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Random process

• Random variable Z = random number = application from a probability space to R.

A realization of the random variable = a real number.

Distribution of a continuous random variable Z is characterized by its pdf pZ(z).

Example: Z ∼ N (0, 1) "→ pZ(z) = 1√
2π

e−
z2

2 .

• Random process (Z(x))x∈Rd = random function = application from a probability

space to R
R
d

.

A realization of the process = a function from R
d to R.

Distribution of (Z(x))x∈Rd characterized by the finite-dimensional distributions

(Z(x1), . . . , Z(xn)), for any n, x1, . . . ,xn ∈ R
d.
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Gaussian process

• We say that a random process (Z(x))x∈Rd is Gaussian if any linear combination

Zλ =
∑n

i=1 λiZ(xi) has Gaussian distribution.

→ (Z(x1), . . . , Z(xn)) is a Gaussian vector with

E
[

eiλ
T
Z
]

= exp
(

iλTµ− λTCλ

2

)

with µ = (E[µ(xj)])
n
j=1 and C = (E[Z(xi)Z(xj)]− E[Z(xi)]E[Z(xj)])

n
i,j=1.

→ Zλ has Gaussian distribution with pdf

p(z) =
1√
2πσλ

exp
(

− (z − µλ)
2

2σ2
λ

)

where µλ =
n
∑

i=1

λiE[Z(xi)] and σ2
λ =

n
∑

i,j=1

λiλjE[Z(xi)Z(xj)]− µ2
λ, provided σλ > 0.

→ The first two moments µ(x1) = E[Z(x1)] and R(x1,x2) = E[Z(x1)Z(x2)]

characterize the finite-dimensional distribution of the process (Z(x))x∈Rd .

→ The distribution of a Gaussian process is characterized by its first two moments

µ(x1) = E[Z(x1)] and R(x1,x2) = E[Z(x1)Z(x2)].

→ Any linear transform of a Gaussian process is a Gaussian process.

MVA 2021



• Simulation: in order to simulate (Z(x1), . . . , Z(xn)):

- compute the mean vector Mi = E[Z(xi)] and the covariance matrix

Cij = E[Z(xi)Z(xj)]− E[Z(xi)]E[Z(xj)].

- generate a random vector G = (G1, . . . , Gn) of n independent Gaussian random

variables with mean 0 and variance 1.

- compute Z = M +C1/2G. The vector Z has the distribution of (Z(x1), . . . , Z(xn)).

Note: the computation of the square root is expensive (use Cholesky method).

Proof. Z is a Gaussian vector.

The mean of Z is the mean of the vector (Z(x1), . . . , Z(xn)). The covariance matrix

of Z is the covariance matrix of the vector (Z(x1), . . . , Z(xn)).
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Brownian motion

• Brownian motion (Wt)t≥0= Gaussian process with mean 0 and covariance function

E[WtWt′ ] = t ∧ t′

The increments of the Brownian motion are independent:

if tn ≥ tn−1 ≥ · · · ≥ t1 ≥ t0 = 0, then (Wtn −Wtn−1 , . . . ,Wt2 −Wt1 ,Wt1) are

independent Gaussian random variables with mean 0 and variance

E
[

(Wtj −Wtj−1)
2] = tj − tj−1

• Simulation: in order to simulate (Wh,W2h, ...,Wnh), one can use the Cholesky

method, but the following method is more rapid:

- generate a random vector X = (X1, ..., Xn) of n independent Gaussian random

variables with mean 0 and variance 1.

- compute Yj =
√
h
∑j

i=1 Xi. The vector Y has the distribution of (Wh,W2h, ...,Wnh).
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• Simulation: in order to simulate (Wh,W2h, ...,Wnh):

- generate a random vector G = (G1, ..., Gn) of n independent Gaussian random

variables with mean 0 and variance 1.

- compute Yj =
√
h
∑j

i=1 Gi. The vector Y has the distribution of (Wh,W2h, ...,Wnh).
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Stationary random process

• (Z(x))x∈Rd is stationary if (Z(x+ x0))x∈Rd has the same distribution as

(Z(x))x∈Rd for any x0 ∈ R
d.

Sufficient and necessary condition:

E
[

φ(Z(x1), . . . , Z(xn))
]

= E
[

φ(Z(x0 + x1), . . . , Z(x0 + xn))]

for any n, x0, . . . ,xn ∈ R
d, φ ∈ Cb(R

n,R).

• Let Z(x) be a stationary process (with finite second-order moments). Then its mean

is constant and its covariance function Cov(Z(x), Z(x′)) depends on x− x′ only.

• A Gaussian process Z(x) is stationary iff its mean is constant and its covariance

function Cov(Z(x), Z(x′)) is of the form c(x− x′).

This function c is even, maximal at 0, and its Fourier transform is nonnegative.

• Bochner’s theorem: a function c(x) is a covariance function of a stationary process

iff its Fourier transform is nonnegative.
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Spectral representation of a real-valued stationary Gaussian process

Z(x) =
1

(2π)d

∫

Rd

e−ik·x
√

ĉ(k)n̂kdk

with n̂k complex white noise, i.e.:

n̂k complex-valued, Gaussian, n̂−k = n̂k, E [n̂k] = 0, and E
[

n̂kn̂k′

]

= (2π)dδ(k− k′).

(the representation is formal, one should use stochastic integrals dŴk = n̂kdk).

We have n̂k =
∫

eik·xn(x)dx where n(x) is a real white noise, i.e.:

n(x) real-valued, Gaussian, E [n(x)] = 0, and E [n(x)n(x′)] = δ(x− x′).

(in 1D, formally, n(x) = dWx/dx).

• Simulation (d = 1): in order to simulate (Z(x1), . . . , Z(xn)), xj = (j − 1)h:

- compute the covariance vector C = (c(x1), . . . , c(xn)).

- generate a random vector G = (G1, . . . , Gn) of n independent Gaussian random

variables with mean 0 and variance 1.

- filter with the square root of the Fourier transform of C:

Z = IFT
(
√

DFT(C)×DFT(G)
)

↪→ Z is a realization of (Z(x1), . . . , Z(xn)) (in practice, use FFT and IFFT).
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Passive imaging with noise sources
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Green’s function estimation by cross correlation of ambient noise signals

• Ambient noise sources (◦) emit stationary random signals.

• The waves propagate in the (inhomogeneous) medium.

• The signals u(t,x1) and u(t,x2) are recorded at two sensors x1 and x2.
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• Compute the empirical cross correlation:

CT (τ,x1,x2) =
1
T

∫ T

0

u(t,x1)u(t+ τ,x2)dt

• CT (τ,x1,x2) is related to the Green’s function from x1 to x2 !
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Wave equation

1
c2(x)

∂2u
∂t2

−∆xu = n(t,x)

• Three-dimensional inhomogeneous medium (background velocity c(x)).

• Sources n(t,x): Gaussian process, with mean zero, with covariance

〈n(t1,y1)n(t2,y2)〉 = F (t2 − t1)Γ(y1,y2)

• Stationary in time:
(
n(t,y)

)
t,y

and
(
n(t+ h,y)

)
t,y

have the same statistical

distribution for any h =⇒ the time correlation function F depends only on t2 − t1.

• The spatial distribution of the sources is characterized by Γ(y1,y2). To simplify:

Γ(y1,y2) = K(y1)δ(y1 − y2)

The function K characterizes the spatial support of the sources.

[For more general Γ, use multiscale or microlocal analysis, see below.]
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Remember: the Green’s function

Solution u of the wave equation:

u(t,x) =

∫ ∫
G(s,x,y)n(t− s,y)dsdy

Green’s function:
1

c2(x)
∂2G
∂t2

−∆xG = δ(t)δ(x− y)

starting from G(0,x,y) = ∂tG(0,x,y) = 0 (G(t,x,y) = 0 for t < 0).

Time-harmonic Green’s function:

Ĝ(ω,x,y) =

∫
G(t,x,y)eiωtdt

solution of
ω2

c2(x)
Ĝ+∆xĜ = −δ(x− y)

+ Sommerfeld radiation condition.

Example: If c(x) ≡ c0 (and in dimension 3)

G(t,x,y) =
1

4π|x− y|
δ
( |x− y|

c0
− t

)

Ĝ(ω,x,y) =
1

4π|x− y|
e
iω

|x−y|
c0
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Empirical cross correlation and statistical cross correlation

Empirical cross correlation:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt

with u(t,x) =
∫∫

G(s,x,y)n(t− s,y)dsdy and G = causal time-dependent Green’s

function.

1. The expectation of CT (with respect to the distribution of the sources) is

independent of the integration time T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2)

where the statistical cross correlation C(1) is given by

C(1)(τ,x1,x2) =
1
2π

∫
dy

∫
dωĜ(ω,x1,y)Ĝ(ω,x2,y)K(y)F̂ (ω)e−iωτ
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Empirical cross correlation and statistical cross correlation

Empirical cross correlation:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt

with u(t,x) =
∫∫

G(s,x,y)n(t− s,y)dsdy and G = causal time-dependent Green’s

function.

1. The expectation of CT (with respect to the distribution of the sources) is

independent of the integration time T :

〈CT (τ,x1,x2)〉 = C(1)(τ,x1,x2)

where the statistical cross correlation C(1) is given by

C(1)(τ,x1,x2) =
1
2π

∫
dy

∫
dωĜ(ω,x1,y)Ĝ(ω,x2,y)K(y)F̂ (ω)e−iωτ

2. The empirical cross correlation is a self-averaging quantity:

CT (τ,x1,x2)
T→∞−→ C(1)(τ,x1,x2)

in probability.

More precisely, the fluctuations of CT around its expectation C(1) are of order T−1/2.
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Emergence of the Green’s function for an extended distribution of sources

in an inhomogeneous open medium

x
x

B(0,L)

1
2

Cross correlation with noise sources distributed on a closed surface ∂B(0, L):

C(1)(τ,x1,x2) =
1
2π

∫
dω

∫

∂B(0,L)

dσ(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)F̂ (ω)e−iωτ

By Helmholtz-Kirchhoff identity,

Ĝ(ω,x1,x2)− Ĝ(ω,x1,x2) =
2iω
c0

∫

∂B(0,L)

dσ(y)Ĝ(ω,x1,y)Ĝ(ω,x2,y)

we have

C(1)(τ,x1,x2) =
c0
2π

∫
F̂ (ω)
ω

Im
(
Ĝ(ω,x1,x2)

)
e−iωτdω
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x
x

B(0,L)

1
2

∂τC
(1)(τ,x1,x2) = − ic0

2π

∫
F̂ (ω)Im

(
Ĝ(ω,x1,x2)

)
e−iωτdω

= − c0
2

(
F ∗τ G(τ,x1,x2)− F ∗τ G(−τ,x1,x2)

)

• The cross correlation of noise signals recorded by two passive sensors is related to

the Green’s function between the sensors.

↪→ this is the classical proof that passive sensors can be transformed into virtual

sources (known in seismology).

• This proof requires the noise sources to surround the region of interest.

The previous proofs also establish exact relations in ideal conditions.

Other proofs can justify approximate relations (enough for travel time estimation) in

realistic conditions.
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Ideal illumination:
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Left: The circles are the noise sources and the triangles are the sensors (the distance

between two successive sensors is 5). Here F̂ (ω) = ω2f̂(ω), f̂(ω) = exp(−ω2), c0 = 1.

Right: Cross correlation τ → C(1)(τ,x1,xj) between the pairs of sensors (x1,xj),

j = 1, . . . , 5, versus the distance |xj − x1|. In theory:

C(1)(τ,x1,xj) =
c0

8π|x1 − xj |

[
f ′
(
τ − |xj − x1|

c0

)
− f ′

(
τ +

|xj − x1|
c0

)]
, j ≥ 2

C(1)(τ,x1,x1) = − 1

4π
f ′′(τ)
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Realistic illumination:
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Left: The circles are the noise sources and the triangles are the sensors (the distance

between two successive sensors is 5).

Right: Cross correlation τ → C(1)(τ,x1,xj) between the pairs of sensors (x1,xj),

j = 1, . . . , 5, versus the distance |xj − x1|.
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Realistic illumination, high-frequency regime:
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Left: The circles are the noise sources and the triangles are the sensors (the distance

between two successive sensors is 50).

Right: Cross correlation τ → C(1)(τ,x1,xj) between the pairs of sensors (x1,xj),

j = 1, . . . , 5, versus the distance |xj − x1|.
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