence ellipsoids. Finally, the performances of the methodology

are evaluated on analytical and industrial test cases of increasing complexity.

Keywords: Computer experiments, probabilistic risk assessment, importance

sampling, statistical learning

1. Introduction
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The notion of fragility curve appeared in the 1980s as a key element of Seis-

mic Probabilistic Risk Assessment (SPRA) studies (see e.g. [1, 2, 3]). A fragility

curve expresses the probability of failure of a mechanical structure subjected to

earthquake excitations conditional to a seismic Intensity Measure (IM), that may5

be the Peak Ground Acceleration (PGA) or the Pseudo-Spectral Acceleration

for a given frequency (PSA). Fragility curves are also part of Performance-Based

Earthquake Engineering (PBEE) framework [4, 5] and are not limited to seismic

loading. For example, they are also used for wind loading [6] or to address the

problem of multi-hazard storm conditions [7].10

In earthquake engineering, various data sources can be exploited to estimate

these curves, namely: expert judgments supported by test data [1, 2, 3, 8],

experimental data [3, 9], post-earthquake damage results called empirical data

[10, 11] and analytical results given by more or less refined numerical models

(most of the works cited in this article fall into this category). Moreover, in15

practice, three families of procedures coexist to evaluate seismic fragility curves:

Incremental Dynamic Analysis (IDA), Multiple Stripes Analysis (MSA) and

Cloud Analysis (CA). In most cases, these approaches are also coupled with

a parameterization of the fragility curve since, compared to non-parametric

estimations, parametric ones require small sample sizes. The lognormal model20

historically introduced in the SPRA framework [1, 2] is currently the most used

(see e.g. [12, 13, 14, 15, 16]), even if its validity is questionable (see e.g. [17, 18]).

In a few words, IDA is based on scaled accelerograms until the failure thresh-

old of interest. Fragility curves are then considered as empirical cumulative dis-

tribution functions. The main disadvantage of IDA is that excessive scaling can25

lead to signals with unrepresentative frequency content and duration, which can

imply biased results in nonlinear structural responses [19, 20]. Strong evidence

against scaling accelerograms is provided in [21] considering a more theoretical

approach. Although not recommended, this approach is still implemented (see

e.g. [15, 22]). MSA is based on multiple accelerograms selected or scaled to30

match specific IMs. Thus, for each IM value, the structural analyses provide

a fraction of the ground motions that cause failure. Finally, CA is a kind of
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generalization of MSA in the sense that it is based on a single accelerogram for

each IM value.

Depending on the context, different techniques can be employed to estimate35

the fragility curves. For example, for parametric estimation, we distinguish:

the method of moments (which is mainly used for the IDA-based methodol-

ogy), the Maximum Likelihood Estimation (MLE) by assuming the indepen-

dence of the observations (which can be questionable when empirical data are

concerned [10]), and the minimization of the Sum of Squared Errors (SSE). For40

non-parametric estimation, kernel smoothing can be used (see e.g. [11, 17]) as

well as other methodologies (see e.g. [18, 20]). Note that most of these strategies

are compared in [11, 17, 23] and [11] gives a clear presentation of the advantages

and disadvantages of each of them.

Beyond these methods, techniques based on machine learning can also be45

used, including: linear regression or generalized linear regression [11], classification-

based techniques [7, 24, 25], kriging [26], polynomial chaos expansion [27], ar-

tificial neural networks [25, 28, 29]. Some of them were coupled with adaptive

techniques to reduce the number of calculations to be performed [25, 26]. The

Bayesian framework is also relevant in this context since it allows either (i) to fit50

numerical models (metamodels, mathematical expressions based on engineering

judgments, etc.) to experimental data to directly estimate the fragility curves [9]

or (ii) to use empirical data or analytical data to fit the parametric models of

the fragility curves [10].

The major drawback of most of the work of the literature is that it does55

not address the issue of Confidence Intervals (CIs) related to the size of the

samples used, in order to reflect the estimation uncertainty. This question arises,

among others, when implementing computationally expensive numerical models

of complex structures because very little data are then available. When data

are assumed to be from an independent and identically distributed population,60

the bootstrap method can be used (see e.g. [12, 16, 30]). However, when little

data are involved, bootstrap samples can lead to unrealistic fragility curves

such as unit-step functions. As a result, this can lead to excessively large CIs.
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Moreover, when active learning techniques are implemented, the samples are

no longer independent and the bootstrap method cannot be used. It should65

be mentioned that several works have tackled the question of the convergence

of the estimations according to the number of available data, but only from

an empirical point of view since, in most cases, it seems that there is no other

possibility (see e.g. [18, 22, 25, 30, 31]).

For the modeling-based approaches, the aim of this work is to address the70

issue of optimized fragility curve estimations (i.e. based on few data) within

a rigorous mathematical framework. To do this, we propose and implement

an active learning methodology based on adaptive importance sampling [32]

in a statistical learning context [33], called Importance Sampling based Active

Learning (IS-AL).75

Adaptive importance sampling was introduced for classical Monte Carlo in-

tegral approximation in [34], and later studied in [35]. Moreover, adaptive

importance sampling is also used in industrial applications and have already

been discussed, implemented and tested for probability estimation of rare event

(e.g. failure state) in reliability analysis [36, 37]. By applying it to the para-80

metric estimations of the fragility curves, we show by asymptotic analysis and

numerical simulations that IS-AL allows for (i) a rapid convergence of the es-

timated fragility curve towards the true (unknown) fragility curve and (ii) a

rigorous quantification of the estimation uncertainty. It gives asymptotic CIs

and confidence ellipsoids for the quantities of interest as well as statistical tests85

to determine whether the asymptotic regime has been reached and whether

asymptotic CIs and confidence ellipsoids can be used.

The proposed methodology relies on parametric approximations of fragility

curves for any IM of interest. Although the validity of parametric models is

both questionable and difficult to assess (see e.g. [17, 18, 38]), some numerical90

experiments based on the seismic responses of simple mechanical systems - i.e

few degrees of freedom systems - suggest that the choice of an appropriate

IM makes it possible to reduce the potential biases between reference fragility

curves - that can be obtained by massive Monte Carlo simulations - and their
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parametric approximations. This point is illustrated in the application section 695

of this paper. Remember, however, that in practice, the selection of an optimal

IM is not a trivial matter (see e.g. [39, 40]) and Machine Learning techniques

can be used for this purpose (e.g. [25]), knowing that the references [41] and

[42] give optimality criteria for selection of such IM.

In this work, the methodology is applied to different test cases and compared100

with more traditional approaches such as MLE often used by practitioners (see

e.g. [10, 11, 12, 16, 17, 23, 30]). In order to avoid the scaling of the accelero-

grams, the stochastic model of modulated and filtered white-noise process de-

fined in [43] is used to enrich a set of real ground motion records selected in a

database using magnitude and distance criteria. This stochastic model is chosen105

because it well encompasses the temporal and spectral non-stationarities of real

seismic signals. Additionally, it has already been used in several works (see e.g.

[17, 25, 44]).

The paper is organized as follows. In section 2 the statistical framework

is defined for any parametric fragility curve model and any IM. Section 3 is110

dedicated to the presentation of the IS-AL algorithm applied to seismic fragility

curves estimation for the lognormal model. Section 4 summarizes the main

theoretical results of this work, which are proved in the appendices. These

results concern a criterion for evaluating the convergence of the IS-AL strategy

and the definition of asymptotic confidence ellipsoids for the fragility curve115

parameters. Section 5 presents the performance metrics used in this work to

compare IS-AL, random sampling and MLE strategies. Finally, in section 6, IS-

AL performance is assessed on analytical and industrial test cases of increasing

complexity.
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2. Parametric seismic fragility curve estimation: a statistical learning120

framework

2.1. General framework

We consider the following situation. Let X be a compact set of R, X a

X -valued random variable and S ∈ {0, 1} a random label. In SPRA studies

X = log IM – more generally we can define X = ψ(IM) where ψ is an increasing

function of IM such as a Box-Cox transform [45] – and S is the indicator variable

of the failure of the structure. The pair (X,S) has the probability distribution

P over X × {0, 1}:

P (dx, ds) =
[
µ(x)δ1(ds) + (1− µ(x))δ0(ds)

]
p(x)dx , (1)

where δj is the Dirac distribution at j, p is the marginal probability density

function (pdf) of X, and the fragility curve µ(x) is the conditional expectation

of S (conditional probability of failure or fragility curve):

µ(x) = E[S|X = x] . (2)

The aim of the paper is to estimate the curve µ(x) from datapoints (Xi, Si)
n
i=1

that may be independent and identically distributed with the distribution P

or that may be selected by a more appropriate scheme. As mentioned in the

introduction, it is a classical assumption to use a parametric form for the fragility

curve µ to tackle the need for time consuming mechanical simulations, we thus

consider the space of functions F = {fθ, θ ∈ Θ}, where x 7→ fθ(x) is a function

from R to [0, 1] for any θ and Θ ⊂ Rm. The goal is to minimize the quadratic

risk:

g(θ) = E[(µ(X)− fθ(X))2] , (3)

in order to find (provided it exists and is unique):

θ∗ = argmin
θ∈Θ

g(θ) . (4)
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Unfortunately, the observable data are (Xi, Si)
n
i=1, we do not observe directly

µ(Xi). But considering that:

E[(S − fθ(X))2] = E[(S − µ(X))2] + E[(µ(X)− fθ(X))2]

+ 2E[(µ(X)− fθ(X))(S − µ(X))]

= E[µ(X)(1− µ(X))] + E[(µ(X)− fθ(X))2] (5)

because E[S2|X] = E[S|X] = µ(X), we can observe that the minimization with

respect to θ of E[(S − fθ(X))2] is equivalent to the minimization of E[(µ(X)−
fθ(X))2]. Hence, we will consider the quadratic risk

r(θ) = E[(S − fθ(X))2] . (6)

In the context of classical learning, when we observe n datapoints (Xi, Si)
n
i=1

drawn independently from the probability distribution P (dx, ds) over X×{0, 1},
the expectation can be approximated by the empirical mean:

R̂n(θ) =
1

n

n∑

i=1

(Si − fθ(Xi))
2 . (7)

The corresponding passive estimator (the term passive is used to highlight the

absence of any particular sampling strategy) is then:

θ̂n = argmin
θ∈Θ

R̂n(θ). (8)

Conversely to classical learning, active learning aims at selecting the most

useful numerical experiments to be carried out in order to form the learning set.

In the passive strategy, the datapointsXi are sampled from the original probabil-125

ity distribution with pdf p drawn from a stochastic ground-motion model. In the

same way as in [32], we propose an active learning strategy, called Importance

Sampling based Active Learning (IS-AL). It consists to draw the datapoints Xi

from an instrumental probability distribution with pdf q that is chosen in an

adaptive way. In our context, it is straightforward to use a rejection method ap-130

plied to the stochastic ground-motion model in order to generate seismic loads

with a desired intensity measure distribution. Let us recall in fact that the la-

bel Si (which gives the failure state of the structure) is, in our case, expensive
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to obtain because it comes from complex numerical simulations of mechanical

structures while the artificial seismic signals are inexpensive to generate.135

The main objective of this procedure is to reduce the variance implied by

the empirical approximation of the quadratic risk r(θ). Importance Sampling

is a classical variance reduction technique for Monte Carlo estimation used in

structural reliability [37, 46]. If the (Xi)
n
i=1 are sampled with the pdf q and

(Si)
n
i=1 are the labels obtained from n calls to the mechanical model, then the

importance sampling estimator of the empirical quadratic risk is:

R̂IS
n (θ) =

1

n

n∑

i=1

p(Xi)

q(Xi)
(Si − fθ(Xi))

2. (9)

In the rest of the paper, we will denote by r(θ) = E(X,S)∼P [`θ(X,S)] with

θ 7→ `θ(x, s) a positive loss function for the sake of generalization. For the

numerical applications, only the case of the quadratic loss

lθ(x, s) = (s− fθ(x))2, (10)

will be considered.

2.2. Problem regularization for the parametric lognormal model

For applications to seismic fragility curves estimation, a classical space of

functions to approximate µ is F = {Φ( log(IM/α)
β ), (α, β) ∈ Θ} where Φ is the

cumulative distribution function of the standard Gaussian distribution [1], θ =

(α, β)T , and Θ a compact set of (0,+∞)2 (therefore m = 2). Compactness of

Θ is a common assumption in our applications. From an engineer perspective,

it is possible to bound α and β. However, in practice, the lower bound for β

may be reached by the different estimators. Consequently, inspired by Bayesian

inference theory [47], we introduce a regularization term Ω(θ;βreg) to tackle

this issue (we will take Ω(θ;βreg) = βreg/β below). The squared loss (7) is then

replaced by:

R̂n,reg(θ;βreg) =
1

n

n∑

i=1

`θ(Xi, Si) +
Ω(θ;βreg)

n
. (11)
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The derivation of the importance sampling estimator of the regularized square

loss is straightforward:

R̂IS
n,reg(θ;βreg) =

1

n

n∑

i=1

p(Xi)

q(Xi)
`θ(Xi, Si) +

Ω(θ;βreg)

n
. (12)

This regularization is motivated by the intrinsic difficulty of estimating the

standard deviation β of the lognormal model when β is small [48]. Fragility

curves with small β are hard to distinguish due to the convergence towards a140

degenerate 0− 1 fragility curve.

3. Principles of the IS-AL strategy

This section focuses on the choice of an optimal density q (section 3.1) as

well as on the description of the IS-AL strategy (section 3.2).

3.1. Choice of an optimal density q145

The heuristic used to find a good instrumental probability distribution family

is presented in [32]. The first idea would be to minimize the variance of the

importance sampling risk estimator (12):

Var
(
R̂IS
n,reg(θ)

)
=

1

n

{∫∫

X×{0,1}

p(x)

q(x)
`θ(x, s)

2P (dx, ds)− r(θ)2
}
, (13)

with respect to q within the set of all pdfs. If we denote by ˜̀2
θ(x) = E[`θ(X,S)2|X =

x] the squared loss averaged on S:

˜̀2
θ(x) = µ(x)`θ(x, 1)2 + (1− µ(x))`θ(x, 0)2 , (14)

the variance of the importance sampling risk estimator (12) can be expressed as

Var
(
R̂IS
n,reg(θ)

)
=

1

n

{∫

X

p(x)2

q(x)
˜̀2
θ(x)dx− r(θ)2

}
,

and we look for

q∗θ = argmin
q

∫

X

p(x)2

q(x)
˜̀2
θ(x)dx . (15)
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Using Jensen’s inequality [49, Theorem 3.12], we can solve the optimization

problem and we can find that the optimal sampling pdf is of the form

q∗θ(x) ∝ ˜̀
θ(x)p(x) ,

which depends on µ because ˜̀
θ depends on µ [Here and below ∝ means equality

up to a multiplicative constant]. Hence an approximation step is made by

replacing µ by fθ in (14):

˜̀2
θ(x) ≈ fθ(x)`θ(x, 1)2 + (1− fθ(x))`θ(x, 0)2 . (16)

Hence the instrumental density becomes:

qθ(x) ∝ p(x)
√
fθ(x)`θ(x, 1)2 + (1− fθ(x))`θ(x, 0)2 . (17)

Note that the instrumental distribution depends on θ, the parameter we aim

to estimate. Moreover, using IS-AL with the instrumental density qθ directly

could increase the variance if the density has light tails. We propose finally a

defensive strategy as illustrated in [50, 51]. The instrumental density becomes

qθ,ε(x) = εp(x) + (1− ε)qθ(x), (18)

with ε ∈ [0, 1]. ε is a mixing parameter, between the original marginal pdf p(x)

and the instrumental one qθ(x), meaning that one time out of 1/ε the element

is drawn from the pdf p(x). This distribution allows to bound the likelihood

ratio:
p(x)

qθ,ε(x)
=

1

ε+ (1− ε) qθ(x)
p(x)

<
1

ε
. (19)

Thus the defensive strategy bounds the variance even if the likelihood ratio

p(x)/qθ(x) is large.

3.2. Description of the IS-AL strategy

3.2.1. Algorithm

The procedure for computing the IS-AL estimator θ̂IA
n is described in Algo-150

rithm 1. Its main objective is to use an updated instrumental density qθ,ε at
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each step. Note that (i) the algorithm needs to start from a certain parameter

value θ̂IA
0 and (ii) we choose Ω(θ;βreg) = βreg/β for the regularization term in

equation (12).

Algorithm 1 Importance Sampling based Active Learning (IS-AL)

1. Choice of θ̂IA
0 (section 3.2.2) and estimations of βreg and ε (section 3.2.3).

2. For i = 1, . . . , n:

(a) Draw Xi from the distribution with pdf qθ̂IAi−1,ε
.

(b) Call the mechanical simulation at point Xi to get label Si

(c) Compute

θ̂IA
i = argmin

θ∈Θ
R̂IA
i,reg(θ;βreg), (20)

R̂IA
i,reg(θ;βreg) =

1

i

i∑

j=1

p(Xj)

qθ̂IAj−1,ε
(Xj)

`θ(Xj , Sj) +
βreg

nβ
. (21)

Additionally, a convergence criterion is presented in section 4.2 and an155

asymptotic confidence ellipsoid for θ∗ centered on θ̂IA
n is defined by equation (36).

3.2.2. Initialization and choice of θ̂IA
0

Regarding the initialization, as expected, the closer θ̂IA
0 is from the true

parameter θ∗ the faster IS-AL is in asymptotic normal regime. A naive approach

is to get a small sample of size n0 (e.g. n0 = 20) (Xi, Si)
n0
i=1 from the original160

marginal density p of X and to compute the passive learning estimator θ̂n0

(equation (8)). This crude estimation can be used as the initial parameter θ̂IA
0

to start IS-AL.

A better approach is to consider a metamodel - in the broad sense - of the

mechanical simulation. As often used by practitioners, a numerical resolution165

based on a modal base projection can be implemented to get an estimate of the

fragility curve corresponding to the linear behavior of the structure of interest.

It is then possible to get a huge amount of datapoints of the reduced model

(e.g. an independent and identically distributed sample of nred = 103–105 pairs
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(Xi, Sred,i)
nred
i=1 where Xi is sampled with the original pdf p and Sred,i is the170

associated label obtained with the reduced model). The initial parameter θ̂IA
0

is then chosen to be equal to θ̂nred
. Statistical metamodels could also be used

such as Gaussian Processes [52] or Support Vector Machines [25].

In our applications reduced models are only used to give us prior knowledge

on the fragility curve shape, encapsulated in the initial parameter of the IS-AL175

procedure. We then initialize IS-AL with a small sample of 20 datapoints with

the instrumental density qθ̂IA0 ,ε (equation (18)). In other words, in Step 2 of

Algorithm 1, we do not update θ̂IA
i during the first 20 steps.

3.2.3. Estimations of βreg and ε

The regularization parameter, called β̂IA
reg, is determined by minimizing the180

Leave One Out error on the initialization sample (see previous section).

Regarding the choice of the defensive parameter value ε, it is cumbersome

and there is no direct methodology for its estimation. Moreover, its value de-

pends strongly of the problem studied as shown in [53]. Nevertheless, in section

6.2, we propose a benchmark in order to evaluate the "optimal" value of ε for185

the class of structures considered in this study.

4. Theoretical results

This section summarizes the main theoretical results of this work. Section 4.1

addresses the issue of the consistency and asymptotic normality for the IS-AL

estimator. Then, in section 4.2, a convergence criterion is proposed in order190

to be able to use the asymptotic confidence ellipsoids defined in section 4.3. A

discussion is finally proposed about the practical use of the convergence criterion

in section 4.4.

4.1. Consistency and asymptotic convergence of the IS-AL estimator

We derive some theoretical properties for the estimator θ̂IA
n , consisting in195

its consistency towards the parameter θ∗ defined by (4) and its asymptotic

normality by adapting several proofs of [54] about asymptotic optimality of
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adaptive importance sampling. Detailed proofs of the following results are given

in the Appendix. The proofs are given in a more general context of empirical

risk minimization, instead of IS-AL specifically. Indeed, we consider that these200

theoretical results can be used in a broader manner for other kind of applications.

We first prove in Appendix A the consistency of the IS-AL estimator θ̂IA
n

using Algorithm 1:

θ̂IA
n −−−−−→

n→+∞
θ∗ in probability . (22)

Then, we prove in Appendix B the convergence of
√
n(θ̂IA

n −θ∗) to a Gaussian

random variable with mean zero and covariance matrix:

Gθ∗,ε = r̈(θ∗)
−1V (qθ∗,ε)(r̈(θ∗)

−1)T , (23)

where

V (qθ∗,ε) = E
[

p(X)

qθ∗,ε(X)
`θ∗(X,S)∇fθ∗(X)∇fθ∗(X)T

]
, (24)

and r̈(θ∗) is the Hessian of r(θ) at θ∗.

A straightforward corollary of equation (23) is that, if Gθ∗,ε is nonsingular

(which we assume from now on), then for any ξ ∈ (0, 1):

P
(
n(θ̂IA

n − θ∗)TG−1
θ∗,ε

(θ̂IA
n − θ∗) < qξχ2(m)

)
−−−−−→
n→+∞

ξ , (25)

with qξχ2(m) the ξ-quantile of the χ
2(m) distribution (remember that θ = (α, β)T

and m = 2 for the lognormal model). Remark that the matrix Gθ∗,ε depends

on the unknown parameter θ∗. It is thus possible to use a plug-in estimator:

Ĝn = ̂̈rn(θ̂IA
n )−1V̂n(θ̂IA

n )(̂̈rn(θ̂IA
n )−1)T , (26)

with
̂̈rn(θ) =

1

n

n∑

i=1

p(Xi)

qθ̂IAi−1,ε
(Xi)

῭
θ(Xi, Si) , (27)

V̂n(θ) =
1

n

n∑

i=1

p(Xi)
2

qθ,ε(Xi)qθ̂IAi−1,ε
(Xi)

˙̀
θ(Xi, Si) ˙̀

θ(Xi, Si)
T , (28)

and ῭
θ(x, s) the Hessian of `θ(x, s) with respect to θ. We have:

Ĝ−1
n → G−1

θ∗,ε
in probability. (29)
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The proof is in Appendix C. Using asymptotic normality of θ̂IA
n , we can show

that: n(θ̂IA
n − θ∗)TG−1

θ∗,ε
(θ̂IA
n − θ∗) → χ2(m). Using Slutsky’s lemma, we have

the following convergence in distribution:

n(θ̂IA
n − θ∗)T Ĝ−1

n (θ̂IA
n − θ∗) −−−−−→

n→+∞
χ2(m) . (30)

4.2. Convergence criterion using a statistical hypothesis test

The estimation of the generalization error without a validation set is often

based on Cross Validation. When IS-AL is used, the data points (Xi, Si) are

no longer independent and identically distributed. We propose to use a con-

vergence criterion that ensures that asymptotic normality is reached. Consider

two independent datasets D1 = (Xi,1, Si,1)ni=1 and D2 = (Xi,2, Si,2)ni=1 gener-

ated with IS-AL. Let R̂IA
n,reg,j be the weighted loss for Dj for j = 1, 2 defined as

in (20). Denote:

θ̂IA
n,j = argmin

θ∈Θ
R̂IA
n,reg,j(θ;βreg), j = 1, 2 .

Then we have:

√
n(

˙̂
R

IA

n,reg,1(θ̂IA
n,2;βreg)− ˙̂

R
IA

n,reg,2(θ̂IA
n,1;βreg))

L−→ N (0, 8V (qθ∗,ε,
˙̀
θ∗)) (31)

as n→ +∞. Denote

Ŵn =
n

8
(

˙̂
R

IA

n,reg,1(θ̂IA
n,2;βreg)− ˙̂

R
IA

n,reg,2(θ̂IA
n,1;βreg))T V̂ −1

n,12(
˙̂
R

IA

n,reg,1(θ̂IA
n,2)− ˙̂

R
IA

n,reg,2(θ̂IA
n,1)),

(32)

V̂n,12 =
1

2

(
V̂n,1(θ̂IA

n,1) + V̂n,2(θ̂IA
n,2)
)
, (33)

with V̂n,j the empirical estimator in equation (28) for the j-th IS-AL dataset

Dj for j = 1, 2.205

By equation (31) and by Slutsky’s lemma, Ŵn converges weakly to χ2(m).

It is, therefore, possible to define a convergence criterion inspired by statistical

test theory to check the asymptotic normality of θ̂IA
n . Our convergence criterion

is equivalent to the hypothesis test:

(H0) : Ŵn follows χ2(m) against (H1) : Ŵn does not follow χ2(m) .

(34)
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For ξ ∈ (0, 1), we then consider the statistical test which rejects (H0) if:

Ŵn > q
χ2(m)
1−ξ , (35)

where qχ
2(m)

1−ξ denotes the (1−ξ)-quantile of the χ2(m) distribution. Hence, this

statistical test is of asymptotic level ξ.

4.3. Asymptotic confidence ellipsoid

Thanks to the equation (30), it is possible to construct an asymptotic con-

fidence ellipsoid of level ξ ∈ (0, 1) defined by:

E IA
n,ξ = {θ : n(θ − θ̂IA

n )T Ĝ−1
n (θ − θ̂IA

n ) < q
χ2(m)
1−ξ } , (36)

with:

P(θ∗ ∈ E IA
n,ξ) −−−−−→

n→+∞
ξ.

Because the convergence criterion Ŵn indicates when the estimator follows

the asymptotic Gaussian distribution, it also indicates at which sample size n210

the value P(θ∗ ∈ E IA
n,ξ) is close to its theoretical value ξ.

4.4. Discussion about the practical use of the convergence criterion

An apparent drawback of this convergence criterion is that it doubles the

computational cost, due to the necessity of having two independent IS-AL esti-

mators θ̂IA
n,1 and θ̂IA

n,2 to compute Ŵn. It is, however, possible to use the estimator

θ̂IA
n,12 =

θ̂IA
n,1 + θ̂IA

n,2

2
, (37)

which has an asymptotic variance that is half the one of θ̂IA
n,1 and θ̂IA

n,2. Indeed,

it is straightforward that
√
n(θ̂IA

n,12 − θ∗) converges in distribution to a zero

mean Gaussian random variable with covariance matrix Gθ∗,ε/2. It is, therefore,

possible to define an asymptotic confidence ellipsoid which exploits all the data

points used to build the estimator θ̂IA
n,12 of θ∗:

E IA
n,12,ξ = {θ : 2n(θ − θ̂IA

n,12)T Ĝ−1
n,12(θ − θ̂IA

n,12) < q
χ2(m)
1−ξ },

with Ĝn,12 = ̂̈r−1

n,12V̂n,12(̂̈r−1

n,12)T , V̂n,12 defined by (33), ̂̈rn,12 = 1
2
̂̈rn,1(θ̂IA

n,1) +

1
2
̂̈rn,2(θ̂IA

n,2) and ̂̈rn,j defined as (27) with the dataset Dj , j = 1, 2.

15



5. Performance evaluation of the IS-AL strategy compared to the215

random sampling and MLE strategies

This section explains how to assess the performance of IS-AL with respect

to Random Sampling (RS) and MLE strategies. In section 5.1, RS and MLE

principles are briefly summarized. Performance metrics inspired from [55, 56]

to check the quality of IS-AL strategy are detailed in section 5.2. Finally,220

the statistical procedure used to assess the quality of the IS-AL asymptotic

confidence ellipsoid compared to that of a classical approach such as MLE is

given in section 5.3.

5.1. RS and MLE principles

RS strategy consists in applying the IS-AL algorithm with the proposal

probability density q being the marginal probability density p of the intensity

measure. This boils down to classical empirical risk minimization for supervised

learning. The RS estimator θ̂RS
n is then defined by:

θ̂RS
n = argmin

θ∈Θ
R̂RS
n,reg(θ;βreg), (38)

R̂RS
n,reg(θ;βreg) =

1

n

n∑

i=1

`θ(Xi, Si) +
βreg

nβ
. (39)

225

As mentioned in the introduction, MLE is a classical estimation method in

the field of seismic probabilistic risk assessment and fragility curve estimation

(see e.g. [10, 11, 12, 16, 17, 23, 30]). It is defined by the estimator θ̂MLE
n that

maximizes the likelihood given a dataset (Xi, Si)
n
i=1 that is sampled at random

from the original marginal density p of X:

θ̂MLE
n = argmax

θ∈Θ

n∑

i=1

Si log(fθ(Xi)) + (1− Si) log(1− fθ(Xi)). (40)

The initializations of the RS and MLE algorithms are based on 20 data

points drawn at random from the original distribution p. For the RS algorithm,

the regularization parameter, called β̂RS
reg, is computed using Leave One Out

cross validation as for the IS-AL algorithm.
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5.2. Performance metrics for the numerical benchmarks230

This section aims to provide performance metrics, inspired from [55, 56], to

assess IS-AL performances, in comparison with the RS and MLE strategies, on

test cases.

5.2.1. Performance metrics based on the training errors

For the IS-AL strategy, the training error is called R̂IA
n = R̂IA

n,reg(θ̂IA
n ;βIA

reg)235

and is defined by equation (21).

For the RS and MLE strategies, the training errors are respectively called

R̂RS
n = R̂RS

n,reg(θ̂RS
n ;βRS

reg) and R̂MLE
n = R̂MLE

n,reg(θ̂MLE
n ;βRS

reg), and are defined by :

R̂•n,reg(θ;βRS
reg) =

1

n

n∑

i=1

`θ(Xi, Si) +
βRS

reg

nβ

where • is for RS or MLE. Note that for MLE the penalization β̂RS
reg is only used

to define similar training errors as for IS-AL and RS algorithms, in order to

compare the same quantity.

Thus, the performance metrics are :240

• the Relative Standard Deviation

RSD•n =

√
V[R̂•n]

E[R̂•n]
, (41)

where • is for IA, RS and MLE.

• the Relative Bias

RB•n =
|b− E[R̂•n]|

b
, (42)

where • is for IA, RS and MLE, and b = E[µ(X)(1− µ(X))].

• The efficiency

ν•n =
V[R̂•n]

V[R̂IA
n ]

, (43)

where • is for RS and MLE. A value of ν•n > 1 shows that IS-AL has a

smaller loss variance than RS or MLE.
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The above metrics are empirically calculated using R replications of the245

three procedures (IS-AL, RS and MLE) and b is estimated using a massive

Monte Carlo estimator of µ. In practice, this is only possible when the numerical

models are not numerically expensive. This is the case for the first two numerical

test cases addressed in Section 6, but not for the third industrial case.

5.2.2. Performance metrics based on the testing errors250

Additionally, we define the testing error by:

Q̂•n,reg(θ;βreg) =
1

nt

nt∑

i=1

`θ(X
(t)
i , S

(t)
i ) +

βreg

ntβ
,

where (X
(t)
i , S

(t)
i )nti=1 is a testing set (independently and identically distributed

with the original distribution P ). The associated performance metrics are cal-

culated by replacing R̂•n,reg(θ;βreg) with Q̂•n,reg(θ;βreg) (also called Q̂•n in the

following) as defined in section 5.2.1.

5.3. Benchmark on the confidence ellipsoids IS-AL and MLE255

This section aims to propose a procedure to evaluate the quality of the IS-

AL asymptotic confidence ellipsoid, E IA
n,ξ, compared to that of the MLE, EMLE

n,ξ .

This procedure is based on the use of R replications of the IS-AL and MLE

algorithms, as for the evaluation of the performance metrics. So, we first define

the empirical estimator of P
(
θ∗ ∈ E IA

n,ξ

)
(resp. P

(
θ∗ ∈ EMLE

n,ξ

)
), namely the260

Coverage Probability (CP), in order to numerically (i) verify the definitions of

the ellipsoids and (ii) evaluate their convergences with respect to the size n

of the samples. Then, to quantify the effectiveness of the IS-AL strategy on

reducing the variance of the estimate of the fragility curve, compared to that of

the MLE, we define and compare their Confidence Ellipsoid Volumes (CEVs).265

Section 5.3.1 concerns the definitions of the confidence ellipsoid and the

coverage probability for MLE. As the IS-AL confidence ellipsoid is defined in

section 4.3, section 5.3.2 deals only with the associated CP. Finally section 5.3.3

defines the CEVs for both procedures.
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5.3.1. Confidence ellipsoid and coverage probability for MLE270

In order to define the asymptotic confidence ellipsoid for the MLE and to

compute the associated CP, we use (i) the asymptotic normality of the MLE

estimator [57] and (ii) the independence property of the samples that allows the

use of the bootstrap method.

We first consider R replications of MLE estimator θ̂MLE
n for different sample

size n and build B bootstrap samples of size n for each replication in order to

compute a bootstrap covariance:

V̂ MLE
n,r =

1

B

B∑

b=1

n(θMLE,∗
b,r − θ̂MLE

n,r )(θMLE,∗
b,r − θ̂MLE

n,r )T , (44)

where θ̂MLE
n,r is the MLE estimator for the r-th replication of size n and θMLE,∗

b,r the275

bootstrap MLE estimator for the b-th bootstrap sample of the r-th replication.

Thus, the bootstrapped confidence ellipsoid for MLE is defined by:

EMLE,r
n,ξ = {θ : n(θ − θ̂MLE

n,r )T (V̂ MLE
n,r )−1(θ − θ̂MLE

n,r ) ≤ qχ
2(m)

1−ξ } , (45)

while the bootstrap CP writes:

CPMLE,r
n =

1

R

R∑

r=1

1θ∗∈EMLE,r
n,ξ

. (46)

5.3.2. Coverage probability for IS-AL

The IS-AL asymptotic confidence ellipsoid E IA
n,ξ is defined in section 4.3 by

equation (36). So, as for MLE, the associated CP is computed by considering

R replications of IS-AL, namely:

CPIA,r
n =

1

R

R∑

r=1

1θ∗∈EIA,rn,ξ
,

where E IA,r
n,ξ is the asymptotic confidence ellipsoid of the r-th replication of the

IS-AL procedure of size n.280
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5.3.3. Confidence ellipsoid volumes for IS-AL and MLE

A qualitative criterion to measure the sharpness of a confidence ellipsoid is

its volume [58]. So, to evaluate the effectiveness of the IS-AL strategy on the

reduction of the variance of the fragility curve estimations, we define the CEVs,

for respectively the MLE and IS-AL strategies, as follows:

CEVMLE,r
n = det

(
V̂ MLE
n,r

n

)
, (47)

and

CEVIA,r
n = det

(
Ĝn,r
n

)
, (48)

where Ĝn,r is the estimated covariance matrix (26) of the r-th replication of

IS-AL procedure of size n.

6. Numerical results

To evaluate IS-AL efficiency, a numerical benchmark has been performed285

with three test cases with increasing complexity:

1) a synthetic test case with known fragility curve and probability distribution

of the seismic log-intensity measure X,

2) a nonlinear elasto-plastic oscillator with kinematic hardening subjected to

synthetic signals generated from the modulated and filtered white-noise ground-290

motion model [43], as in [25],

3) an industrial test case of a nuclear facility’s pipeline-system, submitted to

the same artificial signals.

For test cases 2 and 3, 97 acceleration records selected from the European

Strong Motion Database [59] in the domain 5.5 < M < 6.5 and R < 20km -295

whereM is the magnitude and R the distance from the epicenter - are considered

in order to identify the parameters of the ground-motion model. 105 realizations

of synthetic signals are then generated to form the unlabeled pool.

The oscillator test case aims to evaluate the effectiveness of the IS-AL strat-

egy before its application to an industrial test case which is numerically much300
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more costly. Moreover, since it well represents the essential features of the non-

linear responses of a large variety of real structures subjected to earthquakes,

this test case allows to determine the value of the hyperparameter ε - thanks to

a numerical benchmark - because there is no ad hoc procedure to do this.

6.1. Synthetic test case305

Here we benchmark our methodology while having full knowledge of the true

fragility curve. We generate 30,000 datapoints (Xi, Si) with the fragility curve

µ(x) = Φ(x−log(α∗)
β∗

) with (α∗, β∗) = (0.3, 0.4). The original marginal distribu-

tion of X is here a Gaussian distribution with mean log
(
α∗
5

)
and variance 1.69.

The parameters have been chosen so that the data generated are qualitatively310

close to the nonlinear oscillator test case presented in section 6.2. The unla-

beled pool consists of 20,000 datapoints Xi. 10,000 datapoints (Xi, Si) will be

our validation set for testing error estimation, using crude Monte Carlo.

Figure 1 shows (i) the target fragility curve µ in dashed red line, (ii) a kernel

density estimation of the density p based on the whole dataset in green and315

(iii) a kernel density density estimation q of the 120 datapoints Xi obtained by

IS-AL in red.

−8 −6 −4 −2 0
X

0.0

0.2

0.4

0.6

0.8

1.0 µ

p

q

Figure 1: Synthetic test case with lognormal fragility curve with parameters (α∗, β∗) =

(0.3, 0.4) and X ∼ N (α∗
5
, 1.69). Comparison of the original marginal density p of X with

the empirical density q of the n = 120 datapoints Xi obtained by IS-AL.
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Figure 2 shows the training and testing errors for R = 500 replications of

the IS-AL, RS and MLE algorithms. The algorithms are initialized with 20

datapoints and n = 100 datapoints are extracted from the unlabeled pool with320

the three procedures. The regularization parameters βreg ∈ (10−4, 10−1) were

determined by cross validation with the 20 datapoints used for initialization

for each replication of the IS-AL and MLE strategies. We also use a defensive

parameter value ε of 10−3 (see section 6.2 for justification).
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Figure 2: Results of the numerical benchmark for the synthetic test case: the thick lines

represent the mean loss for R = 500 replications, the shaded areas represent the ranges

between the quantiles at 90% and 10% of the 500 replications of the IS-AL, RS and MLE

procedures. For this case, the bias is known and is equal to E[µ(X)(1− µ(X))] ' 0.032.

As depicted by Figure 2 and Table 1, IS-AL does not seem to reduce the325

training error. This result is normal because IS-AL selects seisms whose intensity

measures maximize ˜̀
θ, which can be seen as a marginalized training loss variance

of the observations. In other words, as illustrated in Figure 1 with the density

q(x), IS-AL selects "difficult" points - typically values of x for which µ(x) takes

values between 0 and 1 - and therefore the training error can be large because330
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Table 1: Performance metrics for the synthetic test case for n = 120

Train Test

• RS MLE IS-AL RS MLE IS-AL

RSD•120 (%) 38 36 34 12 9 8.5

ν•120 1.2 1.2 × 2.3 1.1 ×
RB•120 (%) 8.6 4.2 5 13 9 6.7

it is not representative of the generalization error as the testing one. RS, MLE

and IS-AL strategies really distinguish themselves on the testing error, which is

smaller for IS-AL. Moreover, IS-AL quickly converges to the known bias equal

to E[µ(X)(1 − µ(X))] ' 0.032. In comparison with RS and MLE strategies,

the variance of IS-AL is smaller after 120 iterations: νMLE
120 is smaller than νRS

120,335

meaning that MLE is competitive with IS-AL in this synthetic case.
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Figure 3: Results of the numerical benchmark for the synthetic test case: empirical distribu-

tions of the parameters α and β are represented by ranges between the empirical 10% and

90% quantiles of 500 replications. The shaded blue and red areas correspond respectively to

MLE and IS-AL. The dashed green lines correspond to the true parameters α∗ and β∗.

Figure 3 compares the distributions of the parameters α and β for several

sample sizes using the 500 replications of MLE and IS-AL estimators and they

are similar when n > 100. Indeed, the statistical model is in this case well

specified (i.e. failure events follow a Bernoulli distribution with a lognormal340

probability of failure) and thus MLE is supposed to perform well as shown

in [57]. Note that up to n = 80, the MLE strategy can produce degenerate
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fragility curves because β ' 0. The IS-AL algorithm avoids this pitfall due to

the regularization parameter.

6.2. A nonlinear oscillator345

This test case aims to validate the overall strategy developed in this work

on a simple but representative case, because this is not possible for complex

structures like the one in section 6.3. This section is therefore particularly

comprehensive, from the initialization of the IS-AL algorithm to the estimations

of the fragility curves, via the choice ε and the numerical verification of the350

theorems.

6.2.1. Presentation of the oscillator

This second test case - illustrated in Figure 4 - relates to a single degree

of freedom elasto-plastic oscillator which exhibits kinematic hardening. It has

been used in previous studies such as [18, 25]. For a unit mass m, its equation

of motion is:

z̈(t) + 2ζωLż(t) + fNL(t) = −s(t) ,

with s(t) an artificial seismic signal. ż(t) and z̈(t) are respectively the velocity

and the acceleration of the mass while ζ is the damping ratio and ωL the pulsa-

tion of the oscillator. The nonlinear force fNL is governed by two parameters:355

the post-yield stiffness, a, and the yield displacement, Y .

With this model, the quantity of interest is the maximum displacement of the

mass, D = maxt∈[0,T ] |z(t)|, where T is the duration of the seismic excitation.

The failure state is then defined by the {0, 1}-valued variable S = 1(D>C), where

C = 2Y is chosen to be approximately the 90% quantile of the maximal linear360

displacement of the unlabeled pool of size 105.

In order to check the performances of the IS-AL algorithm, the unlabeled

training set consists in 9.104 seismic signals and the testing set is composed of

104 signals. The benchmark study consists in R = 500 replications with n = 120

sampled seismic signals using IS-AL (that includes the initial 20 points) and 120365

for the RS and MLE strategies.
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Figure 4: Elasto-plastic mechanical oscillator with kinematic hardening, with parameters

fL = 5 Hz and ζ = 2%. The yield limit is Y = 5.10−3 m and the post-yield stiffness is 20%

of the elastic stiffness, hence a = 0.2.

6.2.2. Initialization of the IS-AL procedure

In this test case, for IS-AL initialization, we use the underlying elastic os-

cillator as a cheap model. The initialization parameter θ̂IA
0 is approximated by

θ̂RS
105 (equation (8)) using the 105-sized dataset. In addition, the PGA is first370

considered as IM. Even if the PGA is not known to be the best indicator, doing

so helps to verify the relevance of the methodology in a "less favorable" case.

Note that the influence of the IM on the results is discussed in section 6.2.8. As

shown in Figure 5, the parameter θ̂IA
0 could be considered "close to" the true

parameter θ∗. Thus, 20 datapoints are queried on the nonlinear oscillator with375

the instrumental density qθ̂IA0 ,ε (equation (18)) before launching the adaptive

strategy.

6.2.3. Choice of ε

As mentioned in section 3.2.3, there is no direct methodology for the choice

of the ε value. One thus benefits from this simple test case to implement a380

numerical benchmark in order to obtain a reasonable value of ε for the class of

structures for which the oscillator represents the global nonlinear behavior under

seismic excitation. This benchmark consists in evaluating the IS-AL efficiency

with respect to the RS strategy, νRS
n (equation (43)), as a function of ε when

IM = PGA and n = 120. Results are given in Table 2.385

They show that νRS
120 does not change between ε = 10−2 and ε = 10−3. νRS

120

is smaller when ε = 10−1 meaning that this value is too conservative because
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Figure 5: Lognormal fragility curves of the linear elastic and the nonlinear oscillators obtained

by using least squares minimization on the total 105 synthetic seismic signals of the dataset.

Table 2: Defensive parameter ε influence on νRS
120 when IM = PGA.

ε Train Test

10−1 1.3 1.2

10−2 2.1 3.9

10−3 2.2 3.3

there are too many elements drawn from the pdf p. Accordingly, all the results

will presented hereafter with a defensive parameter ε = 10−3. This implies

that the defensive strategy plays essentially no role here, but gives theoretical390

convergence guarantees.

6.2.4. Performance metrics

Figure 6 compares the IS-AL, MLE and RS training and testing errors as

functions of n. The mean training loss for the 500 replications is higher for IS-AL

than for RS. Indeed, the instrumental density is chosen to sample seismic signals395

that maximize the loss variance, resulting in a high training error. Moreover, the

mean testing error of IS-AL is also significantly smaller than for RS and quickly

converges to the "minimal" error related to the term E[µ(X)(1− µ(X))] in (5).
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This is shown in Table 3 by a significantly smaller value of relative bias RBIA
120

(1%) for the testing error than with RS (12%). With respect to the MLE, one400

cannot make equivalent remarks insofar as the two errors are "artificial" (see

definitions in section 5.2.1) and only plotted for illustration purpose. However,

Table 3 shows that the IS-AL strategy has overall better performance than the

other two strategies.
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Figure 6: Results of the numerical benchmark for the elasto-plastic mechanical oscillator with

the PGA as IM (same notations as for the synthetic test case). The empirical distributions of

the training and testing errors are represented by the range between the empirical 90% and

10% quantiles of the 500 replications.

6.2.5. Empirical distributions of the parameters α and β405

Figure 7 shows the empirical distributions of the parameters α and β for sev-

eral sample sizes using 500 replications of MLE and IS-AL estimators. Remark

in this case that IS-AL performs better than the MLE by reducing the variances

of the parameters’ estimators. The effects are particularly visible for the pa-

rameter β, when the active learning strategy and the regularization play their410
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Table 3: Performance metrics for the elasto-plastic oscillator for n = 120 when IM = PGA.

Train Test

• RS MLE IS-AL RS MLE IS-AL

RSD•120 (%) 47 65 30 19 14 11

ν•120 2.2 5.9 × 3.3 1.8 ×
RB•120 (%) 11.1 7.6 5 12 6.4 1

role in reducing the standard deviations of the estimators without increasing

bias. Indeed, MLE performances are downgraded when the model is not well

specified [57]. We remark that parameter estimation is quite unstable for IS-AL

for low sample sizes. Indeed, the number of failure events for low sample sizes

is often 0, which makes impossible a correct estimation of the fragility curve’s415

parameters.
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Figure 7: Results for the elasto-plastic mechanical oscillator with the PGA as IM: the empir-

ical distributions of the parameters α and β are represented by the empirical 90% and 10%

quantiles of the 500 replications and correspond to the shaded blue and red areas for MLE

and IS-AL, respectively. The dashed green lines correspond to the values α∗ and β∗, which

have been here approximated by α̂N , β̂N for N = 105.

Figure 8 helps to visualize how IS-AL reduces the uncertainty of the fragility

curve estimation: IS-AL is designed to sample seismic ground motions in the

transition zone between 0 and 1 of the fragility curve, this phenomenon is re-

sponsible for the uncertainty reduction.420
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Figure 8: Comparison of the original marginal density p of PGA with the estimated density q

of sampled PGA using IS-AL with n = 100 datapoints for the nonlinear oscillator. Fragility

curve is approximated by µ(PGA) = Φ(
log(PGA/α̂N )

β̂N
) for N = 105.

6.2.6. Convergence criterion

Figure 9 shows the value of the test statistics Ŵn (see section 4.2) for two

independent IS-AL realizations. This result expresses that the IS-AL algorithm

achieves asymptotic normality from n = 100 because the value of Ŵn is less

than the quantile 90% of the distribution χ2(2).425
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Figure 9: Values of the test statistic Ŵn for two independent IS-AL realizations,

when IM = PGA.
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6.2.7. CPs and CEVs

Figure 10 shows the CP values for the nonlinear oscillator for a training size

n between 100 and 500 for the fragility curve estimation by MLE or IS-AL.

The true parameter θ∗ for this case has been approximated by θ̂N for N = 105.

The numerical results show that the CP values are close to the theoretical and430

nominal value of 90%, which validates the theoretical results of the section 4.

100 200 300 400 500
Training size n

60

80

100

C
P

(%
)

MLE

IS-AL

Figure 10: CP values (for the confidence ellipsoid with level 1 − ξ = 0.9 for θ) as a function

of the training size n of IS-AL and MLE when IM = PGA. R = 100 IS-AL replications are

used to estimate the CP for each training size n. B = 200 bootstrap samples are generated

for the MLE to build the confidence ellipsoid at level 1− ξ = 0.9 for n between 200 and 500,

B = 300 bootstrap samples are generated for n = 100 due to numerical instabilities.

Figure 11 shows the CEVs for the MLE and IS-AL estimators. For R = 200

replications, these results show that for all the values of n considered CEVIA
n <

CEVMLE
n . This indicates that MLE and IS-AL succeed in generating confidence

ellipsoids that have the required coverage probability but MLE does so by gen-435

erating ellipsoids that are much larger than the ones generated by IS-AL. We

can then conclude that IS-AL is much more efficient.

We emphasize that the convergence criterion Ŵn, illustrated in Figure 9,

gives us at which sample size the IS-AL reaches asymptotic normality and thus

at which sample size asymptotic confidence ellipsoid can be used. Even though440

CPIA
100 is less than the theoretical 90%, 70% is considered as acceptable in prac-
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Figure 11: CEVs (for the confidence ellipsoid with level 1− ξ = 0.9 for θ) as a function of the

training size n for IS-AL and MLE strategies when IM = PGA. The points are the medians

over the R = 200 replications while the vertical lines are the ranges between the 10% and 90%

quantiles.

tice.

6.2.8. Empirical distributions of the fragility curves and influence of the IM

value

The choice of the seismic IM is crucial for the accuracy of fragility curves es-445

timates, especially when parametric models are concerned. So, empirical distri-

butions of the fragility curves for IS-AL and RS methods are shown in Figure 12

when IM = PGA, and in Figure 13 when IM is the spectral acceleration (SA) at

5 Hz and 2% damping ratio. The parametric fragility curves estimated with a

dataset of 104 seismic ground motions, are also shown in order to validate both450

the model choice and the uncertainty reduction provided by IS-AL.

With the PGA, a bias between the lognormal fragility curve and the k-

means nonparametric fragility curve, called µMC , can be seen in Figure 12.

This phenomenon could be explained by the small correlation between maximal

displacement of the oscillator during the seismic excitation and the PGA, which455

conveys small information about the seismic ground motion [40].

The results presented in Figure 13 show a reduction of the bias between the
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Figure 12: Empirical distribution of the fragility curves estimated by RS and IS-AL for the

nonlinear oscillator. The dashed orange line and solid green line are respectively the paramet-

ric estimation µ using 104 seismic ground motions and the k-means nonparametric estimation

of the fragility curve using 105 seismic ground motions µMC . The red and blue shaded ar-

eas correspond respectively to the 90% to 10% quantile ranges for the fragility curve dataset

computed with IS-AL or RS. Remark that the nonparametric fragility curve is only plotted

for PGA < 10m/s2 due to the lack of seismic signals with PGA above that threshold.

nonparametric and the parametric fragility curve. This illustrates that, for the

class of structures and for the seismic signal generator considered in this study,

the parametric lognormal model has a better fit with the reference SA-based460

fragility curve than with reference PGA-based fragility curve.

6.2.9. Confidence interval for parametric fragility curves : towards the engi-

neering practice

After assessing the validity of the asymptotic confidence ellipsoid for IS-

AL thanks to the computation of the CP values in section 6.2.7, we can use465

the asymptotic Gaussian distribution to construct the CI of the parametric

fragility curve, as in the engineering practice. Thus, using a single run of the

IS-AL procedure, we estimate the asymptotic covariance matrix Ĝn and sample

fragility curve parameters from the asymptotic distribution N
(
θ̂IA
n , Ĝnn

)
. For

the sake of comparison, we also construct the CI on a single replication of the470

MLE procedure using the bootstrap technique.
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Figure 13: Empirical distributions of the fragility curves of RS and IS-AL for the nonlinear

oscillator when IM is the spectral acceleration at 5 Hz and 2% damping ratio. The notations

are the same as those in the Figure 12. Remark that the bias between the nonparametric

fragility curve µMC and the parametric fragility curve µ is smaller than the one obtained

when using the PGA as the intensity measure (compare with Figure 12).

Figure 14 represents the CIs for the fragility curve at level 90% for IS-AL

and MLE strategies, for a single replication of size n = 200 of each procedure.

Remark that the fragility curves estimated by MLE can be degenerated (i.e. as

a unit step function), which implies that the CI for MLE is too conservative.475

This is consistent with the results of the figures 7 and 11.

6.2.10. Synthesis

In this section, we have shown that the IS-AL-based methodology is (i)

efficient to reduce the variance of the fragility curve estimation and (ii) can

be applied regardless of the IM of interest. However, in practice, it is more480

suitable to use an IM as correlated as possible to the response of the structure

to minimize potential biases due to the use of a parametric model. In addition,

we have shown that, if the computation times allow it, it is possible to know

when to stop the IS-AL algorithm, in order to build asymptotic confidence

ellipsoids.485
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Figure 14: CIs of the parametric fragility curves of the elasto-plastic oscillator obtained with

500 samples of the parameter asymptotic Gaussian distribution for IS-AL and 500 bootstraped

estimators with MLE. The red and blue shaded areas correspond to the ranges between the

95% and 5% quantiles for respectively IS-AL and MLE. The solid green line corresponds to

the Monte Carlo estimation (k-means nonparametric estimation) of the fragility curve based

on a dataset of 105 of synthetic seismic signals.

6.3. Industrial test case: safety water supply pipe of a pressurized water nuclear

reactor

6.3.1. Description of the piping system

The following test case corresponds to a piping system which is a simplified

part of a secondary line of a French Pressurized Water Reactor. The numerical490

model was validated based on seismic tests performed on the shaking table

Azalee of the EMSI laboratory of CEA/Saclay. The experimental program,

called ASG program, and the main results are outlined in Ref. [60]. In Figure 15a

a view of the mock-up mounted on the shaking table is shown. The Finite

Element (FE) model, based on beam elements, is depicted in Figure 15b.495

The mock-up is a 114.3 mm outside diameter and 8.56 mm thickness pipe

with a 0.47 elbow characteristic parameter, in carbon steel TU42C, filled with

water without pressure. It contains three elbows and a mass modeling a valve

(120 kg) which corresponds to more than 30% of the specimen total mass. As

shown in Figure 15b, one end of the mock-up is clamped whereas the other is500
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Figure 15: (a) Overview of the ASG mock-up on the CEA’s shaking table and (b) ASG FE

model.

supported by a guide in order to prevent the displacements in the X and Y

directions. Additionally, a rod is placed on the top of the specimen in order to

limit the mass displacements in the Z direction. In the tests, excitation act in

the X direction.

Numerical comparisons are carried out with the homemade FE code CAST3M505

[61]. Concerning the FE model, the boundary conditions are adjusted in order

to obtain shapes and frequencies similar of those of the first two eigenmodes

of the mock-up in the X and Y directions, respectively at 5.1 Hz and 6.6 Hz.

As measured in the experiments, a critical damping ratio of 1% is considered

for these two eigenmodes with a damping Rayleigh assumption. Finally, re-510

garding the nonlinear constitutive law of the material, a bilinear law exhibiting

kinematic hardening is used to reproduce the overall nonlinear behavior of the

mock-up with satisfactory agreement compared to the results of seismic tests

[60].

In the context of this test case, the yield stress of the bilinear law is equal515

to 3 108 Pa, the Young modulus is equal to 1.92 1011 Pa whereas the harden-

ing modulus is equal to 4.3 108 Pa. Moreover, since for the synthetic signals

considered in this work (the same as those used in the reference [25] and in the
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second test case of this paper) the piping system remains in the linear domain,

they are filtered by a fictitious linear single-mode building at 5 Hz and damped520

at 2%. Finally, we consider excessive out-of-plane rotation of the elbow located

near the clamped end of the mock-up as failure criterion, as recommended in

[62]. Since the weight of the mass is not completely taken up by the mechanical

assembly, the overall behavior of the mock-up exhibits ratcheting.

In the following, the random variable Re corresponds to the maximum of525

the out-of-plane rotation of the elbow. The binary variable which indicates the

failure state is defined by S = 1Re>C where C is the admissible rotation in

degree. In our case, C = 4.38◦. This value is the 90%-level quantile from a

sample of 2000 mechanical simulations.

6.3.2. Performance metrics530

For this test case, the numerical benchmark is based on 50 replications of

120 signals sampled using IS-AL (that includes the initial 20 points) with a

defensive parameter ε = 10−3 and 120 signals for the RS and MLE strategies.

The IS-AL procedure is initialized by considering the linear FE model of the

ASG mock-up and a numerical resolution based on a modal base projection.535

Thus, the initialization parameter θ̂IA
0 is approximated by θ̂RS

2000 using a 2000-

sized dataset randomly selected from the 105 synthetic seismic ground motions.

Then, 20 datapoints are queried with the instrumental density qθ̂IA0 ,ε before

launching the adaptive strategy. For the training, 100 signals are then chosen in

a pool of 1500 CAST3M computations while 500 additional computations are540

carried out in order to compute the testing error.

Figure 16 compares the IS-AL, MLE and RS training and testing errors as

functions of n. Remark that the training loss of MLE is greater than the training

loss of IS-AL. This numerical artifact is essentially due to the regularization

term βreg: if the β parameter estimated by MLE is small, the penalization term545

βreg/β can be very high.

Table 4 shows that the IS-AL strategy has overall better performance than

the other two strategies.
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Figure 16: Numerical benchmark of the ASG piping system. The empirical distributions of

the training and testing errors are computed, the red and blue shaded areas correspond to

the area between the empirical quantiles of levels 10% and 90% of the 50 replications for

respectively IS-AL, RS and MLE.

Table 4: Performance metrics for the ASG piping system for n = 120 when IM = SA

Train Test

• RS MLE IS-AL RS MLE IS-AL

RSD•120 (%) 40.5 46 34 24.1 28 12

ν•120 0.93 2.4 × 1.3 5.8 ×
RB•120 (%) 7.2 8.6 5.5 18 8.4 0.3

6.3.3. Empirical distributions of the parameters α and β

Figure 17 compares the distributions of parameters α and β for several sam-550

ple sizes between MLE and IS-AL using 50 replications. As with the nonlinear

oscillator, the β parameter estimated with IS-AL is less likely to be close to 0
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than when it is estimated with MLE. This motivates further the use of active

learning to have a better accuracy for fragility curves parameters estimates with

the same computational cost as state of the art estimation methods.555
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Figure 17: Results for the ASG piping system: the empirical distributions of parameters α and

β are represented by the empirical 90% and 10% quantiles of 50 replications and correspond

to the shaded blue and red areas respectively for MLE and IS-AL. The dashed green lines

correspond to the values α∗ and β∗, which have been here approximated by α̂N , β̂N for

N = 2000.

6.3.4. Fragility curve estimations

Figure 18 illustrates the uncertainty reduction provided by IS-AL on the

fragility curve estimate. Motivated by the results obtained for the nonlinear

oscillator, the fragility curve of the piping system is here expressed as a function

of the pseudo-spectral acceleration of the initial set of synthetic signals (i.e not560

filtered signals), calculated at 5 Hz and 1% damping ratio.

Figure 19 represents the confidence interval on the fragility curve for IS-AL

and MLE using a single replication of 200 CAST3M computations (20 computa-

tions used for initialization and 180 computations for IS-AL), obtained with the

same methodology as that presented in section 6.2.9. Remark that the Monte565

Carlo estimation of the fragility curve (i) belongs to the confidence interval of IS-

AL for seisms with relatively small spectral acceleration (ii) is not accurate for

high spectral accelerations due to the lack of seismic signals of such intensities.

As for the nonlinear oscillator, the figures 18 and 19 suggest that for the RS

and MLE strategies, even with n = 120 points, it is possible to obtain samples570

for which a β estimate is close to 0, which IS-AL avoids.
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Figure 18: Empirical distributions of the fragility curves of RS and IS-AL for the ASG piping

system. The red and blue areas correspond respectively to the ranges between the 10% and

90% quantiles of the fragility curve dataset generated with IS-AL and RS with n = 120 training

datapoints (that includes the initialization points). The dashed orange line corresponds to

a parametric fragility curve estimation using least squares minimization with a dataset of

2000 seismic ground motions and FE simulations of the piping system. The solid green line

corresponds to a Monte Carlo estimation (k-means nonparametric estimation) of the fragility

curve using the same 2000-sized dataset.

7. Conclusion

In this paper, we have introduced an original methodology to improve the

accuracy of parametric fragility curve estimation without increasing the sample

size, thanks to an active learning strategy based on importance sampling. De-575

fensive strategy has been implemented to control the likelihood ratio and the

possible increase of the training loss variance in the early steps. We use a penal-

ized least square loss to avoid an identifiability issue of the standard deviation of

the lognormal model. We define a convergence criterion that indicates asymp-

totic normality of the estimator and provide asymptotic confidence intervals and580

ellipsoids. We illustrate our active learning procedure in numerical examples,

from a synthetic case to a FE mechanical simulation of a piping system of a

French Pressurized Water Reactor. In comparison with the engineering practice

based on the joint use of the MLE and the boostrap techniques, the proposed

methodology is more efficient. For the same number of calculations, the IS-585
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Figure 19: Parametric fragility curve of the ASG piping system confidence interval obtained

with 500 samples of the parameter asymptotic Gaussian distribution for IS-AL and 500 boot-

straped estimators with MLE. The red and blue shaded areas correspond to the ranges between

the 95% and 5% quantiles for respectively IS-AL and MLE. The solid green line corresponds

to a Monte Carlo estimation (k-means nonparametric estimation) of the fragility curve using

our 2000 sized dataset of CAST3M computations.

AL procedure reduces the variance of the parametric estimation of the fragility

curve and gives theoretical guarantees on the convergence of the estimations.
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Appendix A. Proof of Equation (22)

Throughout the appendix, the IS-AL estimator θ̂IA
n is denoted by θ̃n and the

loss R̂IA by R̃.

The proof for the consistency is based on Theorem 2 of [54]. We pre-

cise the needed assumptions in a very general way, with a parametric fam-

ily F = {fθ, θ ∈ Θ}, loss function `θ and instrumental density qθ. We will

then check that the needed assumptions are satisfied by IS-AL. Set L(x, s) =
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supθ∈Θ `θ(x, s). Assume that Θ is a compact set, θ∗ = argminθ∈Θ r(θ) exists

and is unique and that:
∫∫

L(x, s)P (dx, ds) < +∞,

sup
θ∈Θ

∫∫
L(x, s)2p(x)

qθ(x)
P (dx, ds) < +∞,

∀θ 6= θ∗,

∫∫
`θ(x, s)P (dx, ds) >

∫∫
`θ∗(x, s)P (dx, ds).

and for any (x, s) ∈ X × {0, 1}, θ ∈ Θ 7→ `θ(x, s) is continuous. Thus,

we can apply Theorem 2 of [54] in order to prove the consistency of θ̃n =

argminθ∈Θ
1
n

n∑
i=1

p(Xi)
qθ̃i−1

(Xi)
`θ(Xi, Si). More precisely, these assumptions are veri-

fied for IS-AL. Indeed, the regularized squared loss is bounded for the variables

θ, x, s when θ = (α, β)T is in a compact set of (0,+∞)2. Moreover, the likeli-

hood ratio p(x)
qθ,ε(x) with the defensive instrumental density is bounded for x ∈ X .

Concerning the regularization, we have:

∣∣∣R̃n(θ)− r(θ)
∣∣∣ <

∣∣∣∣∣
1

n

n∑

i=1

p(Xi)

qθ̂i−1
IA,ε(Xi)

`θ(Xi, Si)− r(θ)
∣∣∣∣∣+

Ω(θ;βreg)

n
. (A.1)

Thus the condition (17) of Theorem 2 in [54] is still valid.595

Appendix B. Proof of the asymptotic normality of θ̂IA
n

In the same way as in the proof of the consistency of θ̃n, we provide a general

proof of asymptotic normality. Assume that θ 7→ `θ is three times differentiable

at θ∗ for all x, s and that the matrix r̈(θ∗) exists and is nonsingular. Assume

that the third-order derivatives of θ 7→ `θ(x, s) are dominated in a neighborhood600

of θ∗ by a function that is integrable with respect to P . Assume also that the

following conditions are satisfied:

1. The hypotheses needed for the consistency of θ̃n are satisfied,

2. ∃η > 0 such that supθ∈Θ

∫∫
||p(x) ˙̀

θ∗ (x,s)
qθ(x) ||2+ηP (dx, ds) < +∞,

3. supθ∈Θ

∫∫ p(x)||῭θ∗ (x,s)῭
θ∗ (x,s)T ||

qθ(x) P (dx, ds) < +∞,605

4. there exists a neighborhood B of θ∗ such that ∀(x, s) ∈ X × {0, 1},
supθ∈B

p(x)‖
...
` θ(x,s)‖
qθ(x) < +∞.
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The asymptotic normality of an estimator built such as θ̃n is based on the

following arguments highlighted in Theorem 5.41 of [63]:

• (P1) The random function
√
nΨn(θ∗), with Ψn(θ) = ˙̃Rn(θ) − ṙ(θ), con-610

verges in law to a centered Gaussian distribution with covariance Vθ∗ .

• (P2) The random function Ψ̇n(θ∗) converges in probability to E[῭θ∗(X,S)]

• (P3) The random function Ψ̈n(θn) is bounded in probability for θn a

deterministic sequence in a neighborhood of θ∗.

Of course, we need all the quantities above to be properly defined, hence we615

have to restrict ourselves to a loss function θ 7→ `θ that is smooth enough, such

as the quadratic loss. We use Theorem 1 of [54] to prove proposition (P1). The-

orem 2.18 in [64] ensures that (P2) and (P3) are verified by the assumptions

2), 3) and 4) so that Ψ̇n(θ∗) converges toward the matrix r̈(θ∗). The sequence
√
n(θ̃n − θ∗) is asymptotically normal with mean zero and covariance matrix620

r̈(θ∗)
−1Vθ∗(r̈(θ∗)

−1)T . For IS-AL, the functions ˙̀
θ, ῭

θ,
...
` θ are continuous for

variables θ, x on a compact set and thus are bounded for variable θ, in the same

way as for the consistency, the likelihood ratio for the defensive instrumental

density is bounded for x ∈ X . Concerning the regularization, the third deriva-

tive
...
Ω(θ;βreg) is continuous on Θ which is compact, hence bounded. Naturally,625

we have (P3) verified. Because Ω̇(θ;βreg)
n converges in probability to 0, (P2) is

also verified. Using Slutsky’s lemma, (P1) is verified.

Appendix C. Proof of Lemma Equation (29)

First of all, we precise the needed assumptions for a general proof. Set

L1,k,l(x, s) = supθ∈Θ
῭
θ(x, s)k,l and L2,k,l(x, s) = supθ∈Θ

p(x)
qθ(x) ( ˙̀

θ(x, s) ˙̀
θ(x, s)

T )k,l630

∀k, l = 1, ...,m and assume that:

1. inf(θ,x,s)∈Θ×X×{0,1}
p(x)
qθ(x)

῭
θ(x, s)k,l > −∞ ∀k, l = 1, . . . ,m.

2. inf(θ,x,s)∈Θ×X×{0,1}

(
p(x)
qθ(x)

)2
˙̀
θ(x, s) ˙̀

θ(x, s)
T
k,l > −∞ ∀k, l = 1, . . . ,m.

3.
∫∫

Li,k,l(x, s)P (dx, ds) < +∞, ∀i ∈ {1, 2}, ∀k, l = 1, ...,m.
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4. supθ∈Θ

∫∫ Li(x,s)
2p(x)

qθ(x) P (dx, ds) < +∞, i ∈ {1, 2}.635

The result comes from the uniform convergence of Ĝn(θ) = ̂̈rn(θ)−1V̂n(θ)(̂̈rn(θ)−1)T

to Gθ for θ in a neighborhood of θ∗. It boils down to prove uniform conver-

gence of ̂̈rn(θ) and V̂n(θ). The proof is in the same spirit as in Appendix A.

We proceed coordinate by coordinate defining Hi(θ)k,l = p(Xi)
qθ(Xi)

῭
θ(Xi, Si)k,l −

inf(θ,x,s)∈Θ×X×{0,1}
p(x)
qθ(x)

῭
θ(x, s)k,l to prove uniform convergence of ̂̈rn(θ) and640

Hi(θ)k,l =
(
p(Xi)
qθ(Xi)

)2
˙̀
θ(Xi, Si) ˙̀

θ(Xi, Si)
T
k,l−inf(θ,x,s)∈Θ×X×{0,1}

(
p(x)
qθ(x)

)2
˙̀
θ(x, s) ˙̀

θ(x, s)
T
k,l

for V̂n(θ). Assumptions 3) and 4) ensure the uniform convergence using the proof

technique of Theorem 1 of [54].

Appendix D. Proof of Equation (31)

The proof relies on the Taylor expansions of ˙̃Rn,1(θ̃n,2) and ˙̃Rn,2(θ̃n,1) around

the parameter value θ∗:

˙̃Rn,1(θ̃n,2) = ˙̃Rn,1(θ∗) + ¨̃Rn,1(θ∗)(θ̃n,2 − θ∗) + o
(
‖θ̃n,2 − θ∗‖

)
.

˙̃Rn,2(θ̃n,1) = ˙̃Rn,2(θ∗) + ¨̃Rn,2(θ∗)(θ̃n,1 − θ∗) + o
(
‖θ̃n,1 − θ∗‖

)
.

Using the asymptotic normality of θ̃n, we can apply Appendix B.3 in [54] to

prove the convergence of ¨̃Rn,1(θ∗) and ¨̃Rn,2(θ∗) to r̈(θ∗) in the same spirit as

for the proof of Appendix A. We proceed coordinate by coordinate, defin-

ing Hi(θ∗)k,l = p(Xi)
qθ̃i−1(Xi)

῭
θ∗(Xi, Si)k,l−inf(θ,x,s)∈Θ×X×{0,1}

p(x)
qθ(x)

῭
θ∗(x, s)k,l . Re-

mark that Hi(θ∗)k,l ≥ 0, hence we can apply Appendix B.3 in [54] to obtain

the desired convergence. Moreover, the Taylor expansions of ˙̃Rn,1(θ̃n,1) and
˙̃Rn,2(θ̃n,2) write:

0 = ˙̃Rn,1(θ̃n,1) = ˙̃Rn,1(θ∗) + r̈(θ∗)(θ̃n,1 − θ∗) + o
(
‖θ̃n,1 − θ∗‖

)
,

0 = ˙̃Rn,2(θ̃n,2) = ˙̃Rn,2(θ∗) + r̈(θ∗)(θ̃n,2 − θ∗) + o
(
‖θ̃n,2 − θ∗‖

)
.
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Finally, the Taylor expansion of
√
n( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1)) writes:

√
n
( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1)

)

=
√
n
( ˙̃Rn,1(θ∗)− ˙̃Rn,2(θ∗) + r̈(θ∗)(θ̃n,2 − θ∗)− r̈(θ∗)(θ̃n,1 − θ∗)

)
+ oP (1)

= 2
√
n( ¨̃Rn,1(θ∗)− ¨̃Rn,2(θ∗)) + oP (1), (D.1)

because
√
n‖θ̃n,j − θ∗‖ = OP (1) for j = 1, 2. The right-hand side of equa-645

tion (D.1) weakly converges towards the centered Gaussian distribution with

covariance matrix 8V (qθ∗ ,
˙̀
θ∗).
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