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Abstract

As part of Probabilistic Risk Assessment studies, it is necessary to study the

fragility of mechanical and civil engineered structures when subjected to seis-

mic loads. This risk can be measured with fragility curves, which express the

probability of failure of the structure conditionally to a seismic intensity mea-

sure. The estimation of fragility curves relies on time-consuming numerical

simulations, so that careful experimental design is required in order to gain the

maximum information on the structure’s fragility with a limited number of code

evaluations. We propose and implement an active learning methodology based

on adaptive importance sampling in order to reduce the variance of the training

loss. The efficiency of the proposed method in terms of bias, standard deviation

and prediction interval coverage are theoretically and numerically characterized.

Keywords: Computer experiments, probabilistic risk assessment, importance

sampling, statistical learning

1. Introduction

The notion of fragility curve was developed in the early 80s in the con-

text of seismic probabilistic risk assesment (SPRA) [1, 2] or performance based

earthquake engineering (PBEE) [3]. Fragility curve expresses the probability of
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failure of a mechanical structure subjected to a seism conditionally to a spe-5

cific seismic intensity measure (IM) such as the peak ground acceleration of the

seism. Fragility curves are used in several domains: nuclear safety evaluation

[4], estimation of the collapse risk of structures in seismic regions [5], design

checking process [6]. Nonetheless, the use of fragility curves is not limited to

seismic load but is extended to other loading sources such as wind and waves10

[7]. For complex structures, fragility curve estimation requires a large number

of numerical mechanical simulations, involving in most cases non linear compu-

tationally expensive calculations. Moreover, they should account for both the

uncertainties due to the seismic demand and due to the lack of knowledge on the

system itself, respectively called random and epistemic uncertainties [8, 9]. As15

failure for a typical and reliable mechanical structure is a rare event, the crude

Monte Carlo method cannot be applied because it would require too many nu-

merical simulations to produce a sufficiently large number of failed states [10,

p.27]. The computational burden motivates the use of parametric models for

fragility curves. A typical approach is to assume a lognormal form as first pro-20

posed by Kennedy et al. [1] and then widely used (see e.g. [11, 12, 13, 14]).

Another way to reduce the computational cost is to fit statistical metamodels

to the structure response, such as kriging [15], support vector machines [16], or

polynomial chaos expansion [17].

Nonetheless, for the fragility curves to be useful decision-making tools in an25

industrial context, their estimations must require a number of numerical code

calls as small as possible while having theoretical guarantees on the convergence

of the estimates and their confidence intervals. Statistical analysis regarding

fragility curves estimations - including hypothesis testing and confidence inter-

vals estimation - has been firstly introduced by Shinozuka et al. in [11]. Then,30

several works have addressed these issues from a non-theoretical point of view

(see for e.g. [18, 19, 20, 16]).

In this work, we propose and implement a methodology based on Adap-

tive Importance Sampling (AIS) [21, 22] in a statistical learning context [23].

Such methods have already been discussed, implemented and tested for proba-35
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bility estimation of rare event (e.g. failure state) in reliability analysis [24, 25].

We show by asymptotic analysis and numerical simulations that they allow for

fast convergence of the estimated fragility curve to the true (unknown) fragility

curve and that the uncertainty of the estimation can be rigorously quantified.

The uncertainty quantification involves asymptotic confidence intervals and el-40

lipsoids for the quantities of interest and statistical tests to determine whether

the asymptotic regime has been reached and whether asymptotic confidence

intervals and ellipsoids can be used.

The methodology is applied to different test cases in the application sec-

tion 5 and compared with more traditional approaches. For the test cases, the45

stochastic model of modulated and filtered white-noise process defined in [26] is

used in order to enrich a set of real ground motion records selected in a database

using magnitude and distance criteria. This stochastic model is chosen because

it encompasses well both temporal and spectral nonstationarities of real seismic

signals and has already been used in [27, 28, 16]. As in [16], 97 acceleration50

records selected from the European Strong Motion Database [29] in the domain

5.5 < M < 6.5 and R < 20km - where M is the magnitude and R the distance

from the epicenter - are considered in order to identify the parameters of the

ground-motion model. 105 realizations of synthetic signals are then generated.

Regarding the parametric approximations of the fragility curves, the current55

lognormal model is used, taking into account only the variability of the ground

motion. Finally, Peak Ground Acceleration (PGA) and the Pseudo-Spectral

Acceleration (PSA) are considered to be IMs.

The proposed methodology relies on parametric approximations of fragility

curves for any IM of interest. Although the validity of parametric models is both60

questionable and difficult to assess (see e.g. [13, 27, 30, 20]), some numerical

experiments based on the seismic responses of simple mechanical systems - i.e

few degrees of freedom systems - suggest that the choice of an appropriate

IM makes it possible to reduce the potential biases between reference fragility

curves - that can be obtained by massive Monte Carlo simulations - and their65

parametric approximations. This point will be illustrated in the application
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section 5 of this paper. In practice, the selection of an optimal IM is not a trivial

matter (see e.g. [31, 32]) and Machine Learning techniques can be used for this

purpose (e.g. [16]), knowing that the references [33] and [34] give optimality

criteria for selection of such IM.70

The paper is organized as follows. In Section 2 the estimation problem is

defined for generic parametric fragility curves and any IM. Section 3 is dedicated

to AIS algorithm for seismic fragility curve estimation, including theoretical

properties and a stopping criterion to check AIS convergence. Section 4 provides

the reader with a practical implementation of AIS for seismic fragility curve75

estimation. Finally, in Section 5, AIS performance is assessed on analytical and

industrial test cases of increasing complexity.

2. Seismic fragility curve estimation: a statistical learning framework

We consider the following situation. Let X be a compact set of R, X a X -
valued random variable and S ∈ {0, 1} a random label. In seismic probabilistic

risk assessment, a structure is subjected to a seismic load, IM is the intensity

measure of the seismic load, X = log IM (we could have X = ψ(IM) where ψ

is another increasing function of IM , such as a Box-Cox transform [35]), and S

is the indicator variable of the failure of the structure. The pair (X,S) has the

probability distribution P over X × {0, 1}:

P (dx, ds) =
[
µ(x)δ1(ds) + (1− µ(x))δ0(ds)

]
p(x)dx , (1)

where p is the marginal probability density function (pdf) of X and the fragility

curve µ(x) is the conditional expectation of S (conditional probability of failure

or fragility curve):

µ(x) = E[S|X = x] .

The aim of the paper is to estimate µ from datapoints (Xi, Si)
n
i=1 that may

be independent and identically distributed with the distribution P or that may

be selected by a more appropriate scheme. There are numerous methods for

estimating fragility curves, the interested reader is referred to [36, 37] for a
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review of the usual existing methods. It is a classical assumption to use a

parametric form for the fragility curve µ to tackle the need for time consuming

mechanical simulations, we thus consider the space of functions F = {fθ, θ ∈ Θ},
where x 7→ fθ(x) is a function from R to [0, 1] for any θ and Θ ⊂ Rm. The goal

is to minimize the quadratic risk:

g(θ) = E[(µ(X)− fθ(X))2] ,

in order to find (provided it exists and is unique):

θ∗ = argmin
θ∈Θ

g(θ) .

Unfortunately, the observable data are (Xi, Si)
n
i=1, we do not observe directly

µ(Xi). But considering that:

E[(S − fθ(X))2] = E[µ(X)(1− µ(X))] + E[(µ(X)− fθ(X))2] , (2)

we can observe that the minimization of E[(S − fθ(X))2] is equivalent to the

minimization of E[(µ(X)− fθ(X))2]. Hence, we will consider the quadratic risk

r(θ) = E[(S − fθ(X))2] .

In the context of classical learning, when we observe n datapoints (Xi, Si)
n
i=1

drawn independently from the probability distribution P (dx, ds) over X×{0, 1},
the expectation can be approximated by the empirical mean:

R̂n(θ) =
1

n

n∑
i=1

(Si − fθ(Xi))
2 . (3)

The corresponding passive estimator (the term passive is used to highlight the

absence of any particular sampling strategy) is then:

θ̂n = argmin
θ∈Θ

R̂n(θ). (4)

As part of industrial applications, the label Si is obtained by a computationally

expensive numerical simulation of a mechanical structure subjected to a random80

seismic load and Xi is the intensity measure of the seismic load. The seismic
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load is an inexpensive artificial seismic signal to generate while the numerical

mechanical simulations are computationally expensive.

Conversely to classical learning, active learning aims at selecting the most

useful numerical experiments to be carried out in order to form the learning85

set. In the passive strategy, the datapoints Xi are sampled from the original

probability distribution with density p drawn from the artificial realizations

of the stochastic ground-motion model. Our active learning strategy, called

Adaptative Importance Sampling (AIS), consists to draw the datapoints Xi

from an instrumental probability distribution with pdf q that is chosen in an90

adaptive way. In our context, it is straightforward to use a rejection method to

generate seismic loads with a desired intensity measure distribution.

The main heuristic of this procedure is to reduce the variance implied by

the empirical approximation of the quadratic risk r(θ). Importance Sampling

is a classical variance reduction technique for Monte Carlo estimation used in

structural reliability [38, 25]. If the (Xi)
n
i=1 are sampled with the pdf q and

(Si)
n
i=1 are the labels obtained from n calls to the mechanical model of the

structure subjected to the seismic loads with intensity measures (Xi)
n
i=1, then

the importance sampling estimator of the empirical quadratic risk is:

R̂n,q(θ) =
1

n

n∑
i=1

p(Xi)

q(Xi)
(Si − fθ(Xi))

2. (5)

In the rest of the paper, we will denote by r(θ) = E(X,S)∼P [`θ(X,S)] with

θ 7→ `θ(x, s) a positive loss function for the sake of generalization. For the

numerical applications, only the case of the quadratic loss lθ(x, s) = (s−fθ(x))2
95

will be considered. The next section will focus on choosing an optimal density

q in an adaptive way.

3. Adaptive importance sampling (AIS)

3.1. Principle

The heuristic used to find a good instrumental probability distribution family

is presented in [39]. The first idea would be to minimize the variance of the
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importance sampling risk estimator (5):

Var
(
R̂n,q(θ)

)
=

1

n

{∫∫
X×{0,1}

p(x)2

q(x)
`θ(x, s)

2P (dx, ds)− r(θ)2
}
, (6)

with respect to q within the set of all pdfs. If we denote by ˜̀
θ(x) = E[`θ(X,S)2|X =

x] the loss averaged on S:

˜̀
θ(x) = µ(x)`θ(x, 1)2 + (1− µ(x))`θ(x, 0)2 , (7)

the variance of the importance sampling risk estimator (5) can be expressed as

Var
(
R̂n,q(θ)

)
=

1

n

{∫
X

p(x)2

q(x)
˜̀
θ(x)dx− r(θ)2

}
,

and we look for

q∗θ = argmin
q

∫
X

p(x)2

q(x)
˜̀
θ(x)dx . (8)

Using Lagrange multipliers, we can solve the optimization problem and we can

find that the optimal sampling pdf is of the form

q∗θ(x) ∝
√

˜̀
θ(x)p(x) ,

which depends on µ because ˜̀
θ depends on µ [Here and below ∝ means equality

up to a multiplicative constant]. Hence an approximation step is made by

replacing µ by fθ in (7):

˜̀
θ(x) ≈ fθ(x)`θ(x, 1)2 + (1− fθ(x))`θ(x, 0)2 . (9)

Hence the instrumental density becomes:

qθ(x) ∝ p(x)
√
fθ(x)`θ(x, 1)2 + (1− fθ(x))`θ(x, 0)2 . (10)

Note that the instrumental distribution depends on θ, the parameter we aim100

to estimate. The procedure for computing the AIS estimator θ̃n is described

in Algorithm 1. Note also that the algorithm needs to start from a certain

parameter value θ̃0. We will discuss this issue in section 4.2.
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Algorithm 1 Adaptive Importance Sampling

1. Initialization: θ̃0

2. for i = 1, . . . , n:

(a) Draw Xi from the distribution with pdf qθ̃i−1

(b) Call the mechanical simulation at point Xi to get label Si

(c) Compute

θ̃i = argmin
θ∈Θ

R̃i(θ), R̃i(θ) =
1

i

i∑
j=1

p(Xj)

qθ̃j−1
(Xj)

`θ(Xj , Sj) (11)

3.2. Theoretical results

We derive some theoretical properties for the estimator θ̃n, consisting in its105

consistency and asymptotic normality. Detailed proofs of the following theorems

are given in the Appendix. In the following, if θ 7→ f(θ) is a function, then ḟ ,

resp. f̈ ,
...
f , stands for the gradient, resp. the Hessian matrix, the tensor of the

third-order derivatives, of f .

Theorem 1. [Consistency of θ̃n] Assume θ∗ = argminθ∈Θ r(θ) exists and is

unique. Set L(x, s) = supθ∈Θ `θ(x, s). Assume that Θ is a compact set and

that: ∫∫
L(x, s)P (dx, ds) < +∞,

sup
θ∈Θ

∫∫
L(x, s)2p(x)

qθ(x)
P (dx, ds) < +∞,

∀θ 6= θ∗,

∫∫
`θ(x, s)P (dx, ds) >

∫∫
`θ∗(x, s)P (dx, ds).

If for any (x, s) ∈ X × {0, 1} , θ ∈ Θ 7→ `θ(x, s) is continuous, then

θ̃n → θ∗ in probability

Theorem 2. [Asymptotic normality of θ̃n] Assume that θ 7→ `θ is three times110

differentiable at θ∗ for all x, s and that the matrix r̈(θ∗) exists and is nonsingular.

Assume that the third-order derivatives of θ 7→ `θ(x, s) are dominated in a
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neighborhood of θ∗ by a function that is integrable with respect to P . Assume

also that the following conditions are satisfied:

1. The hypotheses of Theorem 1 are satisfied,115

2. ∃η > 0 such that supθ∈Θ

∫∫
||p(x) ˙̀

θ∗ (x,s)
qθ(x) ||2+ηP (dx, ds) < +∞,

3. supθ∈Θ

∫∫ p(x)||῭θ∗ (x,s)῭
θ∗ (x,s)T ||

qθ(x) P (dx, ds) < +∞,

4. there exists a neighborhood B of θ∗ such that ∀(x, s) ∈ X × {0, 1},
supθ∈B

p(x)‖
...
` θ(x,s)‖
qθ(x) < +∞.

Then the sequence
√
n(θ̃n − θ∗) is asymptotically normal with mean zero and

covariance matrix

Gθ∗ = r̈(θ∗)
−1Vθ∗(r̈(θ∗)

−1)T , (12)

where Vθ∗ is the matrix

Vθ∗ = E

[
p(X) ˙̀

θ∗(X,S) ˙̀
θ∗(X,S)T

qθ∗(X)

]
. (13)

Theorem 3. [Asymptotic normality of the loss] If the conditions of Theorem 2

are satisfied then the sequence
√
n(R̃n(θ̃n)−r(θ∗)) is asymptotically normal with

mean zero and variance Tθ∗ with

Tθ∗ = E

[(
p(X)

qθ∗(X)
`θ∗(X,S)− r(θ∗)

)2
]
. (14)

A straightforward corollary of Theorem 2 is that, if Gθ∗ is nonsingular (which

we assume from now on), then for any α ∈ (0, 1):

P
(
n(θ̃n − θ∗)TG−1

θ∗
(θ̃n − θ∗) < qαχ2(m)

)
−−−−−→
n→+∞

α , (15)

with qαχ2(m) the α-quantile of the χ2(m) distribution. Remark that the matrix

Gθ∗ depends on the unknown parameter θ∗. It is thus possible to use a plug-in

estimator:

Ĝn = ̂̈rn(θ̃n)−1V̂n(θ̃n)(̂̈rn(θ̃n)−1)T , (16)

with ̂̈rn(θ) =
1

n

n∑
i=1

p(Xi)

qθ̃i−1
(Xi)

῭
θ(Xi, Si) , (17)

9



V̂n(θ) =
1

n

n∑
i=1

p(Xi)
2

qθ(Xi)qθ̃i−1
(Xi)

˙̀
θ(Xi, Si) ˙̀

θ(Xi, Si)
T , (18)

and ῭
θ(x, s) the Hessian of `θ(x, s) with respect to variable θ. The following120

lemma establishes that Ĝ−1
n → G−1

θ∗
in probability and it is proved in Appendix

E.

Lemma 1. [Uniform convergence of Ĝ−1
n ] Set L1,k,l(x, s) = supθ∈Θ

῭
θ(x, s)k,l

and L2,k,l(x, s) = supθ∈Θ
p(x)
qθ(x) ( ˙̀

θ(x, s) ˙̀
θ(x, s)

T )k,l ∀k, l = 1, ...,m and assume

that:125

1. inf(θ,x,s)∈Θ×X×{0,1}
p(x)
qθ(x)

῭
θ(x, s)k,l > −∞ ∀k, l = 1, . . . ,m.

2. inf(θ,x,s)∈Θ×X×{0,1}

(
p(x)
qθ(x)

)2
˙̀
θ(x, s) ˙̀

θ(x, s)
T
k,l > −∞ ∀k, l = 1, . . . ,m.

3.
∫∫

Li,k,l(x, s)P (dx, ds) < +∞, ∀i ∈ {1, 2}, ∀k, l = 1, ...,m.

4. supθ∈Θ

∫∫ Li(x,s)
2p(x)

qθ(x) P (dx, ds) < +∞, i ∈ {1, 2}.

Then the sequence Ĝ−1
n converges to G−1

θ∗
in probability.130

By Theorem 2: n(θ̃n − θ∗)TG−1
θ∗

(θ̃n − θ∗)→ χ2(m). Using Slutsky’s lemma,

we have the following convergence in distribution:

n(θ̃n − θ∗)T Ĝ−1
n (θ̃n − θ∗)→ χ2(m) . (19)

Equation (19) allows to define asymptotic confidence ellipsoids that will be

defined precisely in Section 3.3.

3.3. Stopping criterion using a statistical hypothesis test

The estimation of the generalization error without a validation set is often

based on Cross Validation. When AIS is used, the data points (Xi, Si) are no135

longer independent and identically distributed. We propose to use a stopping

criterion that ensures that asymptotic normality is reached and then to use

the asymptotic confidence ellipsoids determined above, which will then provide

reliable confidence ellipsoids for the quantities of interest.

Theorem 4. [Centered asymptotic normality of the loss gradient] Assume the140

same hypotheses as in Theorem 2 and:
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1. inf(θ,x,s)∈Θ×X×{0,1}
p(x)
qθ(x)

῭
θ∗(x, s)k,l > −∞ ∀k, l = 1, . . . ,m.

Consider two independent datasets D1 = (Xi,1, Si,1)i∈{1,...,n} and D2 = (Xi,2, Si,2)i∈{1,...,n}

generated with AIS strategy. Let R̃n,j be the weighted loss for Dj for j = 1, 2

defined as in (11). Denote:

θ̃n,j = argmin
θ∈Θ

R̃n,j(θ), j = 1, 2 .

Then we have:

√
n( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1))

L−→ N (0, 8V (qθ∗ ,
˙̀
θ∗))

as n→ +∞.

Denote

Ŵn =
n

8
( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1))T V̂ −1

n,12( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1)), (20)

V̂n,12 =
1

2

(
V̂n,1(θ̃n,1) + V̂n,2(θ̃n,2)

)
, (21)

with V̂n,j the empirical estimator in equation (18) for the j-th AIS dataset Dj
for j = 1, 2. By Theorem 4 and by Slutsky’s lemma, Ŵn converges weakly

to χ2(m). It is, therefore, possible to define a stopping criterion inspired by

statistical test theory to check the asymptotic normality of θ̃n. Our stopping

criterion is equivalent to the hypothesis test:

(H0) : Ŵn follows χ2(m) against (H1) : Ŵn does not follow χ2(m) .

(22)

For α ∈ (0, 1), we then consider the statistical test which rejects (H0) if:

Ŵn > q1−α
χ2(m) , (23)

where q1−α
χ2(m) denotes the (1−α)-quantile of the χ2(m) distribution. Hence, this

statistical test is of asymptotic level α. An apparent drawback of this stopping

criterion is that it doubles the computational cost, due to the necessity of having

two independent AIS estimators θ̃n,1 and θ̃n,2 to compute Ŵn. It is, however,

possible to use the estimator

θ̃n,12 =
θ̃n,1 + θ̃n,2

2
, (24)
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which has an asymptotic variance that is half the one of θ̃n,1 and θ̃n,2 as shown by

the following proposition. There is, therefore, no increase of the computational145

cost.

Theorem 5. The sequence
√
n(θ̃n,12 − θ∗) is asymptotically normal with mean

zero and covariance matrix 1
2 r̈(θ∗)

−1V (qθ∗ ,
˙̀
θ∗)(r̈(θ∗)

−1)T .

Using Equation (19), it is possible to define the asymptotic confidence ellip-

soids for the parameter θ∗ at level α:

Ên,α = {θ : (θ − θ̃n,12)T Ĝ−1
n,12(θ − θ̃n,12) ≤ qχ

2(m)
1−α } , (25)

with

Ĝn,12 =
̂̈r−1

n,12V̂n,12(̂r̈
−1

n,12)T

2
, (26)

̂̈rn,12 =
̂̈rn,1(θ̃n,1) + ̂̈rn,2(θ̃n,2)

2
, (27)

V̂n,12 is defined by (21), and the estimators ̂̈rn,j correspond to the estimator̂̈rn defined in Equation (17) with the j-th AIS sample Dj . Once the stopping150

criterium Ŵn < 1 is fulfilled, we can claim that asymptotic normality is reached

and the asymptotic confidence ellipsoid (25) can be used.

4. Practical implementation of AIS and comparison with a Random

Sampling strategy

This section is primarily dedicated to explaining how to apply AIS to a real155

case study of seismic fragility curve estimation. For sake of clarity, we separate

the implementation issue (section 4.1) from the initialization one (section 4.2).

In addition, in order to demonstrate the superiority of the AIS strategy in

comparison with a Random Sampling (RS) strategy, performance metrics are

presented in section 4.3.160

4.1. Practical implementation

This section is dedicated to explain how to apply AIS to a real case study

of seismic fragility curve estimation. The classical parametric shape for seismic

12



fragility curve is F = {Φ(
log( IMα )

β ), (α, β) ∈ (0,+∞)2}, with Φ the cumulative

distribution function (cdf) of the standard normal distribution and X = log IM

[1]. In the following we will use the notation θ = (α, β)T . Remark that Θ is

not compact. From an engineer perspective, it is possible to bound α and β

from above and to bound α from below. However the neighborhood of 0 for β is

problematic and thus, inspired by Bayesian inference theory [40], we consider a

regularization Ω(θ;βreg) =
βreg
β to tackle this issue. The AIS loss in Algorithm

1 is replaced by:

R̃n,reg(θ;βreg) =
1

n

n∑
i=1

p(Xi)

qθ̃i−1
(Xi)

(Si − fθ(Xi))
2 +

Ω(θ;βreg)

n
. (28)

This penalization parameter is motivated by the intrinsic difficulty of estimating

the slope β of the lognormal model when β is small [41]. Fragility curves with

small β are hard to distinguish due to the convergence towards a degenerate 0−1

deterministic fragility curve. This phenomenon is magnified with a small-sized165

sample. Remarking that R̃n,reg(θ;βreg) ∼
n→+∞

R̃n(θ), the convergence results

for θ̃n are guaranteed. The regularization only affects θ̃n for small values of n.

The regularization hyperparameter βreg is determined using cross-validation.

The computation of βreg will be detailed in Section 4.2.

Moreover, using AIS with the optimal instrumental density qθ directly could

increase the variance if the density has light tails. We propose finally an Adap-

tive Defensive and Regularized Importance Sampling (ADRIS) strategy as il-

lustrated in [42, 43]. The instrumental density becomes

q̃θ,ε(x) = εp(x) + (1− ε)qθ(x) (29)

with ε ∈ [0, 1]. ε is a mixing parameter, between the original marginal pdf p(x)

and the instrumental one qθ(x), meaning that one time out of 1/ε the element

is drawn from the pdf p(x). This distribution allows to bound the likelihood

ratio:
p(x)

q̃θ,ε(x)
=

1

ε+ (1− ε) qθ(x)
p(x)

<
1

ε
.

Thus the defensive strategy bounds the variance even if the likelihood ratio170

p(x)
qθ(x) is large. In the numerical applications, we sample the seismic signals with
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seismic intensityX from a very large dataset of precomputed seismic signals with

the original distribution that is called the unlabeled pool. The number of seismic

signals is considered very large (105 in our case) compared to the number of

seismic signals used for fragility curve estimation, so that the theoretical results175

are still supposed valid. For ADRIS, the seismic signals are first sampled at

random in the unlabeled pool, then an acceptance reject algorithm is used to

sample with the instrumental density q̃θ,ε, the likelihood ratios are computed

using Simpson’s quadrature.

4.2. Initialization of ADRIS and RS strategies180

4.2.1. Initialization of the ADRIS algorithm

A key aspect of ADRIS procedure is the initialization parameter θ̃0. As

expected the closer θ̃0 is from the true parameter θ∗ the faster ADRIS is in

asymptotic normal regime. A naive approach is to get a small sample of size n0

(e.g. n0 = 20) (Xi, Si)
n0
i=1 from the original marginal density p of X and to com-185

pute the passive learning estimator θ̂n0
(equation (4)). This crude estimation

gives a sufficient initial parameter to start ADRIS.

A better approach is to consider a metamodel - in the broad sense - of the

mechanical simulation. As often used by practitioners, a numerical resolution

based on a modal base projection can be implemented to get an estimate of the190

fragility curve corresponding to the linear behavior of the structure of interest.

It is then possible to get a huge amount of datapoints of the reduced model

(e.g. an independent and identically distributed sample of nred = 103–105 pairs

(Xi, Sred,i)
nred
i=1 where Xi is sampled with the original pdf p and Sred,i is the

associated label obtained with the reduced model) in order to get a precise195

enough initial parameter θ̃0 approximated by θ̂nred
. Statistical metamodels could

also be used such as Gaussian Processes [44] or Support Vector Machines [16].

In our applications reduced models are only used to give us prior knowl-

edge on the fragility curve shape, encapsulated in the initial parameter of the

ADRIS procedure. We then initialize ADRIS with a small sample of 20 data-200

points with the instrumental density q̃θ̃0,ε (equation (29)). The regularization
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parameter βreg is then determined by minimizing the Leave One Out error on

this initialization sample. We denote by β̃reg the corresponding regularization

parameter.

4.2.2. Initialization of the RS algorithm205

The initialization for the RS estimator is 20 datapoints sampled using the

original distribution p, the penalization parameter is also computed using Leave

One Out cross validation and the corresponding penalization parameter value

is denoted by β̂reg.

4.3. Performance metrics of the numerical benchmarks210

The next section aims at assessing ADRIS performance in comparison with

the RS strategy on test cases. For this, we here introduce performance metrics,

inspired from [45, 46], to unveil the quality of our active learning procedure. In

the following we denote respectively by θ̂n and θ̃n the RS and ADRIS estimators.

• the Relative Standard Deviation

R̃SDn =

√
V[R̃n,reg(θ̃n; β̃reg)]

E[R̃n,reg(θ̃n; β̃reg)]
,

R̂SDn =

√
V[R̂n,reg(θ̂n; β̂reg)]

E[R̂n,reg(θ̂n; β̂reg)]
,

where R̂n,reg(θ;βreg) = 1
n

n∑
i=1

(Si − fθ(Xi))
2 +

Ω(θ;βreg)
n .215

• the Relative Biais

RBn =
|E[R̃n,reg(θ̃n; β̃reg)]− E[R̂n(θ̂n; β̂reg)]|

E[R̃n,reg(θ̃n; β̃reg)]
.

• The efficiency

νn =
V[R̂n,reg(θ̂n; β̂reg)]

V[R̃n,reg(θ̃n; β̃reg)]
.

A value of νn > 1 shows that ADRIS has a smaller loss variance than RS.

For simplicity we will only show the value of νn for the maximal sample size

on each test case. The mean and variance above can be computed empirically
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using replications of the two procedures (ADRIS and RS) when the test cases

are simple and when it is possible to run many replicates of the ADRIS and RS220

samples.

These metrics are also defined with the empirical testing error:

Q(θ;βreg) =
1

nt

nt∑
i=1

(
S

(t)
i − fθ

(
X

(t)
i

))2

+
Ω(θ;βreg)

nt
,

where (X
(t)
i , S

(t)
i )1≤i≤nt is a testing set (independent and identically distributed

with the original distribution P ). The performance metrics are thus also defined

with the testing error by replacing R̂n or R̃n with Q and parameter θ̂n or θ̃n.

5. Numerical results225

To evaluate ADRIS efficiency, a numerical benchmark has been performed

with three test cases with increasing complexity:

1) A synthetic test case with known fragility curve and probability distribution

of the seismic log-intensity measure X,

2) a nonlinear elastoplastic oscillator with kinematic hardening subjected to230

synthetic signals generated from the modulated and filtered white-noise ground-

motion model [26] as in [16],

3) an industrial test case of a nuclear facility’s pipeline-system, submitted to

the same artificial signals.

The oscillator test case aims to evaluate the effectiveness of the ADRIS strategy235

before its application to an industrial test case which is numerically much more

costly. Moreover, since it well represents the essential features of the nonlinear

responses of a large variety of real structures subjected to earthquakes, this

test case allows to determine the value of the hyperparameter ε - thanks to a

numerical benchmark - because there is no ad hoc procedure to do this.240

5.1. A synthetic test case

Here we benchmark our methodology while having full knowledge of the true

fragility curve. We generate 30,000 datapoints (Xi, Si) with the fragility curve
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µ(x) = Φ(x−log(α∗)
β∗

) with (α∗, β∗) = (0.3, 0.4). The original marginal distribu-

tion of X is here a Gaussian distribution with mean log
(
α∗
3

)
and variance β2

∗ .245

The unlabeled pool consists of 20,000 datapoints Xi. 10,000 datapoints (Xi, Si)

will be our validation set for testing error estimation, using crude Monte Carlo.

Figure 1 shows (i) the target fragility curve µ in dashed red line, (ii) a kernel

density estimation of the density p based on the all dataset in green and (iii) a

kernel density density estimation q of the 120 datapoints Xi obtained by ADRIS250

in red. Figure 2 plots the training error and testing error for 500 replications

of the RS and ADRIS algorithms. The algorithms are initialized with 20 dat-

apoints, 120 datapoints are extracted using ADRIS or RS from the unlabeled

dataset.

−4 −3 −2 −1 0 1
X

0.0

0.2

0.4

0.6

0.8

1.0

1.2
µ

p

q

Figure 1: Synthetic test case with lognormal fragility curve with parameters (α∗, β∗) =

(0.3, 0.4) and X ∼ N (α∗
3
, β2

∗). Comparison of the original marginal density p of X with

the empirical density q of the 120 datapoints Xi obtained by ADRIS for the synthetic test

case.

As depicted by Figure 2 and Table 1, ADRIS does not seem to reduce the255

training error. This is normal because ADRIS selects seisms whose intensity

measures maximize ˜̀
θ, which can be seen as an marginalized training loss vari-

ance of the observation. In other words, as illustrated in Figure 1 with the

density q(x), ADRIS selects difficult points - typically values of x for which
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Figure 2: Numerical benchmark of the synthetic test case: The thick lines represent the mean

loss for 500 replications, the shaded areas represents the range between the quantiles at 90%

and 10%. For this case, the bias is known and is equal to E[µ(X)(1− µ(X))] ' 0.021.

Table 1: Performance metrics for the synthetic test case for n = 120

Train Test

RS ADRIS RS ADRIS

RSD120 (%) 53 46 13 8

ν120 × 1.2 × 2.5

RB120 (%) × 7 × 4

µ(x) takes values between 0 and 1 - and therefore the training error can be260

large because it is not representative of the generalization error. RS and ADRIS

strategies really distinguish themselves on the testing error, which is smaller for

ADRIS than for RS. Moreover, ADRIS quickly converges to the known bias

equal to E[µ(X)(1− µ(X))] ' 0.021. Finally the efficiency ν120 is 2.5, meaning

that the testing error’s confidence interval for ADRIS is 1.6 times smaller than265

for RS after 120 iterations.

5.2. A nonlinear oscillator

This test case aims to validate the overall strategy developed in this work,

on a simple but representative case. The goal is to analyze empirically the per-

formance of ADRIS for this test case, which will not be possible for complex270
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structures such as the one addressed in section 5.3. This section is therefore

particularly comprehensive, starting from the initialization of the ADRIS algo-

rithm up to the numerical verification of the theorems, while passing by the

choice of ε.

275

5.2.1. Presentation of the oscillator

This second test case - illustrated in Figure 3 - is that of a single degree

of freedom elasto-plastic oscillator which exhibits kinematic hardening. It was

previously used as a simple mechanical model for fragility curve estimation in

[20, 16]. Its equation of motion is:

z̈(t) + 2βωLż(t) + fNL(t) = −s(t) ,

with s(t) an artificial seismic signal, ż(t) and z̈(t) are respectively the velocity

and acceleration of a unit mass of the oscillator, β is the damping ratio and ωL

the pulsation of the oscillator. Moreover, the nonlinear force fNL is governed by

two parameters: the post-yield stiffness a and the yield displacement Y . We also280

define the maximal displacement D = maxt∈[0,T ] z(t), where T is the duration

of the seismic excitation. The failure state for this nonlinear oscillator is defined

by the {0, 1}-valued variable S = 1(D>C), where C = 2Y is chosen such that

P(D ≥ C) ≈ 10−1, which means that the underlying structure is "rather well

designed" with respect to the seismic scenario considered.285

5.2.2. Initialisation of the ADRIS procedure

In this test case, for ADRIS initialization, we use the underlying elastic os-

cillator as a cheap model. The initialization parameter θ̃0 is approximated by

θ̂105 (equation (4)) using a 105-sized dataset. In addition, the PGA is first con-290

sidered as IM. Even if the PGA is not known to be the best indicator, doing so

helps to verify the relevance of the methodology in a "less favorable" case. Note

that the influence of the IM on the results will be discussed in section 5.2.7.

As shown in Figure 4, the parameter θ̃0 could be considered "close" to the true
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Figure 3: Elasto-plastic mechanical oscillator with kinematic hardening, with parameters

fL = 5 Hz and β = 2%. The yield limit is Y = 5.10−3 m and the post-yield stiffness is 20%

of the elastic stiffness, hence a = 0.2.

parameter θ∗. Thus, 20 datapoints are queried on the nonlinear oscillator with295

the instrumental density q̃θ̃0,ε (equation (29)) before beginning launching the

adaptive strategy.
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Figure 4: Fragility curves of the linear elastic oscillator and the nonlinear oscillator obtained

by using least squares minimization on the total 105 synthetic seismic signals of the dataset.

5.2.3. Choice of ε300

The choice of the defensive parameter value ε is cumbersome and there is

no direct methodology for its choice. A benchmark on different values of ε is

proposed in Table 2: remark that the test efficiency does not change between
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10−2 and 10−3 however it is smaller when ε = 10−1 meaning that the value

ε = 10−1 is too conservative. Accordingly, all the results will presented hereafter305

with a defensive parameter ε = 10−3.

Table 2: Defensive parameter ε influence on the efficiency (IM = PGA).

ε Train Test

10−1 1.3 1.2

10−2 2.1 3.9

10−3 2.2 3.3

5.2.4. Stopping criterion

Figure 5 shows the value of the test statistics Ŵn for two independent ADRIS

realizations, this motivates stopping the ADRIS algorithm at 100 sampled seis-310

mic signals, as the value of Ŵn is inferior to the 95% quantile of the χ2(2)

distribution and we can then claim that we have reached asymptotic normality.
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Figure 5: Values of the test statistic Ŵn for two ADRIS realizations (IM = PGA).
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5.2.5. Check of performances

In order to check the performances of the ADRIS algorithm, the unlabeled315

training set consists in 9.104 seismic signals and the testing set is composed of

104 signals. The benchmark study consists in 500 replications with 100 sampled

seismic signals using ADRIS versus 120 for the RS strategy.

Figure 6 and Table 3 compare the ADRIS and RS training and testing errors.

The mean training loss for the 500 replications is higher for ADRIS than for320

RS: indeed, the instrumental density is chosen to sample seismic signals that

maximize the loss variance, resulting in a high training error. Remark that the

ADRIS performance of the testing error is much better in terms of efficiency

ν120 and RSD120. The ADRIS confidence interval for testing error are thus 1.8

times smaller than for RS after 120 iterations. Moreover, the mean test error325

of ADRIS is also significantly smaller than for random sampling and quickly

converges to the “minimal" error related to the term E[µ(X)(1− µ(X))] in (2).
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Figure 6: Results for the elasto-plastic mechanical oscillator with the PGA as IM (same

notations as for the synthetic test case). ADRIS is initialized with 20 datapoints sampled from

qθ̃0,ε
with a defensive parameter ε = 10−3. The confidence intervals are constructed from the

empirical 90% and 10% quantiles of the training and testing losses for 500 replications.

The mean fragility curve and the 90% and 10% confidence interval are shown

in Figure 7. The parametric fragility curve estimated with a dataset of 104

seismic ground motions and the nonparametric fragility curve estimated by k-330

means clustering on the PGA with a dataset of 105 seismic ground motions,
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Table 3: Performance metrics for the elasto-plastic oscillator for n = 120 (IM = PGA).

Train Test

RS ADRIS RS ADRIS

RSD120 (%) 47 30 19 11

ν120 × 2.2 × 3.3

RB120 (%) × 6 × 11

are also shown in order to validate both the model choice and the uncertainty

reduction provided by ADRIS.
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Figure 7: Estimation of the confidence intervals for random sampling and ADRIS for the

nonlinear oscillator. Dashed orange curve and green curve are respectively the parametric

estimation µ using 104 seismic ground motions and the k-means nonparametric estimation of

the fragility curve using 105 seismic ground motions µMC . Red and blue areas correspond

respectively to the 90% to 10% quantile range for the fragility curve dataset computed with

ADRIS or RS. Remark that for the nonparametric fragility curve is only plotted for PGA <

10m/s2 due to the lack of seismic signals with PGA above that threshold.

Figure 8 helps to visualize how ADRIS reduces the uncertainty of the fragility

curve estimation: ADRIS is designed to sample seismic ground motions in the335

transition zone between 0 and 1 of the fragility curve, this phenomenon is re-

sponsible to the uncertainty reduction.
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Figure 8: Comparison of the original marginal density p of PGA with the estimated density

q of sampled PGA using ADRIS with n = 100 datapoints for the nonlinear oscillator.

5.2.6. Confidence ellipsoids

Numerical simulations have been carried out to check that the strategy pro-

posed in the paper to build confidence ellipsoids is reliable. The experimental

setup consists in 500 replicates with samples of size up to 1000. Each sample

is obtained by ADRIS with a defensive parameter ε = 10−3 and a penalization

parameter chosen by cross validation. Two ADRIS samples are necessary to

compute an asymptotic confidence ellipsoid with level 1− α = 0.9 by Equation

(25). The B = 250 replications of pairs of ADRIS are used to compute the

Prediction Interval Coverage (PIC):

P̂ICn =
1

B

B∑
b=1

1
θ∗∈Ê(b)n,α

,

where Ê(b)
n,α is the asymptotic confidence ellipsoid using the b-th replication of340

two independent runs of ADRIS procedure with size n. Because θ∗ is unknown,

we approximate it by θ̂N for a very large N = 105. Figure 9 shows that for a

training size n between 50 and 500, the PIC values are close to its theoretical and

nominal value of 90%. This result validates the theoretical results of Section 3.2.
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We emphasize that the stopping criterion Ŵn, illustrated in Figure 5, gives us at345

which sample size the ADRIS reaches asymptotic normality and thus at which

sample size asymptotic confidence ellipsoids can be used.
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Figure 9: PIC value (for the confidence ellipsoid with level 1− α = 0.9 for θ) as a function of

the training size n of ADRIS. B = 250 ADRIS replications are used to estimate the PIC for

each training size n.

5.2.7. Influence of the seismic intensity measure

The choice of the seismic IM is crucial for the accuracy of fragility curves350

estimates, especially when parametric models are concerned. With the PGA,

a bias between the lognormal fragility curve and the k-means nonparametric

fragility curve can indeed be seen in Figure 7. This phenomenon could be ex-

plained by the small correlation between maximal displacement of the oscillator

during the seismic excitation and the PGA, which conveys small information355

about the seismic ground motion [32].

Confidence intervals for RS and ADRIS are thus computed again but using

the spectral acceleration (SA) at 5 Hz and 2% damping ratio as the seismic IM.

The results presented in Figure 10 show a reduction of the bias between the

nonparametric and the parametric fragility curve. This illustrates that, for the360

class of structures and for the seismic signal generator considered in this study,
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the parametric lognormal model has a better fit with the reference SA-based

fragility curve than with reference PGA-based fragility curve.
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Figure 10: Estimation of the confidence intervals for RS and ADRIS for the nonlinear oscilla-

tor. Dashed orange curve and green curve are respectively the parametric estimation µ using

104 seismic ground motions and the k-means nonparametric estimation of the fragility curve

using 105 seismic ground motions µMC . Red and blue areas correspond respectively to the

90% to 10% quantile range for the fragility curve dataset computed with ADRIS or RS. The

seismic IM in this case is the spectral acceleration at 5 Hz and 2% damping ratio. Remark

that the bias between the nonparametric fragility curve µMC and the parametric fragility

curve µ is smaller than with the PGA for intensity measure.

5.2.8. Synthesis365

In this section, we have shown that the ADRIS-based methodology is (i)

efficient to reduce the variance of the fragility curve estimation and (ii) can

be applied regardless of the IM of interest. However, in practice, it is more

suitable to use an IM as correlated as possible to the response of the structure

to minimize potential biases due to the use of a parametric model. In addition,370

we have shown that, if the computation times allow it, it is possible to know

when to stop the ADRIS algorithm, in order to build an asymptotic confidence

ellipsoids.

The piping systems (or some of their sections) are part of the class of struc-

tures for which the global nonlinear seismic behavior can be well represented375
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by nonlinear oscillators. So, we consider for the following test case that, after

100 iterations, for ε = 10−3, the asymptotic normality will be reached regarding

the use of asymptotic confidence ellipsoids. Initialization will follow the same

procedure as for the nonlinear oscillator. In addition, SA will be chosen as IM

for the fragility curve.380

5.3. Industrial test case: safety water supply pipe in a water pressured nuclear

reactor

The following test case corresponds to a piping system which is a simplified

part of a secondary line of a French Pressurized Water Reactor. The numerical

model was validated based on seismic tests performed on the shaking table385

Azalee of the EMSI laboratory of CEA/Saclay. The experimental program,

called ASG program, and the main results are outlined in Ref. [47]. In Figure 11a

a view of the mock-up mounted on the shaking table is shown. The Finite

Element (FE) model, based on beam elements, is depicted in Figure 11b.

(a)

 Guide

 Rod

  Mass

  Clamped end

(b)

Figure 11: (a) Overview of the ASG mock-up on the shaking table and (b) ASG FE model

The mock-up is a 114.3 mm outside diameter and 8.56 mm thickness pipe390

with a 0.47 elbow characteristic parameter, in carbon steel TU42C, filled with

water without pressure. It contains three elbows and a mass modeling a valve

(120 kg) which corresponds to more than 30% of the specimen total mass. As
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shown in Figure 11b, one end of the mock-up is clamped whereas the other is

supported by a guide in order to prevent the displacements in the X and Y395

directions. Additionally, a rod is placed on the top of the specimen in order to

limit the mass displacements in the Z direction. In the tests, excitation act in

the X direction.

Numerical comparisons are carried out with the homemade FE code CAST3M [48].

Concerning the FE model, the boundary conditions are adjusted in order to ob-400

tain shapes and frequencies similar of those of the first two eigenmodes of the

mock-up in the X and Y directions, respectively at 5.1 Hz and 6.6 Hz. As mea-

sured in the experiments, a critical damping ratio of 1% is considered for these

two eigenmodes with a damping Rayleigh assumption. Finally, regarding the

nonlinear constitutive law of the material, a bilinear law exhibiting kinematic405

hardening is used to reproduce the overall non-linear behavior of the mock-up

with satisfactory agreement compared to the results of seismic tests [47].

In the context of this test case, the yield stress of the bilinear law is equal

to 3 108 Pa, the Young modulus is equal to 1.92 1011 Pa whereas the harden-

ing modulus is equal to 4.3 108 Pa. Moreover, since for the synthetic signals410

considered in this work (the same as those used in the reference [16] and in the

second test case of this paper) the piping system remains in the linear domain,

they are filtered by a fictitious linear single-mode building at 5 Hz and damped

at 2%. Finally, we consider excessive out-of-plane rotation of the elbow located

near the clamped end of the mock-up as failure criterion, as recommended in415

[49]. Since the weight of the mass is not completely taken up by the mechanical

assembly, the overall behavior of the mock-up exhibits ratcheting.

In the following, the random variable R corresponds to the maximum of

the out-of-plane rotation of the elbow. The binary variable which indicates the

failure state is defined by S = 1R>C where C is the admissible rotation in420

degree. In our case, C = 4.38◦. This value of admissible rotation is the 90%-

level quantile from a sample of 1000 mechanical simulations, it is consistent with

an industrial case in which the failure is a "rare event". The ADRIS procedure

is initialized by considering the linear FE model and a numerical resolution
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based on a modal base projection. Figure 12 and Table 4 are the results of a425

numerical benchmark consisting of 50 replications of 100 signals sampled using

ADRIS with a defensive parameter ε = 10−3 and 120 signals chosen at random

in the unlabeled pool. The numbers of chosen signals have the same order of

magnitude as for the previous test case of the nonlinear oscillator. Figure 13

illustrates the uncertainty reduction provided by ADRIS on the fragility curve430

estimate. Motivated by the detailed results obtained for the nonlinear oscillator

and presented in the previous section, the fragility curve of the piping system

is here expressed as a function of the pseudo-spectral acceleration of the initial

set of the synthetic signals (i.e not filtered signals), calculated at 5 Hz and 1%

damping ratio. Note that Figure 13 suggests that for the RS strategy, even with435

n = 120 points, it is possible to obtain samples for which a β estimate is equal

to 0 (the 10% quantile is vertical around SA ' 11m/s2), which ADRIS avoids.

Table 4: Performance metrics for the ASG piping system for n = 120

Train Test

RS ADRIS RS ADRIS

RSD120 (%) 40.5 40 24.1 11.6

ν120 × 1.2 × 5.1

RB120 (%) × 9.5 × 20

6. Conclusion

In this paper, we have introduced an original methodology to improve esti-

mation accuracy of fragility curve without increasing the sample size, thanks to440

an active learning strategy of adaptive importance sampling. Defensive strategy

has been implemented to control the likelihood ratio and the possible increase

of the training loss variance in the early steps. We use a penalized least square

loss to prevent an identifiability issue for the slope parameter of the fragility

curve. We define a stopping criterium that indicates asymptotic normality of445
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Figure 12: Numerical benchmark of the ASG piping system. The confidence interval of the

train and test losses are computed with empirical quantiles of levels 10% and 90% on the 50

replications.
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Figure 13: Estimation of the confidence intervals for RS and ADRIS for the ASG piping

system. Red and blue areas correspond respectively to the range between the 10% and 90%

quantiles of the fragility curve dataset generated with ADRIS or random sampling with n =

100 training datapoints. The dashed orange curve corresponds to a fragility curve estimation

using least squares minimization with a dataset of 1000 seismic ground motions and FE

simulations of the piping system.

the estimator and provide asymptotic confidence intervals and ellipsoids. We

illustrate our active learning procedure in numerical examples, from a synthetic

case to a FE mechanical simulation of a piping system of a French Pressurized

Water Reactor.

450
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Appendix A. Lemma455

Lemma 2 (A law of large numbers). Let Un, n ≥ 1 be a sequence of almost

surely positive random variables. Let Sn =
n∑
i=1

Ui be such that:

E[Sn]

n

n→+∞−→ l, V ar(Sn) ≤ cn, ∀n ≥ 1,

for some real numbers c ≥ 0, l ≥ 0. We then have

Sn
n
→ l a.s.

Proof. See Theorem in Appendix B.3 in [22].

Theorem 6 (Uniform law of large numbers). Let Θ be a compact set of Rm.

Consider a sequence of random functions θ 7→ Hi(θ), ∀i ≥ 1, such that:

• H1 There exists a stochastic process H(θ), such that for all θ ∈ Θ

1

n

n∑
i=1

Hi(θ)→ E[H(θ)] a.s.

In addition

E
[
sup
θ∈Θ
|H(θ)|

]
< +∞,

and for any ball B of center θ0

1

n

n∑
i=1

sup
θ∈B
|Hi(θ)−Hi(θ0)| → E

[
sup
θ∈B
|H(θ)−H(θ0)|

]
.

• H2 The function θ → H(θ) is continuous.

Then the function h(θ) = E[H(θ)] is continuous and

sup
θ∈Θ

∣∣∣∣∣h(θ)− 1

n

n∑
i=1

Hi(θ)

∣∣∣∣∣ n→+∞−−−−−→ 0 a.s.

Proof. See Theorem 5 in [22].460
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Appendix B. Proof of Theorem 1

We follow the lines of the proof of Theorem 2 in [22]. Using Theorem 5.7 in

[50], we just need to check the two following conditions:

sup
θ∈Θ
|Rn(θ)− r(θ)| n→+∞→ 0 a.s. , (B.1)

∀ε > 0 , inf
θ∈Θ,‖θ−θ∗‖>ε

∫∫
`θ(x, s)P (dx, ds) >

∫∫
`θ∗(x, s)P (dx, ds) . (B.2)

Since Θ is compact, condition (B.2) is satisfied due to the integrability of L which

implies by the Lebesgue theorem that θ →
∫∫

`θ(x, s)P (dx, ds) is continuous.

For the condition (B.1), we shall prove that R̃n(θ) satisfies a uniform law of

large numbers. We will show that Theorem 6 is satisfied. First of all, we use

Lemma 2 in Appendix A to show that R̃n(θ) satisfies a law of large numbers

for all θ ∈ Θ. Using the same notations, we define Sn(θ) =
n∑
i=1

Hi(θ) with

Hi(θ) = p(Xi)`θ(Xi,Si)
qθ̃i−1

(Xi)
and H(θ) =

∫∫
`θ(x, s)P (dx, ds). Denote by Fi the sigma

algebra generated by (Xj , Sj)
i
j=1. Since E[Hi(θ)|Fi−1] =

∫
`θ(x, s)P (dx, ds), we

get

E[Sn(θ)] = n

∫∫
`θ(x, s)P (dx, ds) ,

and

V ar(Sn) =

n∑
i=1

V ar(Hi(θ)) ≤
n∑
i=1

E[Hi(θ)
2] ,

the previous equality is derived from Cov(Hj(θ), Hi(θ)) = 0 for j < i. But for

each i,

E[Hi(θ)
2] = E

[
p(Xi)

2`θ(Xi, Si)
2

qi−1(Xi)2

]
=

∫∫
p(x)`θ(x, s)

2

qθ̃i−1
(x)

P (dx, ds)

≤ sup
θ′∈Θ

∫∫
p(x)`θ(x, s)

2

qθ′(x)
P (dx, ds) .

This proves the law or large numbers for R̃n(θ) for all θ ∈ Θ. The next step is

to prove the uniform law of large numbers. For this, consider B a ball of center

θ0 ∈ Θ and the random series Sn =
n∑
i=1

Ui with Ui = supθ∈B |Hi(θ) −Hi(θ0)| .
Thus

E[Sn] = n

∫∫
sup
θ∈B
|`θ(x, s)− `θ0(x, s)|P (dx, ds) ,
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V ar(Sn) =

n∑
i=1

V ar(Ui) ≤
n∑
i=1

E[U2
i ] ,

and

E[U2
i ] =

∫∫
p(x) supθ∈B |`θ(x, s)− `θ0(x, s)|2

qθ̃i−1
(x)

P (dx, ds)

≤ 2 sup
θ∈Θ

∫∫
p(x) supθ∈B `θ(x, s)

2

qθ(x)
P (dx, ds).

Hence we have
1

n

n∑
i=1

Hi(θ)→ E[`θ(X,S)] .

The hypothesis (H2) of Theorem 6 is verified. As a consequence, θ̃n is consis-

tent.

Appendix C. Proof of Theorem 2

The asymptotic normality of an estimator built such as θ̃n is based on the465

following arguments highlighted in Theorem 5.41 of [50]:

• (H1) The random function
√
nΨn(θ∗) =

√
n( ˙̃Rn(θ∗)− ṙ(θ∗)) converges in

law to a centered Gaussian distribution with covariance Vθ∗ .

• (H2) The random function Ψ̇n(θ∗) converges in probability to its expec-

tation E[Ψ̇n(θ∗)] = E[῭θ∗(X,S)]470

• (H3) The random function Ψ̈n(θn) is bounded in probability for θn a

deterministic sequence in a neighborhood of θ∗.

Of course, we need all the quantities above to be properly defined, hence we

have to restrict ourselves to a loss function θ 7→ `θ that is smooth enough, such

as the quadratic loss. We will use the property that
√
nΨn(θ∗) is a martingale,

using Corollary 3.1 of [51], with ∆i =
p(Xi) ˙̀

θ∗ (Xi,Si)
qθ̃i−1

(Xi)
− ṙ(θ∗) the martingale

increments and Un,i = 1√
n

∆i. Denote by Fn the σ-algebra generated by the

family (Xj , Sj)1≤j≤n, the stochastic process Ui, i ≥ 1 must satisfy

n∑
i=1

E[Un,iU
T
n,i|Fi−1]→ Vθ∗ in probability , (C.1)
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∀ε > 0,

n∑
i=1

E[Un,iU
T
n,i1||Un,i||>ε|Fi−1]→ 0 in probability . (C.2)

For (C.1), notice that

nE[Un,iU
T
n,i|Fi−1] = E

[
p(X) ˙̀

θ∗(X,S) ˙̀
θ∗(X,S)T

qθ̃i−1
(X)

|θ̃i−1

]
,

where the expectation is taken with respect to (X,S) following the P distribu-

tion. Therefore, by Cesaro lemma, the convergence to Vθ∗ is ensured. For the

Lindberg condition (C.2), notice that
n∑
i=1

E[Un,iU
T
n,i1||Un,i||>ε|Fi−1] =

1

n

n∑
i=1

E[∆i∆
T
i 1||∆i||>ε

√
n|Fi−1] ,

and that

E[∆i∆
T
i 1||∆i||>ε

√
n|Fi−1] ≤ (ε

√
n)2E[1||∆i||>ε

√
n|Fi−1] ,

by applying the Markov inequality to the order 2 + η on the r.h.s. and the

triangular inequality

E[∆i∆
T
i 1||∆i||>ε

√
n|Fi−1] ≤

supi∈N E[||p(X) ˙̀
θ∗ (X,S)

qθ̃i−1
(X) ||2+η|Fi−1] + ‖ṙ(θ)‖2+η

(ε
√
n)η

.

Hence,
√
nΨn(θ∗) converges to a centered Gaussian distribution with covariance

matrix equal to Vθ∗ . Theorem 2.18 in [51] ensures that (H2) and (H3) are

verified by the assumptions 2), 3) and 4) so that Ψ̇n(θ∗) converges toward the475

matrix r̈(θ∗). The sequence
√
n(θ̃n − θ∗) is asymptotically normal with mean

zero and covariance matrix r̈(θ∗)−1Vθ∗(r̈(θ∗)
−1)T .

Appendix D. Proof of Theorem 3

The main arguments are the convergence in probability
√
n(θ̃n − θ∗) → 0

and the Taylor expansion around θ̃n (using ˙̃Rn(θ̃n) = 0):

√
n(R̃n(θ̃n)− r(θ∗)) =

√
n(R̃n(θ∗)− r(θ∗))

+
√
n

1∫
0

(t− 1)(θ̃n − θ∗)T ¨̃Rn(θ̃n + t(θ∗ − θ̃n))(θ̃n − θ∗)dt.
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Thanks of the boundedness condition of Theorem 2, under the hypothesis

of Theorem 2, for all t ∈ [0, 1], ¨̃Rn(θ∗ + t(θ̃n − θ∗)) is bounded in probability,480

thus thanks to Corollary 3.1 of [51] and Slutsky’s lemma,
√
n(R̃n(θ∗) − r(θ∗))

is asymptotically normal.

Appendix E. Proof of Lemma 1

The result comes from the uniform convergence of Ĝn(θ) = ̂̈rn(θ)−1V̂n(θ)(̂̈rn(θ)−1)T

to Gθ for θ in a neighborhood of θ∗. It boils down to prove uniform convergence485

of ̂̈rn(θ) and V̂n(θ). The proof is in the same spirit as the proof of Theorem 1.

We proceed coordinate by coordinate defining Hi(θ)k,l = p(Xi)
qθ(Xi)

῭
θ(Xi, Si)k,l −

inf(θ,x,s)∈Θ×X×{0,1}
p(x)
qθ(x)

῭
θ(x, s)k,l to prove uniform convergence of ̂̈rn(θ) and

Hi(θ)k,l =
(
p(Xi)
qθ(Xi)

)2
˙̀
θ(Xi, Si) ˙̀

θ(Xi, Si)
T
k,l−inf(θ,x,s)∈Θ×X×{0,1}

(
p(x)
qθ(x)

)2
˙̀
θ(x, s) ˙̀

θ(x, s)
T
k,l

for V̂n(θ). Assumptions 3) and 4) ensure the uniform convergence using the proof490

technique of Theorem 1.

Appendix F. Proof of Theorem 4

The proof relies on the Taylor expansions of ˙̃Rn,1(θ̃n,2) and ˙̃Rn,2(θ̃n,1) around

the parameter value θ∗:

˙̃Rn,1(θ̃n,2) = ˙̃Rn,1(θ∗) + ¨̃Rn,1(θ∗)(θ̃n,2 − θ∗) + o
(
‖θ̃n,2 − θ∗‖

)
.

˙̃Rn,2(θ̃n,1) = ˙̃Rn,2(θ∗) + ¨̃Rn,2(θ∗)(θ̃n,1 − θ∗) + o
(
‖θ̃n,1 − θ∗‖

)
.

Using hypothesis 1) of Theorem 4 and hypothesis 3) of Theorem 1, we can ap-

ply lemma 2 to prove convergence of ¨̃Rn,1(θ∗) and
¨̃Rn,2(θ∗) to r̈(θ∗) in the same

spirit as for the proof of Theorem 1. We proceed coordinate by coordinate, defin-

ing Hi(θ∗)k,l = p(Xi)
qθ̃i−1(Xi)

῭
θ∗(Xi, Si)k,l−inf(θ,x,s)∈Θ×X×{0,1}

p(x)
qθ(x)

῭
θ∗(x, s)k,l . Re-

mark thatHi(θ∗)k,l ≥ 0, hence we can apply Lemma 2 to obtain the desired con-

vergence. Moreover, the Taylor expansions of ˙̃Rn,1(θ̃n,1) and ˙̃Rn,2(θ̃n,2) write:

0 = ˙̃Rn,1(θ̃n,1) = ˙̃Rn,1(θ∗) + r̈(θ∗)(θ̃n,1 − θ∗) + o
(
‖θ̃n,1 − θ∗‖

)
,

0 = ˙̃Rn,2(θ̃n,2) = ˙̃Rn,2(θ∗) + r̈(θ∗)(θ̃n,2 − θ∗) + o
(
‖θ̃n,2 − θ∗‖

)
.
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Finally, the Taylor expansion of
√
n( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1)) writes:

√
n
( ˙̃Rn,1(θ̃n,2)− ˙̃Rn,2(θ̃n,1)

)
=
√
n
( ˙̃Rn,1(θ∗)− ˙̃Rn,2(θ∗) + r̈(θ∗)(θ̃n,2 − θ∗)− r̈(θ∗)(θ̃n,1 − θ∗)

)
+ oP (1)

= 2
√
n( ¨̃Rn,1(θ∗)− ¨̃Rn,2(θ∗)) + oP (1), (F.1)

because
√
n‖θ̃n,j − θ∗‖ = OP (1) for j = 1, 2. The right-hand side of Eq. (F.1)

weakly converges towards the centered Gaussian distribution with covariance

matrix 8V (qθ∗ ,
˙̀
θ∗).495
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