Waves and Imaging in Noisy Environments

Josselin Garnier (Ecole polytechnique)

e Principle of imaging with waves: waves are used to probe an unknown medium.
1) record the waves generated by sources on a sensor array.

2) process the data in order to estimate relevant features of the medium (source or

reflector locations, ...).

e Applications: medical imaging, radar, sonar, seismic exploration, non-destructive

testing.

e Different types of noise:

e In the presence of additive noise (i.e. due to measurement error):

- one usually observes a small loss of resolution and signal-to-noise ratio.

e In the presence of clutter noise (i.e. due to the scattering medium):

- one usually observes a dramatic loss of resolution and signal-to-noise ratio.

e In the presence of noise sources:
- one can use the signals generated by ambient noise sources for imaging with only a

receiver array.
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Waves and Imaging in Noisy Environments

Let us start with some unexpected effects due to randomness:
e enhanced refocusing for a time reversal experiment.

e imaging using ambient noise.
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Time reversal experiment (1/4)

cf. A. Tourin, M. Fink, and A. Derode, Multiple scattering of sound, Waves Random
Media 10 (2000), R31-R60.

Time-reversed signals
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(a) (b)

Experimental set-up for a time-reversal experiment through a multiple-scattering
medium:

(a) first step, the source sends a pulse through the sample, the transmitted wave is
recorded by the TRM.

(b) second step, the multiply scattered signals have been time-reverted, they are

retransmitted by the TRM, and S records the reconstructed pressure field.
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Time reversal experiment (2/4)

cf. A. Tourin, M. Fink, and A. Derode, Multiple scattering of sound, Waves Random
Media 10 (2000), R31-R60.

Time-reversed signals
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(a) (b)

Experimental set-up for a time-reversal experiment through a multiple-scattering
medium:

(a) first step, the source sends a pulse through the sample, the transmitted wave is
recorded by the TRM.

(b) second step, the multiply scattered signals have been time-reverted, they are

retransmitted by the TRM, and S records the reconstructed pressure field.
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Signal transmitted in water and received on transductor 64
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Signal transmitted through the multiple scattcring samplc
and received on transducer 64
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Experimental observations

The source emits a short

1 us pulse.

The TRM records a long
scattered signal.

One can observe a time
recompression at the original

source location.
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(a)

Time-reversed waves

e
Scan of the I
pressure field

One can observe a spatial

refocusing at the original

source location.

(D) 0 2. Water

1
)

> 1 Multiple scattering
medium

Maximum Amplitude

Distance (mm)

MVA 2021



Travel-time tomography in geophysics (1/3)

Classical problem in geophysics: Travel time estimation (for background velocity

estimation).

e Method 1: Use of earthquake signals.
e Method 2: Use of seismic noise and cross correlation techniques in order to estimate

the travel times.
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Travel time estimation by cross correlation of ambient noise signals

e Ambient noise sources (o) emit stationary random signals.
e The waves propagate in the (inhomogeneous) medium.

e The signals u(t,X1) and u(t,X2) are recorded at two sensors X1 and X 2.
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e What information (about the medium) can possibly be in these signals ?
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Travel time estimation by cross correlation of ambient noise signals

e Ambient noise sources (o) emit stationary random signals.
e The waves propagate in the (inhomogeneous) medium.
e The signals u(t,X1) and u(t,X2) are recorded at two sensors X1 and X 3.
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e Compute the empirical cross correlation:
1 T

- u(t,X1)u(t 4+ T,X2)dt
T 0

Ct (T,Xl,Xz) =

e C7(T,X1,X2) is related to the Green’s function from X1 to X !

e The singular component of the Green’s function from X3 to X2 gives the travel time

from X1 to Xo.
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Travel-time tomography in geophysics (2/3)
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Record during four months the seismic noise at a sensor array (triangles).

For each pair of sensors cross-correlate the recorded noise data.
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Travel-time tomography in geophysics (3/3)

&

Latitude (degrees)

- Longitude (degrees)
255 265 275 2.80 285 295 3.00 3.10 3.20 3.50
Group veloctiy (km/s)

Process the cross-correlation matrix to obtain a map of the background velocity.
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e Application of ambient noise imaging: volcano monitoring.
Piton de la Fournaise (volcano in La Réunion island):
- Detection of changes in surface wave travel times during mid september 2010.

- Alert sent out on september 23, 2010.
- Eruption on october 14, 2010.

e Application of ambient noise imaging: oil reservoir monitoring.
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Waves and Imaging in Noisy Environments

e Some useful tools: Fourier identities, Green’s functions, reciprocity,
Helmholtz-Kirchhoff theorem.

e Time-reversal refocusing.

e Least squares and Bayesian approaches to inverse problems.
e Application to sensor array imaging: Imaging methods and resolution analysis in

homogeneous medium (with measurement noise).

e Properties of stationary processes.

e Passive imaging (with ambient noise sources).

e Properties of Gaussian processes: statistics of maxima.

e Detection tests (non-destructive testing).

e Introduction to random matrix theory.

e Detection, localization and identification of reflectors.
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Some useful tools
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Fourier identities

e Let f(t) be a “nice” real-valued function. Its Fourier transform is
!

fl)y= " f(t)e" at

Inverse Fourier transform:

1 r Pt
f) =5 f@)e ™ do
Parseval’s identity:
| | | |
. 1 . ! R
W= o f@)Fde,  fOg®dt =g fw)gw)de,

f(t) f(w)

ik N
= (~io)" f(©)
frglt)y= f(s)g(t—s)ds | 2nf(w)j(w)

time reversal ) f(—t) f’((,o)
cross correlation f(s)g(t + s)ds I f(w)g(w)
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Fourier identities
e Extension of Fourier transform to functions in L? and to distributions.

e A distribution g is a continuous linear functional on the Schwartz class §. It is
characterized by  f(t)g(t)dt for any test function f € S.

e The Fourier transform of a distribution ¢ is the distribution § such that
| |
L .

= fegdo = f(t)g(t)dt

e Here: we will deal with the Dirac distribution 0, such that  f(¢)d(¢)dt = f(0) for all

test functions.

e The Fourier transform of 8 is & = 1.

A

Proof 1. 8(w) is such that  f(0)d(w)dw = 21  f(¢)
However we do know that f(0) = 3 fwdw =&  f(—)do = - f(w)dw.

- 2"
Proof 2. d =limit of fa(t) = * 1Ta exp(—%) as a — 0
0 =limit of fa(w) = exp(—azz! 2) asa — 0.

Remark. 1f g(t) = 1, then we have §(0) = 2md(w).
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Divergence theorem

e Fundamental theorem of analysis:

e Divergence theorem: Let D be a smooth bounded domain in RY and f be a smooth
function RY — RY: ! !
V-f(X)dx = n(x)-f (x)do(x)

D #D
where n (X ) is the unit outgoing normal vector.
e If D= B(0,R) and d = 3, we have n (X) = X /|x| and in spherical coordinates:
! S L by # 1 1 1 $
V- (x)dx =  r°dr  sin8d6 d =0 (1’ fr )+———=0s(sin B fs)+ 0o %
D 0 0 0 T 7 sin 6
% ( %
! | . sin 0 cos @ fr
R? sin 0d6 d@ g sin 0 sin @4 - g f$3¢

#D 0 0
cos 0 fon

r sin 0
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Wave equation (1D)

1 0%°u  0%u
— — =0 t >0 R
c2 0t2  0x? ’ ~hTe

with the initial conditions: u(t = 0,x) = uo(x), Oru(t = 0,2) = u1(x).

Proposition. If ug € C* and uo € C?, then Iu € C*((0,+00) x R) solution of the wave

equation.

Proof of uniqueness: Let u € C? be a solution. Make the change of variables

O =2z —cot and B = = + cot. The function @(a, B) = u(S%—

&+ :
2o > 5 ) satisfies

+ +

0% 1 1 1 ’
daop 1 ot T

B—a B+a
2Co’ 2

1 )
_at‘I‘ax U( )ZO
Co

Therefore u is of the form
u(a,B) = f(a) +g(B)
and wu is of the form
u(t,r) = f(x — cot) + g(x + cot)
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f and g can be determined by the initial conditions:

1- : 1
u(t,x) = = uo(x + cot) + uo(x — cot) + — ut (27)dz”
2 Co X! cot
(D’Alembert formula)
One can check directly that u is solution.

e The initial conditions split into two contributions, one going to the left and one

going to the right at speed co.

e The smoothness of the solution is determined by the smoothness of the initial

conditions (no gain, no loss of regularity)

e The solution at (¢, z) depends only on the initial conditions in [x — cot, x + cot]

(hyperbolic system).
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Wave equation (1D)

1 0%°u  0%u
— — =0 t >0 0
c2 0t2  0x? ’ >0, z € (0, +00)

with the initial conditions: u(t = 0,x) = uo(x), Oru(t = 0,z) = u1(x) and the

Dirichlet condition u(t,z = 0) = 0.

Proposition. If up € C* and uo € C*, with uo(0) = u1(0) = 0, then
Jlu € C4((0, +00) x (0,+00)) solution of the wave equation.

Proof of uniqueness: Let u € C* be a solution. Use method of images. The function

u(t,z) = sgn(x)u(t, |z|) satisfies

1 0°a 0°d

S2U % _p t>0zeR

cd 0t2  0x2 *
with the initial conditions: u(t = 0,x) = to(x), Oru(t = 0,x) = w1 (x) with
U () = sgn(z)u; (|z).
(A “mirror” initial condition has been created on R' ).

Therefore (D’Alembert)

N 1-_ _ 1 .
u(t,x) = 5 Uo(x + cot) + Uo(x — cot) + — i1 () dz”

Co X! cot
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IffCZCotZO:

I
- ' X+ Cot

1 .
u(t,x) = 5 uo(x + cot) + uo(x — cot) + 5o ug (2 da”

CO x! Cot

If cot > x > 0:

- " Col+ X

u(t,x) = % uo(x + cot) — uo(cot — ) + — ut () da”

Co Cot! X
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Wave equation (3D)

1 0%u 3
%W—Axu:O, t>0,Xx €R

with the initial conditions: u(t = 0,X) = uo(X), Oru(t = 0,X) = u1(X).

Proposition. If ug € C* and uo € C?, then 3u € C*((0,4+00) x R*) solution of the wave

equation.

We can reduce the problem to a 1D wave equation. Let u € C? be a solution. For
t,s > 0:

|
~ 1 . # #
t = — t.X"\do (X
o (b8) = g ult o)
.

1 5 7
:HSISZ : dB sin 0 i dou(t,X + €$%S)

S
= — u(t,X + sy )do(y
s 0 ( )da(y)

We have
ux (t,s = 0) =0, Ostx (t,s = 0) = u(t,X)
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I
fix (t,8) = — u(t,X + sy )do(y)
AT 45 (0.1)

We also have |

0 1

— = = y - Vu(t,X + sy)do(y
0s s 4T #F (0,1) ( ) ( )

- Y =% Vu(t,y)do(y)

4]-[82 : #B (0,s) S
1 :
= Au(t,y )dy
4“82 B(O,S?

R

— t,y)d
4mc3s? 0t? g (o) u(t,y )dy

!
0 , 0 ux 1 0% 0

— t,y)d
ds” 9s s 4Tc3 01?2 Os g (g ¢ u(t,y )dy
I
1 9° 1
4T[C% atz ES$ 00ds B(0,s+(s)\B(0,s) ( y> y
1 0% s 07
— = t,y)do(y) = = =y (¢
4T[C% 012 4B (0.5) U,( 7y) G(y) C% 012 ’LLx( 78>
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We can check
10 20 ax _ 9°
sds 0s s  0s2
which shows that 1y is solution of
1 0%0x 0%y

2 92 052

with the initial conditions ux (t = 0,s) = 1ux,0(s) and Oty (t = 0,s) = tx,1(s) and the

Dirichlet condition ux (t,s = 0) = 0,
!

=0, t>0,se(0,+00)

N 1 # # :
Ux j (8) = 57— uj (x")do(x”), j=0,1
4Ts #B (x,S)
Therefore, for cot > s > 0,
1- . I Cot+s " "
Ux (t,8) = = tUx.0(s+ cot) — tx 0(cot —s) + — ux 1(s")ds
2 Co Cot! s
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We have
U(t,X) f— asax (t, S = O)

. 1
= asux,O(Cot) ‘1‘ C—Ux,l(Cot)
(0]

# ! $ |
_9° 1 uo(x)do(x¥) + L

w1 (x *)do (x¥)

- at 4T[C%t #B (X ,Cot) 4T[C%t #B (X ,Cot)

(Kirchhoff formula)
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Wave equation with source (3D)

1 0%u 3
%ﬁ_Axu:n(t,x), t>0,x €R

with the initial conditions: u(t = 0,x) =0, dru(t = 0,x) = 0.
Use Duhamel principle. Let s > 0. Denote s(t,X ) the unique solution of

1 0%

~ 3
Zgp ~Oxis=0,  t>0,x€R

with the initial conditions: @s(t = s,X) = 0, Oy iis(t = s5,X) = cin(s, X).

The function |
ot

u(t,X):=  us(t,X)ds
0
satisfies
| |
au ~ ot a'as t a’&/s
a—(t,x) = us=t(t,X) + ot (t,x)ds ot (t,X)ds
MVA
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The function u satisfies
!
azu a'&xs t 62'&/3

a2 (bX) = 5 i o 0t2

|
—~~
\’(‘F
X
~—
R
|
—
_I_

= cin(t,X) + ¢t Ax u(t,X)

with the initial conditions u(t = 0,X) = 0 and du(t = 0,x) = 0.

We have |
~ 1 | 2 # i
US(t;X) —_— c n(S,X >d0(x )
4JTC%(t-—'3) #B (X ,Co(t! s)) ’
and !
© ot
u(th) — as (t,X)dS
0
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Therefore
| !
u(t,x) = ds con(s,x"do(x"
o ATt —5) 4B (xco(t! 9) °

' 1 4 #
= — ds —n(t — s,x7)da(x”)
4T 0 | #B (X ,CoS) S j
L * X — X"y
— —  ds C—O#n t— g,x# do(x ™)
4 #8 (X.Co9) X — x*| Co

Cot ’ 1 + X_X#
= — ds —#lnt—g

# #
X" do(X
am 4B (x.s) X — X 7 )

Co
+ #

X —X !
4T B(X,CoS) |X — X | Co

which we can write N

u(t,x) = G(t—s,X,y)n(s,y)dsdy

with N
_ 1 X =yl
G(t,x,y)_4n|x_y|6 - t
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The (time-dependent) Green’s function

+ ]
1 5 |X_y|—t

G(t,X7y):4T[|X—y’ Co

is the fundamental solution of the 3D wave equation. It is the unique solution with
n(t,X) =0(s)0(Xx —y).

The unique solution with the source term n(t, X ) is
N

u(t,X) = G(t—s,X,y)n(s,y)dsdy
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Wave equation and Green’s function (1/3)

e Scalar wave model:
1 0%u
c?(X) 0t?

— Axu =n(t,X)

n(t,X): source.
c(X): propagation speed (parameter of the medium), assumed to be constant outside

a domain with compact support.

e The time-dependent Green’s function G(¢,X,Yy) is the solution of

1 90%°G
2(X) 0t2

— AG =B(B)8(x —y)

Assume that G(¢,X,y) = 0 Vt < 0 = unique solution (causal Green’s function).

Emission from a point source at y emitting a Dirac pulse at time O.

If the medium is homogeneous ¢(X ) = ¢o, then

+
_ 1 X =yl
G(t’x’y)_4n|x—y|6t - : t>0

— spherical wave propagating at speed co.
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Wave equation and Green’s function (2/3)

e The time-harmonic Green’s function
|

A

G(w,x,y) = G(t,x,y)e" dt

is the solution of the Helmholtz equation

A W2 -
AG+ Z50C = —0(x =),

with the Sommerfeld radiation condition (¢(X) = ¢, at infinity):

+
X

W' ~
lim [X| — - —i1— G(w,X =0
|x|}$I°}o1 | | |X’ VX ZCO ( ) ay)

If the medium is homogeneous ¢(X ) = ¢o, then

A 1 i L x!
G(Q),X,y) — 4]-[’X _ylel CO|X. yl

MVA
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Wave equation and Green’s function (3/3)

e The solution of the wave equation with source n(t,Xx)

1 0%u
20y oz~ =X
has the form: N
u(t,x) = G(t—s,X,y)n(s,y)dyds
In the Fourier domain: !
a(w,x) = u(t,x)e" di

we have !

a(w,x) = G(w,x,y)n(w,y)dy

MVA
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Complement: Acoustic wave equations

Acoustic wave equations:
K 'x)0ip+ V- -u=0,
p(x)oru + Vp =0,

p: pressure field, u: velocity field.
K: bulk modulus, p: density of the medium.

The pressure field satisfies:

K (®)0ip—V - (p ' (x)Vp) =0

If p(x) = po:
¢ 2 (x)0ip—Ap=0
with
& (z) = E@)
Po
MVA
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Complement: Sommerfeld radiation condition (1/2)

e Consider the fundamental solution of the Helmholtz equation in R>:

2
w ~

Amé(w, x,y)+ 2 (x) Gw,z,y) = —90(x —1y)

This equation has an infinite number of solutions.

e A solution is called radiating if it satisfies the Sommerfeld radiation condition:

( G(w,a&,y) — O ( 1 ) > and (33 vm—ii)é(w,w,y) _ o (_)

@l oo [T ] Co | oo [T
uniformly in all directions (¢(x) = ¢, at infinity).

e Example: c¢(x) = ¢,. There exist infinitely many solutions, in particular

A 1 —a LW a LW
Go(w,z,y) = —— exp (z—lw—yl) + — eXp(—@—!w—y!)
Ar|xe — y| Co Am|x — Yy Co

for some constant a. Only the solution with a = 0 satisfies the Sommerfeld radiation
condition. It corresponds to a field radiating from y. The other solutions are
“unphysical”. For example, the solution with a = 1 can be interpreted as energy

coming from infinity and sinking at y.
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Complement: Sommerfeld radiation condition (2/2)

e Consider the fundamental solution of the Helmholtz equation in R>:

A w2 A

AzG(w, x,y) + 2 () Glw,z,y) = —0(x —y)

A solution is called radiating if it satisfies the Sommerfeld radiation condition

lim |:13|( T Vw—iﬁ)é'(w,w,y)zo

|| — o0 m . Co
uniformly in all directions (¢(x) = ¢, at infinity).

e Theorem: The Helmholtz equation (with ¢ bounded and constant outside a

compact) has a unique radiating solution.

R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Chap. IV, Sec. 5.
B. Perthame and L. Vega, Geom. Funct. Anal. 17 1685-1707 (2008).
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