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Abstract. This paper considers wave-based imaging through a heterogeneous (random) scat-
tering medium. The goal is to estimate the support of the reflectivity function of a remote scene
from measurements of the backscattered wave field. The proposed imaging methodology is based on
the coherent interferometric (CINT) approach that exploits the local empirical cross correlations of
the measurements of the wave field. The standard CINT images are known to be robust (statisti-
cally stable) with respect to the random medium, but the stability comes at the expense of a loss
of resolution. This paper shows that a two-point CINT function contains the information needed to
obtain statistically stable and high-resolution images. Different methods to build such images are
presented, theoretically analyzed and compared with the standard imaging approaches using numer-
ical simulations. The first method involves a phase-retrieval step to extract the reflectivity function
from the modulus of its Fourier transform. The second method involves the evaluation of the leading
eigenvector of the two-point CINT imaging function seen as the kernel of a linear operator. The
third method uses an optimization step to extract the reflectivity function from some cross products
of its Fourier transform. The presentation is for the synthetic aperture radar data acquisition setup,
where a moving sensor probes the scene with signals emitted periodically and records the resulting
backscattered wave. The generalization to other imaging setups, with passive or active arrays of
sensors, is discussed briefly.
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1. Introduction. The goal of inverse scattering is to estimate an unknown
medium using sensors that emit probing signals and measure the generated (backscat-
tered or transmitted) waves. The mathematical formulation is an inverse problem for
a wave equation, that seeks to “invert” the nonlinear mapping between the unknown
coefficients (e.g. wave speed) and the solution (the wave) at the points of measure-
ment. Typically the mapping is not invertible, hence the quotation marks, and only
an approximation of the coefficients can be expected.

Wave-based imaging is a simplification of the inverse scattering problem, which
seeks a qualitative estimate of the reflective structures in the medium, modeled by a
reflectivity function ρ which captures sharp variations (e.g., jump discontinuities) of
the coefficients in the wave equation. It uses various data processing to compute an
imaging function (image in short) I(y) at points y in a search region, whose peaks
are interpreted as locations of the sought-after reflectors.

The existing imaging methodology has been driven by applications in radar imag-
ing [16, 14, 22], seismic inversion [15, 3], nondestructive evaluation [33], ultrasound
for medical diagnostics [24], etc. It consists of efficient methods known as reverse
time migration [3], filtered backprojection [14], linear sampling [12], factorization [26]
and so on. These methods assume that the background medium which hosts the re-
flective structures is known and non-scattering. With a few exceptions, they also use
the single-scattering (Born) approximation, which linearizes the mapping from the
reflectivity ρ to the wave at the sensors. The Born approximation is only partially
understood [34, Section 3] but it is the foundation of contemporary seismic and radar
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imaging. Multiple scattering effects are known to cause some artifacts aka “ghosts”
or “multiples” in images, but these are sometimes easy to spot and they pale in
comparison with the artifacts caused by heterogeneous backgrounds.

We are interested in imaging through heterogeneous media with numerous weak
inhomogeneities, like concrete, biological tissue, the Earth’s crust and the turbulent
atmosphere. The inhomogeneities, which are often called “clutter”, have little effect
on waves at low enough frequency and at moderate imaging range, so the existing
methodology is adequate. For example, S-band radar which operates at 2-4GHz is
mostly insensitive to atmospheric effects. However, the pursuit of better resolution
of images, which is proportional to the wavelength, has lead to the development of
high-frequency systems like Ka-band radar (26.5-40GHz) and even W-band radar
(75-110GHz). Cumulative scattering in the atmosphere impedes imaging with such
high-frequency radar, especially at ranges ≥ 1km of interest. Conventional approaches
ignore this impediement and thus produce images with significant and unpredictable
artifacts.

To study imaging through heterogeneous backgrounds, we model the inhomo-
geneities by random fluctuations of the wave speed. Imaging is carried out in a single
medium, not an ensemble of realizations, but the inhomogeneities are impossible to
estimate from the band-limited data and are therefore uncertain. The random model
places the problem in a stochastic framework, where we can quantify the robustness
of images to the uncertainty of the fluctuations of the wave speed.

As long as the range of imaging does not exceed a transport mean free path, the
length scale marking the onset of diffusion in the random medium [35], coherent imag-
ing can be done with empirical cross correlations of the measurements calculated over
carefully chosen pairs of sensors (less than X apart) and time windows of duration T .
The coherent interferometric (CINT) imaging approach [10, 7, 20] synchronizes these
cross correlations relative to an imaging point y, using travel time delays calculated
in the known reference medium, without fluctuations, and then sums over the selected
pairs of sensors to compute the image ICINT(y). The user-defined thresholds X and T
are key in CINT, as they account for the statistical decorrelation of the components
of the wave field [31, 35] over a spatial offset Xd called the decoherence length, and
a frequency offset Ωd called the decoherence frequency. These scales depend on the
statistics of the fluctuations of the wave speed, not the particular realization, and
since the optimal threshold choices are X . Xd and 1/T . Ωd, they can be estimated
with optimization, while forming CINT images [10]. The resolution analysis of CINT
is well understood [10, 7] and reveals a trade-off between resolution and robustness,
also called statistical stability with respect to the uncertainty of the medium. The
robustness is controlled by the user-defined X and 1/T : the smaller they are, the
less sensitive the image ICINT(y) to the inhomogeneities in the medium. However, the
diameter of the support of the CINT point spread function is roughly proportional to
1/X in the cross-range direction and T in the range direction, so robustness comes at
the expense of resolution. Worse yet, the resolution cannot be improved by increasing
the aperture that supports the sensors and the bandwidth of the probing signals.

It was observed in [9], in the context of imaging a group of point sources with a
passive array of receivers, that CINT does not use the empirical cross correlations in
an optimal way. A different processing of these cross correlations led to a new “two-
point CINT” function I(y,y′), which allowed accurate estimates of offsets between
the source locations. Imaging was then carried out with a direct search algorithm,
but the search grows in complexity with the number of sources, and the localization
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is correct up to a rigid body translation and rotation of the group.

A similar two-point CINT function I(y,y′) was introduced and analyzed in [5]
for imaging with synthetic aperture radar (SAR) in random media. The main result
was that it is possible to estimate from it the modulus |ρ̂(κ)| of the Fourier transform
ρ̂(κ) of the reflectivity ρ(y), for κ in a rectangular domain centered at the origin,
with side lengths determined by the central wavelength and the bandwidth of the
probing signals, the aperture size and the range of imaging. Phase retrieval was then
used to estimate ρ̂(κ), followed by an inverse Fourier transform to get an image. This
approach is robust to both cumulative scattering and additive noise induced effects,
as long as there is strong prior information about the reflectivity, such as ρ(y) ≥ 0.
Without it, the method is unstable and prone to noise artifacts. In addition, the
estimation is correct only up to a rigid body translation and a reflection with respect
to the origin.

In this paper we show that the two-point CINT function I(y,y′) contains more
information about the unknown reflectivity than has been used so far. To exploit this
information we introduce two new imaging approaches:

1. The first approach is specialized to an imaging scene with a group of small,
point-like reflectors. It uses the spectral decomposition of the linear integral operator
L with kernel I(y,y′), and shows that if the reflectors are not too close, then they
can be localized by using the leading eigenvector of L with better resolution than
in CINT. This resolution is not as good as the one achieved in [5] with the phase
retrieval approach, but there are important advantages: The method is much more
robust to clutter and noise effects, there is no restriction on the sign of the reflectivity,
and there is no translation or reflection ambiguity. In particular, unlike any of the
existing methods, it can distinguish between reflectors with positive and negative
reflectivities.

2. The second approach applies to a general reflectivity function ρ(y). It esti-
mates from the data the product ρ̂(κ)ρ̂(κ′), where the bar denotes complex conjugate
and i) the vector (κ + κ′)/2 lies in a rectangular domain centered at the origin, of
side lengths determined by the central wavelength and the bandwidth of the probing
signals, the aperture size and the range of imaging, ii) the vector κ−κ′ lies in a much
smaller rectangular domain, also centered at the origin, with side lengths that depend
on the decoherence parameters Xd, Ωd and the user-defined thresholds X , T . The
Fourier transform of the reflectivity can then be estimated from these products using
optimization, and an image follows via inverse Fourier transform.

We study these two imaging approaches from first principles, using analysis and
numerical simulations, in the context of SAR imaging in random media. We also ex-
plain briefly how the results extend to imaging sources with passive arrays of receivers
and also to imaging reflectivities with active arrays of sensors that are both sources
and receivers. The random wave distortion caused by scattering in the heterogeneous
background is captured in our analysis using the high-frequency, geometrical optics
model of wave propagation in random media [31]. This model has been used for imag-
ing in [7, 19, 9, 5], so we recall the relevant results from there. The advantage of the
model is that it accounts for the main impediments of coherent imaging in random
media, but it is simple enough to allow a very explicit calculation of the two-point
CINT function I(y,y′). Nevertheless, our imaging approaches are not model spe-
cific, and they can be analyzed with more complex wave propagation models, like the
paraxial one studied in [21].

The paper is organized as follows: Section 2 formulates the SAR imaging problem
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and reviews from [5] the calculation and properties of the two-point CINT function
I(y,y′). The new results are in sections 3–5. The first imaging approach is studied
in section 3 and the second imaging approach is given in section 4. We use numerical
simulations in section 5 to assess the performance of these two approaches and compare
with conventional imaging, CINT imaging and imaging using phase retrieval. We end
with a summary in section 6.

2. Formulation of the imaging problem. We give here the SAR data model
for imaging, and recall from [5] the relevant facts on the two-point CINT function,
that are used in sections 3–4. We also describe briefly how the results generalize to
two other common imaging setups with passive and active arrays of sensors.

2.1. SAR imaging in random media. In SAR imaging, a sensor placed on a
moving platform emits periodically, at time interval T , a signal f(t) which generates
a wave that propagates to the reflective imaging scene, is backscattered there and
is then recorded back at the sensor. The location of the sensor at the nth emission
instant nT is denoted by xn, and the recording is Rn(t), for time t ∈ (0, T ). The tra-
jectory of the platform may be arbitrary, but for simplicity we assume it is straight, of
length a, called the aperture. We make two hypotheses that allow for two simplifying
approximations:
1) The platform moves slowly so that the start-stop approximation is valid. This con-
siders the platform as stationary during the round trip of the wave from the sensor to
the reflective imaging scene, and it is justified by the large wave speed compared to
the speed of the platform. However, the motion of the sensor between the emission
and reception can be accounted for, by introducing some Doppler phase corrections
in the analysis, as is done for example in [6].
2) The platform moves a small distance in each period T , so the locations xn of
emission and recording are close enough to allow the approximation of sums over
n = 0, . . . , N by integrals over the aperture. This so-called continuum aperture ap-
proximation is convenient for the analysis.

The signal f(t) may be a chirp [16] or a pulse, with bandwidth B and modulation
at central frequency ωo � B. We use a pulse and assume for convenience that it has
Gaussian envelope

f(t) = s(t) + c.c., s(t) =
B√
2π

exp
(
− iωot−

B2t2

2

)
, (2.1)

where c.c. stands for complex conjugate. All the recordings are gathered in the data
used for imaging:

data = {Rn(t), t ∈ (0, T ), n = 0, . . . , N}. (2.2)

Note that there are only two degrees of freedom in these data: the “slow time” nT
of emission of the signals and the “fast time” t. Thus, it is impossible to determine
a reflectivity function in three dimensions, which is why imaging is done on a surface
with known topography [16, 14]. For simplicity, we work in two dimensions, where
the problem is formally determined∗. We use the system of coordinates x = (x, x‖)
with origin at the center of the imaging domain D, as illustrated in Fig. 2.1. The x‖
axis is along the “range” direction that points from D to the aperture and the x axis
is along the “cross-range” direction, which is aligned with the aperture.

∗In three dimensions, the two-dimensional image in the range vs. cross-range plane can be
mapped to an image on the surface with known topography.
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Fig. 2.1. Illustration of the SAR imaging setup in two dimensions. The sensor moves on
a straight trajectory which defines a linear aperture of length a. It emits signals and records the
backscattered waves at points xj , for j = 0, . . . , N . The imaging domain supports the unknown
reflectivity and it is separated from the aperture by a random medium. The hashed region in the
imaging domain D illustrates a range bin. The drawing is not up to scale. The diameter of D is
supposed to be much smaller than the distance (range) to the sensor, which is why the range bin is
approximately a thin horizontal strip.

SAR data are often processed using range gating, which groups the recordings
based on their arrival times. It allows the segmentation of D in “range bins”, which
are sets of points with range estimated from the selected arrival time window (see
Fig. 2.1). The advantage of range gating is that imaging in each range bin is one-
dimensional, in the cross-range direction. We will use it in both the analysis and the
numerical simulations.

2.2. Wave equation. The wave generated by the nth emission is modeled by
ureal,n(x, t) = un(x, t) + c.c., where un(x, t) is the solution of the wave equation

1

c2

[
1 + σµ

(x
`

)
+ ρ(x)

]
∂2t un(x, t)−∆xun(x, t) = s(t− nT )δ(x− xn), (2.3)

for t ∈ R and x = (x, x‖) ∈ R2. The wave field is vanishing before the onset of
the source. The reflectivity that we wish to image is ρ(x) and the wave speed in
the heterogeneous background medium fluctuates about the constant value c. The
fluctuations are modeled by the random field µ(ξ) of dimensionless argument ξ ∈ R2.
This field is statistically homogeneous, with mean zero and integrable covariance

C(ξ − ξ′) = E[µ(ξ)µ(ξ′)], (2.4)

and it is normalized so that

C(0) = 1 and

∫
R2

dξ C(ξ) = 1. (2.5)

The length scale ` in (2.3) is the correlation length (typical size of the inhomogeneities)
and σ is the standard deviation of the fluctuations. For the sake of explicit calcula-
tions, we use the Gaussian covariance function

C(ξ ) = exp(−π|ξ|2). (2.6)

Other covariance functions can be considered, like the Kolmogorov model [22, Ap-
pendix 4.A.4], and the imaging will be qualitatively the same.
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The wave propagation model is based on the high-frequency, long-range scale
separation assumption

λo � `� L, (2.7)

where λo = 2πc/ωo is the central wavelength and L is the range scale i.e., the distance
from the aperture to the range bin in the imaging domain. The standard deviation
of the fluctuations is small σ � 1, but still causes large random wavefront distortion.
More details on the scaling assumptions are given in Appendix A, where we recall
from [19] the random geometrical optics approximation of the Green’s function used
next to write the data model.

2.3. Data model. We model the data

Rn(t) = ureal,n(xn, t) +Wn(t), ureal,n(xn, t) = un(xn, t) + c.c. (2.8)

using the single-scattering (Born) approximation with respect to the reflectivity ρ, as
is typically done in SAR imaging:

un(xn, t) ≈
∫
R

dω

2π
e−iω(t−nT )ŝ(ω)k2(ω)

∫
D
dz ρ(z)Ĝ2

µ(z,xn, ω). (2.9)

Here ŝ(ω) is the Fourier transform of the signal (2.1)

ŝ(ω) = exp
(
− (ω − ωo)2

2B2

)
,

k(ω) = ω/c is the wavenumber, the propagation in the random medium from xn to

z ∈ supp(ρ) ⊂ D is modeled by the Green’s function Ĝµ of the Helmholtz’s equation
with squared index of refraction 1 + σµ(x/`), and Wn(t) is additive measurement
noise.

The random travel time model gives (see Appendix A)

Ĝµ(z,xn, ω) ≈ Ĝo(z,xn, ω) exp [iωτµ(z,xn)] , (2.10)

where

Ĝo(z,xn, ω) =
i

4
H

(1)
0

(
k(ω)|z − xn|

)
≈

exp
[
ik(ω)|z − xn|+ iπ/4

]√
8πk(ω)|z − xn|

, (2.11)

is the Green’s function in the reference homogeneous medium with wave speed c and
τµ(z,xn) is the random travel time fluctuation which gives the wavefront distortion.
As explained in Appendix A, due to the long-range assumption |z−xn| = O(L)� `,
the process τµ(z,xn) has Gaussian statistics, so we can easily calculate the statistical

moments of Ĝ2
µ. We write here the first two moments: The mean is negligible

E
[
Ĝ2
µ(z,xn, ω)

]
≈ 0, (2.12)

due to the large random wavefront distortion. This behavior is well known and it
is called the loss of coherence of the wave due to scattering in the random medium
[31, 23]. The second moment, where the bar denotes complex conjugate, is

E
[
Ĝ2
µ(z,xn, ω)Ĝ2

µ(z′,xn′ , ω′)
]
≈Ĝ2

o(z,xn, ω)Ĝ2
o(z
′,xn′ , ω′)

× exp
[
− (ω − ω′)2

2Ω2
d

− (xn′ − xn)2

2X 2
d

]
. (2.13)
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Unlike the mean, this moment is large as long as the frequency and sensor offsets are
smaller than the decoherence frequency Ωd and decoherence length Xd, respectively.
These two scales model the decorrelation of the wave components in the random
medium. They are written explicitly in Appendix A and satisfy†

Ωd � B � ωo, Xd � a . `. (2.14)

Note that (2.13) is a simplification of a more general second moment formula given in
Appendix A, with right-hand side depending on z and z′. This simplification holds if
the cross-range diameter of the support of ρ, which is a subset of the imaging domain
D, is smaller than Xd. We refer to the end of Appendix A for a justification of this
assumption in the context of this paper.

The additive noise Wn(t) is modeled as Gaussian, mean zero, white in t and

uncorrelated in n. Its Fourier components Ŵn(ω) satisfy

E
[
Ŵn(ω)Ŵn′(ω′)

]
= σ2

W
δ(ω − ω′)δn,n′ , (2.15)

where δn,n′ is the Kronecker symbol. Other additive noise models can be considered,
and the results will be qualitatively similar.

2.4. The two-point CINT function. Let y ∈ D be a point in the imaging
domain and introduce the following reference wave field

Fn(y, t) =

∫
R

dω

2π
e−iωtF̂n(y, ω), F̂n(y, ω) := ŝ(ω)Ĝ2

o(y,xn, ω) exp
(
− x2n
a2

)
.

(2.16)
Aside from the exponential factor, which is a Gaussian apodization convenient for the
analysis, this field models the wave emitted and received at xn, after scattering by
a hypothetic point reflector at y in the reference medium. In conventional imaging,
Fn(y, t) is “matched” to the data in order to obtain the SAR imaging function

ISAR(y) :=

N∑
n=0

∫
R
dtRn(t)Fn(y, t− nT )

=

N∑
n=0

∫
R

dω

2π
R̂n(ω)F̂n(y, ω)e−iωnT . (2.17)

The two-point CINT function is calculated as follows [5]

I(y,y′) :=

N∑
n,n′=0

∫
R

dω

2π

∫
R

dω′

2π
R̂n(ω)F̂n(y, ω)e−iωnT R̂n′(ω′)F̂n′(y

′, ω′)eiω
′n′T

× exp

[
− (xn − xn′)2

2X 2
− (ω − ω′)2

2Ω2

]
, y,y′ ∈ D, (2.18)

where X and Ω = 1/T are the user-defined threshold parameters discussed in the
introduction. Because it depends on two points, (2.18) is not an imaging function,

†The summary in Appendix A shows that Ωd � ωo and Xd � `. For broadband imaging systems
it is typical that Ωd � B. We choose the aperture a . ` in order to simplify the expression of the
imaging functions. In practice this can be arranged by aperture segmentation, and then combining
the results obtained with each sub-aperture.
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so we need additional processing to obtain an image. The simplest processing is to
evaluate (2.18) on the diagonal, and thus obtain the CINT image

ICINT(y) := I(y,y). (2.19)

However, this is not the optimal choice, as we explain in the next section, where we
study the expression of the expectation of (2.18). The derivation of this expression is
a lengthy calculation given in [5], which uses the continuum aperture approximation.

Note that ICINT(y) is nonnegative, real valued (see Appendix B) and furthermore,

ICINT(y) = |ISAR(y)|2 if we choose X � a, Ω� B. We will see that the thresholding is
important for achieving statistical stability of the two-point CINT function, meaning
that its random fluctuations are small with respect to its mean. A good choice of the
threshold parameters turns out to be X . Xd and Ω . Ωd, so that the expectations
of all the terms in (2.18) are large as we will discuss in section 2.6.

2.5. The expectation of the two-point CINT function. The calculations
in [5] give that

E [I(y,y′)] ≈ J (y,y′)e−2iko(y‖−y
′
‖) + E [I

W
(y,y′)] , (2.20)

where

J (y,y′) = C

∫
D
dz

∫
D
dz′ρko(z)ρko(z

′)KH
(z + z′

2
− y + y′

2

)
×Kh ((z − z′)− (y − y′)) , (2.21)

and the second term is the contribution of the additive noise

E [I
W

(y,y′)] = C
W

exp

[
−

(y‖ − y′‖)
2

h2‖
− (y − y′)2

2h2
− 2iko(y‖ − y′‖)

]
. (2.22)

The calculation is carried out with the continuum approximation of a dense array∑N
n=0 ψ(xn) exp(−x2n/a2) ≈

∫
R dxψ(x) exp(−x2/a2). In (2.21) we introduced the

reflectivity modulated in the range direction at the central wavenumber ko = ωo/c,

ρko(z) := ρ(z) exp(−2ikoz‖), (2.23)

and the blurring kernels

KH(x) = KH(x)KH‖(x‖), Kh(x) = Kh(x)Kh‖(x‖), (2.24)

defined by the Gaussian

Kα(x) :=
1√
2πα

exp
(
− x2

2α2

)
, α ∈ {H,H‖, h, h‖}. (2.25)

The resolution scales in (2.24) are

H = (H,H‖), H :=
L

2ko

√
1

X 2
+

1

X 2
d

+
1

a2
, H‖ :=

c

2

√
1

Ω2
+

1

Ω2
d

+
1

B2
, (2.26)

and

h = (h, h‖), h :=
L

koa
, h‖ :=

c

B
. (2.27)
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The factors C and C
W

in (2.21)–(2.22) are constants whose expressions are given in
[5] and whose precise values are not important for this paper. We only need the ratio

C
W

C
= O(σ2

W
), (2.28)

which quantifies the relative strength of the additive noise effect.
Note that if imaging took place in the reference medium (Ωd → +∞, Xd → +∞)

and we had no thresholding (Ω → +∞, X → +∞), then the resolution scales would
satisfy H = h/2, and we would get after a straightforward calculation that

Jo(y,y′) = Co

[∫
D
dz ρko(z)Kh/√2(z − y)

] [∫
D
dz′ ρko(z

′)Kh/√2(z′ − y′)
]

= ISAR

o (y)ISAR

o (y′). (2.29)

Here Co is a constant similar to C and ISAR

o (y) is the ideal SAR image in the homoge-
neous reference medium, with well-known resolution described by h = (h, h‖) [16, 22].
Moreover, when evaluating (2.29) at y = y′, we recover the squared modulus of the
conventional SAR imaging function.

Cumulative scattering in the random medium impedes imaging, and this is cap-
tured in (2.21) by the kernel KH , with resolution scales (2.26) satisfying

H

h
=

1

2

√
1 +

( a
X

)2
+
( a

Xd

)2 (2.14)
� 1, (2.30)

H‖

h‖
=

1

2

√
1 +

(B
Ω

)2
+
( B

Ωd

)2 (2.14)
� 1. (2.31)

Therefore, equation (2.21) shows that for any z, z′ ∈ supp(ρ), the two-point CINT
function can determine the center points (z+z′)/2 with much less precision than the
offsets z − z′.

When evaluating (2.20) on the diagonal, as we do in CINT imaging, we get

E [ICINT(y)] ≈ C
∫
D
dz

∫
D
dz′ ρko(z)ρko(z

′)Kh(z−z′)KH
(z + z′

2
−y
)

+C
W
. (2.32)

The information on the offsets z − z′ is lost in CINT, and the image is blurry, with
the poor resolution H = (H,H‖). The point of [9, 5] and this paper is that the offset
information contained in the two-point CINT function can be used to improve the
resolution.

2.6. Statistical stability. The advantage of using the thresholding in the two-
point CINT function is seen when studying the variance Var[I(y,y′)]. This is calcu-
lated in [5] and we now summarize the results.

If there is no additive noise and if X . Xd, Ω . Ωd, then we have

√
Var[I(y,y′)] =

√
O

(
X 2

X 2
d

)
+O

(
Ω2

Ω2
d

)∣∣E[I(y,y′)]
∣∣, (2.33)

so the smaller X and Ω are, the closer I(y,y′) is to its mean. However, if these are too
small, the resolution scales in H deteriorate. The optimal choice of the thresholds,
which balances the trade-off between resolution and stability, is, therefore, X . Xd
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and Ω . Ωd. In the analysis carried out in sections 3–4 we assume optimal thresholds,
and approximate the two-point CINT function by its mean.

Note that in conventional SAR imaging there is no thresholding and the coef-
ficient of variation of |ISAR(y)|2 is equal to one when there is no additive noise [5].
The numerical simulations in section 5 illustrate how the statistical instability of con-
ventional SAR manifests: the images change dramatically with the realizations of
the fluctuations µ, they have large artifacts and thus cannot be used to estimate the
support of the reflectivity.

For the additive noise contribution we give the covariance of the fluctuations

Cov [I
W

(y,y′), I
W

(z, z′)] = C2
W

exp
[
−

(y‖ − z‖)2

h2‖
− (y − z)2

2h2
+ 2iko(y‖ − z‖)

]
× exp

[
−

(y′‖ − z
′
‖)

2

h2‖
− (y′ − z′)2

2h2
− 2iko(y

′
‖ − z

′
‖)
]
, (2.34)

which simplifies for the CINT imaging function to

Cov
[
ICINT

W
(y), ICINT

W
(z)
]

= C2
W

exp
[
−

2(y‖ − z‖)2

h2‖
− (y − z)2

h2

]
. (2.35)

Since |E [I
W

(y,y′)]|2 = O(C2
W

), the noise contribution to two-point or to regular
CINT imaging is not statistically stable. It causes speckle with relative amplitude
C
W
/C = O(σ2

W
) and with speckle size of order h in cross range and h‖ in range.

Such speckle is not important for the CINT image, which has the poor resolution
quantified by H. In fact, the speckle can be removed by using a low-pass filter on
ICINT(y). However, noise affects the two-point CINT function I(y,y′), because the
speckle size is similar to the resolution h of the offset vectors y − y′. If the noise is
weak (σ

W
� 1), it can be viewed as a perturbation of the imaging methods described

in [5] and in section 4, which predict the ideal resolution quantified by h. However,
if σ

W
is larger, the speckle should be filtered out using a low-pass filter. We can still

achieve a better resolution than with CINT, but not as good as the ideal one.

2.7. Generalization to other imaging setups. The imaging methods de-
scribed in sections 3–4 are based on the expression (2.21), which gives the mean (2.20)
of the two-point CINT function. We now describe how this expression generalizes to
two other imaging setups:

• Imaging sources with a passive array. Suppose that we had a collection of

N+1 receivers at closely spaced locations
(
xj
)N
j=0

in a line segment of length a. Such

a collection is called a passive array with aperture a. The imaging problem would
then be to localize a group of sources in the domain D, which gives a source term
in the wave equation of the form S(x, t) that generates a wave u(x, t). This wave
propagates through the random medium and it is received at the array. The data
model

Rn(t) : = u(xn, t) +Wn(t),

with

u(xn, t) =

∫
R

dω

2π
e−iωt

∫
D
dz Ŝ(z, ω)Ĝµ(z,xn, ω),
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is very similar to (2.9), except for the one way propagation between the sources and

the receivers, which is why in the equation above we have Ĝµ and not Ĝ2
µ. The

two-point CINT function I(y,y′) is given by the same data processing as in (2.18),
with

F̂n(y, ω) = ŝ(ω)Ĝo(y,xn, ω) exp
(
− x2n
a2

)
,

and ŝ(ω) = exp[−(ω−ωo)2/(2B2)] a frequency filter, with B � ωo. The expression of

the expectation of I(y,y′) is (2.20) modified as follows: ρ(z) is replaced by Ŝ(z, ωo)

(assuming Ŝ(z, ω) is almost constant over the frequency interval centered at ωo and
bandwidth B), and all the resolution parameters in (2.26)–(2.27) are divided by two.

• Imaging with an active array. If we wished to image the reflectivity ρ using
an active array of sensors at xn, for n = 0, . . . , N , with linear aperture of length
a, the data would be collected as follows: The array would emit a probing signal
f(t) = s(t) + c.c. from one sensor location xn at a time, and the response

Rn′,n(t) = ureal(xn′ , t;xn) +Wn′,n(t),

with

ureal(xn′ , t;xn) =

∫
R

dω

2π
e−iωtŝ(ω)k2(ω)

∫
D
dz ρ(z)Ĝµ(z,xn, ω)Ĝµ(z,xn′ , ω) + c.c.

would be measured at all the sensor locations xn′ , for n′ = 0, . . . , N , where Wn′,n(t)
is the additive noise. Here we used again the Born approximation. The calculation of

the two-point CINT function I(y,y′) from the response matrix
(
Rn′,n(t)

)N
n,n′=0

is like

in (2.18), with the following differences: The matching is done for each source-receiver
pair, using the field

F̂n′,n(y, ω) = ŝ(ω)Ĝo(y,xn, ω)Ĝo(y,xn′ , ω) exp
(
− x2n + x2n′

a2

)
,

and the sensor offset thresholding is done for both the source and receiver pairs. We
refer to [10, 7] for the study of the CINT imaging function ICINT(y) = I(y,y) in this
setup. Using the expressions of the statistical moments of the Green’s function, it
follows after some calculation that the expression of E[I(y,y′)] is like that in (2.20)
and the statistical stability is ensured provided that the condition X . Xd, Ω . Ωd
is satisfied.

3. Spectral approach to imaging. In this section we study the linear integral
operator L with kernel given by the two-point CINT function (2.18), and show that
its leading eigenfunction can be used to image the reflectivity of a group of point-
like reflectors. For simplicity, the imaging is carried out in a range-bin i.e., it is
one-dimensional, in the cross-range direction. However, it is possible to extend the
imaging to the range and cross-range plane, as explained briefly at the end of the
section. We assume that the threshold parameters are chosen as explained in section
2.6, so we can approximate I(y,y′) by its expectation. The additive noise is ignored
in the spectral analysis of L, although it could be taken into account using the tools
in [25]. Nevertheless, the numerical simulations in section 5 are for noisy data.

Before we begin, let us explain how our approach differs from other imaging meth-
ods that use spectral analysis. The popular MUSIC (Multiple Signal Classification)
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method, which is related to linear sampling [13] and also the factorization method
[26], uses the spectral decomposition of the response matrix at a single frequency,
collected by an active array of sensors to locate small reflectors [30, 2]. It can be
modified to handle strong additive noise as shown in [4], but it does not work in ran-
dom media, where cross correlations have emerged as an important tool for mitigating
the wave distortion. In [28, 29] cross correlations are used to calculate a two-point
function like (2.18), but since the imaging is through a homogeneous medium, there
is no thresholding. Therefore, the two-point function is an outer product, like (2.29),
and its samples on the search grid define a rank-one matrix whose leading eigenvector
can be used to image. Due to the thresholding needed for statistical stability of imag-
ing in random media, our two-point CINT function is not an outer product and the
spectral analysis is much more complicated. It reveals that the leading eigenfunction
is useful for improving the resolution of imaging only under a sufficient separation
condition between the reflectors. Furthermore, the resolution of the resulting image
is surprising: It is of the order

√
Hh, which is better than the CINT resolution H but

worse than the ideal resolution h.

3.1. The integral operator and the imaging function. Consider a reflec-
tivity of the form

ρ(z) =

M∑
j=1

ρjδ(z − zj), (3.1)

which models a group of M point-like reflectors at zj , with reflectivity ρj ∈ R, for
j = 1, . . . ,M . Because we image in a fixed range bin Dz‖ at range coordinate z‖, we
assume that the reflector locations are zj = (zj , z‖) and the search points in Dz‖ are
y = (y, z‖) and y′ = (y′, z‖).

The proposed spectral based imaging function is

ISP(y = (y, z‖)) := V I0 (y), (3.2)

where V I0 (y) is the leading eigenfunction of the integral operator LI with kernel
I(y = (y, z‖),y

′ = (y′, z‖)):

LI : L2(R) 7→ L2(R), LIϕ(y) =

∫
R
dy′ I((y, z‖), (y

′, z‖))ϕ(y′), ∀ϕ ∈ L2(R).

This kernel is Hermitian and square integrable, so LI is self-adjoint and Hilbert-
Schmidt [11, Chapter 6]. We also show in Appendix C.1 that it is positive semidefinite.
Our goal in the remainder of the section is to explain when and how the imaging
function ISP works.

Substituting (3.1) into the expression of the expectation of the two-point CINT
function obtained from (2.20)–(2.21) and using the statistical stability I(y,y′) ≈
E
[
I(y,y′)

]
, we get

I(y,y′) ≈ K(y, y′),

with

K(y, y′) := C

M∑
j,j′=1

ρjρj′KH

(zj + zj′

2
− y + y′

2

)
Kh

(
(zj − zj′)− (y − y′)

)
, (3.3)
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where KH and Kh are defined as in (2.25), H and h are given in (2.26)–(2.27), and
C is the redefined constant equal to what we had in (2.21), divided by 2πH‖h‖. The
linear integral operator that we wish to study is

L : L2(R) 7→ L2(R), Lϕ(y) =

∫
R
dy′K(y, y′)ϕ(y′), ∀ϕ ∈ L2(R). (3.4)

Again it can be verified that L is self-adjoint, Hilbert-Schmidt, and positive semidefi-
nite. The spectral theorem [11, Chapter 6] then gives that the eigenfunctions (Vn(y))n≥0
of L form an orthonormal basis of L2(R) and the eigenvalues (Λn)n≥0 are non-negative.
These eigenvalues are sorted in decreasing order and limn→∞ Λn = 0.

3.2. The spectral decomposition. It is instructive to consider first the case
of a single reflector, modeled by the reflectivity ρ(z) = ρjδ(z − zj), for any given
j = 1, . . . ,M . The operator (3.4) simplifies for such a reflectivity to

Lj : L2(R) 7→ L2(R), Ljϕ(y) =

∫
R
dy′Kj(y, y′)ϕ(y′), ∀ϕ ∈ L2(R), (3.5)

with

Kj(y, y′) := Cρ2jKH

(
zj −

y + y′

2

)
Kh(y′ − y). (3.6)

Because the kernel (3.6) is non-negative, Lj is a positive operator with non-negative
leading eigenfunction, by the Krein-Rutman theorem [27]. For imaging a single reflec-
tor we only need this eigenfunction, but the result for the reflectivity (3.1) uses the
full spectral decomposition of Lj , given in the next proposition proved in Appendix
C.2.

Proposition 3.1. Let j be any index in the set {1, . . . ,M}. The eigenvalues of
the operator Lj are

Λj,n =
Cρ2j√

2π(H + h/2)

(
H − h/2
H + h/2

)n
, n ≥ 0, (3.7)

and the eigenfunctions are given by

Vj,n(y) = Cj,n exp
[
− (y − zj)2

2Hh

]
pn

(y − zj√
Hh

)
, n ≥ 0, (3.8)

for polynomials pn(ξ) of degree n,

pn(ξ) = ξn +

n−1∑
l=0

γnlξ
l, (3.9)

with p0(ξ) = 1 and with coefficients γnl given explicitly in Appendix C.2. Here Cj,n
is a normalizing constant so that ‖Vj,n‖L2(R) = 1.

We conclude from (3.8) that the leading eigenfunction

Vj,0(y) =
1√

2πHh
exp

[
− (y − zj)2

2Hh

]
, (3.10)

peaks at the location zj of the reflector, and it is large for |y− zj | = O(
√
Hh). Thus,

this eigenfunction gives an imaging function for a scene with a single reflector, with
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resolution
√
Hh that is much better than the CINT resolution H, but not as good as

the ideal resolution h.
Now we can state the result for the reflectivity (3.1), which models M point-like

reflectors. If these reflectors are not sufficiently spaced out, then the image (3.2) peaks
near their locations, but it does not have better resolution than CINT, as shown with
numerical simulations in section 5. The separation condition that allows a better
localization with V0(y) is

ζ := min
1≤j,l≤M,j 6=l

|zj − zl|
3H

> 1. (3.11)

The next proposition proved in Appendix C.3 states that if (3.11) holds, then the
interaction between the reflectors is weak and the spectral decomposition of L is
determined by the decomposition of the operators Lj , given in Proposition 3.1.

Proposition 3.2. If the point-like reflectors are well separated, as stated in
(3.11), then the spectral decomposition of the operator L defined in (3.4) is as follows:
The eigenvalues are

Λn =

M∑
j=1

Λj,n +O
(
e−9ζ

2/2
)
, n ≥ 0, (3.12)

with terms given in (3.7) and the eigenfunctions are approximated by the sum

Vn(y) = Cn

M∑
j=1

ρjVj,n(y) +O
(
e−9ζ

2/2
)
, n ≥ 0, (3.13)

with terms given in (3.8). Here Cn is a normalizing constant so that ‖Vn‖L2(R) = 1.

3.3. Discussion. It may seem peculiar that according to Propositions 3.1 and
3.2, the imaging function

ISP(y, z‖) = V I0 (y) ≈ V0(y) ≈ C0

M∑
j=1

ρj exp

[
− (y − zj)2

2Hh

]
(3.14)

has resolution
√
Hh and yet it assumes the larger separation condition (3.11). The

numerical simulations in section 5 show that (3.11) can be improved a bit to ζ & 1/3.
Still, the needed separation is of the order of the resolution of CINT, so what do we
gain when imaging with ISP(y)? There are two clear advantages:

1. The localization of the reflectors with (3.2) is more precise than with CINT and
does not require deconvolution as in [8]. Therefore, (3.2) is more robust to random
fluctuations of the two-point CINT function about its mean and also to additive noise.

2. The CINT imaging approach cannot distinguish between positive and negative
reflectivities. This can be seen from the expression (3.3) evaluated on the diagonal

ICINT(y = (y, z‖)) = I(y,y)

≈ C
M∑

j,j′=1

ρjρj′KH
(zj + zj′

2
− y
)
Kh(zj − zj′), (3.15)
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which simplifies under the assumption (3.11) to

ICINT(y) ≈ C

2πhH

M∑
j=1

ρ2j exp
[
− (y − zj)2

2H2

]
. (3.16)

Compare this with (3.14), which in addition to better localization of the reflectors, it
distinguishes the sign of their reflectivity.

We end with the remark that although we considered imaging at fixed range z‖,
the spectral approach can be extended to imaging in range and cross range. This
extension is needed even for a fixed range bin Dz‖ , because arrival times can be
estimated up to O(1/Ω) precision, and thus the points y in Dz‖ are at coordinates

y =
(
y, z‖ + O(H‖)

)
. Indeed, for the reflectivity (3.1), the kernel of the integral

operator L is

I(y,y′)e2iko(y‖−y
′
‖)

(2.20)
≈ J (y,y′)

(2.21)
= C

M∑
j,j′=1

ρko(zj)ρko(zj′)

×KH
(zj + zj′

2
− y + y′

2

)
Kh
(
(zj − zj′)− (y − y′)

)
,

with ρko(zj) = ρj exp(−2ikoz‖,j), for j = 1, . . . ,M. It is easily verified that this L is
also self-adjoint, positive semidefinite and Hilbert-Schmidt. Moreover, the operator
Lj associated to a single reflector at zj has a separable kernel in range and cross range

Jj(y,y′) = Cρ2jKH
(
zj −

y + y′

2

)
Kh(y − y′),

so its spectral analysis can be carried out in the two coordinates as we have done in
this section. Then, under a sufficient separation condition between the reflectors, the
spectrum of the operator with kernel J (y,y′) can be written in terms of the spectra
of the operators Lj , similar to Proposition 3.2.

4. Optimization approach to imaging. In this section we describe the second
approach for obtaining an image from the two-point CINT function (2.18). It works
for a general reflectivity ρ(y) of compact support, not just for point reflectors, as
long as |ρ(y)| is small enough so that the Born approximation data model (2.9) is
adequate.

Like in the previous section, we assume that I(y,y′) is computed using proper
thresholding, so we can approximate it in the noiseless case by its expectation given
in (2.20)–(2.21)

I(y,y′) ≈ Ce−2iko(y‖−y
′
‖)

∫
D
dz

∫
D
dz′ρko(z)ρko(z

′)KH
(
z + z′

2
− y + y′

2

)
×Kh ((z − z′)− (y − y′)) , (4.1)

where ρko(z) is the modulated reflectivity defined in (2.23). The noise adds speckle
to the image, as explained in section 2.6, and we comment at the end of the section
how it can be mitigated, at the expense of resolution.

4.1. The case of noiseless data. Let us multiply (4.1) by exp[2iko(y‖ − y′‖)]
and take the Fourier transform with respect to the center point (y + y′)/2 and the
offset y − y′. We obtain using

ρ̂ko(κ) =

∫
D
dz ρko(z)e−iκ·z =

∫
D
dz ρ(z)e−iκ·z−2ikoz‖ , (4.2)
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that∫
R2

dy

∫
R2

dy′ e
−iκ̃·

(
y+y′

2

)
−iκ·(y−y′)+2iko(y‖−y′‖)I(y,y′)

≈ Cρ̂ko
(
κ+

κ̃

2

)
ρ̂ko

(
κ− κ̃

2

)
exp

(
−
κ2h2 + κ2‖h

2
‖ + κ̃2H2 + κ̃‖

2
H2
‖

2

)
, (4.3)

where κ = (κ, κ‖) and κ̃ = (κ̃, κ̃‖). Thus, we can estimate from the two-point CINT
function (2.18) the following product of the Fourier transform of the reflectivity:

ρ̂ko

(
κ+

κ̃

2

)
ρ̂ko

(
κ− κ̃

2

)
≈ P (κ, κ̃) (4.4)

for arguments

κ ∈ Sh := (−3/h, 3/h)×(−3/h‖, 3/h‖) and κ̃ ∈ SH := (−3/H, 3/H)×(−3/H‖, 3/H‖),

where

P (κ, κ̃) :=C−1 exp
(κ2h2 + κ2‖h

2
‖ + κ̃2H2 + κ̃‖

2
H2
‖

2

)
×
∫
R2

dy

∫
R2

dỹ e
−iκ̃·

(
y+y′

2

)
−iκ·(y−y′)+2iko(y‖−y′‖)I(y,y′). (4.5)

Note that if we evaluate (4.4) at κ̃ = 0 we obtain the modulus squared of (4.2),

|ρ̂ko(κ)|2 ≈ P (κ,0). (4.6)

This was used in [5] combined with phase retrieval to obtain an image of ρ(y). Since
ρko(y) and ρko(y − z) have the same modulus of the Fourier transform, for any
fixed z, the phase retrieval approach is ambiguous with respect to a global shift of
the reflectivity scene. Moreover, unless we have strong prior information about the
reflectivity, the imaging is not robust to additive noise and to fluctuations of the
two-point CINT function about its mean. In [5] and in the numerical simulations in
section 5 the prior is ρ(y) ≥ 0. Other choices such as sparsity of the support of ρ(y)
[32] or knowledge of the support [18] can also been used, but imaging with such priors
appears even more sensitive to noise.

Our proposed approach is to estimate directly the Fourier transform (4.2) from
(4.4), without phase retrieval. For noiseless data the estimation could be in principle
for κ ∈ Sh, but as we explain below and show with numerical simulations in section
5, the method is more robust if we restrict κ to a smaller rectangle S ⊂ Sh.

To see that it is possible to find ρ̂ko(κ) from P (κ, κ̃), consider a cover of S with

closed rectangular domains rj + S̃ centered at nodes {rj = (rj , r‖,j), j = 1, . . . , J}
of a uniform grid with steps ∆ = 1/H in cross range and ∆‖ = 1/H‖ in range. Here

S̃ ⊆ SH . Then, we can estimate recursively ρ̂ko(κ) in each rectangle, starting from
the one centered at the origin, as follows:

Step 1: Evaluate (4.5) at κ = κ̃/2, to get

ρ̂ko(κ̃)ρ̂ko(0) ≈ P
(
κ̃

2
, κ̃

)
, κ̃ ∈ S̃ .

If ρ̂ko(0) 6= 0, which is generically the case, we can determine ρ̂ko(κ̃) for κ̃ ∈ S̃ , up
to a multiplicative constant. Note that since ρko(y) has compact support, its Fourier
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transform is analytic by the Paley-Wiener theorem, so even if ρ̂ko(0) = 0, we can find
ε in a small vicinity of 0 where ρ̂ko(ε) 6= 0, and therefore we can estimate ρ̂ko(κ̃+ ε)
up to a multiplicative constant.

Step 2: For q = ±1,±2, . . . , evaluate (4.5) at κ = κ̃/2 + (q∆, 0), to get

ρ̂ko
(
κ̃+ (q∆, 0)

)
ρ̂ko
(
(q∆, 0)

)
≈ P

(
κ̃

2
+ (q∆, 0), κ̃

)
, κ̃ ∈ S̃ .

Using the estimated ρ̂ko
(
(q∆, 0)

)
at the previous steps, determine ρ̂ko

(
κ̃ + (q∆, 0)

)
.

Stop when 2(|q|+ 1)∆ exceeds the cross-range side length of S .

Step 3: After Step 2, we have estimated ρ̂ko(κ
′) for κ′ = (κ′, κ′‖) in the thin strip

|κ′‖| < 3/H‖ in S . Let q = 0,±1,±2, . . . , and evaluate (4.5) at κ = κ′+ κ̃
2 + (0, q∆‖)

and κ̃ = (0, κ̃‖) to get

ρ̂ko
(
κ′ + (0, κ̃‖ + q∆‖)

)
ρ̂ko
(
κ′ + (0, q∆‖)

)
≈ P

(
κ′ +

(
0,
κ̃‖

2
+ q∆‖

)
, (0, κ̃‖)

)
.

Using the previously estimated ρ̂ko
(
κ′+ (0, q∆‖)

)
, determine ρ̂ko

(
κ′+ (0, κ̃‖+ q∆‖)

)
.

Stop when 2(|q|+ 1)∆‖ exceeds the range side length of S .

This algorithm has the drawback that it involves divisions by complex numbers
that may be small. In our numerical simulations we have found that a more robust
estimate of ρ̂ko(κ) can be obtained with optimization: Since the modulus |ρ̂ko(κ)| is
determined by (4.6), the optimization involves only the phase:

min
θ(κ)∈[−π,π)

∫
S

dκ

∫
S̃

dκ̃

∣∣∣∣P (κ, κ̃)−
∣∣∣ρ̂ko(κ+

κ̃

2

)∣∣∣∣∣∣ρ̂ko(κ− κ̃2 )∣∣∣
× exp

[
iθ
(
κ+

κ̃

2

)
− iθ

(
κ− κ̃

2

)]∣∣∣∣2 . (4.7)

The minimization (4.7) may be expensive, but in our experience it is feasible to use at
least for one range bin at a time, as shown in section 5. Although we have not done
so, the problem can be regularized by adding to the objective function some penalty
term like the L1(D) or TV norm of ρ(y).

If we denote by θest(κ) the estimated phase, then we have

ρ̂estko (κ) := |ρ̂ko(κ)| exp
[
iθest(κ)

]
=
√
P (κ,0) exp

[
iθest(κ)

]
, (4.8)

and we can image the reflectivity using the inverse Fourier transform

IOP(y) := e2ikoy‖
∫
R2

dκ

(2π)2
eiκ·yχS (κ)ρ̂estko (κ). (4.9)

Here χS (κ) is a smooth tapering function supported in the estimation domain S .
The Fourier transforms are carried out with the FFT algorithm, and so the integrals
in (4.7) and (4.9) are approximated by sums.

4.2. Noisy data and filtering. We see from (4.9) that if ρ̂ko(κ) can be esti-
mated robustly in a domain S as large as Sh, then the resolution of the image (4.9)
is the ideal one, described by the components of h. This ideal resolution cannot be
achieved in practice due to noise effects, which manifest as speckle in the two-point
CINT function, with typical size of order h in cross range and h‖ in range (recall
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section 2.6). The variations of I(y,y′) about its mean also affect the result. The
imaging is stabilized by using a domain S = [−1/hest, 1/hest

]
× [−1/hest‖ , 1/hest‖ ],

with

H � hest � h, H‖ � hest‖ � h‖.

The resolution of the image is then given by hest = (hest, hest‖ ), which is much better

than that of CINT, but not as good as the ideal one given by h = (h, h‖).

5. Numerical results. In this section we use numerical simulations to assess
the performance of the two imaging approaches proposed in sections 3 and 4 and to
compare with conventional SAR imaging, CINT imaging and imaging using the phase
retrieval approach introduced in [5].

5.1. Setup. We consider a reflectivity of the form (3.1), with three or five re-
flectors in a single range bin, so the imaging is one-dimensional, along the cross-range
direction. The data are generated with the random travel model (2.9), using a ran-
dom phase screen with correlation length ` = a/2. The reference length scale is the
central wavelength λo, the range bin is at distance L = 2 · 104λo and the aperture is
a = L/(2π). The random phase of the Green’s function has mean zero and variance
(see (A.4))

E
[(
ωoτµ(z,xn)

)2]
=: σ2

τ . (5.1)

By varying στ we increase or decrease the wavefront distortion. The decoherence
length is, according to (A.8), Xd =

√
3`/(2στ ). Because we image only in cross range,

we use time-harmonic data, so the cross correlations are only over the sensor locations,
offset by at most X = min{a,Xd/3}. The additive noise is modeled as explained in
section 2.3, with standard deviation σ

W
. We show results with σ

W
= 0 and with σ

W

such that the noise term in (2.8) is 10% of the maximum value of the recorded signal.
The aperture is centered at the origin, and consists of N = 400 sensor locations.

The imaging domain is the interval D = (0, 245λo) and it is sampled on a fine uniform
grid with spacing 0.03λo. The SAR imaging function is computed as in (2.17) and the
two-point CINT function and the CINT image are computed as in (2.18) and (2.19).
The leading eigenvector which defines the image (3.2) is calculated with the power
method. The optimization (4.7) is carried out with the MATLAB optimization routine
“fminunc”. This ignores the constraint θ(κ) ∈ [−π, π) so it gives an estimated phase
up to an integer factor of 2π. The phase retrieval image is obtained from the modulus
|ρ̂(κ)| given by (4.6) evaluated at κ = (κ, 0), using the standard algorithm [17, 32] with
positivity constraint: At each iteration of this algorithm, we Fourier transform the
current estimate of ρ and update the modulus to match the given |ρ̂(κ)| at |κ| < 3/h.
The higher |κ| components are set to 0. The result is then inverse Fourier transformed
and the phase is adjusted to match the positivity constraint ρ(y) ≥ 0.

5.2. Results. We begin in Fig. 5.1 with results obtained in the ideal case where
the medium is homogeneous and there is no noise. There are three reflectors in this
simulation, modeled by

ρ(y) = 2.2δ(y − 133λo) + 1.3δ(y − 123λo) + 0.8δ(y − 143λo), (5.2)

and we see from the top left plot that the conventional SAR image ISAR(y) localizes
them very well. The two-point CINT function I(y, y′) is displayed in the top right
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Fig. 5.1. Results for the reflectivity (5.2) obtained with ideal data: noiseless and in the homoge-
neous medium. The SAR image ISAR(y) is in the top left plot. The two-point CINT function I(y, y′)
is in the top right plot. The bottom line shows: The image IPR(y) obtained via phase retrieval (left),

the square root of the CINT image ICI(y) :=
√
ICINT(y) (red line) and the spectral based image ISP(y)

(blue line) are in the middle plot and the optimization based image IOP(y) is in the right plot. The
axes are in λo units. The locations of the reflectors are indicated with red crosses on the abscissa.

plot. It has nine distinct peaks, corresponding to the offsets between the coordinates
of the reflectors. The plots in the bottom line show the image IPR(y) obtained via
phase retrieval (left plot), the images ISP(y) and ICI(y) :=

√
ICINT(y) (middle plot)

and IOP(y) (right plot). Because the CINT image is squared in the reflectivity, we
take its square root to compare it with the other functions. We conclude from the
plots that all methods give equally good estimates of the reflectivity (5.2), although
the phase retrieval image is ambiguous to an overall shift, as expected.

In Fig. 5.2 we show the results for the same reflectivity (5.2), except that the
data are contaminated with 10% additive noise and they are distorted by a random
medium, as quantified by the standard deviation στ = 3.1 (recall (5.1)). We use a
single realization of the medium, so there is no averaging over realizations. The images
are displayed in the same format as in Fig. 5.1. Note the significant deterioration
of the SAR image, which exhibits many spurious large peaks. Repeated simulations
show that these change unpredictably with the realization of the random medium. The
two-point CINT function is insensitive with respect to the realization of the medium,
but as shown by (3.3) it is affected by the blur along the diagonal. The resolution
parameters are H = 11.36λo and h = λo. The separation between the reflectors is
ζ = 0.88H, so the CINT image ICI(y) and the spectral based image ISP(y) cannot
resolve the reflectors. The phase retrieval image IPR(y) resolves the reflectors, up to
an ambiguous overall shift. The image IOP(y) locates correctly the reflectors, so it has
better resolution than ISP(y), but not as good as in the homogeneous medium. This
is due to the filtering explained in section 4.2. This filtering also leads to some Gibbs-
like oscillations, which can be mitigated in principle by adding some regularization to
the optimization that minimizes say the L1(D) norm of ρest.

In Fig. 5.3 we show the results for imaging through the same random medium as
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Fig. 5.2. Results for the reflectivity (5.2) in the random medium with στ = 3.1 and with 10%
additive noise.

Fig. 5.3. Results obtained for the reflectivity (5.3) in the random medium with στ = 3.1 and
with 10% additive noise.

in Fig. 5.2 and with 10% additive noise, except that the scene has five reflectors

ρ(y) = 2δ(y−93.7λo)+2δ(y−101λo)+3δ(y−130λo)+1.5δ(y−159λo)+2δ(y−196λo).
(5.3)

The first two reflectors are within 0.88H distance but the other reflectors are better
separated at offsets 2.56H, 2.56H and 3.26H, respectively. As predicted by the anal-
ysis in section 3, the image ISP(y) locates the well separated reflectors with better
resolution than CINT, but it does not resolve the nearby reflectors. The optimization
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Fig. 5.4. Results obtained for the reflectivity (5.4) in the random medium with στ = 4 and with
10% additive noise.

approach resolves all the reflectors (bottom right plot), where again the Gibbs-like
oscillations are due to filtering. The phase retrieval approach gives a much noisier
image than in Fig. 5.2 and the SAR image is not informative.

Finally, we show in Fig. 5.4 the results for imaging through a stronger ran-
dom medium, with στ = 4, and with 10% additive noise. The resolution scales are
H = 14.615λo and h = λo. The scene consists of three reflectors, one with negative
reflectivity,

ρ(y) = 2δ(y − 93.7λo)− δ(y − 123λo) + 1.5δ(y − 152λo). (5.4)

The separation between the reflectors is 2H and 1.98H, which is slightly smaller than
what we assumed in section 3. Still, the spectral based image ISP(y) localizes correctly
the reflectors, with better resolution than CINT and it also gives correctly the signs
and relative magnitudes of the reflectivities. The optimization-based imaging method
also works well and gives better resolution, aside from the Gibbs-like oscillations. The
SAR image is useless and the phase retrieval based approach gives also a wrong result
because our implementation assumes a positive reflectivity, which is not the case in
this simulation.

6. Summary. In this paper we have shown that the two-point CINT function
calculated from the empirical cross correlations of the measured wave field contains
the relevant information to obtain statistically stable and high-resolution synthetic
aperture radar (SAR) images of the reflectivity of a remote scene. We have intro-
duced two new methods to build such images starting from first principles and taking
into account additive measurement noise and clutter induced effects i.e., wave dis-
tortion due to random scattering. With analysis and numerical simulations, we have
characterized the pros and cons of five imaging approaches. The first is the conven-
tional SAR imaging method. The other four methods, which include the novel two,
are based on the two-point CINT function:
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• The conventional SAR imaging function ISAR(y) is robust to measurement
noise but not to clutter induced effects. If these effects are negligible, it is
computationally cheap, it has high resolution, it works no matter the sign
of the reflectivity function ρ(y), and it can recover the sign of ρ(y). If clut-
ter induced effects are significant, ISAR(y) is useless because of strong and
unpredictable artifacts.

• The standard CINT imaging function ICI(y) =
√
ICINT(y) is robust to both

measurement and clutter induced effects, but has poor resolution. It has
moderate computational cost, it works with a reflectivity function that may
change sign, but it cannot recover the sign.

• The phase-retrieval imaging function IPR(y) is robust to clutter induced ef-
fects. If the reflectivity function has constant sign, it is also robust to mea-
surement noise and it gives a high resolution image. However, the phase
retrieval step makes the imaging computationally expensive, and the result-
ing image has an uncertain global shift and symmetry with respect to the
origin. If the reflectivity changes sign, the imaging is sensitive to noise.

• The spectral based imaging function ISP(y) has moderate resolution, but
it is very robust to measurement noise and to clutter induced effects. It is
computationally moderately expensive, thanks to the power method, it works
with a reflectivity function that may change sign and it can recover the sign of
ρ(y). However, it requires a sparse enough imaging scene, where the reflectors
are sufficiently well separated.

• The optimization based imaging function IOP(y) has moderate to high reso-
lution and it is robust to measurement noise and to clutter induced effects.
It is computationally expensive, but it works with a reflectivity function that
may change sign and it can recover the sign of ρ(y). The imaging may be
potentially improved by adding prior information about ρ(y) as a penalty
term in the optimization.

Acknowledgements. This work is partially supported by the AFOSR grant
FA9550-21-1-0166.

Appendix A. Random travel time model. In this appendix we recall from
[19, Chapter 12] and [7] the geometrical optics “random travel time” model of the

Green’s function Ĝµ(z,xn, ω) at frequency ω in the bandwidth of the probing signal.
Since this bandwidth is much smaller than the central frequency ωo, we have ω/ωo ≈ 1
and therefore, the wavelength is approximately λo.

We are interested in points z = (z, z‖) in the support of the reflectivity ρ, which
are at large range offset of order L� ` from the location xn = (xn, L) of the platform,
for n = 0, . . . , N . The geometrical optics approximation is obtained under the high-
frequency assumption λo � ` and for small fluctuations σ � 1. The precise scaling
assumptions are

σ2

(
L

`

)3

� λ2o
σ2`L

� 1, (A.1)

where the first inequality says that the fluctuations are weak enough, so the rays are
approximately straight, the variance of the geometrical spreading amplitude factor of
the Green’s function is negligible and only the first order in σ correction of the travel
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time matters. However, the second inequality says that σ is not too small, so we have
significant random fluctuations of the travel time.

The Green’s function approximation is (2.10), with random travel time correction

τµ(z,xn) =
σ|z − xn|

2c

∫ 1

0

ds µ

[
xn + (z − xn)s

`

]
, (A.2)

calculated by integration along the straight ray from xn to z. Obviously, it satisfies

E [τµ(z,xn)] = 0. (A.3)

Because |z−xn| = O(L)� `, the process τ(y,xn) has Gaussian statistics [19, Lemma
12.1] with variance

E
[
τ2µ(z,xn)

]
= τ2 :=

√
2πσ2`L

4c2
, (A.4)

and covariance

E [τµ(z,xn)τµ(z′,xn′)] ≈ τ2
∫ 1

0

ds exp

{
− [(xn − xn′)s+ (z − z′)(1− s)]2

2`2

}
.

Consequently, the expectation of the random exponential in (2.10) is

E
[

exp[iωτµ(z,xn)]
]

= exp
(
− ω2τ2

2

)
≈ 0, (A.5)

where we used assumption (A.1). Moreover, after some calculation, as shown in [19,
Section 12.1.3], we obtain

E [exp[iωτµ(z,xn)− iω′τµ(z′,xn′)]] ≈ exp

[
− (ω − ω′)2

8Ω2
d

− (xn′ − xn)2 + (xn′ − xn)(z′ − z) + (z′ − z)2

8X 2
d

]
, (A.6)

where we introduced the frequency scale called “decoherence frequency”

Ωd :=
1

2τ

(A.4)
=

c

(2π)1/4σ
√
`L

(A.1)
� c

(2π)1/4
√
`L

√
`L

λ
= O(ωo), (A.7)

and the length scale called “decoherence length”

Xd :=

√
3`

2ωoτ

(A.4)
=

√
3λo
√
`

(2π)5/4σ
√
L

(A.1)
�

√
3λo
√
`

(2π)5/4
√
L

√
`L

λo
= O(`). (A.8)

Finally, we see that if we make the additional assumption

σ �
√
`λo
L

, (A.9)

which is comparable to the first inequality in (A.1) if ` = O(
√
λoL) for example, then

we can conclude that if

|z − z′| = O

(
λoL

Xd

)
, (A.10)
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we have |z − z′| � Xd and we can simplify the moment formula (A.6) as in (2.13).
Note that the right-hand side in (A.10) is basically the CINT cross-range resolution
H. In this paper we are interested in zooming in a peak of the CINT image, which is
why we assume (A.10).

Appendix B. Proof that ICINT is nonnegative, real valued. By (2.18) the
CINT function is given by

ICINT(y) =

N∑
n,n′=0

∫
R

dω

2π

∫
R

dω′

2π
rn(y, ω)rn′(y, ω′) exp

[
− (xn − xn′)2

2X 2
− (ω − ω′)2

2Ω2

]
,

where rn(y, ω) = R̂n(ω)F̂n(y, ω)e−iωnT . As

exp
[
− (xn − xn′)2

2X 2

]
=

√
2√
πX

∫
R
dx′′ exp

[
− (x′′ − xn)2

X 2

]
exp

[
− (x′′ − xn′)2

X 2

]
,

exp
[
− (ω − ω′)2

2Ω2

]
=

√
2√
πΩ

∫
R
dω′′ exp

[
− (ω′′ − ω)2

Ω2

]
exp

[
− (ω′′ − ω′)2

Ω2

]
,

we can also write

ICINT(y) =
2

πΩX

∫
R
dω′′

∫
R
dx′′

∣∣∣ N∑
n=0

∫
R

dω

2π
exp

[
− (x′′ − xn)2

X 2
− (ω′′ − ω)2

Ω2

]
rn(y, ω)

∣∣∣2,
which proves that ICINT(y) ≥ 0.

Appendix C. Estimation of the spectrum of L. Here we give the calculations
for the results stated in section 3.

C.1. Proof that L is positive semidefinite. To show that

〈ϕ,Lϕ〉 =

∫
R
dy ϕ(y)Lϕ(y) ≥ 0, ∀ϕ ∈ L2(R), (C.1)

let us recall from equations (2.9), (2.16) and (2.18) the calculation of the kernel of L.
With the notation

rn(y, ω) := R̂n(ω)F̂n(y, ω)e−iωnT ,

for points y = (y, z‖) in the range bin Dz‖ , we obtain that

K(y, y′) =

N∑
n,n′=0

∫
R

dω

2π

∫
R

dω′

2π
rn(y, ω)rn′(y′, ω′) exp

[
− (xn − xn′)2

2X 2
− (ω − ω′)2

2Ω2

]
.

Substituting this expression into definition (3.4) of L, we get

〈ϕ,Lϕ〉 =

∫
R
dy ϕ(y)

∫
R
dy′ϕ(y′)

N∑
n,n′=0

∫
R

dω

2π

∫
R

dω′

2π
rn(y, ω)rn′(y′, ω′)

× exp

[
− (xn − xn′)2

2X 2
− (ω − ω′)2

2Ω2

]
, (C.2)
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and the goal is to show that this is non-negative. Let us denote

rn(ω) :=

∫
R
dy ϕ(y)rn(y, ω),

so that (C.2) becomes

〈ϕ,Lϕ〉 =

N∑
n,n′=0

∫
R

dω

2π

∫
R

dω′

2π
rn(ω)rn′(ω′) exp

[
− (xn − xn′)2

2X 2
− (ω − ω′)2

2Ω2

]
.

From here, the proof that 〈ϕ,Lϕ〉 ≥ 0 is the same as the proof of the positivity of
ICINT presented in appendix B.

C.2. Proof of Proposition 3.1. We begin with an identity, which is verified
by direct calculation∫

R
dy′KH

(y + y′

2
− zj + zj′

2

)
Kh

(
(y − y′)− (zj − zj′)

)
e−

(y′−η)2
2hH =

1√
2π(H + h/2)

× exp

− (zj′ − η)2

2(H + h/2)2
−

[
y − zj + (zj′ − η)

(
H−h/2
H+h/2

)]2
2Hh

 , (C.3)

where η is some arbitrary real number. The proof of Proposition 3.1 uses this identity
and the Hermite polynomials Hen(ξ), for n ≥ 0. These polynomials are given by [1]

Hen(ξ) := (−1)neξ
2/2 d

n

dξn
e−ξ

2/2 =

bn/2c∑
m=0

θn,n−2mξ
n−2m, (C.4)

with coefficients

θn,n−2m =
(−1)mn!

m!(n− 2m)!
, (C.5)

and they form an orthogonal basis of L2
w(R), the Hilbert space of square integrable

functions with respect to the weight w(ξ) := exp(−ξ2/2),∫
R
dξHen(ξ)Hem(ξ)e−ξ

2/2 =
√

2π n! δn,m. (C.6)

Lemma C.1. Let η be an arbitrary real number. We have for all n ≥ 0,∫
R
dy′KH

(y + y′

2
− zj + zj′

2

)
Kh

(
(y − y′)− (zj − zj′)

)
e−

(y′−η)2
2hH Hen

(y′ − η√
Hh

)

=
(H2 + h2/4)n/2√
2π(H + h/2)n+1

exp

− (zj′ − η)2

2(H + h/2)2
−

[
y − zj + (zj′ − η)

(
H−h/2
H+h/2

)]2
2Hh


×Hen

[
(y − zj)(H − h/2)√
Hh(H2 + h2/4)

+
(zj′ − η)

√
H2 + h2/4√

Hh(H + h/2)

]
. (C.7)
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Proof. The case n = 0 is just the identity (C.3), because He0(ξ) = 1, so let us con-
sider n > 1. For convenience, denote the left-hand side in (C.7) by Fn. Substituting
the definition (C.4) of the Hermite polynomial into it we get

Fn = (Hh)n/2
∫
R
dy′KH

(y + y′

2
− zj + zj′

2

)
Kh

(
(y − y′)− (zj − zj′)

)
× dn

dηn
exp

[
− (y′ − η)2

2Hh

]
, (C.8)

because

dn

dξn
e−ξ

2/2
∣∣∣
ξ= y′−η√

Hh

=
(
−
√
Hh
)n dn
dηn

exp
[
− (y′ − η)2

2Hh

]
.

The integrand is smooth, so we can interchange the integral with the derivative in η,
and then use the identity (C.3) to rewrite (C.8) as

Fn =
(Hh)n/2√

2π(H + h/2)

dn

dηn
exp

− (zj′ − η)2

2(H + h/2)2
−

[
y − zj + (zj′ − η)

(
H−h/2
H+h/2

)]2
2Hh

 .

Grouping all the η terms in the exponent in a single square

(zj′ − η)2

2(H + h/2)2
+

[
y − zj + (zj′ − η)

(
H−h/2
H+h/2

)]2
2Hh

=
(y − zj)2

2(H2 + h2/4)

+
1

2

[
(zj′ − η)

√
H2 + h2/4√

Hh(H + h/2)
+

(y − zj)(H − h/2)√
Hh(H2 + h2/4)

]2
, (C.9)

we obtain

Fn =
(Hh)n/2√

2π(H + h/2)
exp

[
− (y − zj)2

2(H2 + h2/4)

] [
−
√
H2 + h2/4√

Hh(H + h/2)

]n
× dn

dξn
e−ξ

2/2
∣∣∣
ξ=

(z
j′−η)

√
H2+h2/4

√
Hh(H+h/2)

+
(y−zj)(H−h/2)√
Hh(H2+h2/4)

.

The result (C.7) in the lemma follows from this equation, definition (C.4) of the
polynomial Hen and the identity (C.9).

To get the eigenfunctions of the operator Lj defined in (3.6), we use Lemma C.1
for η = zj = zj′ . We get

Lje−
(y−zj)

2

2hH Hen

(y − zj√
Hh

)
=

∫
R
dy′Kj(y, y′)e−

(y′−zj)
2

2hH Hen

(y′ − zj√
Hh

)
=
Cρ2j (H

2 + h2/4)n/2
√

2π(H + h/2)n+1
e−

(y−zj)
2

2Hh Hen

[
(y − zj)(H − h/2)√
Hh(H2 + h2/4)

]
, (C.10)

which looks almost like an eigenvalue equation, except that the argument of the
Hermite polynomial in the right-hand side is not (y−zh)/

√
Hh, but an approximation

of it, since H � h. Now let us define the new kernel

Kj(y, y
′) := e

(y−zj)
2

2Hh Kj(y, y′)e−
(y′−zj)

2

2hH , (C.11)
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which is related to Kj(y, y′) by a similarity transformation, and obtain from (C.10)
that∫

R
dy′ Kj(y, y

′)Hen

(y′ − zj√
Hh

)
=
Cρ2j (H

2 + h2/4)n/2
√

2π(H + h/2)n+1
Hen

[
(y − zj)(H − h/2)√
Hh(H2 + h2/4)

]
.

(C.12)

We use next this result and the completeness of the set of Hermite polynomials
{Hen(ξ), n ≥ 0} to derive the expression of the polynomials {pn(ξ), n ≥ 0} in Propo-
sition 3.1, which satisfy∫

R
dy′ Kj(y, y

′)pn

(
y′ − zj√
Hh

)
= Λj,npn

(
y − zj√
Hh

)
, n ≥ 0. (C.13)

We see from the definition (C.4) that there is a bijective mapping between the
set of Hermite polynomials {Hen(ξ), n ≥ 0} and the set of monomials {ξn, n ≥ 0}.
Indeed, we have

He0(ξ)
He2(ξ)
He4(ξ)

...

 =


θ0,0 0 0 0 . . . 0
θ2,0 θ2,2 0 0 . . . 0
θ4,0 θ4,2 θ4,4 0 . . . 0

...




1
ξ2

ξ4

...

 , (C.14)

and similarly 
He1(ξ)
He3(ξ)
He5(ξ)

...

 =


θ1,1 0 0 0 . . . 0
θ3,1 θ3,3 0 0 . . . 0
θ5,1 θ5,3 θ5,5 0 . . . 0

...



ξ
ξ3

ξ5

...

 , (C.15)

which we write in compact form as

Hen(ξ) =

n∑
i=0

Θn,iξ
i. (C.16)

Note that Θ =
(
Θn,i

)
n,i≥0 is lower triangular, with non-zero diagonal entries, so we

can invert equation (C.16) to get

ξi =

i∑
l=0

(Θ−1)i,lHel(ξ), i ≥ 0. (C.17)

The polynomials that we seek are of the form
p0(ξ)
p1(ξ)
p2(ξ)

...

 = Γ


1
ξ
ξ2

...

 , (C.18)

where Γ = (γn,i)n,i≥0 is the lower triangular matrix of coefficients that we wish to
determine, with diagonal γn,n = 1. To find these coefficients substitute pn from (C.18)
in (C.13),

n∑
i=0

γn,i

∫
R
dy′Kj(y, y′)

(
y′ − zj√
Hh

)i
= Λj,n

n∑
i=0

γn,i

(
y − zj√
Hh

)i
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and use (C.17) and (C.12) to get

n∑
i=0

γn,i

i∑
l=0

(Θ−1)i,l
Cρ2j (H

2 + h2/4)l/2
√

2π(H + h/2)l+1
Hel

[
(y − zj)(H − h/2)√
Hh(H2 + h2/4)

]
= Λj,n

×
n∑
i=0

γn,i

(
y − zj√
Hh

)i
. (C.19)

Finally, substituting Hel from (C.16), we obtain

Cρ2j√
2π(H + h/2)

n∑
i=0

i∑
l=0

l∑
q=0

γn,i(Θ
−1)i,l

(√
H2 + h2/4

H + h/2

)l
Θl,q

(
H − h/2√
H2 + h2/4

)q

×
(
y − zj√
Hh

)q
= Λj,n

n∑
q=0

γn,q

(
y − zj√
Hh

)q
. (C.20)

We can now determine the matrix Γ and the eigenvalues as follows: Introduce
the diagonal matrices

D :=diag

(√H2 + h2/4

H + h/2

)l
, l ≥ 0

 , (C.21)

D :=diag

((
H − h/2√
H2 + h2/4

)q
, q ≥ 0

)
, (C.22)

and let also

Λ̃j := diag

(
Λ̃j,n :=

Λj,n
√

2π(H + h/2)

Cρ2j
, n ≥ 0

)
. (C.23)

Then, since the monomials are linearly independent, we obtain from (C.20) that

ΓΘ−1DΘD = Λ̃jΓ. (C.24)

Let us look at the diagonal part of the matrix equality (C.24): The left-hand side
gives (

ΓΘ−1DΘD
)
n,n

=

n∑
i=0

γn,i
(
Θ−1DΘD

)
i,n

= γn,n
(
Θ−1DΘD

)
n,n

=
(
Θ−1DΘD

)
n,n

, (C.25)

where the second equality is because Θ−1DΘD is lower triangular, and the last
equality is because the diagonal entries of Γ are γn,n = 1. The right-hand side in
(C.24) gives (

Λ̃jΓ
)
n,n

= Λ̃j,nγn,n = Λ̃j,n. (C.26)

Therefore,

Λ̃j,n =
Λj,n
√

2π(H + h/2)

Cρ2j
=
(
Θ−1DΘD

)
n,n

= Θ−1n,nDn,nΘn,nDn,n

=

(
H − h/2
H + h/2

)n
, (C.27)
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where we used that Θ is lower triangular and definitions (C.21)–(C.22). This verifies
the expressions (3.7) of the eigenvalues in Proposition 3.1.

Equating the off-diagonal entries in (C.24) we get

(
ΓΘ−1DΘD

)
n,l

=

n∑
i=0

γn,i
(
Θ−1DΘD

)
i,l

=
(
Λ̃jΓ

)
n,l

= Λ̃j,nγn,l.

Let us consider the case l = n − 1 and use that Θ−1DΘD is lower triangular, to
conclude that only the terms with i ∈ {n− 1, n} contribute to the sum. Using again
that γn,n = 1, we get(

Θ−1DΘD
)
n,n−1 + γn,n−1

(
Θ−1DΘD

)
n−1,n−1 = Λ̃j,nγn,n−1,

where we note from (C.27) that
(
Θ−1DΘD

)
n−1,n−1 = Λ̃j,n−1. Therefore, we get

γn,n−1 =

(
Θ−1DΘD

)
n,n−1

Λ̃j,n − Λ̃j,n−1
. (C.28)

Now we can proceed recursively, and obtain using similar calculations that

γn,l =

∑n
q=l+1 γn,q

(
Θ−1DΘD

)
q,l

Λ̃j,n − Λ̃j,l
, l = n− 2, n− 3, . . . , 0. (C.29)

C.3. Proof of Proposition 3.2. Recalling the definitions (3.14) and (3.5) of
the integral operators L and Lj , we see that we can write

L =

M∑
j=1

Lj +

M∑
j,j′=1

(1− δj,j′)Lj,j′ , (C.30)

where Lj,j′ : L2(R) 7→ L2(R) are the integral operators

Lj,j′ϕ(y) =

∫
R
dy′Kj,j′(y, y′)ϕ(y′), ∀ϕ ∈ L2(R), (C.31)

with kernels

Kj,j′(y, y′) = Cρjρj′KH

(
y + y′

2
− zj + zj′

2

)
Kh ((y − y′)− (zj − zj′)) , (C.32)

for j, j′ ∈ {1, . . . ,M}, with j 6= j′.
Now let us assume that the separation condition (3.11) holds. From Lemma C.1,

the expression (3.8) of the eigenfunctions of Lj and the definition of the polynomials
pn(ξ) in terms of the Hermite polynomials given above we obtain that∫

R
dy′KH

(
y + y′

2
− zj + zj′

2

)
Kh ((y − y′)− (zj − zj′))Vl,n(y′)

=


(H−h/2H+h/2 )

n

√
2π(H+h/2)

Vj,n(y), if l = j′

O
(
e−9ζ

2/2
)
� 1, otherwise.

(C.33)
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Using this result, equation (C.30) and the linearity of the operators, we getL M∑
j=1

ρjVj,n

 (y) =

M∑
j=1

ρj

 M∑
l=1

LlVj,n(y) +

M∑
l,l′=1

(1− δl,l′)Ll′,lVj,n(y)


=

M∑
l=1

ρlLlVl,n(y) +

M∑
l,l′=1

(1− δl,l′)ρlLl′,lVl′,n(y) +O
(
e−9ζ

2/2
)
. (C.34)

Now we use Proposition 3.1 and equations (C.31)–(C.33) to obtainL M∑
j=1

ρjVj,n

 (y) ≈
M∑
l′=1

 M∑
l=1

Cρ2l

(
H−h/2
H+h/2

)n
√

2π(H + h/2)

 ρl′Vl′,n(y) +O
(
e−9ζ

2/2
)
. (C.35)

This is the statement in Proposition 3.2, where we recognize that the term within the
square brackets defines the eigenvalue Λn given in (3.12) and the eigenfunction Vn(y)
is as in (3.13).

To complete the proof, it remains to show that {Vn(y), n ≥ 0} are the only
eigenfunctions of L. We use the analytic perturbation theory for self-adjoint linear
operators [25], and proceed recursively with respect to M :

When M = 1, the operator is L(1) = L1, and its spectrum is given in Proposition
3.1 for j = 1, with the eigenfunctions {V1,n(y), n ≥ 0}. Note that since the polyno-
mials are a complete set, these eigenfunctions form an orthogonal basis of L2(R).

When M = 2, the operator is L(2) = L(1) + L2 + L1,2 + L2,1 and depends an-
alytically on ρ2. Since there is no other eigenfunction for ρ2 = 0, there is no other
eigenfunction that emerges for ρ2 6= 0. Proceeding this way, we get at step M − 1
the recursive hypothesis that the eigenfunctions of the operator L(M−1) are as in
Proposition 3.2, for M replaced by M − 1. Then,

L(M) = L(M−1) + LM +

M∑
j=1

(1− δj,M )
(
Lj,M + LM,j

)
depends analytically on ρM , and the analytic perturbation theory [25] gives that all
the eigenfunctions are {Vn(y), n ≥ 0}, as stated in Proposition 3.2.

REFERENCES

[1] M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of mathematical functions with
formulas, graphs, and mathematical tables, vol. 55 of Applied Mathematics Series, Dover
Publications, 1983. 25

[2] H. Ammari, E. Iakovleva, and D. Lesselier, A music algorithm for locating small inclu-
sions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale
Modeling & Simulation, 3 (2005), pp. 597–628. 12

[3] B. Biondi, 3D seismic imaging, Society of Exploration Geophysicists, 2006. 1
[4] L. Borcea and J. Garnier, Robust imaging with electromagnetic waves in noisy environments,

Inverse Problems, 32 (2016), p. 105010. 12
[5] , High-resolution interferometric synthetic aperture imaging in scattering media, SIAM

Journal on Imaging Sciences, 13 (2020), pp. 291–316. 3, 4, 7, 8, 9, 10, 16, 18
[6] L. Borcea, J. Garnier, G. Papanicolaou, K. Solna, and C. Tsogka, Resolution analysis

of passive synthetic aperture imaging of fast moving objects, SIAM Journal on Imaging
Sciences, 10 (2017), pp. 665–710. 4

[7] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Enhanced statistical stability in
coherent interferometric imaging, Inverse problems, 27 (2011), p. 085004. 2, 3, 11, 22

30



[8] L. Borcea and I. Kocyigit, Imaging in random media with convex optimization, SIAM Jour-
nal on Imaging Sciences, 10 (2017), pp. 147–190. 14

[9] , Passive array imaging in random media, IEEE Transactions on Computational Imaging,
4 (2018), pp. 459–469. 2, 3, 9

[10] L. Borcea, G. Papanicolaou, and C. Tsogka, Adaptive interferometric imaging in clutter
and optimal illumination, Inverse problems, 22 (2006), p. 1405. 2, 11

[11] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer Sci-
ence & Business Media, 2010. 12, 13

[12] F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory: An introduction,
Springer Science & Business Media, 2005. 1

[13] M. Cheney, The linear sampling method and the music algorithm, Inverse problems, 17 (2001),
pp. 591–595. 11

[14] M. Cheney and B. Borden, Fundamentals of radar imaging, SIAM, 2009. 1, 4
[15] J. Claerbout, Imaging the earth’s interior, vol. 1, Blackwell scientific publications Oxford,

1985. 1
[16] J. Curlander and R. McDonough, Synthetic aperture radar, vol. 11, Wiley, New York, 1991.

1, 4, 9
[17] J. Fienup, Reconstruction of an object from the modulus of its fourier transform, Optics Let-

ters, 3 (1978), pp. 27–29. 18
[18] , Reconstruction of a complex-valued object from the modulus of its fourier transform

using a support constraint, JOSA A, 4 (1987), pp. 118–123. 16
[19] J. Garnier and G. Papanicolaou, Passive imaging with ambient noise, Cambridge University

Press, 2016. 3, 6, 22, 23
[20] J. Garnier and K. Solna, Coherent interferometric imaging for synthetic aperture radar in

the presence of noise, Inverse Problems, 24 (2008), p. 055001. 2
[21] , Fourth-moment analysis for wave propagation in the white-noise paraxial regime,

Archive for Rational Mechanics and Analysis, 220 (2016), pp. 37–81. 3
[22] M. Gilman, E. Smith, and S. Tsynkov, Transionospheric synthetic aperture imaging,

Springer, 2017. 1, 5, 9
[23] A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering: from fundamentals

to applications, John Wiley & Sons, 2017. 6
[24] J. Jensen, Medical ultrasound imaging, Progress in biophysics and molecular biology, 93 (2007),

pp. 153–165. 1
[25] T. Kato, Perturbation theory for linear operators, vol. 132, Springer Science & Business Media,

2013. 11, 30
[26] A. Kirsch and N. Grinberg, The factorization method for inverse problems, vol. 36, Oxford

University Press, 2008. 1, 11
[27] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach

space, Amer. Math. Soc. Translation, 26 (1950). 13
[28] M. Leibovich, G. Papanicolaou, and C. Tsogka, Generalized correlation-based imaging for

satellites, SIAM Journal on Imaging Sciences, 13 (2020), pp. 1331–1366. 12
[29] , Generalized correlation-based imaging for satellites, SIAM Journal on Imaging Sciences,

14 (2021), pp. 271–303. 12
[30] H. Lev-Ari and A. Devancy, The time-reversal technique re-interpreted: Subspace-based sig-

nal processing for multi-static target location, in Proceedings of the 2000 IEEE Sensor
Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No. 00EX410),
IEEE, 2000, pp. 509–513. 12

[31] S. M. Rytov, Y. Kravtsov, and V. Tatarskii, Principles of statistical radiophysics. 4. Wave
propagation through random media., Springer Verlag, Berlin, 1989. 2, 3, 6

[32] Y. Shechtman, Y. Eldar, O. Cohen, H. Chapman, J. Miao, and M. Segev, Phase retrieval
with application to optical imaging: a contemporary overview, IEEE signal processing
magazine, 32 (2015), pp. 87–109. 16, 18

[33] P. Shull, Nondestructive evaluation: theory, techniques, and applications, CRC Press, 2002.
1

[34] W. W. Symes, The seismic reflection inverse problem, Inverse problems, 25 (2009), p. 123008.
1

[35] M. van Rossum and T. M. Nieuwenhuizen, Multiple scattering of classical waves: microscopy,
mesoscopy, and diffusion, Reviews of Modern Physics, 71 (1999), pp. 313–371. 2

31


