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Abstract. We introduce a novel, computationally inexpensive approach for imaging with an active array
of sensors, which probe an unknown medium with a pulse and measure the resulting waves. The imaging
function uses a data driven estimate of the “internal wave” originating from the vicinity of the imaging
point and propagating to the sensors through the unknown medium. We explain how this estimate can be
obtained using a reduced order model (ROM) for the wave propagation. We analyze the imaging function,
connect it to the time reversal process and describe how its resolution depends on the aperture of the array,
the bandwidth of the probing pulse and the medium through which the waves propagate. We also show how
the internal wave can be used for selective focusing of waves at points in the imaging region. This can be
implemented experimentally and can be used for pixel scanning imaging. We assess the performance of the
imaging methods with numerical simulations and compare them to the conventional reverse-time migration
method and the “backprojection” method introduced recently as an application of the same ROM.
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1. Introduction

This paper is concerned with an application of reduced order modeling to imaging reflective structures in a
known, non-scattering host medium, from data gathered by an active array of m sensors that emit probing
pulses and measure the resulting waves.

Model reduction is an important topic in computational science, which traditionally has been concerned
with finding a low-dimensional reduced order model (ROM) that approximates the response (observables)
of a given dynamical system for a set of inputs [2, 3]. In wave-based imaging the inputs and observables are
controlled and measured by the sensors in the array, but the dynamical system is not given, as it is governed
by the wave equation with unknown coefficients like the wave speed. Thus, we need a data-driven ROM.

Data driven reduced order modeling is a growing field which combines ideas from traditional model
reduction and learning [9]. Much of it is concerned with studying dynamical systems using the Koopman
operator theory [17, Chapter 1]. Dynamical system identification based on the Koopman operator has been
proposed for instance in [10] and [17, Chapter 13]. However, these approaches are difficult to use in imaging
because they assume knowing the full state of the dynamical system, aka the snapshot of the wave, at a
finite set of time instances. Since we only know the wave at the sensor locations, which are far from the
imaging region, a new way of learning the wave propagation from the data is needed.

To our knowledge, the first sensor array data driven ROM for wave propagation was introduced in [13]
for the one-dimensional wave equation. The extension to higher dimensions was obtained in [7] and was
analyzed in [8]. The latter study showed that wave propagation can be viewed as a discrete time dynamical
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system governed by a “propagator operator”, where the time step τ is the data sampling interval. This
propagator operator maps the wave from the states at instants (j − 1)τ and jτ to the future state at time
(j+ 1)τ , for any j ∈ N. The ROM in [7, 8] is an algebraic analogue of the dynamical system. Its evolution is
controlled by an nm× nm propagator matrix, given by the Galerkin projection of the propagator operator
on the function space spanned by the first n snapshots of the wave, assuming that the array records for the
duration (2n− 1)τ . What distinguishes the ROM construction from the many other Galerkin projections in
the literature, is that it is obtained only from the measurements of the snapshots at the sensors in the array
i.e., it does not require knowing the approximation space.

The ROM introduced in [7, 8] has been used so far to: (1) Approximate the Fréchet derivative of
the reflectivity to sensor array data map [6]. This gives the single scattering (Born) forward map used in
conventional imaging in radar [12, 11], seismic inversion [4] and elsewhere. (2) Obtain a fast converging,
iterative inverse scattering method for the acoustic impedance in a medium with known and smooth wave
speed [8]. (3) Develop a non-iterative “backprojection” imaging method that is free of multiple scattering
artifacts [14].

We propose yet another application of the ROM: Estimate the “internal” acoustic wave that originates
from the vicinity of the imaging point and propagates through the unknown medium to the array of sensors.
This idea has been tried before for Schrödinger’s equation in the spectral (frequency) domain [5, 15], where
the solutions are smooth functions that are easier to approximate than the internal waves in this paper. We
use the internal waves for two novel imaging methods: The first is a computationally inexpensive approach
designed to sense rapid changes of the wave speed in the vicinity of the imaging point. Its imaging function
is connected to the point spread function of the time reversal process, and we explain how the aperture of
the array, the bandwidth of the probing pulse and the medium through which the waves propagate affect
the resolution. The second method can be implemented experimentally. It controls the excitation from the
array in order to focus waves at the imaging points, and then uses a matched field approach to image with
the resulting backscattered wave in a pixel scanning manner.

The paper is organized as follows: We begin in section 2 with the mathematical formulation of the
imaging problem and review briefly from [8] the relevant facts about the ROM, needed in the next sections.
The estimation of the internal wave is described in section 3. The first imaging method based on this internal
wave is introduced and analyzed in section 4. We also give there a comparison with the backprojection
imaging method introduced in [14]. The second, pixel scanning imaging method is described in section 5.
We use numerical simulations in section 6 to assess the performance of the imaging methods and to compare
them with the backprojection approach [14] and with the conventional, reversed time migration method [4].
We end with a summary in section 7.

2. Formulation of the imaging problem and the ROM

We are interested in imaging reflective structures in a non-scattering and known host medium occupying
the bounded domain Ω, using data gathered by an active array of sensors located at xs, for s = 1, . . . ,m.
We suppose that the aperture of the array is planar in three-dimensions or linear in two-dimensions, and
call “range” the spatial coordinate in the direction orthogonal to it. The coordinates in the plane (line in
two-dimensions) parallel to the aperture are called “cross-range”.

The sth sensor probes the medium with a pulse f(t) and thus generates the wave w(s)(t,x), the solution
of the wave equation

∂2
tw

(s)(t,x) +A(c)w(s)(t,x) = f ′(t)δxs
(x), t ∈ R, x ∈ Ω, (2.1)

with quiescent initial condition
w(s)(t,x) ≡ 0, t� 0, x ∈ Ω. (2.2)

We assume henceforth a real valued pulse f(t), that is an even function supported in the short interval
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Figure 1. Illustration of the setup: An array of sensors (indicated with triangles) lying near the
accessible boundary ∂Ωac probes a medium with incident waves and measures the backscattered waves.
The inaccessible boundary ∂Ωinac is drawn with the dashed line. The sought after reflectors are supported
in the remote subdomain Ωim.

(−tf , tf ) and has non-negative Fourier transform‡

f̂(ω) =

∫
R
dt f(t)eiωt =

∫
R
dt f(t) cos(ωt) ≥ 0, (2.3)

which is negligible in the complement of the set (ωc − B,ωc + B) ∪ (−ωc − B,−ωc + B), where ωc is the
center (carrier) frequency and B = O(1/tf ) is the bandwidth.

The reflective structures are modeled in (2.1) by rough changes (jumps) of the wave speed c(x), with
respect to the known and smooth reference wave speed co(x) of the host medium. These changes are
supported in the imaging domain Ωim, which is a subset of Ω lying at large distance from the array. The
unknown c(x) appears as a coefficient in the self-adjoint, second order elliptic operator

A(c) = −c(x)∆
[
c(x) ·

]
, (2.4)

with homogeneous boundary conditions at ∂Ω. The self-adjointness of A(c) is convenient for the operator
calculus in [8] and the next sections, but we note that (2.1) can be written in the standard wave equation
form for the acoustic pressure p(s)(t,x) = c(x)w(s)(t,x). Since c(x) is known and equal to co(x) at the sensor
locations, the measurements of the pressure, sampled in time at interval τ , define the array data

data =
{
w(s)(t,xr), s, r = 1, . . . ,m, t = jτ, j = 0, . . . , 2n− 1

}
. (2.5)

The domain Ω may be physical or the truncation of an infinite domain, justified by hyperbolicity and
the finite duration (2n − 1)τ of the measurements. In either case, we divide the boundary in two parts:
The “accessible” boundary ∂Ωac, named so because it lies in the immediate vicinity of the array, and the
“inaccessible” boundary ∂Ωinac = ∂Ω \ ∂Ωac. The accessible boundary is useful for the ROM construction
because the waves propagate only on one side of the array§, as illustrated in Fig. 1. We model it as sound
hard, using the homogeneous Neumann boundary condition

∂nw
(s)(t,x) = 0, t ∈ R, x ∈ ∂Ωac, (2.6)

where ∂n denotes the normal derivative. The inaccessible boundary is modeled as sound soft,

w(s)(t,x) = 0, t ∈ R, x ∈ ∂Ωinac, (2.7)

and if it is due to the truncation of an infinite domain, it is sufficiently far away from the sensors to affect
the waves over the duration of the measurements.

The imaging problem is to estimate the support of the large and localized variations c(x)− co(x) of the
wave speed, from the data (2.5) collected by the array.

‡ If the source emits an arbitrary pulse f(t), we can convolve the echos received at the array with f(−t). Mathematically, this

is equivalent to having the even pulse f(t) = f(t) ?t f(−t), with Fourier transform f̂(ω) =
∣∣̂f(ω)

∣∣2 ≥ 0.
§ If such a boundary does not exist, the medium should be known and homogeneous on the other side of the array, so that the
waves there can be removed with some additional processing.
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2.1. Review of the ROM for wave propagation

Here we review briefly from [8] the relevant facts about the ROM, needed to state the new results.

2.1.1. The dynamical system for wave propagation. We work with the even in time wave

w(s)
e (t,x) := w(s)(t,x) + w(s)(−t,x), (2.8)

which satisfies w
(s)
e (t,x) = w(s)(t,x) for t > tf , due to causality and the initial condition (2.2). During the

short duration tf of the pulse, the wave senses only the vicinity of the sensor location xs, where the wave
speed equals the known co(x). Thus, the second term in (2.8) can be calculated and we can work with the
data matrices

Dj =
(
D

(s,r)
j

)
s,r=1,...,m

, D
(s,r)
j := w(s)

e (jτ,xr), j = 0, . . . , 2n− 1. (2.9)

Because f(t) is even, it is easy to obtain from (2.1) and (2.6)–(2.7) that w
(s)
e (t,x) satisfies

∂2
tw

(s)
e (t,x) +A(c)w(s)

e (t,x) = 0, t > 0, x ∈ Ω, (2.10)

∂nw
(s)
e (t,x) = 0, t > 0, x ∈ ∂Ωac, (2.11)

w(s)
e (t,x) = 0, t > 0, x ∈ ∂Ωinac, (2.12)

with initial conditions derived in [8, Appendix A]

w(s)
e (0,x) = f̂

(√
A(c)

)
δxs(x), ∂tw

(s)
e (0,x) = 0, x ∈ Ω. (2.13)

We define throughout functions of the operator A(c) in the standard way, using its spectral decomposition
deduced from [18, Theorem 4.12]. Specifically, if we denote by {θl > 0, l ≥ 1} the eigenvalues, ordered like
0 < θ1 ≤ θ2 ≤ . . . and satisfying liml→∞ θl = ∞, and by {yl(x), l ≥ 1} the eigenfunctions, which form an
orthonormal basis of L2(Ω) with the appropriate boundary conditions, then we have

f̂
(√

A(c)
)
δxs

(x) :=

∞∑
l=1

f̂
(√

θl
)
yl(x)yl(xs). (2.14)

The pulse is band-limited, so the sum is for l ≤ lmax, where
√
θlmax+1 > ωc +B.

Note that the solution of (2.10)–(2.13) is

w(s)
e (t,x) = cos

(
t
√
A(c)

)
f̂
(√

A(c)
)
δxs

(x) =

∞∑
l=1

cos
(
t
√
θl
)
f̂
(√

θl
)
yl(x)yl(xs)

= f̂
1
2

(√
A(c)

)
cos
(
t
√
A(c)

)
f̂

1
2

(√
A(c)

)
δxs

(x), (2.15)

and that the data matrices (2.9) can be written in symmetric inner product form as follows

D
(r,s)
j =

∫
Ω

δxr
(x) cos

(
jτ
√
A(c)

)
f̂
(√

A(c)
)
δxs

(x) =
〈
δfxr

, cos
(
jτ
√
A(c)

)
δfxs

〉
. (2.16)

Here we used that functions of A(c) commute, and denoted by

〈φ, ψ〉 :=

∫
Ω

dxφ(x)ψ(x), ∀φ, ψ ∈ L2(Ω),

the L2(Ω) inner product. We also introduced the “sensor functions”

δfxs
(x) := f̂

1
2

(√
A(c)

)
δxs

(x), s = 1, . . . ,m, (2.17)

and used the assumption (2.3) to define the square root of f̂ .
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The notation in (2.17) reminds us that δfxs
(x) is a pulse dependent, blurry version of the Dirac δxs(x).

Indeed, comparing (2.17) with (2.13), we note that δfxs
(x)/2 is the initial state of the solution of (2.1)–(2.2)

and (2.6)–(2.7), when the sensor emits the pulse

f̌
1
2 (t) :=

∫
R

dω

2π
f̂

1
2 (ω)e−iωt =

∫
R

dω

2π
f̂

1
2 (ω) cos(ωt), (2.18)

which is real valued, even and satisfies f(t) = f̌
1
2 (t) ?t f̌

1
2 (t). Because of causality and the finite wave speed,

δfxs
(x) is supported in a ball centered at xs, with radius of order co(xs)tf � dist

(
xs,Ωim

)
and it can be

computed using the operator A(co) in the host medium

δfxs
(x) = f̂

1
2

(√
A(c)

)
δxs(x) = f̂

1
2

(√
A(co)

)
δxs(x). (2.19)

Let us group all the sensor functions in the m−dimensional row vector field

δf (x) =
(
δfx1

(x), . . . , δfxm
(x)
)
, (2.20)

and define the “snapshots” as the m−dimensional row vector fields

uj(x) =
(
u

(1)
j (x), . . . , u

(m)
j (x)

)
:= cos

(
jτ
√
A(c)

)
δf (x), j ≥ 0. (2.21)

These are the states of the discrete time dynamical system governed by the “propagator operator”

P := cos
(
τ
√
A(c)

)
. (2.22)

Indeed, using a trigonometric identity of the cosine, we get that the states evolve like

uj+1(x) = 2Puj(x)− uj−1(x), j ≥ 0, x ∈ Ω, (2.23)

starting from

u0(x) = δf (x), u−1(x) = Pδf (x), x ∈ Ω. (2.24)

2.1.2. Data driven ROM construction. The ROM is the algebraic analogue of the dynamical system (2.23),

uROM

j+1 = 2PROMuROM

j − uROM

j−1, j ≥ 0, (2.25)

with propagator matrix PROM ∈ Rnm×nm and states uROM

j ∈ Rnm×m. It corresponds to the Galerkin projection
of (2.23) on the nm−dimensional function space spanned by the first n snapshots (2.21). Using linear algebra
notation, we write this space as

S := rangeU(x), U(x) =
(
u0(x), . . . ,un−1(x)

)
, (2.26)

and note that U(x) is a nm−dimensional row vector field and that it is unknown. Nevertheless, the
construction in [8, Section 2] shows that it is possible to get the ROM (2.25) from what we know: the
initial snapshot δf (x) in (2.20) and the m×m data matrices

Dj =

∫
Ω

dxδf (x)Tuj(x) =: 〈〈δf ,uj〉〉, j = 0, . . . , 2n− 1, (2.27)

where T denotes the transpose and we introduced the notation 〈〈·, ·〉〉 for the integral of the outer product
of m−dimensional row vector functions.
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Key to the ROM construction are the data driven, symmetric, positive definite “mass” matrix
M :=

∫
Ω
dxU(x)TU(x) ∈ Rnm×nm with m×m blocks

Mj,l := 〈〈uj ,ul〉〉

= 〈〈cos
(
jτ
√
A(c)

)
δf , cos

(
lτ
√
A(c)

)
δf 〉〉

= 〈〈δf , cos
(
jτ
√
A(c)

)
cos
(
lτ
√
A(c)

)
δf 〉〉

=
1

2

[
〈〈δf , cos

(
(j + l)τ

√
A(c)

)
δf 〉〉+ 〈〈δf , cos

(
|j − l|τ

√
A(c)

)
δf 〉〉

]
=

1

2

(
Dj+l +D|j−l|

)
, j, l = 0, . . . , n− 1, (2.28)

and the “stiffness” matrix S :=
∫

Ω
dxU(x)TPU(x) ∈ Rnm×nm with m×m blocks

Sj,l := 〈〈uj ,Pul〉〉

=
1

2
〈〈uj ,ul+1 + ul−1〉〉

=
1

4

(
Dj+l+1 +D|j−l−1| +D|j+l−1| +D|j−l+1|

)
, j, l = 0, . . . , n− 1. (2.29)

Here we used definitions (2.21) and (2.27), the self-adjointness of A(c) and a trigonometric identity for the
cosine.

The ROM propagator is defined in [8, Section 2.2.1] as follows: Let R ∈ Rnm×nm be the block upper
triangular matrix obtained from the block Cholesky factorization of the mass matrix

M = RTR. (2.30)

This matrix R can be used to write the Gram-Schmidt orthogonalization of U(x)

U(x) = V (x)R, (2.31)

which defines the orthonormal, causal basis of the approximation space (2.26),

V (x) =
(
v0(x), . . . ,vn−1(x)

)
, (2.32)

with m−dimensional row vector field components vj(x), j = 0, . . . , n−1, called the “orthonormal snapshots”.
Then, we have

PROM := R−TSR−1 =

∫
Ω

dxV (x)TPV (x) =
(
〈〈vj ,Pvl〉〉

)
j,l=0,...,n−1

, (2.33)

where the index −T denotes the inverse and transpose. The first equality in this equation is used to compute
PROM from the data, and the second equality shows that it is a projection of the operator P.

The first n ROM states satisfy

R =


R0,0 R0,1 R0,2 . . . R0,n−1

0 R1,1 R1,2 . . . R1,n−1

0 0 R2,2 . . . R2,n−1

...
...

... . . .
...

0 0 0 . . . Rn−1,n−1

 =
(
uROM

0 , . . .uROM

n−1

)
=

∫
Ω

dxV (x)TU(x) =
(
〈〈vj ,ul〉〉

)
j,l=0,...,n−1

,

(2.34)
and we note how the algebraic structure of R captures the causal wave propagation: The nm ×m column
blocks of R are indexed using the time instants jτ , for j = 0, . . . , n− 1, while the m× nm row blocks of R
are indexed according to the range locations reached by the wavefront at these instants. The first column
block of R, which equals uROM

0 , has all but the first block equal to zero, because the true snapshot u0(x)
is supported near the array. The second column block of R, which equals uROM

1 , has an additional nonzero
block because the true snapshot u1(x) reaches some range in the medium, and so on.
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3. The internal wave

We now use the data driven ROM reviewed above to estimate an internal wave that originates from the
vicinity of an arbitrary point y ∈ Ωim and propagates to the array through the true, unknown medium.

The best estimate that we could hope for would be

gideal(t,x;y) := cos
(
t
√
A(c)

)
δfy(x), (3.1)

with the initial state

gideal(0,x;y) = δfy(x) = f̂
1
2

(√
A(c)

)
δy(x) ≈ f̂ 1

2

(√
A(c)

)
V V T δy(x), (3.2)

given by the approximation

V V T δy(x) :=

n−1∑
j=0

vj(x)vTj (y) = V (x)V T (y), (3.3)

of δy(x) in the space (2.26), blurred a little by the pulse dependent operator f̂
1
2

(√
A(c)

)
. The same reasoning

used for the sensor functions (2.17) applies to (3.2) and shows that it is supported in the ball centered at y,
with O(c(y)tf ) radius. We are interested in evaluating the wave (3.1) at t > 0 and the sensor locations xr,
for r = 1, . . . ,m. However, we cannot get exactly gideal(t,xr;y), because we do not know the approximation
space (2.26). The next proposition shows that we can compute instead

g(t,x;y) := cos
(
t
√
A(c)

)
δf,ROM

y (x), δf,ROM

y (x) := f̂
1
2

(√
A(c)

)
δROM

y (x), (3.4)

at x = xr, for r = 1, . . . ,m, where the approximation (3.3) of δy(x) is replaced by the “ROM point spread
function”

δROM

y (x) := V V T
o δy(x) =

n−1∑
j=0

vj(x)vTo,j(y) = V (x)V T
o (y), (3.5)

calculated with the orthonormal snapshots in the reference medium with known wave speed co(x)

Vo(y) =
(
vo,0(y), . . . ,vo,n−1(y)

)
. (3.6)

We will see in the next section that the tighter the focus of δROM

y (x) around y, the better the imaging
using the internal wave g(t,x;y). So when can we expect such a result? The answer lies in how well we can
approximate the snapshots in U(x) in the reference space calculated for the known co(x),

So := rangeUo(x), Uo(x) =
(
uo,0(x), . . . ,uo,n−1(x)

)
. (3.7)

If it is true that the approximation error is small, then the Gram-Schmidt orthogonalization, which is a
stable procedure, gives

vj(x) ≈ vo,j(x), j = 0, . . . , n− 1, (3.8)

and the ROM point spread function (3.5) is an approximation of (3.2).
We discuss in Appendix A two setups where we can analyze explicitly the approximation (3.8): in a

layered medium and in a waveguide. The error in these two cases is controlled by the time step τ , the
separation between the sensors and the array aperture size. In more general settings we only have numerical
evidence that if τ and the sensor separation are small enough and the aperture is large enough, then the
ROM point spread function δROM

y (x) is peaked at y.

Proposition 3.1 Let R be the block upper triangular Cholesky factor of the data driven mass matrix M ,
with block entries given by (2.28). The estimated internal wave (3.4) evaluated at the sensor locations and
at the time instants tj = jτ , for j = 0, . . . , n− 1, is given by the m−dimensional row vector field(

g(tj ,x1;y), . . . , g(tj ,xm;y)
)

= Vo(y)Rej , (3.9)

where ej ∈ Rnm×m is the (j + 1)th column block of the nm× nm identity matrix Inm.
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Proof: Let us begin with the auxiliary m−dimensional column vectors

σl(y) := eTl R
−1V T

o (y), l = 0, . . . , n− 1, (3.10)

and note that

n−1∑
l=0

ul(x)σl(y) = U(x)

n−1∑
l=0

elσl(y)

= U(x)

(
n−1∑
l=0

ele
T
l

)
R−1V T

o (y)

= U(x)R−1V T
o (y)

= V (x)V T
o (y) = δROM

y (x). (3.11)

Here the first equality is by the definition (2.26) of U(x), in the third equality we used that the sum over
l equals the identity matrix and the last equality is due to the Gram-Schmidt orthogonalization (2.31).
Applying the operator cos

(
tj
√
A(c)

)
to both sides of (3.11) and using definition (2.21) we get

cos
(
tj
√
A(c)

)
δROM

y (x) = cos
(
tj
√
A(c)

) n−1∑
l=0

cos
(
tl
√
A(c)

)
δf (x)σl(y)

=
1

2

n−1∑
l=0

[
cos
(
(j + l)τ

√
A(c)

)
+ cos

(
|j − l|τ

√
A(c)

)]
δf (x)σl(y)

=
1

2

n−1∑
l=0

[
uj+l(x) + u|j−l|(x)

]
σl(y). (3.12)

Furthermore, using definition (2.19) and the self-adjointness of A(c), we have

g(tl,xr;y) =

∫
Ω

dx δxr
(x)f̂

1
2

(√
A(c)

)
cos
(
tj
√
A(c)

)
δROM(y)

=

∫
Ω

dx δfxr
(x)

1

2

n−1∑
l=0

[
uj+l(x) + u|j−l|(x)

]
σl(y), (3.13)

for all r = 1, . . . ,m. Gathering these results in an m−dimensional column vector and recalling definition
(2.20) and the expression (2.27) of the data matrices, we obtain g(tj ,x1;y)

...
g(tj ,xm;y)

 =
1

2

n−1∑
l=0

(
Dj+l +D|j−l|

)
σl(y) =

n−1∑
l=0

Mj,lσl(y), (3.14)

where the last equality is by (2.28). Finally, we substitute (3.10) in (3.14) and use the Cholesky factorization
of the mass matrix to get the result g(tj ,x1;y)

...
g(tj ,xm;y)

 =

n−1∑
l=0

Mj,le
T
l R
−1V T

o (y) = eTjMR−1V T
o (y) = eTj R

TV T
o (y) =

(
Vo(y)Rej

)T
. (3.15)

�
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4. Imaging with the internal wave

In this section we introduce a novel imaging approach based on the internal wave estimated in Proposition
3.1. The imaging function is strikingly simple: it is the squared norm of this wave evaluated at the sensors

I(y) =

m∑
r=1

n−1∑
j=0

|g(jτ,xr;y)|2 , y ∈ Ωim. (4.1)

Moreover, I(y) is easy to compute and it does not even require the full ROM. It just uses the Cholesky
factor R of the data driven mass matrix M with block entries (2.28), and the orthonormal snapshots (3.6)
calculated in the reference medium with known wave speed co(x).

Our goal in this section is to analyze (4.1) and show that it gives an estimate of the location of reflective
structures embedded in the host medium. The analysis is based on the continuum time approximation, where
the sum over j is replaced by an integral over time, and assumes a long enough duration of the measurements.
We also suppose, as is typical in applications, that the wave speed is constant near the sensors and therefore
the accessible boundary,

c(x) = co(x) = c̄o, x near ∂Ωac. (4.2)

We begin in section 4.1 with the connection between the internal wave and the Green’s function of the
acoustic wave equation. This is useful for obtaining the main result in section 4.2, where we relate I(y) to
the time reversal process and we discuss its resolution. We end in section 4.3 with a comparison of I(y) and
the imaging function of the backprojection approach introduced in [14].

4.1. The Green’s function and its connection to the internal wave

The next lemma connects the internal wave (3.4) with the Green’s function G(t,x; z) of the acoustic wave
equation, satisfying [

1

c2(x)
∂2
t −∆x

]
G(t,x; z) = δ(t)δz(x), t ∈ R, x ∈ Ω, (4.3)

G(t,x; z) = 0, t < 0, x ∈ Ω, (4.4)

∂nG(t,x; z) = 0, t ∈ R, x ∈ ∂Ωac, (4.5)

G(t,x; z) = 0, t ∈ R, x ∈ ∂Ωinac, (4.6)

where z is an arbitrary point in Ω and ∆x is the Laplace operator with respect to x.

Lemma 4.1 Let y be any point in the imaging domain Ωim, which supports the sought after reflective
structures. The internal wave (3.4) evaluated at the sensor locations satisfies

g(t,xr;y) = ∂tf̌
1
2 (t) ?t

∫
Ω

dz
G(t,xr; z)

c(z)c̄o
δROM

y (z), r = 1, . . . ,m, (4.7)

for any t > 0, where we recall that f̌
1
2 (t) is defined in (2.18) and ?t denotes convolution in time t. Recall

also that g is an even function in t.

Proof: Let us begin with the even in time wave function

Ge(t,x; z) = cos
(
t
√
A(c)

)
δz(x), (4.8)

and use linear superposition to write

cos
(
t
√
A(c)

)
δROM

y (x) =

∫
Ω

dz Ge(t,x; z)δROM

y (z). (4.9)

9



The internal wave is

g(t,x;y) = f̂
1
2

(√
A(c)

)
cos
(
t
√
A(c)

)
δROM

y (x)

= f̂
1
2

(√
A(c)

) ∫
Ω

dz Ge(t,x; z)δROM

y (z)

=

∞∑
l=1

f̂
1
2

(√
θl
)

cos
(
t
√
θl
)
yl(x)

〈
yl, δ

ROM

y

〉
=

∞∑
l=1

∫ ∞
−∞

dt′ f̌
1
2 (t′) cos

(
t′
√
θl
)

cos
(
t
√
θl
)
yl(x)

〈
yl, δ

ROM

y

〉
=

∞∑
l=1

∫ ∞
−∞

dt′ f̌
1
2 (t′)

1

2

[
cos
(
(t− t′)

√
θl
)

+ cos
(
(t+ t′)

√
θl
)]
yl(x)

〈
yl, δ

ROM

y

〉
=

∞∑
l=1

∫ ∞
−∞

dt′ f̌
1
2 (t′) cos

(
(t− t′)

√
θl
)
yl(x)

〈
yl, δ

ROM

y

〉
, (4.10)

where we used that operators of A(c) commute, as well as the spectral decomposition of A(c), definition

(2.18) and that f̌
1
2 (t) is even. Since we have

cos
(
(t− t′)

√
A(c)

)
δROM

y (x) =

∫
Ω

dz Ge(t− t′,x; z)δROM

y (z) =

∞∑
l=1

cos
(
(t− t′)

√
θl
)
yl(x)

〈
yl, δ

ROM

y

〉
, (4.11)

pointwise in t−t′, and f̌
1
2 (t′) has finite support, we can use the dominated convergence theorem to interchange

the integral and sum in (4.10) and get

g(t,x;y) = f̌
1
2 (t) ?t

∫
Ω

dz Ge(t,x; z)δROM

y (z). (4.12)

It remains to connect the Green’s function G(t,x, z) to (4.8), which is the even extension in time

Ge(t,x; z) = G(t,x; z) + G(−t,x; z), (4.13)

of the causal Green’s function G(t,x; z), satisfying[
∂2
t +A(c)

]
G(t,x; z) = δ′(t)δz(x), t ∈ R, x ∈ Ω, (4.14)

G(t,x; z) = 0, t < 0, x ∈ Ω, (4.15)

∂nG(t,x; z) = 0, t ∈ R, x ∈ ∂Ωac, (4.16)

G(t,x; z) = 0, t ∈ R, x ∈ ∂Ωinac. (4.17)

We are interested in evaluating (4.12) at the sensor locations, which are far from y, where δROM

y (x) peaks. By
causality and the finite speed of propagation we should have g(t,xr;y) = 0 for time t = O(tf ). For larger
time, we conclude from

Ge(t,x; z) = G(t,x; z), t > 0, (4.18)

and the tf duration of the pulse, that

g(t,xr;y) = f̌
1
2 (t) ?t

∫
Ω

dz G(t,xr; z)δROM

y (z), t > O(tf ), r = 1, . . . ,m. (4.19)

The solutions of (4.3)–(4.6) and (4.14)–(4.17) are related by

∂tG(t,x; z) = c(x)c(z)G(t,x; z), (4.20)

where we used the expression (2.4) of the operator A(c) and the assumption (4.2). The statement of the
Lemma follows from the identity

f̌
1
2 (t) ?t ∂tG(t,xr; z) = ∂tf̌

1
2 (t) ?t G(t,xr; z). (4.21)

�
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4.2. Analysis of the imaging function

The expression of the imaging function (4.1) is given in the next proposition, obtained with the continuum
time approximation and for a long duration of the measurements.

Proposition 4.1 The imaging function (4.1) is approximated by

I(y) ≈
∫

Ω

dz

∫
Ω

dz′ δROM

y (z)δROM

y (z′)
Γ(z, z′)

c(z)c(z′)
, (4.22)

where

Γ(z, z′) :=
1

τ c̄2o

m∑
r=1

∫ nτ

0

dt

∫∫
R2

dsds′∂sf̌
1
2 (s)∂s′ f̌

1
2 (s′)G(t− s,xr; z)G(t− s′,xr; z′). (4.23)

Proof: Approximating the sum over j in (4.1) by the integral in t, we get

I(y) ≈ 1

τ

m∑
r=1

∫ nτ

0

dt |g(t,xr;y)|2 , (4.24)

and the result follows by substituting (4.7) in this expression. �

In order to explain why the imaging function I(y) gives an image of the local changes of the velocity, we
interpret its approximate expression (4.22) in terms of the result of the following time-reversal experiment:
• First step. Consider the source function

n1(t,x) =
1

τc(x)c̄o
∂tf̌

1
2 (t)δROM

y (x), (4.25)

that is localized in space at x in the support of δROM

y , and in time around 0, at t in the support of f̌
1
2 . The

wave field generated by this source satisfies[
1

c2(x)
∂2
t −∆x

]
u1(t,x) = n1(t,x), t ∈ R, x ∈ Ω, (4.26)

u1(t,x) = 0, t� 0, x ∈ Ω, (4.27)

∂nu1(t,x) = 0, t ∈ R, x ∈ ∂Ωac, (4.28)

u1(t,x) = 0, t ∈ R, x ∈ ∂Ωinac, (4.29)

and suppose we record it at the sensor locations (xr)
m
r=1 for t ∈ [0, nτ ]. Using the Green’s function G(t,x; z),

the solution of (4.3)-(4.6), we can write these recordings as

u1(t,xr) =

∫
R
ds

∫
Ω

dzG(t− s,xr; z)n1(s, z). (4.30)

We then have from (4.22)-(4.23) that

I(y) ≈
m∑
r=1

∫ nτ

0

dt

∫
R
ds

∫
Ω

dz

c(z)c̄o
G(t− s,xr; z)δROM

y (z)∂sf̌
1
2 (s)u1(t,xr), (4.31)

and after the change of variables t 7→ −t, s 7→ −s and using that ∂sf̌
1
2 is odd, this equation becomes

I(y) = −
∫
R
ds

∫
Ω

dz

c(z)c̄o
δROM

y (z)∂sf̌
1
2 (s)

∫
R
dt

m∑
r=1

G(s− t,xr; z)u1(−t,xr)1[−nτ,0](t). (4.32)
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Here 1[−nτ,0](t) is the indicator function of the interval [−nτ, 0], equal to 1 when t lies in this interval and 0
otherwise.
• Second step. Consider the source function

n2(t,x) =

m∑
r=1

u1(−t,xr)1[−nτ,0](t)δxr
(x), (4.33)

that is localized in time in [−nτ, 0] and in space at the sensor locations (xr)
m
r=1. This source transmits the

time-reversed recorded signals u1(−t,xr), and the generated wave field satisfies[
1

c2(x)
∂2
t −∆x

]
u2(t,x) = n2(t,x), t ∈ R, x ∈ Ω, (4.34)

u2(t,x) = 0, t� 0, x ∈ Ω, (4.35)

∂nu2(t,x) = 0, t ∈ R, x ∈ ∂Ωac, (4.36)

u2(t,x) = 0, t ∈ R, x ∈ ∂Ωinac. (4.37)

We have, using again the Green’s function, that

u2(s, z) =

∫
R
dt

∫
Ω

dz′G(s− t, z; z′)n2(t, z′) =

m∑
r=1

∫
R
dtG(s− t, z;xr)u1(−t,xr)1[−nτ,0](t), (4.38)

and from (4.32) we find

I(y) = −
∫
R
ds

∫
Ω

dz

c(z)c̄o
δROM

y (z)∂sf̌
1
2 (s)u2(s, z). (4.39)

If δROM

y is localized around y, then this expression shows that we observe the time-reversed wave around time

0, at t in the support of f̌
1
2 , and around y.

Suppose that both the recording time window nτ and the aperture of the sensor array are large enough.
Then, the theory of time reversal for waves [1] predicts that the refocused wave u2 should be close to the
original source (4.25), but time-reversed, and therefore

I(y) ≈ −
∫
ds

∫
dz

c(z)c̄o
δROM

y (z)∂sf̌
1
2 (s)n1(−s, z) =

∫
ds
[
∂sf̌

1
2 (s)

]2[ ∫
Ω

dz

c(z)2c̄2oτ
δROM

y (z)2
]
. (4.40)

This expression shows that the imaging function I(y) is related to the local velocity at y, provided δROM

y is
peaked at y. If there are sharp and significant changes c(z)− co(z) around y, which correspond to reflective
structures in the non-scattering host-medium, they appear in I(y) with a resolution that depends on δROM

y .
The more focussed this is at y, the better the resolution. The other resolution controlling factors are the
pulse width (support of f̌

1
2 ), the recording time nτ and the array aperture, which determine how well the

time reversal wave u2 refocusses.
We display δROM

y (z) in the numerical results section 6 to show that it is indeed peaked at y if the time
sample interval τ and the sensor separation are chosen properly. We also note that the ROM point spread
function is insensitive to the variations c(z) − co(z), so there is no cancellation of the wave speed in (4.39)
and (4.40). To show this, we compute explicitly the L2(Ω) norm of δROM

y (z) using its definition (3.5) and the
orthonormality of the components of V (z),

vj(z) =
(
v

(1)
j (z), . . . ,v

(m)
j (z)

)
, j = 0, . . . , n− 1,

which gives ∫
Ω

dz v
(s)
j (z)v

(s′)
j′ (z) = δj,j′δs,s′ , ∀ j, j′ = 0, . . . , n− 1, s, s′ = 1, . . . ,m,
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where δj,j′ is the Kronecker delta. We obtain that

∥∥δROM

y ‖2L2(Ω) =

∫
Ω

dz

n−1∑
j=0

m∑
s=1

v
(s)
j (z)v

(s)
o,j (y)

2

=

n−1∑
j=0

m∑
s=1

[
v

(s)
o,j (y)

]2
, (4.41)

where the right hand side depends on the orthonormal snapshots in the reference medium.

4.3. Comparison with backprojection imaging

The backprojection imaging function introduced in [14] is given by

IBP(y) = Vo(y)
(
PROM −PROM

o

)
V T
o (y), (4.42)

where PROM

o is the ROM propagator calculated in the reference medium with known wave speed co(x).
To compare it with our imaging function I(y), let us rewrite (4.42) using equation (2.33) for the ROM
propagator and the analogue of (3.3) in the reference medium,

δo,y(x) := VoV
T
o δy(x) =

n−1∑
j=0

vo,j(x)vTo,j(y) = Vo(x)V T
o (y). (4.43)

We obtain that

IBP(y) = VoV
TPV V T

o (y)− VoV T
o PoVoV T

0 (y)

=

n−1∑
j=0

vo,j(y)〈〈vj ,PδROM

y 〉〉 −
n−1∑
j=0

vo,j(y)〈〈vo,j ,Poδo,y〉〉, (4.44)

where Po is the wave propagator operator in the reference medium.
Let us explain the meaning of the two terms in the right hand side of (4.44): The last term models the

wave Poδo,y(x) with initial state δo,y(x) := VoV
T
o δy(x) peaked around y, and propagated in the reference

medium for the duration τ . This wave is then projected on the reference space So using VoV
T
o , and the

result is evaluated at y. The first term in (4.44) involves the internal wave

PδROM

y (y) = cos
(
τ
√
A(c)

)
δROM

y (x), (4.45)

that is similar to our wave g(τ,x;y) given in (4.4). Ideally, this wave would be projected in the space S ,
but since V (x) is unknown, the projection V V T is replaced by VoV

T , based on the expectation that the
approximation (3.8) holds.

By hyperbolicity and the short duration τ of propagation of the waves involved in (4.44), both terms
described above should be affected mostly by the medium in the vicinity of y. Therefore, by taking the
difference of the terms, the backprojection imaging function is designed to sense changes c(x)− co(x) in the
vicinity of the imaging point, like I(y).

The numerical results in section 6 show that I(y) and IBP(y) perform similarly, although I(y) has
better cross-range resolution. They both outperform the reverse-time migration imaging approach, in the
sense that they do not suffer from multiple scattering artifacts. However, IBP(y) has the disadvantage that it
is expensive to compute, because it involves the ROM propagator PROM. The calculation of PROM is given in
(2.33) and involves the unstable step of taking the inverse of R. This requires careful additional processing
to mitigate noise in the data, as explained in [7]. The imaging function I(y) is easy to compute and is also
more robust to noise. It only needs the Cholesky factor R of the mass matrix M , and not its inverse. While
the data driven M may not be symmetric and positive definite due to noise, it can be easily transformed
to such a matrix using for example the singular value decomposition, and then R can be obtained using the
block Cholesky factorization algorithm described for example in [6, Appendix B].
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5. Pixel scanning type imaging

In this section we use the internal wave estimated in Proposition 3.1 as a steering control at the array, for
focusing the wave at the imaging points y ∈ Ωim. Such steering can be implemented experimentally and can
be used for imaging in a pixel scanning manner.

The basic idea is the principle of time reversal: Since we know the internal wave
(
g(t,xr;y)

)
r=1,...,m

originating from the vicinity of y ∈ Ωim, we can just time reverse it and re-emit it into the medium, where it
refocuses near y. If y lies near a reflector, the refocussed wave will be reflected back towards the array, where
it can be measured. The reflector location can then be estimated from the peaks of the “pixel scanning”
imaging function IPS(y) defined below, which matches the reflected wave measured at xr with g(t,xr;y),
for r = 1, . . . ,m.

5.1. Imaging algorithm

The calculation of the imaging function IPS(y) is carried out with the following steps:

(1) Compute the mass matrix M from the data collected at the array, as given in equation (2.28).

(2) Compute the Cholesky factorization (2.30) and store R.

(3) Compute Vo(x) by carrying out the Gram-Schmidt orthogonalization of Uo(x) computed by solving the
wave equation in the reference medium with known wave speed co(x). This is especially easy to do if
co(x) = c̄o for all x ∈ Ω.

(4) For each y ∈ Ωim compute the internal wave g(t,xr;y) using equation (3.9), for r = 1, . . . ,m.

(5) Define the control at the array for focusing at y

F(t,xs;y) := 1[0,nτ ](t)g(nτ − t,xs;y), s = 1, . . . ,m. (5.1)

Measure the wave γ(t,x;y) at the the sensors x = xr, after using the illumination (5.1).

(6) Calculate the imaging function

IPS(y) :=

m∑
r=1

∫ nτ

0

dt γ(nτ + t,xr;y)g(t,xr;y). (5.2)

Note that equation (3.9) gives the internal wave at the discrete time instants t = jτ , for j = 0, . . . , n−1.
If τ is small enough, we can use interpolation to get F(t,xs;y) at t ∈ [0, nτ ]. Note also that at step (4), the
measurements should be for the acoustic pressure c(x)γ(t,x;y). Since the wave speed at the sensors equals
the known constant c̄o, those measurements determine γ(t,xr;y), for r = 1, . . . ,m.

5.2. Expression of the refocusing and imaging functions

The mathematical model of the wave γ(t,x;y) measured at step (4) of the algorithm is the solution of the
wave equation

∂2
t γ(t,x;y) +A(c)γ(t,x;y) = ∂t

m∑
s=1

F(t,xs;y), t > 0, x ∈ Ω, (5.3)

γ(t,x;y) = 0, t < 0, x ∈ Ω, (5.4)

∂nγ(t,x;y) = 0, t > 0, x ∈ ∂Ωac, (5.5)

γ(t,x;y) = 0, t > 0, x ∈ ∂Ωinac. (5.6)

We now show that this wave focuses near y at time t = nτ .
Using the Green’s function G(t,x; z) defined in equations (4.14)–(4.17), we can write using linear

superposition that

γ(t,x;y) =

m∑
s=1

F(t,xs;y) ?t G(t,x;xs), (5.7)
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where F(t,xs;y) is given by (5.1) in terms of the internal wave (3.4). A calculation similar to that in the
proof of Lemma 4.1 gives that

g(t,xs;y) =

∫
Ω

dz G(t,xs; z)δf,ROM

y (z), (5.8)

and substituting the result in (5.7) we get

γ(t,x;y) =

∫
Ω

dz δf,ROM

y (z)

∫ nτ

0

dt′
m∑
s=1

G(nτ − t′,xs; z)G(t− t′,x;xs)

=

∫
Ω

dz δf,ROM

y (z)

∫ nτ

0

dt′
m∑
s=1

G(nτ − t′, z;xs)G(t− t′,x;xs), (5.9)

where we have used the reciprocity relation G(t′,xs; z) = G(t′, z;xs). This clearly peaks at the instant
t = nτ , when the two Green’s functions are in sync, and at points x ≈ z in the support of δf,ROM

y (z) defined

in (3.4). Similar reasoning to that used in section 2.1 for the sensor functions (2.17) gives that δf,ROM

y (z) has
a slightly larger support than δROM

y (x), by an O(c(y)tf ) radius.

The expression of the imaging function follows once we use (5.8)-(5.9) in (5.2)

IPS(y) =

m∑
r=1

m∑
s=1

∫
Ω

dz δf,ROM

y (z)

∫
Ω

dz′ δf,ROM

y (z′)

∫ nτ

0

dt

∫ nτ

0

dt′ G(t,xr; z)G(t′, z′;xs)G(t+ t′,xr;xs)

≈
m∑
r=1

m∑
s=1

∫
Ω

dz δf,ROM

y (z)

∫
Ω

dz′ δf,ROM

y (z′)G(−t,xr; z) ?t G(−t, z′;xs) ?t G(t,xr;xs)
∣∣
t=0

, (5.10)

where the approximation is for large enough nτ . As was the case in the previous section, the ROM point
spread function δROM

y (z) plays an important role in the imaging function. If δROM

y (z) is sharply peaked at y,

so is δf,ROM

y (z) and we have a contribution to (5.10) from points z ≈ z′ ≈ y. Then, we can interpret the
terms in (5.10) as follows: The first time convolution

G(t,xr; z) ?t G(t, z′;xs) ≈ G(t,xr;y) ?t G(t,y;xs)

models the wave propagating from the source at xs to y, where we suppose there is a reflector, it presumably
scatters there and then propagates back to the receiver at xr in the array. The second time convolution
matches this wave with G(t,xr;xs), which models the echoes received at xr, due to the illumination from
xs. If indeed there is a scatterer at y, then there should be an arrival in G(t,xr;xs) that is synchronous to
that in G(t,xr;y) ?t G(t,y;xs), and we will get a large contribution to IPS(y).

Remark 5.1 The imaging function IPS(y) resembles that of the reverse-time migration approach, where the
array data, modeled by f(t) ?t G(t,xr;xs), are migrated to the imaging point y in the reference medium

IRTM(y) ≈
m∑
r=1

m∑
s=1

Go(−t,xr;y) ?t Go(−t,y;xs) ?t f(t) ?t G(t,xr;xs)
∣∣
t=0

. (5.11)

In (5.10) we use the Green’s function G in the true medium and not the reference one, which should give a
better result. However, we cannot obtain the ideal “time-reversal” function

ITR(y) ≈
m∑
r=1

m∑
s=1

G(−t,xr;y) ?t G(−t,y;xs) ?t f(t) ?t G(t,xr;xs)
∣∣
t=0

. (5.12)

Instead, we have the blurrier version (5.10), where we integrate over points in the support of δf,ROM

y (x).

Remark 5.2 The imaging functions I(y) and IBP(y) discussed in section 4 are quite different than IPS(y)
and IRTM(y). They are designed to be sensitive only to changes of the wave speed in the vicinity of the imaging
point y, and are not affected by the arrivals of the multiply scattered echoes in the medium. Such echoes are
the cause of ghost reflectors present in the images formed with all three functions (5.10)-(5.12), as we show
with numerical simulations in section 6.
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6. Numerical results

In this section we present numerical results in two-dimensions. The setup mimics that in Fig. 1, with a
rectangular domain Ω and the accessible boundary near the array, modeled as sound hard. The inaccessible
boundary is sound soft and consists of two side boundaries aligned with the range direction, and a remote
boundary, parallel to the array, which does not affect the waves over the duration (2n−1)τ of the data gather.
The side boundaries are close enough to each other to play a role in the simulations shown in sections 6.1-
6.2 and thus cause a waveguide effect. We also present in section 6.4 simulations for well separated side
boundaries, that have no effect for t ∈ (0, (2n− 1)τ).

The reference (host) medium is homogeneous, with constant wave speed c̄o. The unknown wave speed
c(x) varies with the simulation and is displayed in the figures below. All length scales are in units of the
central wavelength λc = 2πc̄o/ωc. The probing pulse is

f(t) =

√
2π

2
exp

(
− t2B2

2

)
cos(ωct), B = 0.25ωc. (6.1)

The data are generated by solving the wave equation for the acoustic pressure
(
p(s)(t,x)

)
s=1,...,m

, using a

time domain, second order centered finite differences scheme, on a square mesh with size λc/16. The time
steps are chosen to satisfy the Courant Friedrichs Lewy (CFL) condition.

The ROM construction is as described in [7]. The mass matrix M may be ill conditioned, especially if
the time sample interval τ and the sensor separation is too small. Since the ROM computation involves the
inverse of the Cholesky factor R of M , even for noiseless data it requires regularization. For the calculation
of the internal wave we only need R, so less regularization is needed.

For noisy data, formula (2.28) gives a symmetric data driven mass matrix that may not be positive

definite. Let us call this matrix M̃ and consider its eigenvalue decomposition M̃ = W Λ̃W T , where Λ̃ is
the diagonal matrix of the eigenvalues

(
Λ̃j
)nm
j=1

and W is the orthogonal matrix of the eigenvectors. We

transform M̃ to a positive definite matrix M used in the computation of the internal wave and the ROM
as follows: Set a threshold of the lowest acceptable positive eigenvalue Λmin and define

M = WΛW T , (6.2)

where Λ = diag(Λ1, . . . ,Λnm) and Λj = max{Λ̃j ,Λmin}, for j = 1, . . . , nm.

6.1. Imaging in a waveguide setting

The numerical results in this section are for the setup illustrated in Fig. 2, where the side boundaries are
close enough to play a role over the duration of the experiment, hence the name waveguide setting. We
consider first a large aperture size a = 30λc, with beginning and end at distance λc from the side walls, and
containing m = 49 equidistantly placed sensors. The time sample interval is τ = 0.4π/ωc, corresponding to
5 points per carrier period. However, we also test how the aperture size, the separation between the sensors
and τ affect the results, so we give the values of a, m and τ in the captions of the figures.

We display in the right plot of Fig. 2 the data D
(r,s)
j for j = 0, . . . , n − 1, r = 1, . . . ,m and s = 25,

which indexes the center sensor in the array. We also show for comparison the data in the reference medium.
Note the echoes from the side walls that are present in the true and the reference medium, and the echoes
from the sought after reflectors that are emphasized in the data differences.

In Fig. 3 we display the imaging function I(y) defined in (4.1) and the analogue function

I ideal(y) =

m∑
r=1

n−1∑
j=0

∣∣gideal(jτ,xr;y)
∣∣2 , y ∈ Ωim, (6.3)

defined in terms of the “ideal” internal wave (3.1) that cannot be computed. We can infer from Proposition
4.1 that there is only one difference between these functions: The ROM point spread function δROM

y in the

expression (4.22) of I(y) is replaced by the projection (3.3) of δy in the expression of I ideal(y). Due to the
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Figure 2. Left: Illustration of the setup: The array of m = 49 sensors (indicated with triangles) lying near
the accessible boundary probes a medium with wave speed c̄o, containing a few thin reflecting structures,
modeled by the low velocity shown in the color bar. Right: The data corresponding to the illumination from
the center element in the array. We show it for the medium with the reflectors, the reference medium and
the difference between the two.

Figure 3. Imaging function I(y) (left) and Iideal(y) (right) for the setup shown in Fig. 2. The aperture
length is a = 30λc and the array has m = 49 sensors. The data are sampled in time at interval τ = 0.4π/ωc.

excellent focussing of (3.3), we see that I ideal(y) gives a very sharp (photo-like) estimate of the reflectors,
whereas the image I(y) is a blurrier estimate. Moreover, I(y) captures only the top of the vertical reflector,
and the unobstructed part of the bottom reflector.

Note that both plots in Fig. 3 display shadows of the reflectors and have larger values near the array,
because of the energy trapped there. This is less visible in I ideal(y), because its peak values are higher. To
remove this effect, we display henceforth the derivative of the images in the range direction. This derivative
is computed after smoothing the image in range by a convolution with a Gaussian function, with standard
deviation 0.05λc.

The plots in Fig. 4 compare the four imaging functions discussed in the paper: I(y), IBP(y), IPS(y)
and IRTM(y). They all localize the reflectors, with the exception of the vertical one, whose top is the only
visible part, and the obstructed part of the bottom one. However, the result given by the computationally
inexpensive imaging function I(y) is the better one, because: (1) It gives a better separation of the two
nearby horizontal reflectors; (2) It displays clearly the oblique reflectors; (3) It does not have the ghost
reflector seen in IPS(y) and especially IRTM(y), due to the reverberation between the top reflector and the
accessible boundary. The backprojection image is also free of the ghost, but its cross-range resolution is
worse and it barely sees the oblique reflectors.

In Fig. 5 we illustrate the effect of the aperture size on the ROM point spread function δROM

y and the
image I(y). The larger the aperture, the better the focussing of δROM

y in cross-range and the better the image.
Fig. 6 shows the effect of the time sampling interval τ . The reference value is as in the previous
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Figure 4. Top plots: Range derivative of the imaging function I(y) (left), the backprojection image IBP(y)
(right). Bottom plots: The range derivative of the pixel scanning image IPS(y) (left) and the reversed time
migration image IRTM(y) (right) for the setup shown in Fig. 2. The aperture length is a = 30λc and the
array has m = 49 sensors. The time sample interval is τ = 0.4π/ωc.

experiments τ = 0.4π/ωc. For larger τ the focus of the ROM point spread function deteriorates and the
image becomes noisy. For the smaller τ the results are basically the same as in the bottom plots of Fig. 5.
In practice τ should not be reduced too much, because the snapshots become too close to each other and
consequently, the Cholesky factorization and the Gram-Schmidt orthogonalization become ill conditioned.

Finally, we illustrate in Fig. 7 the effect of the separation between the sensors. The aperture is fixed
at a = 30λc and we display results for m = 10, 20 and 60 equidistant sensors. We see that if the sensors
are too far apart, the focus of the ROM point spread function deteriorates and the image becomes noisy.
The bottom plots obtained with m = 60 are basically the same as those for m = 49 (shown in the bottom
row of Figure 5). In practice one should not take m too large (i.e., sensors that are too close), because the
Cholesky factorization of the mass matrix and the Gram-Schmidt orthogonalization become ill conditioned.

6.2. Focussing with the internal wave

In this section we illustrate the focusing of the wave γ(t,x;y), the solution of (5.3)-(5.6) with the illumination
(5.1) defined in terms of the internal wave computed as in Proposition 3.1. The setup is as in Fig. 2 and we
use the large aperture a = 30λ, with m = 49 sensors and the time sample τ = 0.4π/ωc.

We display in the left column of Fig. 8 the wave γ(t,x;y) at the time of focus, for three different points
y ∈ Ωim: Between the two nearby horizontal reflectors, on one of the oblique reflectors and near the hard
to see vertical reflector. For comparison, we also display the waves given by the illumination calculated as
in (5.1), with g(t,x;y) replaced by: go(t,x;y) calculated in the reference medium (middle column plots)
and by gideal(t,x;y) that cannot be computed in practice (right column plots). While the refocusing is
not as good as the unattainable one obtained with gideal(t,x;y), we see that using g(t,x;y) is better than
go(t,x;y) for the two first points y.

6.3. Simulations with noisy data

We now show results for the same waveguide setting as above, and for data contaminated with white
Gaussian, additive noise. The noisy data set is

{
w(s)(jτ,xr) + εs,r,j , s, r = 1, . . . ,m, j = 0, . . . , 2n− 1

}
,

where the εs,r,j are independent and identically distributed Gaussian random variables with zero-mean and
variance σ2

noise = 0.22 maxs,r,j{w(s)(jτ,xr)
2}. As we explained above, the conditioning of the noiseless mass

18



Figure 5. Illustration of the effect of the aperture size. Left column: Range derivative of the imaging
function I(y). Right column: The ROM point spread function δROM

y (x) for the point y between the two
nearby horizontal reflectors. The aperture of the array is shown in blue at the top of the plots. Top row
for 40% aperture, middle row for 60% aperture and bottom row for the full aperture a = 30λc and m = 49
sensors. The separation between the sensors is kept the same, so the smaller the aperture, the fewer sensors.
The time sample interval is τ = 0.4π/ωc.

matrix depends on the time sampling interval τ . The smaller τ is, the worse the conditioning. Thus, for
noisy data it is beneficial to increase τ a little, as we do in the results in Fig. 9. However, even for such τ ,
the mass matrix needs to be regularized, as explained at the beginning of the section.

In Fig. 9 we show images obtained at 20% noise level. Because the computation of the backprojection
image IBP(y) involves the unstable step of inverting the Cholesky factor R of the mass matrix, the noise
effect is much worse than in I(y) when using the same regularization (6.2). A more involved stabilization
of the backprojection image is needed, as explained in [14, 7]. We do not repeat that regularization strategy
here, but note that it typically leads to ghost multiples at high noise levels.

6.4. Imaging in the half space

Here we present numerical results for the setup shown in Fig. 10, where the side boundaries are sufficiently
far to have no effect on the data displayed in the right plots.

We show in Fig. 11 images obtained with the aperture size a = 18λc, containing m = 49 equidistantly
spaced sensors. The time sampling interval is τ = 0.42π/ωc. Note that the multiple scattering artifacts
in the reversed time migration and the pixel scanning images are more pronounced than in Fig. 4. The
backprojection image IBP(y) and I(y) do not have such artifacts and they both localize well the crack-like
reflectors. Arguably, I(y) does a slightly better job at localizing the sloped part of the middle crack.
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Figure 6. Illustration of the effect of τ . Left column: Range derivative of the imaging function I(y). Right
column: The ROM point spread function δROM

y for the point y between the two nearby horizontal reflectors.
The reference τ is τref = 0.4π/ωc. Top row for τ = 3τref , middle row for τ = 1.8τref and bottom row for
τ = 0.8τref (the case with τ = τref is shown in the bottom row of Figure 5). The aperture is a = 30λc, with
m = 49 sensors. The duration of the experiment is kept the same, so the larger τ , the fewer time steps.

7. Summary

We introduced and studied with analysis and numerical simulations a novel, computationally inexpensive
approach for imaging reflectors in a host, non-scattering medium, with an active array of m sensors, which
probe the medium with a pulse f(t) and measure the generated waves. The measurements are for a finite
duration 2nτ , at instants spaced by τ , chosen to satisfy the Nyquist sampling requirement for f(t). The
imaging is based on a data driven reduced order model (ROM) of the wave propagator, the operator that
maps the wave from one instant to the next. Specifically, it uses the ROM to estimate an “internal wave”
g(t,y,xr) originating from the vicinity of the imaging point y and propagating through the unknown medium
to the sensors at xr, for r = 1, . . . ,m.

We introduced two kinds of imaging functions: The first, denoted by I(y), has a very simple expression,
given by the squared norm of the internal wave at the sensors. The second, denoted by IPS(y), can be
implemented experimentally. It is a pixel scanning imaging approach which uses the internal wave to define
a control of the illumination of the medium from the array, for improved focusing of a probing wave at the
pixel (imaging point) y. It then uses a matched field approach to obtain IPS(y) from the resulting measured
backscattered wave.

The functions I(y) and IPS(y) use a different imaging principle: The first one is designed to be sensitive
to variations of the wave speed locally, near the imaging point, so it is not affected by the arrivals of the
multiply scattered echoes in the medium. The second one matches time arrivals at the array and is therefore
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Figure 7. Illustration of the effect of m. Left column: Range derivative of the imaging function I(y).
Right column: The ROM point spread function δROM

y (x) for the point y between the two nearby horizontal
reflectors. The reference τ is τref = 0.4π/ωc. Top row for m = 10, middle row for m = 20 and bottom row
for m = 60 (the case with m = 49 is shown in the bottom row of Figure 5). The aperture is a = 30λc, so
the smaller m is, the larger the separation between the sensors. The time sample interval is τ = 0.4π/ωc.

affected by multiple scattering.
Both imaging functions use the time reversal refocusing principle. In particular, I(y) is a blurry version

of the function that models the refocusing of the wave in the time reversal experiment with a source at the
imaging point y. The sharpness of the refocusing depends on the bandwidth of the probing pulse f(t), the
duration 2nτ of the measurements and the aperture size of the array. These affect the resolution of I(y),
but the blur, quantified by the ROM point spread function δROM

y , is the main factor. The better this peaks
at the imaging point y, the better the image. We showed with analysis and numerical simulations that
δROM

y is highly peaked at y if: (1) the kinematics (the smooth wave speed in the host medium) is known
accurately; (2) the time sampling interval τ and the sensor separation are small enough; and (3) the array
has large enough aperture. Of all these requirements, knowing the kinematics may be harder to achieve in
some applications.

Since the imaging function I(y) is easily computed and it is unfocused when the assumed kinematics
is wrong, it could be possible to carry out an estimation of the smooth part of the wave speed based on an
optimization of the sharpness of I(y) quantified properly by some norm. This could be the subject of future
work.
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Figure 8. Illustration of focusing at three different points in the imaging domain. Left column: The
refocused wave after the illumination computed with the internal wave g(t,x;y). Middle column: The
refocused wave after the illumination computed with go(t,x;y) calculated in the reference medium. Right
column: The refocused wave after the illumination computed with gideal(t,x;y). The aperture is a = 30λc,
the number of sensors is m = 49 and τ = 0.4π/ωc.

Figure 9. The range derivative imaging function I(y) (left) and the backprojection image IBP(y) (right)
when imaging with data that has 20% additive white Gaussian noise. The aperture is a = 30λc, the number
of sensors is m = 49 and τ = 0.67π/ωc.
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Figure 10. Left: Illustration of the setup: The array of m = 49 sensors (indicated with triangles) lying near
the accessible boundary probes a medium with wave speed c̄o, containing a few thin reflecting structures
(cracks), modeled by the low velocity shown in the color bar. Right: The data corresponding to the
illumination from the center element in the array. We show it for the medium with the reflectors, the
reference medium and the difference between the two.

Appendix A. The approximation of the snapshots in the reference space

In this appendix we discuss two setups where we can analyze explicitly the approximation (3.8) of the

orthonormal snapshots. Specifically, we quantify how well the snapshots u
(s)
j (x), for j = 0, . . . , n − 1 and

s = 1, . . . ,m, which span the projection space S , can be approximated in the reference space So. If
the approximation error is small, since the Gram Schmidt orthogonalization is a stable process, we have
V (x) ≈ Vo(x).

The first setup is for a layered medium and it is discussed in Appendix A.1. The second setup, discussed
in Appendix A.2, is for a waveguide.

Appendix A.1. Snapshots in a layered medium

The analysis is simplest in the one-dimensional case, where m = 1, so we consider it first. The higher
dimensional case is discussed after that.

Appendix A.1.1. One-dimensional case. It is well known [16, Chapter 3] that in one-dimension scattering
occurs due to changes of the acoustic impedance, and that the wave speed c(z) can be eliminated from the
wave equation by transforming to the travel time coordinate

T (z) :=

∫ z

0

dz′

c(z′)
. (A.1)

Thus, we consider, only in this section, the more general acoustic wave equation corresponding to variable
mass density ρ(z) and bulk modulus K(z), which define the wave speed c(z) =

√
K(z)/ρ(z) and acoustic

impedance ζ(z) =
√
K(z)ρ(z). The wave is modeled by the acoustic pressure p(t, z), the solution of

∂2
t p(t, z)− ζ(z)c(z)∂z

[
c(z)

ζ(z)
∂zp(t, z)

]
= f ′(t)c(0)δ(z), t ∈ R, z ∈ (0−, L), (A.2)

∂zp(t, 0−) = p(t, L) = 0, t ∈ R, (A.3)

p(t, z) = 0, t� 0, z ∈ (0−, L), (A.4)
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Figure 11. Top plots: The imaging function I(y) (left) and its range derivative (right). Middle plots: The
backprojection image IBP(y) (left) and the reversed time migration image IRTM(y) (right) for the setup
shown in Fig. 10. Bottom plot: The range derivative of the pixel scanning image IPS(y). The aperture
length is a = 18λc and the array has m = 49 sensors. The time sample interval is τ = 0.42π/ωc.

where z = 0− is the range coordinate of the accessible boundary, just above the sensor at z = 0, and L > 0 is
the range of the inaccessible boundary, assumed large enough so it does not affect the wave over the duration
of the measurements.

After the travel time coordinate transformation (A.1), we get that the even in time wave

P (t, T ) := p(t, z(T )) + p(−t, z(T )), (A.5)

satisfies

∂2
t P (t, T )− ζ(z(T ))∂T

[
1

ζ(z(T ))
∂TP (t, T )

]
= 0, t > 0, T ∈ (0−, T (L)), (A.6)

∂TP (t, 0−) = P (t, T (L)) = 0, t > 0, (A.7)

with initial conditions

P (0, T ) = ϕ(T ) ≈ 2f(T ), ∂tP (0, T ) = 0, T ∈ (0−, T (L)). (A.8)

The layered medium is modeled by the piecewise constant impedance

ζ(z(T )) = ζj , T ∈ (Tj−1, Tj ], Tj := T (zj), j = 0, . . . , `+ 1, (A.9)

whose jumps at range coordinates zj , ordered as 0− = z−1 < 0 < z0 . . . < z`+1 = L, give the reflection and
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transmission coefficients [16, Chapter 3]

Rj :=
ζj − ζj+1

ζj + ζj+1
, Tj :=

2
√
ζjζj+1

ζj + ζj+1
, j = 0, . . . , `. (A.10)

In the reference medium with constant impedance ζo = ζ(0), the wave is given by d’Alembert’s solution

Po(t, T ) =
1

2

[
ϕ(T − t) + ϕ(T + t)

]
. (A.11)

It is the sum of a forward and a backward wave, due to the accessible boundary.
If there is a single scattering layer (` = 0) in the medium, we obtain after a standard calculation as

described in [16, Chapter 3] that

P (t, T ) =

∞∑
q=0

(−R0)q
1

2
[ϕ(T − t+ 2qT0) + ϕ(T + t− 2qT0)] =

∞∑
q=0

(−R0)qPo(t− 2qT0, T ), (A.12)

if T ∈ (0−, T0), whereas for T > T0 we have

P (t, T ) =
T0

√
ζ1√
ζ0

∞∑
q=0

(−R0)q
1

2
ϕ(T − t+ 2qT0) =

T0

√
ζ1√
ζ0

∞∑
q=0

(−R0)qPo(t− 2qT0, T ). (A.13)

In the last equation we used that ϕ(T + t− 2qT0) = 0 for T > T0 � tf and time t > 2qT0 at which the qth

transmitted wave can be observed.
The series over q in equations (A.12)–(A.13) account for the multiple reflections at the interface T = T0.

We have a train of waves that look just like the wave in the reference medium, with delays 2qT0 corresponding
to the number of roundtrips between the accessible boundary and the interface. Using causality, we conclude
that

P (jτ, T ) ∈ So,j := span {Po(j′τ, T ), j′ = 0, . . . , j} , if
2T0

τ
∈ N. (A.14)

Otherwise, P (jτ, T ) is approximated in So,j with some error, which is small if τ is small with respect to the
scale of variation of ϕ(t) and therefore f(t).

If the medium has multiple layers (` ≥ 1), the expression of P (t, T ) is given by a more complicated series,
with each term corresponding to a sequence of scattering events [16, Chapter 3]. Nevertheless, the conclusion
is similar to the above: If the travel time between the interfaces is an integer multiple of τ , which corresponds
to a “Goupillaud medium” [16, Section 3.5.4], then the snapshots P (jτ, T ) are represented exactly in the
span of the snapshots in the reference medium. Otherwise, we have an error that is small if τ is small with
respect to the scale of variation of f(t).

In conclusion, in the one-dimensional case, as long as τ is small enough, the orthonormal snapshots
are approximately the same as in the reference medium, in the travel time coordinate. Furthermore, if we
have an accurate estimate of the smooth part of the wave speed, called co(z), we can transform to the range
coordinate and obtain (3.8).

Appendix A.1.2. Higher dimensions. Here we suppose that the waves generated by a source at range z = 0
propagate in the half space z > 0− filled with a layered medium with wave speed c(z) and impedance ζ(z).
Consider the system of coordinates x = (x⊥, z), with cross-range x⊥ ∈ Rd, for d = 1 or 2, and let the source
be f ′(t)S(x⊥)δ(z), with cross-range profile S(x⊥). Then, if we Fourier transform the acoustic wave equation
for the pressure p(t,x) with respect to t and x⊥, we obtain a family of one-dimensional Helmholtz equations

ω2p̂(ω,κ, z) + ζκ(z)cκ(z)∂z

[
cκ(z)

ζκ(z)
∂z p̂(ω,κ, z)

]
= iωf̂κ(ω)cκ(0)δ(z), (A.15)

for the time harmonic plane waves

p̂(ω,κ, z) :=

∫
R
dt

∫
Rd

dx⊥ p(t,x⊥, z)eiω(t−κ·x⊥). (A.16)
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Here κ is the slowness vector, with units of time over length, which defines the plane wave speed and
impedance

cκ(z) :=
c(z)√

1− c2(z)|κ|2
, ζκ(z) :=

ζ(z)√
1− c2(z)|κ|2

, (A.17)

and

f̂κ(ω) :=
f̂(ω)Ŝ(ωκ)√
1− c2(0)|κ|2

. (A.18)

We assume that the source excites propagating waves only i.e., κ in the support of S(ωκ) satisfies
|κ| < minz c

−1(z), so that equations (A.17)-(A.18) return real values.
Now we can use as in the previous section the travel time transformation

Tκ(z) :=

∫ z

0

dz′

cκ(z′)
, (A.19)

and obtain that

Pκ(t, Tκ) :=

∫
R

dω

2π
p̂(ω,κ, z(Tκ))e−iωt =

∫
Rd

dx⊥ p(t+ κ · x⊥,x⊥, z(Tκ)), (A.20)

satisfies an equation like (A.6), with ζ(z) replaced by ζκ(z) and f(t) replaced by fκ(t). Thus, we can use
the results in the previous section to conclude that if τ is small enough, the snapshots of Pκ(t, Tκ) can
be approximated by those in the reference medium. Note however that the wave speed cannot be removed
completely via the travel time transformation, as in the one-dimensional case, because c(z) appears in the
expression of the impedance ζκ(z). Thus, knowing the kinematics (the smooth part of c(z)) is very important
for getting the alignment of the wavefronts in the true layered medium and the reference medium.

Appendix A.2. Snapshots in a waveguide

Here we return to the wave equation in a medium with constant density, and assume for simplicity a two-
dimensional waveguide x = (x⊥, z) ∈ (0, D) × (0−,∞), with sound hard wall at z = 0, representing the
accessible boundary ∂Ωac, and sound soft side walls at x⊥ ∈ {0, D} that are part of the inaccessible boundary
∂Ωinac. The remaining part of ∂Ωinac is an artificial sound soft boundary at z = L, for large enough L so
that the waves do not reach it over the duration of the measurements. Note that this is the setup for the
numerical simulations in section 6.1.

The waveguide is filled with a homogeneous medium with wave speed c̄o, and contains a thin reflector
localized for simplicity at the range z = z0, modeled by the reflectivity r(x⊥)δz0(z) as follows

1

c2(x)
=

1

c̄2o

[
1 + r(x⊥)δz0(z)

]
. (A.21)

We analyze the acoustic pressure p(s)(t,x) in the waveguide, related to the wave w(s)(t,x) as explained in
section 2. The excitation is as in (2.1), and the pulse f(t) is given by an even envelope function F supported
in the interval (−1, 1) and modulated at the central frequency ωc,

f(t) := F
( t
tf

)
cos(ωct). (A.22)

The snapshots at z 6= z0 are defined by the even extension in time of the pressure, divided by the constant
speed c̄o,

u(s)(t,x) :=
[
p(s)(t,x) + p(s)(−t,x)

]
/c̄o. (A.23)

The analysis uses the mode decomposition of u(s)(t,x), based on its expansion in the L2(0, D)
orthonormal basis {ψj(x⊥), j ≥ 1}, where

ψj(x
⊥) =

√
2

D
sin(αjx

⊥), αj :=
πj

D
, j ≥ 1, (A.24)
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are the eigenfunctions of the operator ∂2
x⊥ acting on functions of x⊥ ∈ (0, D), with homogeneous Dirichlet

boundary conditions. We are interested in the propagating modes, indexed by j = 1, . . . , N = bkcD/πc,
because the evanescent modes generated by the reflectivity at z = z0 are negligible by the time they reach
the array. Here kc = ωc/c̄o is the wave number at the central frequency, and we assume that the bandwidth
B = O(1/tf ) of the probing pulse is small enough, so that⌊ωD

πc̄o

⌋
≈
⌊kcD
π

⌋
, ∀ω ∈ (ωc −B,ωc +B). (A.25)

The expression of the snapshots in the empty (reference) waveguide is obtained after a standard
calculation, as explained for example in [16, Chapter 20],

u(s)
o (t,x) ≈

N∑
j=1

ψj(x
⊥)u

(s)
o,j(t, z) + evanescent. (A.26)

It is a superposition of one-dimensional propagating waves (modes)

u
(s)
o,j(t, z) :=

2kcψj(x
⊥
s )

c̄oβj(ωc)

{
F
( t− z/co,j

tf

)
cos
[
βj(ωc)z − ωct

]
+ F

( t+ z/co,j
tf

)
cos
[
βj(ωc)z + ωct

]}
, (A.27)

with wave numbers

βj(ω) := sign(ω)

√
ω2

c̄2o
− α2

j , j = 1, . . . , N, (A.28)

and the approximation in (A.26) is due to the small bandwidth assumption that allows us to write

βj(ω)z ≈ βj(ωc)z + (ω − ωc)β′j(ωc)z, ∀ω ∈ (ωc −B,ωc +B). (A.29)

Again, we see that due to the accessible boundary, we have both forward and backward going waves in
(A.27). The backward waves are observed only at small z and time t = O(tf ). The waveguide is dispersive,
so the propagation is at mode dependent group speed

co,j :=
1

β′j(ωc)
=
c̄oβj(ωc)

kc
, (A.30)

which is different than the phase speed ωc/βj(ωc), for j = 1, . . . , N .
The expression of the snapshots in the waveguide with the reflectivity given in (A.21) involves a series

of multiple scattering events at the reflector. For our purposes it suffices to look at the first two terms in this
series, corresponding to the single scattering, Born approximation. The analysis of the higher order terms is
similar and does not bring anything new. A standard calculation that uses approximations like (A.29) gives
that the snapshots are

u(s)(t,x) ≈
N∑
j=1

ψj(x
⊥)
[
u

(s)
o,j(t, z) + u

(s)
Born,j(t, z)

]
+O(r2) + evanescent, (A.31)

where for z ∈ (0−, z0) we have

u
(s)
Born,j(t, z) ≈

k2
c

2c̄2oβj

N∑
l=1

rj,l
ψl(xs)

βl
∂t

{
F
[ t− β′jz − z0(β′j + β′l)

tf

]
cos
[
βjz − ωct+ z0(βj + βl)

]
+ F

[ t+ β′j(z − z0)− z0β
′
l)

tf

]
cos
[
βj(z − z0) + ωct− z0βl

]}
(A.32)

27



and for z > z0 we have

u
(s)
Born,j(t, z) ≈

k2
c

c̄2oβj

N∑
l=1

rj,l
ψl(xs)

βl
∂t

{
F
[ t− β′jz − z0(β′j + β′l)

tf

]
cos
[
βjz − ωct+ z0(βj + βl)

]
+ F

[ t− β′j(z − z0)− z0β
′
l

tf

]
cos
[
βj(z − z0)− ωct+ z0βl)

]}
. (A.33)

In these equations we simplified the notation by dropping the ωc arguments of βj , βl and their derivatives,
and we introduced the reflectivity matrix

rj,l :=

∫ D

0

dx⊥ r(x⊥)ψj(x
⊥)ψl(x

⊥). (A.34)

Note that the terms in (A.32) model two kinds of waves: The first kind strikes the reflector as mode l, it
is converted to mode j, travels to the accessible boundary, it is reflected there and then travels forward. The
second kind strikes the reflector as mode l, it is converted to mode j and then travels backward. Similarly,
the first term in (A.33) models the wave that starts as mode l, it is converted to mode j, travels to the
accessible boundary where it reflects and then propagates forward. The second term models the wave that
strikes the reflector as mode l, it is converted to mode j and then propagates forward. We now show that
these waves can be approximated in the span of the time delayed reference waveguide modes (A.27).

Let us introduce the travel times

tj,l := z0(β′j + β′l) =
z0

co,j
+

z0

co,l
, (A.35)

corresponding to the propagation of the envelope of the wave at group speeds (A.30), and

Tj,l :=
z0(βj + βl)

c̄okc
, (A.36)

corresponding to the propagation of the phase. Then, expanding the cosine in (A.32) we get

u
(s)
Born,j(t, z) ≈

k2
c

2c̄2oβj

N∑
l=1

ψl(xs)

βl
rj,l

{
cos
[
ωc(Tj,l − tj,l)

]
∂t

{
F
[ t− tj,l − z/co,j

tf

]
cos
[
βjz − ωc(t− tj,l)

]
+ F

[ t− tj,l + z/co,j)

tf

]
cos
[
βjz + ωc(t− tj,l)

]}
− sin

[
ωc(Tj,l − tj,l)

]
∂t

{
F
[ t− tj,l − z/co,j

tf

]
sin
[
βjz − ωc(t− tj,l)

]
−F
[ t− tj,l + z/co,j)

tf

]
sin
[
βjz + ωc(t− tj,l)

]}}
(A.37)

for z ∈ (0−, z0). Recalling equation (A.27), we note that the first curly bracket is proportional to

∂tu
(s)
o,l (t− tj,l, z). The second curly bracket is approximately proportional to ∂2

t u
(s)
o,l (t− tj,l, z), because

∂t

{
F
[ t− tj,l − z/co,j

tf

]
cos
[
βjz − ωc(t− tj,l)

]}
= ωcF

[ t− tj,l − z/co,j
tf

]
sin
[
βjz − ωc(t− tj,l)

] [
1 +O

(
1

ωctf

)]
∂t

{
F
[ t− tj,l + z/co,j

tf

]
cos
[
βjz + ωc(t− tj,l)

]}
= −ωcF

[ t− tj,l + z/co,j
tf

]
sin
[
βjz + ωc(t− tj,l)

] [
1 +O

(
1

ωctf

)]
and we have assumed

1

ωctf
= O

(
B

ωc

)
� 1.
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For a small enough time sample interval τ , the time derivatives of u
(s)
o,l (t − tj,l, z) can be approximated

with finite differences, so we conclude that the snapshots (A.32) evaluated at range z ∈ (0−, z0) can be
approximated by linear combinations of the time delayed reference snapshots (A.27). Similarly, it follows
that the result also holds for the snapshots (A.33) evaluated at z > z0.

In the ROM construction we do not use the mode decomposition. However, if the sensors are closely
spaced in the array, so that we can approximate the sum over them by an integral over the array aperture
A ⊆ (0, D), we can write ∫

A
dx⊥u(s)

o (t,x)ψj(x
⊥) ≈

N∑
l=1

Qj,lu
(s)
o,l (t, z), (A.38)

where Q =
(
Qj,l

)
j,l=1,...,N

is the mode coupling matrix

Qj,l :=

∫
A
dx⊥ ψj(x

⊥)ψl(x
⊥), j, l = 1, . . . , N. (A.39)

If A is large enough, Q is invertible, so the snapshots at the array carry the same information as the modes
(A.27). This is what we need for our approximation, in addition to the small τ required to deal with the
discrete time samples of the wave, as in the previous section.
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