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ABSTRACT
The number of complex infrastructures in an industrial setting
is growing and is not immune to unexplained recurring events
such as breakdowns or failure that can have an economic and
environmental impact. To understand these phenomena, sensors
have been placed on the different infrastructures to track, monitor,
and control the dynamics of the systems. The causal study of these
data allows predictive and prescriptive maintenance to be carried
out. It helps to understand the appearance of a problem and find
counterfactual outcomes to better operate and defuse the event.

In this paper, we introduce a novel approach combining the
case-crossover design which is used to investigate acute triggers
of diseases in epidemiology, and the Apriori algorithm which is a
data mining technique allowing to find relevant rules in a dataset.
The resulting time series causal algorithm extracts interesting rules
in our application case which is a non-linear time series dataset.
In addition, a predictive rule-based algorithm demonstrates the
potential of the proposed method.

CCS CONCEPTS
• Information systems → Association rules; Data mining; •
Computing methodologies→ Supervised learning by classi-
fication; Rule learning; • Applied computing → Command
and control.
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1 INTRODUCTION
Monitoring has enabled, with the help of increased storage capacity,
to collect a large amount of data. The data analysis plays a crucial
role in understanding the underlying mechanisms and the occur-
rence of incidents. In the industrial context, this consists of placing
sensors and collecting temporal data like temperature, flow rates,
chemical characteristics, or wind power to capture the evolution
and the dynamics of the system. Exploiting these large amounts of
temporal data is a real challenge facing many companies. Indeed,
they contain enormous amounts of information that could help
improve efficiency or optimize certain processes.

Driven by easy access to machine learning environments and the
recent success of deep learning techniques, many models have been
developed to predict the occurrence of these events but they do not
only work on their causes but also on the correlated variables. This
makes these models less robust as they could miss the incident by
trusting a correlated variable. In areas where decisions and actions
can have serious consequences, for example on humans in medicine
or on the profitability in the industry, it is necessary to understand
black-box models and therefore to carry out a causal study to act
in a justified way. Hence, the objective of causality in an industrial
context is to better understand the decisions taken by artificial
intelligence algorithms, to find the causes of unexplained events,
and to do maintenance policy by anticipating the occurrences of
breakdowns. Therefore, a theoretical approach should be developed
to provide a general framework that could work in an industrial
environment. In particular, the approach should help the operators
understand what are the mechanisms behind every decision that is
taken and allow them to prevent the apparition of an incident by
defusing its arrival.

The interest in causality is growing and these studies are becom-
ing essential in industry and in many other fields of applications.
For instance, it is common for distillation units to have recurrent
problems occurring during petroleum refining. The causal study
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allows a better understanding of the origins of these problems and
to develop a general approach that can be used on many systems
such as wind turbines.

Petroleum refining is the process of transforming crude oil into
usable end products such as gasoline, diesel, and other products
used in petrochemicals. The distillation process is the first stage
of processing and consists of purifying different liquid substances
from a mixture. In our case, this is done by separating the different
hydrocarbon fractions contained in crude oil. Regularly, an event
called flooding [18, 19] occurs and requires the process to be slowed
down or stopped for a considerable amount of time. In fact, several
hours of maintenance are required to return to a normal operating
regime. This happens when the steam flow is too high and blocks
the flow of liquid in the column. It could be detected by sharp
increases in differential pressures, and a decrease in the production
performance. In fact, a flooding results in a loss of performance and
a decrease in the quality of separation. In the case of the atmospheric
distillation unit, a flooding occurs very often and several hours are
then required to stabilize the unit.

Flooding events are complex and the origins are still unclear but
we know that there are of different types. Conventional methods
based on theoretical equations and/or temperature and differential
pressure analysis have been used to develop predictors. These at-
tempts have so far been unsatisfactory; either the number of False
Positives is too high, or a large number of floodings are missed.
Currently, a predictive model has been established in order to pre-
dict the onset of the floodings. Indeed, the use of a Random Forest
algorithm allows to predict the problem one hour before its appear-
ance but even though the model achieves good accuracy, there are
still many False Positives and some events are not detected. This
leads to a waste of time and an economic loss.

Two limitations of this approach can be pointed out: firstly the
random forest algorithm is a black-box model which means that
even if we are able to forecast the onset of a flooding, the causes
remain unclear. Indeed, a random forest is a set of decision trees
where each one takes a decision based on different samples and
the final decision is a vote over the decisions of the trees. Secondly,
it is not a causal model, hence the reliability of this algorithm is
reduced.
Once the predictive model has been implemented on-site to predict
in real-time the apparition of the floodings, the operators have
asked several questions: how does the algorithm make its predic-
tions? Why should they trust a model that they do not understand
and cannot be explained?What should be done to prevent the flood-
ing when the alarm is triggered? These questions have remained
unanswered and we believe it is essential to find answers. A causal
study is thus necessary to give a more explainable relationship
between the variables and the onset of the event.

Causality has always been a subject of much research in both
science and philosophy. From an observable effect, we want to
understand what are the causes of this phenomenon. The mecha-
nism of cause and effect can be visible (domino) but it can be much
more complex with unobservable steps, as in chemical processes.
Therefore, links can be established between different independent
or dependent variables jointly called correlations, and often con-
fused with causality although it is different. Several definitions of
causality and their associated approaches have been developed in

order to extract the causal structure from the data, of which the
best known are Granger causality [14] and Pearl causality [26].

Our study focuses on time series, so we need to establish a
suitable framework. Granger proposed a "predictive causality" test
to determine whether one time series improves the predictive ability
of a second. This approach is limited because hidden variables could
reveal correlations rather than causality. On the other hand, Pearl
proposes the "Structural Causal Model" allowing to establish a
causal graph from the data. The temporal dimension corresponds
to additional constraints on the structure of the graph.

Our approach, which can be described as a Granger method, is an
adaptation of the case-crossover design [20] (developed in section
3) to industrial data. It is an approach used in epidemiology in order
to understand the origins of a phenomenon appearing suddenly
(heart attack, accidents, injuries [9–11, 22]). A relation between an
exposure and an event is said to be causal if the occurrence of the
exposure causes the event. Finding the causes of acute events has
always been a challenge for epidemiologists and the way the data
collected from a batch of patients is analyzed plays an important
and crucial role in the study.

This design is combined with the association rule mining al-
gorithm Apriori [27] which aims at discovering relationships of
interest between two or more variables stored in datasets. The ad-
vantage of this method is that it has a high interpretability [34],
hence easier to understand for operators that could then be able to
act and defuse the problem.

In this paper, we present a general framework that could be used
when we want to understand the causes of a phenomenon that
occurs briefly over time and we demonstrate its relevance by ap-
plying it to our flooding case study. We propose the Case-crossover
APriori (CAP) algorithm which provides association and causal
rules explaining the occurrences of flooding events and the Case-
crossover APriori Predictive algorithms (CAPP1 and CAPP2) that
predict them. The purpose of this work is to answer the following
research questions: What are the causes of the flooding event and
what are the variables involved in this phenomenon? The paper is
organized as follows. Section 2 is dedicated to a review of existing
literature on causality for time series, the interpretability of algo-
rithms and causal rule mining. Section 3 is the presentation of the
case-crossover design. Section 4 contains a depiction of the original
methodology developed in this study. Section 5 is dedicated to the
case study used to validate the research approach with the presen-
tation of the data and the results. Section 6 contains the conclusive
remarks and approaches for future work.

2 RELATEDWORK
Temporal data is complex and surrounds us in everyday life. Their
study in industrial and mechanical environments is fundamental,
it increases prevention and reduces the occurrence of problematic
and damaging phenomena.

Causality being a rather old field, a lot of research has been
done and several approaches exist. Many of these approaches have
been adapted to temporal data adding order constraints on the
data for each variable. In the case of Pearl causality and graphical
approaches based on Structural Equation Models, we can cite the
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algorithms PCMCI [31] and tsFCI [8] which are, respectively, adap-
tations of the non-temporal causality algorithms PC [33] and FCI
[33] . The general principle is based on two steps. The first step is
about statistical testing to establish the conditional dependencies
between the variables and thus obtain the skeleton of the graph.
The second step then constrains the types of existing relationships
and orients the edges of the graph. The addition of the temporal
dimension has the effect of adding an assumption on the prece-
dence associated to each node of the graph. Indeed, future elements
cannot be the causes of past elements.

The approaches proposed by Granger have been also adapted
to time series. In fact, the reformulation of the "Granger causality"
is as follows: it is said that 𝑋 "Granger causes" 𝑌 if the future
values of 𝑌 (at time 𝑡 + 1) can be better predicted by using the
previous values of 𝑋 and 𝑌 (up to time 𝑡 ) than by using only the
previous values of 𝑌 . Many papers have used this approach with
notably vector autoregressive models [6] and kernel-based methods
[23]. Predictive models are then followed by a statistical test on
the residuals which can be of several forms: SSR-based F test or
Pearson Chi-square test.

In addition, several approaches that can be related to Granger
causality have been developed to explain machine learning models,
also called black-box models because they are very difficult to
interpret due to the high number of parameters involved and the
complexity of these models. More recently, different approaches
based on Granger causality have been developed such as copula-
based methods [16], regression techniques [12] or Deep Learning
method with Attention model [25].

Other types of methods to explain the decisions of black-box
models have been developed. In particular, we can mention LIME
[30] and LoRMIkA [28] which use association rules. These methods
allow to explain locally the decisions made by the algorithm but
suffer from a lack of interpretability at the global level.

The first method that could be compared with our algorithm is
decision trees. This is a very popular approach as it is simple to
compute and highly interpretable, we can cite the two main algo-
rithms CART [4] and C5.0 [32]. The drawbacks are that they are
very unstable and are not good predictors. That is why Breiman
developed random forest [3] to overcome these issues but the com-
plexity introduced by the high number of trees and the bagging
technique reduces the interpretability. On the other hand, the sec-
ond method is the rule mining algorithm in which we can find
greedy heuristics [7, 13, 24, 35] allowing us to find interpretable
rules. Similar to decision trees, they have low accuracy and are un-
stable. More recently, Benard et al. [5] extracted interpretable rules
from a random forest classifier by looking for frequent patterns in
the trees, hence allowing to take advantage of the high accuracy
and the stability of the algorithm, while being interpretable.

We should note that these methods have been developed for
non-temporal data. Although the random forest algorithm can be
used for temporal data, it does not take into account trend and
seasonality since it only gives thresholds based on a criterion that
separates the classes so that we have two homogeneous groups.
Likewise, the rule-based methods must be adapted to respect the
temporal aspect and to take into account the trends and seasonality.

Our approach overcomes these problems by using the case-
crossover design, which has been developed for time series data.

Then, the use of the Apriori algorithm allows having interpretable
and causal rules.

3 CASE-CROSSOVER DESIGN
The method used in this paper is inspired by an epidemiological
approach and we aim here at giving an intuitive introduction. The
most natural way to find the cause of a disease that happens briefly
across a population is to take two subgroups, one that contracted
the disease and the other one that is healthy, and then compare
them. This design called the case-control design must fulfill some
conditions to remove biases from the study. In fact, the two sub-
groups that we compare should have the same characteristics like
age or gender in order to remove confusion bias called confound-
ings. They could create an association that does not exist or hide
an existing one and this design is not tailored to prevent or control
them.

The case-crossover design, proposed by Maclure in 1991 [4], is
used in epidemiology to study the onset of acute events across a
population and is widely used to find the causes of diseases. It is an
alternative to the case-control design and allows to avoid confusion
biases. There are many applications of this design that are used
such as studying the effect of air pollution on health [5] or more
recently looking for the causes of the increase of mortality due to
Covid-19 and cold temperature [6]. The idea behind this design is
to take two periods, one named the control and the other one the
case period. The control period is selected in a "normal" operating
period i.e. a long time before the onset of the event and the case
period is selected during the hazard period i.e. the period preceding
the onset of the event. The comparison of these two periods tells
us what has changed between these two periods and statistics over
several events allow us to see which changes happen regularly
across a population and induce the event or the disease. Let us take
the example of a car accident [21] to understand why this design
is relevant. To know what the causes of car accidents are in an
area, the case-control design would identify two groups of people.
The first group is made up of the people who had an accident in
that area - the case group - and the second group is made up of
the people who did not have an accident in the same area - the
control group. Then, we compare their behaviors to see if there is a
factor that happens often in the "case group" and not in the "control
group". For example, we could see that in the case group, people
are more likely to eat while driving or to have a phone call, and
then we could identify these behaviors as a cause. This approach
has some issues as we compare different people that have different
characteristics. If we do not preprocess our data and do not compare
similar subjects, it introduces confoundings.

The case-crossover design aims at tackling this issue. In fact,
instead of taking two groups, we only follow the subjects who had
an accident. The control period would be a long time before the
accident and the case period the moments just before the event. For
the car accident example, it allows us to see that the subject was not
using his phone during the control period and was using it during
the case one. By doing these comparisons of the same subject but at
different time periods, we could remove the confoundings coming
from the differences between different subjects taken as case and
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control. Another advantage is that we do not need the second group
anymore but only subjects who are exposed.

Usually, this process is done through several individuals taken
on the same day of the week and at the same time over several
months. The results are then given by doing statistics on the overall
data collected. We insist here on the fact that it is necessary to have
prior knowledge of the duration of exposure and the appearance of
the phenomenon.

4 RULE-BASED ALGORITHM
Association Rule Mining (ARM) is a data mining framework that
allows to extract frequent associations of variables in a database.
It has the advantage of being highly interpretative and easy to
understand. In this section, we describe how ARM has been used
in retail and how we adapt it to more varied fields of application
and particularly for time series by introducing the CAP, CAPP1
and CAPP2 algorithms.

4.1 Motivation
ARM has been developed by Agrawal [17] for commercial purposes.
Indeed, commercial enterprises accumulate a significant amount
of data on a daily basis. In the case of supermarkets, consumer
purchases that can be retrieved from checkout receipts are a huge
source of information. Their analysis helps to better understand
consumers’ behavior and thus to establish appropriate marketing
campaigns, better manage inventories or improve customer rela-
tions.

The general setting for ARM is composed of a database contain-
ing transactions and each transaction is an item-set i.e. a set of
items. ARM algorithms allow to find relationships between items
from the database in the form of association rules which are rules
(implications) of the form 𝑎 → 𝑏 where 𝑎 is an item-set and 𝑏 is an
item-set that is not present in 𝑎. In our case, we consider that 𝑏 is
only one item.

4.2 Apriori
In the following, we use the Apriori algorithm. Our objective being
to extract causal rules from a database, we consider the use of this
algorithm sufficient. An improvement of the algorithmwill be made
in future works.

Several problems can arise when using association rules. The
number of rules depends on the size of the database, if it is large,
it will be impossible to consider all the possible rules. In fact, in
a database with 𝑛 items, the number of rules of the form 𝑎 → 𝑏

for all possible item-sets 𝑎 and items 𝑏 that are not present in 𝑎 is
𝑛2𝑛−1, hence the complexity would be exponential and the problem
intractable. Moreover, we will find among all these rules random
associations and the items coming into play would have no real
causal link or association.

The paradigm usually applied for mining rules is the Frequent
Rule Mining (FRM). In order to proceed, we need to define the
framework to determine the association rules. Let 𝐼 be the set of
items and 𝐷 be the set of transactions, which is a set of item-sets
of 𝐼 , and let 𝑎 be an item-set and 𝑏 an item. Rules extracted by FRM
are of the form 𝑎 → 𝑏. In the following, we give definitions and
metrics [2] in order to apply the algorithm.

• The support supp(𝑎 → 𝑏) ranges within [0, 1] and is the
frequency of apparition of 𝑎 and 𝑏 within the transactions.
Here, #(𝑎 ∪ 𝑏) is the number of elements of 𝐷 that contain
the item-set 𝑎 ∪ 𝑏 .

supp (𝑎 → 𝑏) = #(𝑎 ∪ 𝑏)
|𝐷 |

The rules extracted by FRM have their support greater than
a set threshold called minimum-support.
We also define supp(𝑎), where #(𝑎) is the number of elements
of 𝐷 that contains 𝑎

supp (𝑎) = #(𝑎)
|𝐷 |

• The confidence ranges within [0, 1] and is the percentage of
transactions containing 𝑎 that also contain𝑏. It is an estimate
of the probability of observing 𝑏 given 𝑎 and is an indication
of how often the rule has proven to be true.

conf (𝑎 → 𝑏) = supp (𝑎 → 𝑏)
supp(a)

Confidence is directed which means that the confidence of
the rules 𝑎 → 𝑏 and 𝑏 → 𝑎 are different.

• The lift ranges withing [0, +∞] and is the ratio of the ob-
served support to that expected if 𝑎 and 𝑏 were independent
and indicates the strength of an association rule over the
random occurrence of 𝑎 and 𝑏 in a transaction.

lift (𝑎 → 𝑏) = supp (𝑎 → 𝑏)
supp(a) × supp(b)

In fact, rules with high confidence can occur by chance. That
is why we need to add a measure of independence to find
these spurious associations. If the lift is close to 1, it means
that 𝑎 and 𝑏 are independent and the rule is not interesting
whereas if the lift is large or close to 0 it means that 𝑎 and 𝑏
are associated. The lift is symmetric and is not able to capture
the rule direction.

• The conviction ranges within [0, +∞] and can be inter-
preted as the ratio of the expected frequency that 𝑎 occurs
without 𝑏, that is to say, the frequency that the rule makes
an incorrect prediction.

conv(𝑎 → 𝑏) = 1 − supp (𝑏)
conf(𝑎 → 𝑏)

The conviction gives additional information to confidence
and lift as it gives a metric for the notion of implication in the
rule. High conviction values mean that the rule is interesting.

4.3 Notations
In the following, we focus on the supervised binary classification
framework using the case-crossover design. In the section 5, we
show that an appropriate preprocessing of the dataset allows the
selection of control and case periods on the same time series ("indi-
vidual"). Let us denote for each time series (𝑍𝑡 )𝑡=0,...,𝑇 ,

for each (𝜏1, 𝜏2) ∈ {0, . . . ,𝑇 }2 such that 𝜏1 < 𝜏2, 𝑍 [𝜏1,𝜏2 ] =

(𝑍𝑡 )𝑡=𝜏1,...,𝜏2 , hence for 𝜏 ∈ {0, . . . ,𝑇 }, 𝑍 [0,𝜏−1] = (𝑍𝑡 )𝑡=0,...,𝜏−1
contains the past values of 𝑍𝜏 . Suppose, that we have a sample com-
posed of 𝑛 pairs D𝑛 = {((𝑋𝑖𝑡 )𝑡=0,...,𝑇 , 𝑌𝑖 ), 𝑖 = 1, . . . , 𝑛} where the 𝑛
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Figure 1: Proposed design applied on a time series
without the event: control

Figure 2: Proposed design applied on a time series with
the event: case

pairs are i.i.d of law ((𝑋𝑡 )𝑡=0,...,𝑇 , 𝑌 ). For all 𝑡 ,𝑋𝑡 = (𝑋 (1)
𝑡 , . . . , 𝑋

(𝑝)
𝑡 )

is a random vector taking values in R𝑝 and 𝑌 ∈ {0, 1} is the binary
outcome. For a time series (𝑋𝑡 )𝑡=0,...,𝑇 , the goal is to predict the
binary output 𝑌 . Hence, the objective is to find an interpretable and
causal predictive model of the event 𝑌 = 1 given (𝑋𝑡 )𝑡=0,...,𝑇 .

In this section, we propose an original method inspired by the
case-control and the case-crossover designs which can process
continuous or categorical temporal data. Themethod aims at finding
an interpretable and causal predictive model of the event 𝑌 = 1
given (𝑋 [0,𝛿 ] , 𝑋 [𝑇−𝛿,𝑇 ] ) where 𝛿 is the duration of a period and
Δ = 𝑇 − 2𝛿 is the gap between the two periods, as shown in Figures
1 and 2. First, using prior and domain knowledge, we select the
periods allowing us to characterize the event. Secondly, we need to
transform the periods into a categorical dataset. Since association
rule mining algorithm only works with categorical data, we should
indeed apply a transformation to convert continuous variables into
categorical data without losing relevant information. This allows to
extract simple rules explaining the dynamics of the phenomenon.

4.4 Methodology
Wedecide to apply the case-crossover design on a dataset using asso-
ciation rule mining by creating an algorithm called Case-crossover
APriori (CAP). The first step is to set up an environment in which
we are able to compute rules. We need to define what our "transac-
tions" are and the type of "items" that will be included in our rules.
As rules are computed between periods of the time series, we need
to set a metric that creates the items.

Case-crossover design. Wefirst need to adapt the case-crossover
design to a time series dataset designed for classification. It is done
by constructing a parametric model that could be optimized allow-
ing the user to select the control and case periods, to fine-tune the
model by selecting the best parameters.

In our dataset, we have case samples where we have the event
(𝑌𝑖 = 1) and control samples where we don’t (𝑌𝑖 = 0). This ap-
proach allows us to use a machine learning framework for binary
classification whether we want to compute interpretable rules or
do predictions. We decided to define periods as shown in Figure 1
and 2.

In this design, we are doing comparisons between period1 and
period2 that have the same duration𝛿 (which is an hyper-parameter)
and that are separated by an interval of duration Δ = 𝑇 − 2𝛿 . Hence,
for each time series (𝑋𝑡 )𝑡=0,...,𝑇 taken inD𝑛 , we can extract the first
period 𝑋period1

= 𝑋 [0,𝛿 ] and the second period 𝑋period2
= 𝑋 [𝑇−𝛿,𝑇 ] .

We explored different ways to compare the periods without los-
ing the dynamic of the system. We decided for each variable to map
the data of each period into one value using different transforma-
tions. For each period of duration 𝛿 , we calculated the standard
deviation, the mean, and the residuals of autoregressive models for
each variable. The most convenient and relevant way we found
is to compute the mean of each selected period for each variable.
This transformation is easy to understand and interpretable and
we could find a counterfactual based on it.

Once we have the values 𝑥period1
= (𝑥 ( 𝑗)period1

)𝑝
𝑗=1 and 𝑥period2

=

(𝑥 ( 𝑗)period2
)𝑝
𝑗=1 summing up the dynamics of the system during the

first and second periods, we need to compare them. The metric
chosen is the percentage change:

(
𝑥
( 𝑗)
period1

, 𝑥
( 𝑗)
period2

)
:→

�����𝑀𝑎𝑥 (𝑥 ( 𝑗 )
period1

,𝑥
( 𝑗 )
period2

)−𝑀𝑖𝑛 (𝑥 ( 𝑗 )
period1

,𝑥
( 𝑗 )
period2

)

𝑀𝑎𝑥 (𝑥 ( 𝑗 )
period1

,𝑥
( 𝑗 )
period2

)

����� (1)

Let us denote by 𝑓 the function taking as input the first and the
second period 𝑋period1

and 𝑋period2
, computing the mean of each

period 𝑥period1
and 𝑥period2

and then the percentage change using
the metric (1). Finally, the problem is formulated as follows: the
objective is to find a predictive model of the event

𝑌 = 1 given 𝑓 (𝑋period1
, 𝑋period2

)

If we take the example of Figure 2, we first select the two periods
shown in red in the figure. Then, we compute the mean of each
period. Finally, we compute the percentage change of the means.
In Figure 2, there is a large increase of the mean value between the
two periods, hence a large value of the percentage change, while in
Figure 1 there is no meaningful change between the two periods.

Association Rule Mining. Association rule mining algorithms,
like the Apriori algorithm, take as input categorical variables. Hence,
we need to do a "categorization step" because when we compare the
pair 𝑥 ( 𝑗)period1

and 𝑥 ( 𝑗)period2
using the percentage change metric (1), we

have values between 0 and 1 if we consider that all variables takes
positive values (this hypothesis is not restrictive for continuous real-
valued random variables as it is always possible to transform them
into random variables with uniform distribution over [0,1]). Then,
we categorize these values into three categories LOW, MEDIUM,
and HIGH. This was decided for clarity reasons to explain the
method, but it can be extended to an arbitrary number of categories.
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Let us note for each 𝑗 ∈ {1, . . . , 𝑝} 𝑋 ( 𝑗)
{𝛼,𝛽 } the boolean variable

which is True if the percentage change of𝑋 ( 𝑗) = (𝑋 ( 𝑗)
𝑡 )𝑡=0,...,𝑇 falls

in the interval defined by the quantiles of order 𝛼 and 𝛽 . We first
estimate two empirical quantiles from the dataset, the quantiles
of order 0.33 and 0.66. Thus for each 𝑗 ∈ {1, . . . , 𝑝}, we have three
boolean variables to indicate the range in which the percentage
change is: 𝑋 ( 𝑗)

{0,0.33} , 𝑋
( 𝑗)
{0.33,0.66} and 𝑋

( 𝑗)
{0.66,1} .

For each of the time series (𝑋𝑖𝑡 )𝑡=0,...,𝑇 taken in D𝑛 , we select
period1 and period2, compute their means and compare them using
the percentage change metric defined in (1). After completing the
process for all the samples in the database D𝑛 , we set up the Table
1.

Event ID Items
𝑌1 (𝑋 (1)

1 ){0,0.33} = 𝐹𝑎𝑙𝑠𝑒 ,(𝑋 (1)
1 ){0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒 ,

(𝑋 (1)
1 ){0.66,1} = 𝑇𝑟𝑢𝑒 ,(𝑋 (2)

1 ){0,0.33} = 𝑇𝑟𝑢𝑒 ,
(𝑋 (2)

1 ){0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒 ,(𝑋 (2)
1 ){0.66,1} = 𝐹𝑎𝑙𝑠𝑒 ,. . .

𝑌2 . . . ,(𝑋 (3)
2 ){0.33,0.66} = 𝑇𝑟𝑢𝑒 ,. . . ,

(𝑋 (5)
2 ){0,0.33} = 𝑇𝑟𝑢𝑒 ,(𝑋 (5)

2 ){0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒 , . . .
𝑌3 (𝑋 (1)

3 ){0,0.33} = 𝐹𝑎𝑙𝑠𝑒 , (𝑋 (1)
3 ) [0.33,66] = 𝐹𝑎𝑙𝑠𝑒 ,

(𝑋 (1)
3 ){0.66,1} = 𝑇𝑟𝑢𝑒 ,. . .

. . . . . . , . . .
𝑌𝑛−2 . . . ,(𝑋 (2)

𝑛−2){0,0.33} = 𝑇𝑟𝑢𝑒 ,. . . , (𝑋 (4)
𝑛−2){0.33,0.66} = 𝑇𝑟𝑢𝑒 ,. . .

𝑌𝑛−1 . . . ,(𝑋 (2)
𝑛−1){0,0.33} = 𝑇𝑟𝑢𝑒 ,. . . ,(𝑋 (4)

𝑛−1){0.33,0.66} = 𝑇𝑟𝑢𝑒

𝑌𝑛 . . . ,(𝑋 (1)
𝑛 ){0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒 ,(𝑋 (1)

𝑛 ){0.66,1} = 𝑇𝑟𝑢𝑒 ,
. . . ,(𝑋 (3)

𝑛 ){0,0.33} = 𝑇𝑟𝑢𝑒 ,. . .

Table 1: Table constructed from the comparisons of the se-
lected periods

In the "Event ID" column, for 𝑖 ∈ {1, . . . , 𝑛} 𝑌𝑖 is the outcome of
the time step 𝑇 + 1. If the event happens, then 𝑌𝑖 = 1, otherwise
𝑌𝑖 = 0. Hence, the comparison between the case and control allows
to identify variations characteristic of the event and to separate
them from independent variations. The "Items" column gathers, for
each of the "Event ID", the interval in which the percentage change
of each variable is.

Then we compute one-hot encoding [1] and we add a boolean
column "Event" by transforming the "Event ID" column into a label.
We then apply the Apriori algorithm and can get the rules leading
to an event.

We used the Apriori algorithm from the package mlxtend [29].
In this library, the user should specify the minimum support with
the parameter min_support in order to find frequent item-sets.
Thresholds on themetrics confidence, lift and conviction defined
above could also be fine-tuned if we want to further discriminate
the rules. Moreover, the number of items and associations in the
rule can be set using the parameter max_len. Finally, by adding a
constraint to have only rules which have a target "Event=True" i.e.
𝑌 = 1, and a max_len of 1, the CAP algorithm could find rules like:

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 } =⇒ {Event=True}

4.5 Predictive Algorithm
Beyond the evaluation of the rules found by the Apriori algorithm
which is made by experts, we want to test predictive properties
by creating a first predictive algorithm that we call Case-crossover
APriori Predictive 1 (CAPP1). The goal is to predict the binary
output 𝑌 based on simple and understandable rules. We selected
the first 10 rules by order of confidence and lift to do the prediction
on a test time series 𝑋 of length 𝑇 .

Event ID (𝑋 (1) ){0,0.33} (𝑋 (1) ){0.33,0.66} (𝑋 (1) ){0.66,1} (𝑋 (2) ){0,0.33} (𝑋 (2) ){0.33,0.66} . . .
𝑌1 0 0 1 1 0
𝑌2 0 1 0 0 0
𝑌3 0 0 1 0 0
𝑌4 1 0 0 0 1
𝑌5 0 1 0 1 0
. . .

Table 2: One-hot encoding

In Figure 2, we compute the left-hand side of the implication
symbol of the 10 rules that have been found. If at least one rule is
True, CAPP1 predicts an "event" and triggers the alarm. We have
experimented several other approaches to perform rule-based pre-
diction, among them we can cite the simple aggregation technique
which consists of voting on the found rules similar to what the
SIRUS algorithm does [5]. The aggregation could be improved by
using an ensemble learning method such as stacking [15] by learn-
ing the decision combining these 10 rules. The perfect predictive
algorithm would predict an "event" for the Figure 2 but not for the
Figure 1.

Example. To better understand the process, let us take the exam-
ple using the first rule of Table 3.

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (2)

{0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒 } =⇒ {Event=True}

We consider a test time series (𝑋𝑡 )𝑡=0,...,𝑇 and select the first and sec-
ond variables 𝑋 (1) and 𝑋 (2) and compute their percentage changes
between period1 and period2. If the percentage change of the vari-
able 𝑋 (1) is less than the quantile 0.33 and that of the variable 𝑋 (2)

is not between the quantiles 0.33 and 0.66, the algorithm predicts
an event.

In order to estimate the error of our predictive model, we need
to classify the predictions into four outcomes: the True Positive
(TP), the True Negative (TN), the False Positive (FP), and the False
Negative (FN). Then, we use the following metrics:

• True Positive Rate (TPR) or Recall summarizes the fraction
of examples assigned to the positive class that belongs to the
positive class

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• Similarly, True Negative Rate (TNR) summarizes how well
the negative class is predicted

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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Figure 3: This figure shows how from one time series of duration 20 hours (1200 minutes), we make a cutout to obtain the
control sample in green and the case sample in red.

• F2-score is a weighted F-score and used when it is much
worse to miss a True Positive than giving a False Positive

(1 + 22) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

(22 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
These metrics can be used on the training database, on a test set,

and in cross-validation.

Case-crossover APriori Predictive 2 (CAPP2). A complemen-
tary approach called Case-crossover APriori Predictive 2 (CAPP2)
has been studied in order to improve the quality of prediction. In-
deed, in addition to looking for the rules leading to an event of the
form

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒, 𝑋

(2)
{0.66,1} = 𝑇𝑟𝑢𝑒} =⇒ {Event = True}

we have also looked for the contraposed, which are the rules that
do not lead to an event (leading to "Event = False") of the form:

{𝑋 (4)
{0.33,0.66} = 𝑇𝑟𝑢𝑒 , 𝑋 (3)

{0.33,0.66} = 𝑇𝑟𝑢𝑒 } =⇒ {Event = False}

Let us call "Event=True rules" the first rules and "Event=False
rules" the second ones. There are different ways to combine these
two approaches in order to compute a more robust predictive model.
Among them, we could adjust the number of rules proving to be
True for each of the two approaches, we could give more weight to
the "Event=True rules" for the prediction or give more weight to
the "Event=False rules". Cross-validation allows to test, observe and
study the behavior of each of these experiments. The decision could
be improved by learning the decision combining the two types of
rules.

5 APPLICATION
5.1 Data
Numerous sensors were placed at various points in the distillation
unit to collect data and monitor the evolution of the system. More
than 800 variables were measured, providing information such as
the type of input crude, pressures, temperatures, flow rates, valve
openings, and chemicalmeasurements. The variables are categorical
or continuous and take positive values. These measurements were
carried out every minute for 4 months and the identification of
flooding events is calculated using a formula involving variables

from the outputs of the distillation column and is presented in the
data in the form of an additional binary columnwhere a 0 represents
a normal operation condition system and 1 represents the flooding
event. Each column represents a measured variable and each line
describes the system at a specific minute.

In our study, we consider that flooding events are independent
of each other. For this reason, we only take into account events that
occur at least 20 hours apart from each other. Thus, we identify
a total of 38 long time series (of duration 20 hours=1200 minutes)
to be studied. We have therefore cut the data into 38 long time
series where the last moments correspond to the appearance of
the flooding event. In order to build the database D𝑛 using the
case-crossover design, we must have pairs (𝑋𝑡=0,...,𝑇 , 𝑌 ). Therefore,
we need to define the duration𝑇 of the time series and get samples
such that we have couples with labels 𝑌 = 1 and 𝑌 = 0 coming
from the same long time series. The label 𝑌 = 1 is simple to obtain
because we just have to select the last moments of each of the 38
time series because by definition they all end with a flooding event.
For the label 𝑌 = 0, we had to sample and select a part of the 38
series. Since we assume that the samples are independent, we have
to select this period so that it is far enough from the flooding event
and under normal operating conditions. With the advice of experts,
we decided to select samples at a time distance of 10 hours=600
minutes from the flooding event. This step of selection of periods
requires preliminary knowledge of the phenomenon in order to
select the periods of "normal" and "abnormal" functioning. In our
case, we know that the event is acute and occurs in the hour before
the event.

Figure 3 summarizes the principle of the case-crossover design
and highlights the data cutout to obtain the control and case of
Figure 1 and Figure 2.

Therefore, to learn rules, we have a training database D𝑛 =

{((𝑋𝑖𝑡 )𝑡=0,...,𝑇 , 𝑌𝑖 ), 𝑖 = 1, . . . , 𝑛} where 𝑛 = 76. 38 samples of D𝑛

have a label𝑌𝑖 = 1 and 38 samples have a label𝑌𝑖 = 0. The sampling
is done every minute and we have 4 hours of measurements for
each sample, hence 𝑇 = 240.
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5.2 Interpretable Rules found by CAP
In this subsection, we use expert knowledge of the characteristic
times of important phenomena to determine certain time param-
eters such as 𝛿 . For the rest of the parameters, we did not want
to optimize them too much to avoid overfitting, optimizing the
thresholds is an idea to keep in mind if the learning base is large
enough.

After preprocessing the data, we computed the Apriori algorithm
with the described design with a period duration of 𝛿 = 60, 1 hour
sampled every minute, and a gap Δ = 120 of 2 hours between
period1 and period2. We set𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥ 0.2 and𝑚𝑖𝑛_𝑙𝑒𝑛 = 2
and sort the results by confidence and lift. The rules that have been
found are shown in Table 3.

Among the rules, we can see the presence of 𝑋 (1) which is a
variable computed from a physical model and used to be, before
the random forest model, the variable allowing to determine the
appearances of flooding events. Moreover, 𝑋 (2) is a flow recircula-
tion variable and has been selected by experts as being very likely
to explain the flooding appearance.

5.3 CAPP1 Prediction Results
To prevent overfitting and evaluate well the CAPP1 method perfor-
mance, we decided to do a Leave-Two-Out (LTO). For 𝑗 ∈ {1, ..., 𝑛/2},
we take the (2 𝑗 − 1)𝑡ℎ and (2 𝑗)𝑡ℎ element of the database D𝑛 for
testing, such that we have a couple computed from one of the 38
long time series with one element having a label𝑌 = 0 and the other
𝑌 = 1, and we take the 𝑛 − 2 other elements of D𝑛 as a training
set. The training set provides data to the Apriori algorithm in order
to learn rules using the different metrics we defined. The rules are
then sorted by confidence and lift and are ready to be tested. For the
testing, as described in subsection 4.5, we predict the two elements
in the test set. Finally, we evaluate the prediction by computing
the True Positive Rate, the True Negative Rate, and the F2 score
and compute the mean of these scores over the 38 tests we have
done with our LTO. Thus, in the following, all calculated scores are
obtained by cross-validation.

As mentioned in section 4.5, we select the 10 rules with highest
confidence and lift, and with two or fewer explanatory variables,
then we calculate the quality of the prediction using the defined
metrics. We evaluate the predictive performance of the CAPP1
method by a comparison with the one of a random forest (RF)
algorithm. The RF is trained with the dataset 𝐷𝑛 and takes as input
the averages of the input variables over [𝑇 − 𝛿,𝑇 ], [𝑇 − 2𝛿,𝑇 −
𝛿], . . . , [0, 𝛿] and predicts the binary label "there is a flooding at
time 𝑇 + 1 minute". The results are shown in Table 4.

We could always increase the True Positive Rate by choosing
a higher threshold for the minimum support and increasing the
number of rules but this will directly affect the True Negative Rate
as there is a trade-off between True Positives and False Positives. If
our model is more sensitive and often rings an alarm, it will make
more errors and then more False Positives.

The results are satisfactory as the True Positive Rate is relatively
high and far better than a random prediction without even opti-
mizing our algorithm but are insufficient compared to the random
forest algorithm.

5.4 CAPP2 Prediction Results
After several tests, we opted for the following combination: we set
𝑚𝑖𝑛_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ≥ 0.01 and sort the results by confidence with a mini-
mum threshold of 0.5. If at least one out of the first 100 "Event=True
rules" and less than one out of the first 100 "Event=False rules"
is True, we predict that the tested pair leads to a flooding event
i.e. 𝑌 = 1. Otherwise, we predict that the pair does not lead to a
flooding event i.e. 𝑌 = 0. Since a minimum threshold of confidence
has been set, the number of rules can be lower but limited to 100.
Note that the choice of 100 rules here is empirical and depends on
the choice of the minimum support threshold.

CAPP2 has allowed us to improve our prediction results and
obtain the scores presented in Table 4.

Algorithm F2 score TNR TPR/recall

Random Forest 0.8127 0.8368 0.8684
CAPP1 0.6991 0.6644 0.8684
CAPP2 0.9139 0.9210 0.8947

Table 4: Prediction scores.

These results are promising as the CAPP2method achieves better
scores than RF without optimizing our model with a relatively small
dataset and especially with a model that proposes a causal analysis.

6 CONCLUSION AND FUTUREWORK
We have developed a data-driven model based on the case-crossover
design and association rule mining for determining the causes of an
incident from time series. This approach overcomes twomain issues:
the lack of interpretability and prediction based on correlations.
The understanding of incidents is essential because it would allow
to predict in advance their appearance using a causal prediction
algorithm and to be able to justify the reliability and confidence
contrarily to a black-box algorithm.

The application and study of this approach to our dataset provide
conclusive results confirming that the method is promising. This
work gives insight to operators working in the refinery with the
distillation unit and allows them to understand themechanisms that
trigger the event. The method finds interesting rules and describes
associations between variables leading to an event. Among the
top rules sorted by confidence, we find the variables that have
been suspected to be causal by the experts. The associations make
it possible to strengthen them and to add missing information
necessary to the understanding of the phenomenon of flooding.
In addition, our predictive study has shown that we could build a
strong predictive model which could outperform the one actually
in production. Indeed, the results on the four-month dataset have
confirmed these expectations and there is still a lot of room for
improvement.

This method uses expert knowledge to select certain parameters.
In the absence of such information, methods to determine these
characteristic times must be considered and more failure case data
may be needed for this.

Several approaches have been identified for future work. Among
them, we could cite the following ideas: instead of choosing two
arbitrary quantiles as we did in this work, we could optimize them
and adapt their number. We could also deepen the contraposed
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rules support confidence lift

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (2)

{0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2315789 0.9777778 1.955556

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (3)

{0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2236842 0.9770115 1.954023

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (4)

{0,0.33} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2210526 0.9767442 1.953488

{𝑋 (5)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (2)

{0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.3118421 0.9753086 1.950617

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (6)

{0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2052632 0.9750000 1.950000

{𝑋 (5)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (2)

{0.66,1} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2552632 0.9748744 1.949749

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (7)

{0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2013158 0.9745223 1.949045

{𝑋 (5)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (3)

{0,0.33} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2355263 0.9728261 1.945652

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (2)

{0,0.33} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2315789 0.9723757 1.944751

{𝑋 (1)
{0,0.33} = 𝑇𝑟𝑢𝑒 , 𝑋 (8)

{0.33,0.66} = 𝐹𝑎𝑙𝑠𝑒} =⇒ {Event=True} 0.2315789 0.9723757 1.944751

Table 3: This table displays the rules found by the algorithm sorted by confidence and lift. The support is also shown here.

approach CAPP2, add variables based on mean thresholds, improve
our predictive model by aggregating the results over multiple analy-
ses with different Δ and 𝛿 and optimize the event detection system.

ACKNOWLEDGMENTS
This work was supported by TotalEnergies and the research labo-
ratory SINCLAIR. We also thank Tobias Kurth, Professor of Public
Health and Epidemiology and the Director of the Institute of Public
Health at the Charité Universitätsmedizin in Berlin, and Lluvia
Ochoa, Researcher in Data Science and Artificial Intelligence at
TotalEnergies who provided their insights and expertise.

REFERENCES
[1] H Alkharusi. 2012. Categorical variables in regression analysis: A comparison of

dummy and effect coding. International Journal of Education 4(2) (2012), 202–210.
[2] Jorge A.M. Azevedo P.J. 2007. Comparing Rule Measures for Predictive Associa-

tion Rules. ECML (2007).
[3] Leo Breiman. 2001. Random Forests. Machine Learning 45 (2001), 5–32.
[4] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. 2017. Classifi-

cation And Regression Trees. 1–358 pages. https://doi.org/10.1201/9781315139470
[5] Clément Bénard, Gérard Biau, Sébastien Da Veiga, and Erwan Scornet. 2021.

SIRUS: Stable and Interpretable RUle Set for classification. Electronic Journal of
Statistics 15 (01 2021), 427–505. https://doi.org/10.1214/20-EJS1792

[6] Yonghong Chen, Govindan Rangarajan, Jianfeng Feng, and Mingzhou Ding. 2004.
Analyzingmultiple nonlinear time series with extendedGranger causality. Physics
Letters A 324, 1 (2004), 26 – 35. https://doi.org/10.1016/j.physleta.2004.02.032

[7] K. Dembczynski, W. Kotlowski, and R. Slowinski. 2010. ENDER: a statistical
framework for boosting decision rules. Data Mining and Knowledge Discovery 21
(2010), 52–90.

[8] Doris Entner and Patrik Hoyer. 2010. On Causal Discovery from Time Series Data
using FCI. Proceedings of the 5th European Workshop on Probabilistic Graphical
Models, PGM 2010 (09 2010).

[9] Gardner IA et al. Estberg L. 1998. A case-crossover study of intensive racing and
training schedules and risk of catastrophic musculoskeletal injury and lay-up in
California thoroughbred racehorses. Prev. Vet. Med 33 (1998), 159–170.

[10] Maclure M et al. 1993. Triggering of acute myocardial infarction by physical
exertion: protection against triggering by regular exertion. N. Engl. J. Med 329
(1993), 1677–1683.

[11] Maclure M et al. 1995. Triggering of acute myocardial infarction by episodes of
anger. Circulation 92 (1995), 1720–1725.

[12] A. Eye, Wolfgang Wiedermann, and I. Koller. 2015. Granger Causality: Linear
Regression and Logit Models.

[13] Eibe Frank and Ian Witten. 1998. Generating Accurate Rule Sets Without Global
Optimization. Machine Learning: Proceedings of the Fifteenth International Con-
ference (06 1998).

[14] C. W. J. Granger. 1969. Investigating Causal Relations by Econometric Models
and Cross-spectral Methods. Econometrica 37, 3 (1969), 424–438. http://www.
jstor.org/stable/1912791

[15] T. Hastie, R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edition. In Springer Series
in Statistics.

[16] Liang H. Hu M. 2014. A copula approach to assessing Granger causality. Neu-
roImage 100 (2014), 125–134.

[17] T. Imielinski, Arun Swami, and Rajat Agrawal. 1993. Mining Association rules
between sets of items in large databases. ACM SIGMOD (01 1993), 207–216.

[18] J. R KISTER, H. Z; HAAS. 1990. Predict entrainment flooding on sieve and valve
trays. Chemical engineering progress (1990).

[19] O. Ludwig, U. Nunes, R. Araújo, L. Schnitman, andH. Lepikson. 2009. Applications
of information theory, genetic algorithms, and neural models to predict oil flow.
Communications in Nonlinear Science and Numerical Simulation 14 (2009), 2870–
2885.

[20] M. Maclure. 1991. The Case-Crossover Design: A Method for Studying Transient
Effects on the Risk of Acute Events. American journal of epidemiology 133 (1991),
144–153. https://doi.org/10.1093/oxfordjournals.aje.a115853

[21] M. Maclure and M. Mittleman. 1997. Cautions about car telephones and collisions.
The New England journal of medicine 336 7 (1997), 501–2.

[22] Mittleman MA Maclure M. 1997. Cautions about car telephones and collisions.
N. Engl. J. Med. 336 (1997), 501–502.

[23] Stramaglia S. Marinazzo D., Pellicoro M. 2008. Kernel method for nonlinear
Granger causality. Phys. Rev. Lett. 100 (2008), 144103.

[24] R.Michalski. 1969. On the quasi-minimal solution of the general covering problem.
(01 1969).

[25] Meike Nauta, Doina Bucur, and Christin Seifert. 2019. Causal Discovery with
Attention-Based Convolutional Neural Networks. Machine Learning and Knowl-
edge Extraction 1, 1 (2019), 312–340. https://doi.org/10.3390/make1010019

[26] J. Pearl. 2000. Causality: Models, Reasoning and Inference. Cambridge University
Press.

[27] R. Srikant R. Agrawal. 1994. Fast Algorithms for Mining Association Rules, In
VLDB Conference. Mathematical Modelling and Computational Experiments.

[28] Dilini Rajapaksha, Christoph Bergmeir, and Wray Buntine. 2019. LoRMIkA:
Local Rule-based Model Interpretability with k-optimal Associations.
arXiv:1908.03840 [cs.LG]

[29] Sebastian Raschka. 2014. Mlxtend Apriori. http://rasbt.github.io/mlxtend/user_
guide/frequent_patterns/apriori/.

[30] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why
Should I Trust You?": Explaining the Predictions of Any Classifier.
arXiv:1602.04938 [cs.LG]

[31] Jakob Runge, Dino Sejdinovic, and Seth Flaxman. 2017. Detecting causal asso-
ciations in large nonlinear time series datasets. Science Advances 5 (02 2017).
https://doi.org/10.1126/sciadv.aau4996

[32] S. Salzberg. 1994. C4.5: Programs for Machine Learning by J. Ross Quinlan.
Morgan Kaufmann Publishers, Inc., 1993. Machine Learning 16 (1994), 235–240.

[33] Peter Spirtes, Clark Glymour, and Richard Scheines. 2001. Causation, Prediction,
and Search, 2nd Edition. MIT Press Books, Vol. 1. The MIT Press. https://ideas.
repec.org/b/mtp/titles/0262194406.html

[34] Giulia Toti, R. Vilalta, P. Lindner, B. Lefer, Charles Macias, and D. Price. 2016.
Analysis of correlation between pediatric asthma exacerbation and exposure to
pollutant mixtures with association rule mining. Artificial intelligence in medicine
74 (2016), 44–52.

[35] SholomWeiss and Nitin Indurkhya. 2000. Lightweight Rule Induction. (05 2000).

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2772

https://doi.org/10.1201/9781315139470
https://doi.org/10.1214/20-EJS1792
https://doi.org/10.1016/j.physleta.2004.02.032
http://www.jstor.org/stable/1912791
http://www.jstor.org/stable/1912791
https://doi.org/10.1093/oxfordjournals.aje.a115853
https://doi.org/10.3390/make1010019
https://arxiv.org/abs/1908.03840
http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/
http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/
https://arxiv.org/abs/1602.04938
https://doi.org/10.1126/sciadv.aau4996
https://ideas.repec.org/b/mtp/titles/0262194406.html
https://ideas.repec.org/b/mtp/titles/0262194406.html

	Abstract
	1 Introduction
	2 Related Work
	3 Case-crossover design
	4 Rule-based Algorithm
	4.1 Motivation
	4.2 Apriori
	4.3 Notations
	4.4 Methodology
	4.5 Predictive Algorithm

	5 Application
	5.1 Data
	5.2 Interpretable Rules found by CAP
	5.3 CAPP1 Prediction Results
	5.4 CAPP2 Prediction Results

	6 Conclusion And Future Work
	Acknowledgments
	References



