
Waves and Imaging in Noisy Environments

Josselin Garnier (Ecole polytechnique)

• Principle of imaging with waves: waves are used to probe an unknown medium.

1) record the waves generated by sources on a sensor array.

2) process the data in order to estimate relevant features of the medium (source or

reflector locations, ...).

• Applications: medical imaging, radar, sonar, seismic exploration, non-destructive

testing.

• Different types of noise:

• In the presence of additive noise (i.e. due to measurement error):

- one usually observes a small loss of resolution and signal-to-noise ratio.

• In the presence of clutter noise (i.e. due to the scattering medium):

- one usually observes a dramatic loss of resolution and signal-to-noise ratio.

• In the presence of noise sources:

- one can use the signals generated by ambient noise sources for imaging with only a

receiver array.
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Waves and Imaging in Noisy Environments

Let us start with some unexpected effects due to randomness:

• enhanced refocusing for a time reversal experiment.

• imaging using ambient noise.
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Time reversal experiment (1/4)

cf. A. Tourin, M. Fink, and A. Derode, Multiple scattering of sound, Waves Random

Media 10 (2000), R31-R60.

Experimental set-up for a time-reversal experiment through a multiple-scattering

medium:

(a) first step, the source sends a pulse through the sample, the transmitted wave is

recorded by the TRM.

(b) second step, the multiply scattered signals have been time-reverted, they are

retransmitted by the TRM, and S records the reconstructed pressure field.
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Time reversal experiment (2/4)

cf. A. Tourin, M. Fink, and A. Derode, Multiple scattering of sound, Waves Random

Media 10 (2000), R31-R60.

Experimental set-up for a time-reversal experiment through a multiple-scattering

medium:

(a) first step, the source sends a pulse through the sample, the transmitted wave is

recorded by the TRM.

(b) second step, the multiply scattered signals have been time-reverted, they are

retransmitted by the TRM, and S records the reconstructed pressure field.
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Experimental observations

The source emits a short

1 µs pulse.

The TRM records a long

scattered signal.

One can observe a time

recompression at the original

source location.
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One can observe a spatial

refocusing at the original

source location.
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Travel-time tomography in geophysics (1/3)

Classical problem in geophysics: Travel time estimation (for background velocity

estimation).

• Method 1: Use of earthquake signals.

• Method 2: Use of seismic noise and cross correlation techniques in order to estimate

the travel times.
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Travel time estimation by cross correlation of ambient noise signals

• Ambient noise sources (◦) emit stationary random signals.

• The waves propagate in the (inhomogeneous) medium.

• The signals u(t, x 1) and u(t, x 2) are recorded at two sensors x 1 and x 2 .

x
1

x
2

0 100 200 300 400 500 600 700 800 900 1000
t

piece of signal recorded at x
1

0 100 200 300 400 500 600 700 800 900 1000
t

piece of signal recorded at x
2

• What information (about the medium) can possibly be in these signals ?
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Travel time estimation by cross correlation of ambient noise signals

• Ambient noise sources (◦) emit stationary random signals.

• The waves propagate in the (inhomogeneous) medium.

• The signals u(t, x 1) and u(t, x 2) are recorded at two sensors x 1 and x 2 .
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• Compute the empirical cross correlation:

CT (τ, x 1 , x 2) =
1
T

! T

0
u(t, x 1)u(t+ τ, x 2)dt

• CT (τ, x 1 , x 2) is related to the Green’s function from x 1 to x 2 !

• The singular component of the Green’s function from x 1 to x 2 gives the travel time

from x 1 to x 2 .
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Travel-time tomography in geophysics (2/3)

Record during four months the seismic noise at a sensor array (triangles).

For each pair of sensors cross-correlate the recorded noise data.
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Travel-time tomography in geophysics (3/3)

Process the cross-correlation matrix to obtain a map of the background velocity.
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• Application of ambient noise imaging: volcano monitoring.

Piton de la Fournaise (volcano in La Réunion island):

- Detection of changes in surface wave travel times during mid september 2010.

- Alert sent out on september 23, 2010.

- Eruption on october 14, 2010.

• Application of ambient noise imaging: oil reservoir monitoring.
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Waves and Imaging in Noisy Environments

• Some useful tools: Fourier identities, Green’s functions, reciprocity,

Helmholtz-Kirchhoff theorem.

• Time-reversal refocusing.

• Least squares and Bayesian approaches to inverse problems.

• Application to sensor array imaging: Imaging methods and resolution analysis in

homogeneous medium (with measurement noise).

• Properties of stationary processes.

• Passive imaging (with ambient noise sources).

• Properties of Gaussian processes: statistics of maxima.

• Detection tests (non-destructive testing).

• Introduction to random matrix theory.

• Detection, localization and identification of reflectors.
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Some useful tools
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Fourier identities

• Let f(t) be a “nice” real-valued function. Its Fourier transform is

f̂(ω) =

!

R
f(t)ei!t dt

Inverse Fourier transform:

f(t) =
1
2π

!

R
f̂(ω)e! i!t dω

Parseval’s identity:
!

R
f(t)2dt =

1
2π

!

R
|f̂(ω)|2dω,

!

R
f(t)g(t)dt =

1
2π

!

R
f̂(ω)ĝ(ω)dω,

time reversal

cross correlation

f(t) f̂(ω)
dn f
dtn

(−iω)n f̂(ω)

f ∗ g(t) =
"
f(s)g(t− s)ds 2πf̂(ω)ĝ(ω)

f(−t) f̂(ω)
"
f(s)g(t+ s)ds 2π f̂(ω)ĝ(ω)
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Fourier identities

• Extension of Fourier transform to functions in L2 and to distributions.

• A distribution g is a continuous linear functional on the Schwartz class S. It is

characterized by
"

R f(t)g(t)dt for any test function f ∈ S.

• The Fourier transform of a distribution g is the distribution ĝ such that

1
2π

!
f̂(ω)ĝ(ω)dω =

!
f(t)g(t)dt

• Here: we will deal with the Dirac distribution δ, such that
"
f(t)δ(t)dt = f(0) for all

test functions.

• The Fourier transform of δ is δ̂ = 1.

Proof 1. δ̂(ω) is such that
"
f̂(ω)δ̂(ω)dω = 2π

"
f(t)δ(t)dt = 2πf(0).

However we do know that f(0) = 1
2"

"
f̂(ω)dω = 1

2"

"
f̂(−ω)dω = 1

2"

"
f̂(ω)dω.

Proof 2. δ =limit of fa (t) = 1"
2"a

exp(− t 2

2a2 ) as a → 0+ .

δ̂ =limit of f̂a (ω) = exp(− a2 ! 2

2 ) as a → 0+ .

Remark. If g(t) = 1, then we have ĝ(ω) = 2πδ(ω).

MVA 2021



Divergence theorem

• Fundamental theorem of analysis:
! b

a
f#(t)dt = f(b)− f(a)

• Divergence theorem: Let D be a smooth bounded domain in Rd and f be a smooth

function Rd → Rd : !

D
∇ · f (x )dx =

!

#D
n (x ) · f (x )dσ(x )

where n (x ) is the unit outgoing normal vector.

• If D = B(0, R) and d = 3, we have n (x ) = x /|x | and in spherical coordinates:

!

D
∇·f (x )dx =

! R

0
r2dr

! "

0
sin θdθ

! 2"

0
dφ

# 1

r2
∂r (r

2fr )+
1

r sin θ
∂$(sin θf$)+

1

r sin θ
∂%f%

$

!

#D
n (x ) · f (x )dσ(x ) = R2

! "

0
sin θdθ

! 2"

0
dφ

%

&
&
'

sin θ cosφ

sin θ sinφ

cos θ

(

)
)
* ·

%

&
&
'

fr

f$

f%

(

)
)
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Wave equation (1D)

1
c2

o

∂2u
∂t2

−
∂2u
∂x2

= 0, t > 0, x ∈ R

with the initial conditions: u(t = 0, x) = u0(x), ∂t u(t = 0, x) = u1(x).

Proposition. If u0 ∈ C1 and u0 ∈ C2, then ∃!u ∈ C2((0,+∞)× R) solution of the wave

equation.

Proof of uniqueness: Let u ∈ C2 be a solution. Make the change of variables

α = x− cot and β = x+ cot. The function ũ(α,β) = u( &! '
2co

, &+ '
2 ) satisfies

∂2 ũ
∂α∂β

=
1
4

+
−

1
co

∂t + ∂x

,+ 1
co

∂t + ∂x

,
u(

β − α
2co

,
β + α

2
) = 0

Therefore ũ is of the form

ũ(α,β) = f(α) + g(β)

and u is of the form

u(t, x) = f(x− cot) + g(x+ cot)
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f and g can be determined by the initial conditions:

u(t, x) =
1

2

-
u0(x+ cot) + u0(x− cot)

.
+

1

2co

! x + co t

x ! co t
u1(x

#)dx#

(D’Alembert formula)

One can check directly that u is solution.

• The initial conditions split into two contributions, one going to the left and one

going to the right at speed co .

• The smoothness of the solution is determined by the smoothness of the initial

conditions (no gain, no loss of regularity)

• The solution at (t, x) depends only on the initial conditions in [x− cot, x+ cot]

(hyperbolic system).
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Wave equation (1D)

1

c2
o

∂2u

∂t2
−

∂2u

∂x2
= 0, t > 0, x ∈ (0,+∞)

with the initial conditions: u(t = 0, x) = u0(x), ∂t u(t = 0, x) = u1(x) and the

Dirichlet condition u(t, x = 0) = 0.

Proposition. If u0 ∈ C1 and u0 ∈ C2, with u0(0) = u1(0) = 0, then

∃!u ∈ C2((0,+∞)× (0,+∞)) solution of the wave equation.

Proof of uniqueness: Let u ∈ C2 be a solution. Use method of images. The function

ũ(t, x) = sgn(x)u(t, |x|) satisfies

1
c2

o

∂2 ũ
∂t2

−
∂2 ũ
∂x2

= 0, t > 0, x ∈ R

with the initial conditions: ũ(t = 0, x) = ũ0(x), ∂t ũ(t = 0, x) = ũ1(x) with

ũj (x) = sgn(x)uj (|x|).

(A “mirror” initial condition has been created on R! ).

Therefore (D’Alembert)

ũ(t, x) =
1
2

-
ũ0(x+ cot) + ũ0(x− cot)

.
+

1
2co

! x + co t

x ! co t
ũ1(x

#)dx#
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If x ≥ cot ≥ 0:

u(t, x) =
1

2

-
u0(x+ cot) + u0(x− cot)

.
+

1

2co

! x + co t

x ! co t
u1(x

#)dx#

If cot ≥ x ≥ 0:

u(t, x) =
1
2

-
u0(x+ cot)− u0(cot− x)

.
+

1
2co

! co t + x

co t ! x
u1(x

#)dx#
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Wave equation (3D)

1
c2

o

∂2u
∂t2

−∆x u = 0, t > 0, x ∈ R3

with the initial conditions: u(t = 0, x ) = u0(x ), ∂t u(t = 0, x ) = u1(x ).

Proposition. If u0 ∈ C1 and u0 ∈ C2, then ∃!u ∈ C2((0,+∞)×R3) solution of the wave

equation.

We can reduce the problem to a 1D wave equation. Let u ∈ C2 be a solution. For

t, s > 0:

ũx (t, s) :=
1

4πs

!

#B ( x ,s )
u(t, x #)dσ(x #)

=
1

4πs
s2

! "

0
dθ sin θ

! 2"

0
dφu(t, x + e$,%s)

=
s
4π

!

#B ( 0 ,1)
u(t, x + sy )dσ(y )

We have

ũx (t, s = 0) = 0, ∂s ũx (t, s = 0) = u(t, x )

MVA 2021



ũx (t, s) =
s
4π

!

#B ( 0 ,1)
u(t, x + sy )dσ(y )

We also have

∂
∂s

ũx

s
=

1
4π

!

#B ( 0 ,1)
y ·∇u(t, x + sy )dσ(y )

=
1

4πs2

!

#B ( 0 ,s )

y − x
s

·∇u(t, y )dσ(y )

=
1

4πs2

!

B ( 0 ,s )
∆u(t, y )dy

=
1

4πc2
os2

∂2

∂t2

!

B ( 0 ,s )
u(t, y )dy

∂

∂s
s2 ∂

∂s

ũx

s
=

1

4πc2
o

∂2

∂t2

∂

∂s

!

B ( 0 ,s )
u(t, y )dy

=
1

4πc2
o

∂2

∂t2
lim

(s $ 0

1
δs

!

B ( 0 ,s + (s ) \ B ( 0 ,s )
u(t, y )dy

=
1

4πc2
o

∂2

∂t2

!

#B ( 0 ,s )
u(t, y )dσ(y ) =

s
c2

o

∂2

∂t2
ũx (t, s)
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We can check
1

s

∂

∂s
s2 ∂

∂s

ũx

s
=

∂2

∂s2
ũx

which shows that ũx is solution of

1
c2

o

∂2 ũx

∂t2
−

∂2 ũx

∂s2
= 0, t > 0, s ∈ (0,+∞)

with the initial conditions ũx (t = 0, s) = ũx ,0(s) and ∂t ũx (t = 0, s) = ũx ,1(s) and the

Dirichlet condition ũx (t, s = 0) = 0,

ũx ,j (s) =
1

4πs

!

#B ( x ,s )
uj (x

#)dσ(x #), j = 0, 1

Therefore, for cot ≥ s ≥ 0,

ũx (t, s) =
1
2

-
ũx ,0(s+ cot)− ũx ,0(cot− s)

.
+

1
2co

! co t + s

co t ! s
ũx ,1(s

#)ds#
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We have

u(t, x ) = ∂s ũx (t, s = 0)

= ∂s ũx ,0(cot) +
1
co

ũx ,1(cot)

=
∂

∂t

# 1

4πc2
ot

!

#B ( x ,c o t )
u0(x

#)dσ(x #)
$
+

1

4πc2
ot

!

#B ( x ,c o t )
u1(x

#)dσ(x #)

(Kirchhoff formula)
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Wave equation with source (3D)

1
c2

o

∂2u
∂t2

−∆x u = n(t, x ), t > 0, x ∈ R3

with the initial conditions: u(t = 0, x ) = 0, ∂t u(t = 0, x ) = 0.

Use Duhamel principle. Let s > 0. Denote ũs(t, x ) the unique solution of

1
c2

o

∂2 ũs

∂t2
−∆x ũs = 0, t > 0, x ∈ R3

with the initial conditions: ũs(t = s, x ) = 0, ∂t ũs(t = s, x ) = c2
on(s, x ).

The function

u(t, x ) :=
! t

0
ũs(t, x )ds

satisfies

∂u
∂t

(t, x ) = ũs= t (t, x ) +
! t

0

∂ũs

∂t
(t, x )ds =

! t

0

∂ũs

∂t
(t, x )ds
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The function u satisfies

∂2u

∂t2
(t, x ) =

∂ũs

∂t
(t, x ) |s= t +

! t

0

∂2 ũs

∂t2
(t, x )ds

= c2
on(t, x ) +

! t

0
c2

o∆x ũs(t, x )ds

= c2
on(t, x ) + c2

o∆x u(t, x )

with the initial conditions u(t = 0, x ) = 0 and ∂u(t = 0, x ) = 0.

We have

ũs(t, x ) =
1

4πc2
o(t− s)

!

#B ( x ,c o ( t ! s))
c2

on(s, x
#)dσ(x #)

and

u(t, x ) =
! t

0
ũs(t, x )ds
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Therefore

u(t, x ) =
! t

0
ds

1
4π(t− s)

!

#B ( x ,c o ( t ! s))
c2

on(s, x
#)dσ(x #)

=
1
4π

! t

0
ds

!

#B ( x ,c o s)

1
s
n(t− s, x #)dσ(x #)

=
1
4π

! t

0
ds

!

#B ( x ,c o s)

co

|x − x #|
n

+
t−

|x − x #|
co

, x #
,
dσ(x #)

=
1
4π

! co t

0
ds

!

#B ( x ,s )

1
|x − x #|

n
+
t−

|x − x #|
co

, x #
,
dσ(x #)

=
1

4π

!

B ( x ,c o s)

co

|x − x #|
n

+
t−

|x − x #|
co

, x #
,
dx #

which we can write

u(t, x ) =
! !

G(t− s, x , y )n(s, y )dsdy

with

G(t, x , y ) =
1

4π|x − y |
δ
+ |x − y |

co
− t

,
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The (time-dependent) Green’s function

G(t, x , y ) =
1

4π|x − y |
δ
+ |x − y |

co
− t

,

is the fundamental solution of the 3D wave equation. It is the unique solution with

n(t, x ) = δ(s)δ(x − y ).

The unique solution with the source term n(t, x ) is

u(t, x ) =
! !

G(t− s, x , y )n(s, y )dsdy
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Wave equation and Green’s function (1/3)

• Scalar wave model:
1

c2(x )
∂2u
∂t2

−∆x u = n(t, x )

n(t, x ): source.

c(x ): propagation speed (parameter of the medium), assumed to be constant outside

a domain with compact support.

• The time-dependent Green’s function G(t, x , y ) is the solution of

1

c2(x )
∂2G

∂t2
−∆x G = δ(t)δ(x − y )

Assume that G(t, x , y ) = 0 ∀t < 0 =⇒ unique solution (causal Green’s function).

Emission from a point source at y emitting a Dirac pulse at time 0.

If the medium is homogeneous c(x ) ≡ co , then

G(t, x , y ) =
1

4π|x − y |
δ
+
t−

|x − y |
co

,
, t > 0

↪→ spherical wave propagating at speed co .
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Wave equation and Green’s function (2/3)

• The time-harmonic Green’s function

Ĝ(ω, x , y ) =
!

G(t, x , y )ei!t dt

is the solution of the Helmholtz equation

∆Ĝ+
ω2

c2(x )
Ĝ = −δ(x − y ),

with the Sommerfeld radiation condition (c(x ) = co at infinity):

lim
| x |$%

|x |
+ x
|x |

·∇x − i
ω
co

,
Ĝ(ω, x , y ) = 0

If the medium is homogeneous c(x ) ≡ co , then

Ĝ(ω, x , y ) =
1

4π|x − y |
ei !

c o
|x ! y |
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Wave equation and Green’s function (3/3)

• The solution of the wave equation with source n(t, x )

1

c2(x )
∂2u

∂t2
−∆x u = n(t, x )

has the form:

u(t, x ) =
! !

G(t− s, x , y )n(s, y )dyds

In the Fourier domain:

û(ω, x ) =
!

u(t, x )ei!t dt

we have

û(ω, x ) =
!

Ĝ(ω, x , y )n̂(ω, y )dy

MVA 2021



Complement: Acoustic wave equations

Acoustic wave equations:

K−1(x)∂tp+∇ · u = 0,

ρ(x)∂tu+∇p = 0,

p: pressure field, u: velocity field.

K: bulk modulus, ρ: density of the medium.

The pressure field satisfies:

K−1(x)∂2
t p−∇ ·

(

ρ−1(x)∇p
)

= 0

If ρ(x) ≡ ρ0:

c−2(x)∂2
t p−∆p = 0

with

c2(x) =
K(x)

ρ0
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Complement: Sommerfeld radiation condition (1/2)

• Consider the fundamental solution of the Helmholtz equation in R
3:

∆xĜ(ω,x,y) +
ω2

c2(x)
Ĝ(ω,x,y) = −δ(x− y)

This equation has an infinite number of solutions.

• A solution is called radiating if it satisfies the Sommerfeld radiation condition:
(

Ĝ(ω,x,y) = O
|x|→∞

( 1

|x|

) )

and
( x

|x|
·∇x−i

ω

co

)

Ĝ(ω,x,y) = o
|x|→∞

( 1

|x|

)

uniformly in all directions (c(x) = co at infinity).

• Example: c(x) ≡ co. There exist infinitely many solutions, in particular

Ĝa(ω,x,y) =
1− a

4π|x− y|
exp

(

i
ω
co

|x− y|
)

+
a

4π|x− y|
exp

(

− i
ω
co

|x− y|
)

for some constant a. Only the solution with a = 0 satisfies the Sommerfeld radiation

condition. It corresponds to a field radiating from y. The other solutions are

“unphysical”. For example, the solution with a = 1 can be interpreted as energy

coming from infinity and sinking at y.
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Complement: Sommerfeld radiation condition (2/2)

• Consider the fundamental solution of the Helmholtz equation in R
3:

∆xĜ(ω,x,y) +
ω2

c2(x)
Ĝ(ω,x,y) = −δ(x− y)

A solution is called radiating if it satisfies the Sommerfeld radiation condition

lim
|x|→∞

|x|
( x

|x|
·∇x − i

ω
co

)

Ĝ(ω,x,y) = 0

uniformly in all directions (c(x) = co at infinity).

• Theorem: The Helmholtz equation (with c bounded and constant outside a

compact) has a unique radiating solution.

R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Chap. IV, Sec. 5.

B. Perthame and L. Vega, Geom. Funct. Anal. 17 1685-1707 (2008).
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