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Abstract
Time-harmonic far-!eld source array imaging in a two-dimensional waveguide
is analyzed. A low-frequency situation is considered in which the diameter of
the waveguide is slightly larger than the wavelength, so that the waveguide sup-
ports a limited number of guided modes, and the diameter of the antenna array
is smaller than the wavelength, so that the standard resolution formulas in open
media predict very poor imaging resolution. A general framework to analyze
the resolution and stability performances of such antenna arrays is introduced.
It is shown that planar antenna arrays perform better (in terms of resolution and
stability with respect to measurement noise) than linear (horizontal or vertical)
arrays and that vertical linear arrays perform better than horizontal arrays, for
a given diameter. However a fundamental limitation to imaging in waveguides
is identi!ed that is due to the form of the dispersion relation. It is intrinsic to
scalar waves, whatever the complexity of the medium and the array geometry.

Keywords: waveguide, source imaging, sensor arrays

(Some !gures may appear in colour only in the online journal)

1. Introduction

We present a theoretical and numerical study of source imaging in two-dimensional waveg-
uides, using an array of sensors that record acoustic waves. Source imaging in waveguides
is of particular interest in underwater acoustics [6, 17]. In a closed waveguide the wave!eld
can be decomposed into a !nite number of guided modes and an in!nite number of evanes-
cent modes. In an open waveguide the wave!eld can be decomposed into a !nite number of
guided modes and an in!nite number of radiating and evanescent modes. The evanescent, resp.
radiating, mode components of the wave!eld are in general vanishing and not usable in the
measured far-!eld data because they decay exponentially, resp. algebraically, with the prop-
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agation distance. The guided mode amplitudes can be extracted from the measured data if
the array is large enough and one can then propose an imaging method that exploits them.
The idea of formulating the inverse problem in terms of the guided mode amplitudes has
recently been considered by several authors, for source imaging [4] and for scatterer imaging
[2, 5, 8, 19, 22]. However, the extraction of the guided mode amplitudes becomes challenging
when the array is small [27–29].

In underwater acoustics, it is possible to deploy an antenna array in the oceanic waveguide
but the aperture of the array is usually limited. This issue is critical when addressing low-
frequency signals whose wavelengths are of the same order as the diameter of the waveguide
so that (1) there is only a small number of guided modes and (2) the array diameter is smaller
than the wavelength. This is typically the con!guration we have in mind in this paper. We intro-
duce a general framework to analyze the performances (in terms of resolution and stability) of
such antenna arrays. Under ideal circumstances (i.e. in the absence of noise) the data collected
by an antenna array covering a limited part of the cross section of a waveguide can be manipu-
lated and processed to transform them into the set of data that would have been collected by a
vertical antenna covering the full cross section of the waveguide, which gives full access to the
guided mode amplitudes. We explain this processing in detail in this paper. In more realistic
con!gurations (i.e. in the presence of noise) the processing can become unstable and requires
appropriate regularization, the imaging performance is determined by the effective rank of an
operator, which depends on the array geometry and the noise level, and we analyze different
types of antennas. We show that, for a given diameter, planar antenna arrays perform much bet-
ter (in terms of stability with respect to measurement noise) than linear (vertical or horizontal)
arrays, and that vertical linear arrays perform better than horizontal linear arrays. However we
exhibit and clarify a fundamental limitation to imaging in waveguides that is due to the form
of the dispersion relation and that is intrinsic to scalar waves, whatever the complexity of the
medium and the array geometry.

The paper is organized as follows. In sections 2 and 3 we describe the waveguide geometry
and source array imaging problem. In section 4 we show how to estimate the guided mode
amplitudes from the array data. In section 5 we address the case of large and dense antenna
arrays (large means larger than the wavelength). In section 6 we address in detail the case of
small and discrete antenna arrays and consider different array geometries.

2. Waveguide geometry

Let us consider a two-dimensional waveguide, whose axis is along the x-axis, and the cross
section is z ∈ [0, L] (see !gure 1). For the sake of simplicity we may consider a Dirichlet
condition at z = L (free surface) and a Neumann or Dirichlet condition at z = 0 (bottom). The
forthcoming results can be extended to arbitrary closed or open waveguides, such as Pekeris
waveguides. The index of refraction can be constant or variable but it depends only on z. The
wave!eld transmitted by a time-harmonic source s(x, z) at frequency ω satis!es the Helmholtz
equation

(
d2

dx2 +
d2

dz2

)
p(x, z) +

ω2

c2(z)
p(x, z) = −s(x, z), (x, z) ∈ R × (0, L) (1)

subjected to the appropriate boundary conditions at z = 0, L.
The eigenmodes (real-valued and orthonormal) and eigenvalues (real-valued) of the self-
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Figure 1. Schematic of the waveguide con!guration.

adjoint operator −∂2
z − ω2/c2(z) at frequency ω are denoted by φ j(z) and −λ j:

d2

dz2 φ j(z) +
ω2

c2(z)
φ j(z) = λ jφ j(z). (2)

There are N guided modes for which λ j > 0 and we set β j =
√
λ j, j = 1, . . . , N. The other

modes for which λ j < 0 are evanescent (i.e. their amplitudes decay exponentially in x). We
assume throughout the paper that the frequency ω is such that N ! 1.

3. Source imaging

We consider the case of an antenna array localized in the neighborhood of the plane x = 0. We
assume that the antenna array is supported in the domain A ⊂ [−a, a] × [0, L]. The domain A
can be:

(i) A !nite collection of points {(xk, zk), k = 1, . . . , M} (discrete array),
(ii) A square [−a, a] × [za − a, za + a] (continuum approximation of a dense planar array),

(iii) A vertical line {0} × [za − a, za + a] (continuum approximation of a dense linear vertical
array localized at depth za),

(iv) A horizontal line [−a, a] × {za} (continuum approximation of a dense linear horizontal
array localized at depth za).

We present a uni!ed approach of these cases and we remark that this approach can be readily
extended to other cases. In each case we associate a corresponding uniform measure µ (dx) with
unit mass over A, such that for any test function f:

∫

A
f (x, z)µ(dx) :=






1
M

M∑

k=1

f (xk, zk), case (i),

1
4a2

∫

[−a,a]2
f (x, za + z) dx dz, case (ii),

1
2a

∫ a

−a
f (0, za + z) dz, case (iii),

1
2a

∫ a

−a
f (x, za) dx, case (iv).

(3)

A time-harmonic acoustic signal is transmitted by a distant source localized in the region
x > a (see !gure 1). The recorded signal is
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p(x, z) =
N∑

j=1

a j,oφ j(z) exp(−iβ jx), (x, z) ∈ A, (4)

where the mode amplitudes aj,o are determined by the source and where we have not written
the evanescent modes, which is justi!ed when the distance from the source to the antenna
array is much larger than the wavelength. This expression shows that the maximal information
about the source available in the data (p(x, z))(x,z)∈A recorded by the antenna array is the vector
ao = (a j,o)N

j=1. The imaging procedure can be decomposed into two steps: (1) estimation of the
vector ao and (2) exploitation of the estimated vector to localize the source.

If we can obtain an estimate a = (a j)N
j=1 of the vector ao from the data (p(x, z))(x,z)∈A, then

we can migrate the vector a in order to localize the source in the region x > 0 by application
of the imaging function I : CN → L2(Ω) de!ned by

I[a](x, z) := 2i
N∑

j=1

β jeiβ jxφ j(z)a j, (5)

where Ω ⊂ (a, +∞) × [0, L] is the compactly supported search region and the bar stands for
complex conjugate. We can check that, in the case of a point-like source at (xo, zo), xo > a,
we have a j,o = i

2β j
φ j(zo)eiβ jxo , j = 1, . . . , N, and if we can estimate perfectly the vector ao

from the data (which happens in particular when the antenna array spans the waveguide cross
section, see below), then the imaging function has the form

I[ao](x, z) =
N∑

j=1

eiβ j(x−xo)φ j(z)φ j(zo), (6)

which is a peak centered at the source position (xo, zo). The resolution and stability properties
of this imaging function (5) have been analyzed in [4]. The main result is that the width of the
peak is approximately equal to the resolution limit λo/2, whereλo = 2πco/ω is the wavelength
(with co = background velocity).

Remark 3.1. The imaging function (5) is actually a reverse-time migration-type function
[11, chapter 20] (see also [12, 16, 18, 20, 23]). Indeed, a reverse-time imaging function can be
de!ned as IRT : L2(A, µ) → L2(Ω):

IRT[p](x, z) := − 4
∫

A
∂2

x′Ĝ(x, z; x′, z′)p(x′, z′)µ(dx′), (7)

where Ĝ is the Green’s function of the waveguide. If we take into account only the guided
modes, then the Green’s function has the form

Ĝ(x, z; x′, z′) =
i
2

N∑

j=1

1
β j

eiβ j|x−x′ |φ j(z)φ j(z′), (8)

and we !nd that, for (x, z) ∈ Ω,

IRT[p](x, z) = 2i
N∑

j, j′=1

β jeiβ jxφ j(z)A jj′a j′,o, (9)
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where

A jj′ =

∫

A
ei(β j−β j′ )x

′
φ j(z′)φ j′ (z′)µ(dx′), (10)

which is close to the function I[ao](x, z) de!ned by (5) when A is close to I. Reverse-time
migration functions are known to be ef!cient source imaging functions as they can be seen as
the solutions of least squares imaging [13, chapter 4, section 4.1]. They are the best estimators
to localize point-like sources in the search domain (here, the interior of the waveguide), in the
sense that the position of the maximum of the modulus of the reverse-time migration function
is the maximum likelihood estimator of the source position when the source is point-like and
when the data are corrupted by additive noise [1].

The imaging function (5) is very ef!cient and has good resolution properties, but it requires
to estimate the mode amplitudes ao of the recorded wave!eld. If the antenna array is dense,
vertical and spans the full cross section of the waveguide, then the mode amplitudes ao can
be easily obtained by projection of the observed wave!eld (p(x = 0, z))z∈[0,L] onto the mode
pro!les:

∫ L

0
p(x = 0, z)φ j(z) dz = a j,o, j = 1, . . . , N. (11)

We will see in the next section that it is possible to get good estimates of the mode amplitudes
ao even when the antenna array covers only a limited part of the cross section of the waveguide.

4. Estimation of the mode amplitudes

When the antenna array covers only a limited part of the cross section of the waveguide we
would like to extract the vector ao from (p(x, z))(x,z)∈A only. This is actually possible, provided
we know the mode pro!les (φ j(z))z∈[0,L] and the modal wavenumbers β j, j = 1, . . . , N.

4.1. Perfect estimation

In absence of any noise or measurement error, the following method can be implemented to
estimate the vector ao (this is a general version of the weighted projection method proposed in
[28]):

(a) Compute the Hermitian positive semi-de!nite matrix A of size N × N (as in (10)):

A jl :=
∫

A
φ j(z)φl(z)ei(β j−βl)xµ(dx), j, l = 1, . . . , N. (12)

(b) Diagonalize the matrix A = VADAV†
A, with DA diagonal matrix and VA unitary matrix

(here and below † stands for conjugate and transpose).
(c) Introduce the reduced mode pro!les:

ψl(x, z) :=
N∑

j=1

(VA) jlφ j(z)e−iβ jx , l = 1, . . . , N, (x, z) ∈ A. (13)

(d) Compute the vector b = (bl)N
l=1 from the data (p(x, z))(x,z)∈A by projection onto the reduced

mode pro!les:

bl =

∫

A
p(x, z)ψl (x, z)µ(dx), l = 1, . . . , N. (14)

5
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(e) Compute the vector

a = VAD−1
A b. (15)

(If A is singular, then use the Moore–Penrose pseudo-inverse D+
A of DA instead of D−1

A ,
i.e. the diagonal matrix with diagonal coef!cients 1/(DA) j j if (DA) j j > 0 and 0 otherwise).

Proposition 4.1. If A is nonsingular, then a = ao.

Proof. Let us study the method (12)–(15). We have

∫

A
ψl (x, z)φl′(z)e−iβl′ xµ(dx) =

N∑

j=1

(VA) jl

∫

A
φ j(z)φl′ (z)ei(β j−βl′ )xµ(dx)

= (V†
AA)ll′ = (V†

AVADAV†
A)ll′ = (DAV†

A)ll′ .

From (4), we get

bl =
N∑

l′=1

∫

A
ψl (x, z)φl′(z)e−iβl′ xµ(dx) al′,o =

N∑

l′=1

(DAV†
A)ll′al′,o,

i.e., b = DAV†
Aao. If A is nonsingular, then A is positive de!nite and all eigenvalues of DA are

not zero. We then get by (15):

a = VAD−1
A DAV†

Aao = VAV†
Aao = ao, (16)

the last equality follows from the unitarity of the matrix VA. "

4.2. Regularized estimation

The !nal step (15) requires the matrix A to be positive-de!nite and well-conditioned for sta-
bility. The conditioning of the matrix A is determined by the geometry of the array A. When
the array does not cover the cross section of the waveguide, the conditioning of A may be poor
and one should use a regularized pseudo-inverse for DA:

aε = VADε,+
A b, (17)

where

Dε,+
A = Diag

(
(ψε((DA) j j))N

j=1

)
, (18)

with

ψε(DA) = DA/(D2
A + ε2) (Tykhonov regularization) (19)

or

ψε(DA) = (1/DA)1(ε,+∞)(DA) (hard threshold regularization). (20)

We observe that we may not recover exactly the mode amplitudes when using the regularized
method:

aε = VADε,+
A b = VADε,+

A DAV†
Aao = ao − VARε

AV†
Aao, (21)

6
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where the last term is an error term given in terms of the diagonal matrix Rε
A de!ned by

Rε
A = Diag

(
(1 − (DA) j jψε((DA) j j))N

j=1

)
. (22)

In the case of Tikhonov regularization, we have (Rε
A) j j = ε2/((DA)2

j j + ε2). In the case of hard
threshold regularization, we have (Rε

A) j j = 1(DA) j j<ε.

4.3. Regularized estimation with measurement noise

As is well-known [3, 28] and as is shown by (21), regularization induces a bias, i.e. a determin-
istic error, but it makes the estimation method much more robust with respect to noise, i.e. it
can reduce the random error due to measurement noise. This is a manifestation of the classical
bias-variance tradeoff [15]. In order to illustrate this general statement, we here assume that the
measurements (pmeas(x, z))z∈A are corrupted by an additive complex circular Gaussian noise:

pmeas(x, z) = p(x, z) + w(x, z), (x, z) ∈ A, (23)

where (w(x, z))(x,z)∈A is a Gaussian process with mean zero and delta covariance function:

E[w(x, z)w(x′, z′)] = σ2






1z=z′1x=x′ , case (i),

δ(z − z′)δ(x − x′), case (ii),

δ(z − z′), case (iii),

δ(x − x′), case (iv),

(24)

for (x, z), (x′, z′) ∈ A (here 1z=z′ = 1 if z = z′ and = 0 otherwise, and δ is the Dirac
distribution).

The estimated vector (17) is here given by

aε = VADε,+
A bmeas, (25)

where the vector bmeas is obtained by projecting the measurements (pmeas(x, z))z∈A onto the
reduced mode pro!les as in (14):

bmeas,l =

∫

A
pmeas(x, z)ψl (x, z)µ(dx). (26)

Proposition 4.2. The mean square error consists of a bias term and a variance term:

E
[
‖aε − ao‖2] = ‖E[aε] − ao‖2 + E

[
‖aε − E[aε]‖2] , (27)

‖E[aε] − ao‖2 =
N∑

j=1

[1 − (DA) j jψε((DA) j j)]2|(V†
Aao) j|2, (28)

E
[
‖aε − E[aε]‖2] = σ2

N∑

j=1

(DA) j jψε((DA) j j)2. (29)

Proof. The vector (26) has the form

bmeas,l =

∫

A
pmeas(x, z)ψl (x, z)µ(dx) =

∫

A
p(x, z)ψl (x, z)µ(dx) + wl, l = 1, . . . , N,

7
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with wl =
∫

Aw(x, z)ψl (x, z)µ(dx). The random vector (wl)N
l=1 is Gaussian with mean zero and

covariance matrix:

E[wlwl ′] = σ2
∫

A
ψl (x, z)ψl′(x, z)µ(dx) = σ2(V†

AAVA)ll′ = σ2(DA)ll′ .

This means that the random variables wl are independent Gaussian with mean zero and
variances σ2(DA)ll.

The estimated vector (25) has mean

E[aε] = ao − VARε
AV†

Aao,

and covariance

E
[
(aε − E[aε])(aε − E[aε])†

]
= σ2VADε,+

A DADε,+
A V†

A

= σ2VADiag
(
((DA) j jψε((DA) j j)2)N

j=1

)
V†

A.

The mean square error consists of a bias term and a variance term:

E
[
‖aε − ao‖2] = ‖E[aε] − ao‖2 + E

[
‖aε − E[aε]‖2] ,

with

‖E[aε] − ao‖2 = ‖VARε
AV†

Aao‖2

=
N∑

j=1

[1 − (DA) j jψε((DA) j j)]2|(V†
Aao) j|2,

and

E
[
‖aε − E[aε]‖2] = σ2 Tr

(
VADiag

(
((DA) j jψε((DA) j j)2)N

j=1

)
V†

A

)

= σ2
N∑

j=1

(DA) j jψε((DA) j j)2.

"

Corollary 4.3. When σ > 0, there exists a positive and !nite ε that minimizes the mean
square error.

In other words, regularization is always advantageous as soon as there is measurement noise.

Proof. For Tykhonov regularization (19) the mean square error reads

E
[
‖aε − ao‖2] =

N∑

j=1

ε4

((DA)2
j j + ε2)2 |(V†

Aao) j|2 + σ2
N∑

j=1

(DA)3
j j

((DA)2
j j + ε2)2 .

As ε→ 0+:

E
[
‖aε − ao‖2] = σ2

N∑

j=1

1
(DA) j j

− 2ε2σ2
N∑

j=1

1
(DA)3

j j
+ O

ε→0
(ε4),

8



Inverse Problems 36 (2020) 115004 J Garnier

which shows that ε ∈ (0, +∞) )→ E
[
‖aε − ao‖2

]
is a strictly decreasing function close to 0.

As ε→ +∞:

E
[
‖aε − ao‖2] =

N∑

j=1

|(V†
Aao) j|2 − ε−2

N∑

j=1

(DA)2
j j|(V

†
Aao) j|2 + O

ε→+∞
(ε−4),

which shows that ε ∈ (0, +∞) )→ E
[
‖aε − ao‖2

]
is a strictly increasing function at in!n-

ity. Since ε ∈ (0, +∞) )→ E
[
‖aε − ao‖2

]
is continuous this shows that the exists an optimal

ε ∈ (0, +∞) that minimizes the mean square error and this optimal ε is positive and !nite. "

5. Large dense antenna array

In this section we address the case of a large dense antenna array in a waveguide consisting
of a large number of modes. ‘Large antenna array’ means much larger than the wavelength
and ‘dense antenna array’ means that the Nyquist criterium is satis!ed by the locations of the
antennas so that the continuum approximation is valid. ‘Large number of modes’ means that
the diameter of the cross section of the waveguide is much larger than the wavelength. This
situation corresponds to a high-frequency regime (i.e. small wavelength), which is not the main
focus of this paper, but this regime has motivated recent work in the literature. We report in this
section some interesting and original results about the performances of horizontal and vertical
antenna arrays.

We will see below that the spectrum of the N × N matrix A corresponding to a large
dense antenna array typically contains two parts: rA positive eigenvalues (DA) j j for j # rA and
N − rA vanishing eigenvalues (DA) j j * 0 for j > rA. We can then say that rA is the effective
rank of the matrix, and the mean square error is approximately

E
[
‖aε − ao‖2] *

N∑

j=rA+1

|(V†
Aao) j|2 * N − rA

N
‖ao‖2,

where we have used the rough approximation |(V†
Aao) j|2 * ‖(V†

Aao)‖2/N = ‖ao‖2/N. This
shows that the quality of the estimation is directly related to the effective rank of the matrix A
and the performance of the antenna array is all the better as its effective rank is larger.

5.1. Vertical antenna array

The case of a vertical antenna array occupying the line {0} × [0, 2a] in a homogeneous waveg-
uide with background speed co and Dirichlet boundary conditions is addressed in [27, 28]. The
number of guided modes is

N = +koL
π

, = +2L
λo

,, (30)

where λo = 2πco/ω = 2π/ko is the wavelength. In our framework, the problem is reduced to
the analysis of the matrix

A jl =
1

2a

∫ 2a

0
φ j(z)φl(z) dz

=
1
L

sinc
(

2π(l − j)a
L

)
− 1

L
sinc

(
2π(l + j)a

L

)
, (31)

9
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because φ j(z) =
√

2/L sin(π jz/L). A is a real, symmetric Toeplitz-minus-Hankel matrix. Its
spectral properties are determined by the Toeplitz part, which can be studied in detail by
the analysis conducted by Slepian about the discrete prolate spheroidal sequence [26]. When
N - 1 and a/L = O(1), the spectrum can be decomposed into three parts: there is a clus-
ter of O(N ) eigenvalues close to 1/(2a), another cluster of O(N ) eigenvalues close to 0, and
an intermediate layer of eigenvalues in between that decay from 1/(2a) to 0. The number of
eigenvalues in the intermediate layer is o(N ). The number of ‘signi!cant’ eigenvalues close to
1/(2a) is approximately equal to

[
N

2a
L

]
=

[
4a
λo

]
.

The number of ‘signi!cant’ eigenvalues, i.e. the effective rank of the matrix, is the length of
the array 2a divided by the resolution limit λo/2.

The case of a vertical antenna array occupying the line {0} × [za − a, za + a] in a homoge-
neous waveguide is similar and the analysis of the previous case can be extended by the work
of [25], as shown in [28]. The results are similar in terms of numbers of ‘signi!cant’ eigenval-
ues: the effective rank of the matrix A is the length of the array 2a divided by the resolution
limit λo/2.

Finally, we can consider the general case of a vertical antenna array that occupies a set of
disjoint intervals {0} × [bk − ak, bk + ak], k = 1, . . . , P within {0} × (0, L).

Proposition 5.1. The matrix A obtained with a vertical antenna array occupying the lines
{0} × [bk − ak, bk + ak], k = 1, . . . , P, has an effective rank 2N

∑P
k=1 ak/L = 4

∑P
k=1 ak/λo

when N → +∞.

Proof. The matrix A has the form

A jl =
1

2
∑P

k=1 ak

P∑

k=1

∫ bk+ak

bk−ak

φ j(z)φl(z) dz

=
1
π

∫ π

0
[cos(( j − l)s) − cos(( j + l)s)] ρ(s) ds,

with

ρ(s) =
1

2
∑P

k=1 ak

P∑

k=1

1[π(bk−ak)/L,π(bk+ak)/L](s).

By [10, theorem 3.2] the eigenvalues (σ j)N
j=1 of the matrix A satisfy for any continuous

function g

1
N

N∑

j=1

g(σ j)
N→+∞→ 1

π

∫ π

0
g(ρ(s)) ds.

This means that the empirical distribution of the eigenvalues (σ j)N
j=1 of the matrix A weakly

converges as N → +∞ to a measure supported by the two points 0 and [2
∑P

k=1 ak]−1:

1
N

N∑

j=1

δσ j(dσ)N→+∞→
(

1 − 2
∑P

k=1 ak

L

)
δ0(dσ) +

2
∑P

k=1 ak

L
δ1/[2

∑P
k=1 ak](dσ).

10
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Figure 2. Picture (a): eigenvalues (σ j)N
j=1 of the matrix A for different values of the

ratio a/L (0.1, 0.2, 0.3, 0.4) and for a vertical array (red solid) and for a horizontal array
(blue dashed). Here L = 1000, ko = 1, za = 220. The vertical array has about N × 2a/L
signi!cant eigenvalues with value 1/(2a). The horizontal array with the same length has
less signi!cant eigenvalues. Picture (b): effective rank of the matrix A for different values
of the ratio a/L. The matrix is full rank for a vertical array with length 2a = L which
covers the whole cross section.

This shows that the effective rank of the matrix is 2N
∑P

k=1 ak/L. "

In other words, the effective rank is the total length of the array 2
∑P

k=1 ak divided by the
resolution limitλo/2. It is interesting to note that, for a homogeneous waveguide and in the con-
tinuum approximation, the spatial distribution of the receivers along the vertical cross section
does not play any role, only the total length of the linear antenna array plays a role.

5.2. Horizontal antenna array

The case of a horizontal antenna array occupying the line [0, 2a] × {za} in a homogeneous
waveguide is qualitatively similar. The matrix A has the form

A jl =
1

2a

∫ 2a

0
φ j(za)φl(za)ei(β j−βl)x dx

=
2
L

sin
(
π jza

L

)
eiβ ja sin

(
πlza

L

)
e−iβlasinc

(
(β j − βl)a

)
. (32)

Unless za corresponds to a node of a mode, the spectral properties of A are related to those of
the matrix Ã =

(
sinc

(
(β j − βl)a

))N
j,l=1 , which looks like the sinc kernel addressed by Slepian,

upon substitution π j/L )→ β j =
√

k2
o − π2 j2/L2. The theoretical analysis of this case, as far

as we know, has not yet been carried out. We will !rst do numerical simulations to propose
some conjectures and then we will give the theoretical results.

Based on numerical simulations (see !gure 2), we get the following conjecture: when N - 1
and a/L = O(1), the spectrum can be decomposed into two parts: there is a cluster of eigen-
values of order 1/a and another cluster of eigenvalues close to 0 (see !gure 2(a)). The number
of signi!cant eigenvalues is approximately equal to [Na/L] when a/L is small, and smaller
than [Na/L] when a/L becomes of order one (see !gure 2(b)). Note that [Na/L] is one half
the number of signi!cant eigenvalues for a vertical antenna array with the same length. This
conjecture is proved in the following proposition in a more general case.

11
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We now address the case of a horizontal antenna array occupying the disjoint inter-
vals [bk − ak, bk + ak] × {za}, k = 1, . . . , P, in a homogeneous waveguide, with ∪P

k=1[bk −
ak, bk + ak] ⊂ [−L, L].

Proposition 5.2. For almost every za ∈ (0, L), the matrix A obtained with a horizontal
antenna array occupying the lines [bk − ak, bk + ak] × {za}, k = 1, . . . , P, has an effective
rank equal to N

∑P
k=1 ak/L = 2

∑P
k=1 ak/λo when N → +∞ and the total length of the antenna

array is much smaller than L.

Proof. The matrix A has the form

A jl =
1

2
∑P

k=1 ak

P∑

k=1

∫ bk+ak

bk−ak

φ j(za)φl(za)ei(β j−βl)x dx

=
1
L

sin
(
π jza

L

)
sin

(
πlza

L

)
1

∑P
k=1 ak

P∑

k=1

2akei(β j−βl)bk sinc
(
(β j − βl)ak

)
. (33)

We !rst show the following result: if U is a vector with non-zero entries and A jl = U jÃ jlUl

is an N × N symmetric real matrix, then the rank of A and Ã are equal. Indeed, if r̃ is the
rank of Ã, then Ã =

∑r̃
k=1 σ̃kṽkṽT

k with orthonormal vectors ṽk and nonzero σ̃k, and therefore
A =

∑r̃
k=1 σ̃kvkvT

k with vk, j = ṽk, jU j for j = 1, . . . , N and k = 1, . . . , r̃. The vectors vk are
linearly independent (if

∑r̃
k=1 αkvk = 0, then

∑r̃
k=1 αkṽk = 0, and therefore αk = 0 for all k).

This shows that the rank of A is r̃.
From the previous result, for almost every za ∈ (0, L) (for all za except za ∈ {L/k, k ∈

{2, 3, 4, . . .}}, so that sin(π jza/L) never cancels), the matrix A has the same rank as the matrix
Ã with

Ã jl = K
(

(β j − βl)L
π

)
, K(s) =

1
2
∑P

k=1 ak

P∑

k=1

2akeiπs
bk
L sinc

(
πs

ak

L

)
.

We have

(Ãu) j = N
∫ 1

0
K
(

(β j − β/sN0)L
π

)
u/sN0 ds = N

∫ 1

0
K
(
β jL
π

− N

√
1 − /sN02

N2

)
u/sN0 ds.

When the length of the antenna array is much smaller than L, then we can make the continuous

approximation K
(

β jL
π − N

√
1 − /sN02

N2

)
* K

(
β jL
π − N

√
1 − s2

)
. Therefore

(Ãu) j = N
∫ 1

0
K
(
β jL
π

− N
√

1 − s2

)
u/sN0 ds

= N
∫ 1

0
K
(
β jL
π

− Ns′
)

u
/
√

1−s′2N0
s′√

1 − s′2
ds′,

and

(Ãu)
/
√

1−s2N0
= N

∫ 1

0
K
(
N(s − s′)

)
u
/
√

1−s′2N0
s′√

1 − s′2
ds′.

12
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If we introduce ũ j =
√

j
4
√

1+N2− j2
u+
√

1+N2− j2,, we get

(Ãũ)/sN0 = N
∫ 1

0

√
s

4
√

1 − s2
K
(
N(s − s′)

)
√

s′
4
√

1 − s′2
ũ/s′N0 ds′.

Using the same argument as above (multiplication left and right by the same vector does not
change the rank), we conclude that the rank of Ã is the same as the rank of the Toeplitz matrix
(T ( j − l))N

j,l=1:

T ( j − l) =
1

2π

∫ π

−π
ei( j−l)sρ(s) ds,

with

ρ(s) =
1

2
∑P

k=1 ak

P∑

k=1

1[π(bk−ak)/L,π(bk+ak)/L](s).

The rank of (T ( j − l))N
j,l=1 is N

∑P
k=1 ak/L when N → +∞ by [14, section 5.2]. "

To summarize, the results for the large dense antenna array show that the vertical arrays
perform better than horizontal arrays (with the same lengths). The length of the horizontal
array should be twice as long as the one of the vertical array to present similar performance
(in the sense that the same amount of information can be extracted from the two arrays).

6. Small discrete antenna array

We consider in this section that the antenna array is discrete and consists of M point-like
receivers localized at (xk, zk), k = 1, . . . , M. Then the recorded signals are (for sources located
in the region x > a):

pk = p(xk, zk) =
N∑

j=1

a j,oφ j(zk) exp(−iβ jxk), k = 1, . . . , M. (34)

The recorded vector p = (pk)M
k=1 has the form

p = Bao, (35)

where B is the M × N matrix with entries

Bk j = φ j(zk) exp(−iβ jxk), k = 1, . . . , M, j = 1, . . . , N. (36)

Throughout the section we assume that M ! N (i.e. there are more receivers than guided
modes). The matrix A in (12) has the form

A =
1
M

B†B, (37)

which shows that the singular values of B are the square roots of the eigenvalues of A (up to
the factor 1/M) and the right singular vectors of B are the eigenvectors of A (i.e. the columns
of the matrix VA). Therefore it is possible to work directly with the inverse problem associated
with B in the case of discrete antenna arrays.

13
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6.1. Source imaging function

As explained in section 3, source imaging has two main steps:
(1) Regularized estimation of the mode amplitudes,
(2) Migration of the estimated mode amplitudes by the imaging function (5).

It is possible to recover all mode amplitudes ao from the vector of recorded signals p, pro-
vided B has rank N. The ideal method consists in applying the pseudo-inverse of B to the
observed vector p:

a = B+ p, (38)

where B+ = VD+U†, D+ is the N × M diagonal matrix with diagonal coef!cients 1/Djj if
D jj > 0 and 0 otherwise, and

B = UDV† (39)

is the singular value decomposition of B. We then have a = VD+DV†ao, which shows that, if
B has rank N, then D+D = I and a = ao.

In practice, one needs to use a regularized pseudo-inverse D+
ε instead of D+ as in (18). This

has to be done in particular when there is measurement noise. The regularization discards the
contributions that correspond to small singular values, because they cannot be estimated with
accuracy. If the recorded vector pmeas has the form

pmeas = p+ w, p = Bao, (40)

with

w = (w j)M
j=1 ∼ N (0, σ2

measI), (41)

i.e., a family of independent and identically distributed Gaussian circular complex random
variables with mean zero and variance σ2

meas, then the vector recovered by application of the
regularized pseudo-inverse B+

ε = VD+
ε U† is

aε = B+
ε pmeas = VD+

ε DV†ao + VD+
ε U†w. (42)

Since U†w ∼ N (0, σ2
measI), the mean square error of the Tykhonov-regularized estimator is the

sum of a bias term and a variance term:

E
[
‖aε − ao‖2] =

N∑

j=1

ε4

(D2
j j + ε2)2

∣∣(V†ao) j
∣∣2 +

N∑

j=1

D2
j j

(D2
j j + ε2)2 σ

2
meas. (43)

To be complete, we can remark that this regularization corresponds to the choice
ψε(DA) = 1/(DA + ε2) in the general framework of section 4.3, because D jj = (DA)1/2

j j .
As in section 4.3 one can show that it is always advantageous to regularize. Indeed the mean

square error is a smooth function of the regularization parameter ε, it is strictly decreasing
close to zero and strictly increasing at in!nity. The optimal regularization parameter satis!es
∂(ε2)E

[
‖aε − ao‖2

]
= 0, that is to say,

N∑

j=1

D2
j j

(D2
j j + ε2)3

(∣∣(V†ao) j
∣∣2ε2 − σ2

meas

)
= 0. (44)
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By using the rough approximation
∣∣(V†ao) j

∣∣2 * ‖V†ao‖2/N = ‖ao‖2/N, this shows that

ε2 * σ2
meas

N
‖ao‖2 =

σ2
meas

1
N

∑N
j=1 |a j,o|2

. (45)

In other words, the regularization parameter ε should be proportional to the standard deviation
of the measurement error. This is a standard choice for the Tikhonov regularization parameter
[24]. This choice is also promoted by the Morozov’s discrepancy principle, which claims that
we should not try to !t the data beyond the measurement noise [9].

The quality of the image (x, z) )→ |I[aε](x, z)| built from the estimation of the vector aε using
the imaging function (5) depends on the noise level and the conditioning of the matrix B, which
itself depends on the array geometry. In the following subsections we analyze different array
geometries and determine the effective rank of the matrix B.

6.2. Vertical antenna array

When the vertical antenna array in the plane x = 0 consists of M point-like receivers located
at zk, k = 1, . . . , M, the matrix B has the form

B =
(
φ j(zk)

)
1!k!M,1! j!N . (46)

Let us consider the case where the velocity is constant and equal to co and the two boundary
conditions are Dirichlet. Then

φ j(z) =

√
2√
L

sin
(
α jz

)
, α j =

π j
L

. (47)

By denoting by a the radius of the antenna array, by za its center, and by introducing
zk = za + z̃k (so that |̃zk| # a), the matrix B can be expanded as

B =
Q−1∑

q=0

uqv
T
q + O

(
(koa)Q

Q!

)
, (48)

when koa 3 1 (ko = ω/co = 2π/λo is the homogeneous wavenumber), with

u2q+1 =

(√
2√
L

cos(α jza)α2q+1
j

)N

j=1

, (49)

u2q =

(√
2√
L

sin(α jza)α2q
j

)N

j=1

, (50)

v2q+1 =
(−1)q

(2q + 1)!

(
z̃2q+1

k

)M

k=1
, (51)

v2q =
(−1)q

(2q)!

(
z̃2q

k

)M

k=1
. (52)

Proposition 6.1. The vectors (vq)Q−1
q=0 are linearly independent when Q # M. The vectors

(uq)Q−1
q=0 are linearly independent when Q # N, except possibly for a !nite number of special

values of za.
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Proof. If
∑Q−1

q=0 λqvq = 0, then the polynomial z )→
∑Q−1

q=0 λq
(−1)[q/2]

q! zq has M distinct zeros
(̃zk)M

k=1. If M > Q − 1, then the polynomial must be zero which imposes λq = 0 for all q.
If
∑N−1

q=0 λquq = 0 has a non trivial solution (λq)N−1
q=0 , then the determinant of the matrix

(∂q−1
za

sin(α jza))N
q, j=1 is zero. By Euler’s formula, the function z )→ det

(
(∂q−1

z sin(α jz))N
q, j=1

)

can be written as exp(−iN(N + 1)πz/(2L))QN(exp(iπz/L)) where QN is a polynomial of degree
N(N + 1). This non-zero polynomial has only a !nite number of roots, so there is only a
!nite number of z ∈ [0, L] such that QN(exp(iNπz/L)) = 0. If za is different from these special
values, then the vectors (uq)N−1

q=0 are linearly independent. "
The ε-regularization used when the noise level has relative standard deviation ε pre-

vents from exploiting the singular vectors whose singular values are smaller than ε. From
equation (48) and proposition 6.1 this implies that B has an effective rank Q where Q is such
that

(koa)Q

Q!
* ε. (53)

Here we assume that M is larger than Q (otherwise the rank is limited to M). For instance,
for ε = 10−7 and koa = 0.125, formula (53) predicts that we have Q * 5. If we compare
with the singular values of the matrix B when ko = 1, L = 20, zk = 11 + 0.25(k − M/2)/M,
k = 1, . . . , M, M = 20, then we !nd that N = 6 and the !rst singular values of B are
σ(1) * 2.6, σ(2) * 0.1, σ(3) = 210−3, σ(4) = 110−5, σ(5) = 110−7, σ(6) = 410−10, so that
indeed its effective rank is approximately 5.

In !gure 3, a vertical antenna array records the time-harmonic wave. It is localized at za = 11
and zk = 11 + 0.25(k − M/2)/M, k = 1, . . . , M, with M = 20. Here the frequency is ω = 1,
the velocity is co = 1, L = 20, the original source is at (xo, zo) = (100, 7.7). There are N = 6
guided modes. Different noise levels are considered (corresponding to different regularization
parameters). The imaging function (x, z) )→ |I[aε](x, z)| is plotted for (x, z) within the waveg-
uide for different values of the noise level. The imaging function is normalized by its maximal
value. We can observe that the position of the maximum of the imaging function corresponds
to the source position with very high probability and with very good accuracy when the noise
level is small. There exists a critical noise level beyond which the method fails, the imag-
ing function has many local maxima and the position of the global maximum of the imaging
function does not correspond anymore to the source position. We also plot in !gure 3 the local-
ization error rate as a function of the noise level, it is the probability that the position of the
maximum of the imaging function is less than half-a-wavelength away from the source posi-
tion, it is computed by an empirical average based on 1000 simulations with independent and
identically distributed noise realizations. The numerical results show that the source can be
localized with accuracy (at the scale of the wavelength) and with high probability if σ $ 10−7.
Note that the total length of the array is very small compared to the wavelength, it is equal to
0.25 * 0.04λo. This shows that it is possible to image the source with such an antenna array,
but the signal-to-noise ratio (SNR) has to be very high.

6.3. Horizontal antenna array

In this subsection we consider the situation in which the antenna array is horizontal at z = za

and consists of M receivers localized at x = xk, k = 1, . . . , M, around the position x = 0. The
matrix B has the form

B =
(
φ j(za) exp(−iβ jxk)

)
1!k!M,1! j!N . (54)
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Figure 3. Images and localization error rates obtained with a vertical antenna array of
M = 20 receivers and total length 0.25 * 0.04λo and with different levels of noise σ.
Here σmeas = σ‖p‖∞. The source position is at (xo, zo) = (100, 7.7). The source can be
localized with accuracy (at the scale of the wavelength) if σ $ 10−7.

Let us consider the case where the velocity is constant and the two boundary conditions are
Dirichlet. Then the mode pro!les are given by (47) and the modal wavenumbers are

β j =
√

k2
o − α2

j . (55)

By denoting by a the length of the antenna array, B can be expanded as

B =
Q−1∑

q=0

uqv
†
q + O

(
(koa)Q

Q!

)
(56)

when koa 3 1, with

uq =
(
φ j(za)βq

j

)N

j=1
, vq =

iq

q!

(
xq

k

)M
k=1 . (57)

Proposition 6.2. The vectors (vq)Q−1
q=0 are linearly independent when Q # M. The vectors

(uq)Q−1
q=0 are linearly independent when Q # N, except possibly for a !nite number of special

values of za.

Proof. If
∑Q−1

q=0 λqvq = 0, then the polynomial z )→
∑Q−1

q=0 λq
iq
q! xq has M distinct zeros

(xk)M
k=1. If M > Q − 1, then the polynomial must be zero which imposes λq = 0 for all q.
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If
∑N−1

q=0 λquq = 0 has a non trivial solution (λq)N−1
q=0 , then the determinant of the matrix

(βq−1
j sin(α jza))N

q, j=1 is zero. The function z )→ det
(

(βq−1
j sin(α jz))N

q, j=1

)
can be written as

exp(−iN(N + 1)πz/(2L))QN(exp(iπz/L)) where QN is a polynomial of degree N(N + 1).
Therefore there is only a !nite number of z ∈ [0, L] such that QN(exp(iπz/L)) = 0. If za is
different from these special values, then the vectors (uq)N−1

q=0 are linearly independent. "
The ε-regularization used when the noise level has relative standard deviation ε prevents

from exploiting the singular vectors whose singular values are smaller than ε. This implies that
B has an effective rank Q where Q is such that (koa)Q

Q! * ε. Here we assume that M is larger than
Q. For instance, if ε = 10−7 and koa = 0.125, then Q * 5. If we compare with the singular
values of the matrix B when ko = 1, L = 20, za = 11, xk = 0.25(k − M/2)/M, k = 1, . . . , M,
M = 20, then we !nd that the !rst singular values of B are σ(1) * 2.6, σ(2) * 0.04, σ(3) =
310−4, σ(4) = 710−7, σ(5) = 810−10, so that indeed its effective rank is 4. We observe that the
singular values decay slightly faster than in the case of a vertical array. This is due to the fact
that the β j are not uniformly distributed over (0, ko) contrarily to α j. Therefore, a horizontal
array has reduced performance compared to a vertical array with the same length, because the
number of singular vectors that can be extracted for a given SNR is reduced.

In !gure 4, an horizontal antenna array records the time-harmonic wave with different levels
of additive noise. The array is localized at za = 11 and xk = 0.25(k − M/2)/M, k = 1, . . . , M,
with M = 20. Here the frequency is ω = 1, the velocity is co = 1, L = 20, the original source
is at (xo, zo) = (100, 7.7). The image is more sensitive to the noise than in the case of a vertical
array, as predicted by the theory.

6.4. Planar antenna array

In this subsection we consider the situation in which the antenna array is planar and localized
around (xa, za) and consists of M receivers at (xk, zk), k = 1, . . . , M. The diameter of the planar
array is denoted by a (which means that the receivers lie within the square [xa − a, xa + a] ×
[za − a, za + a]). The matrix B has the form

B =
(
φ j(zk) exp(−iβ jxk)

)
1!k!M,1! j!N . (58)

As in the previous sections, by taking the regularization parameter ε proportional to the
standard deviation of the measurement noise, one minimizes the mean square estimation error.
This means that we can estimate a limited number of pairs of singular values/vectors. This
number is the effective rank of the matrix B, which depends on the antenna array and the
waveguide geometry. The goal of this subsection is to characterize this number and to show
that it is not as large as one could have expected.

6.4.1. Homogeneous waveguide. Let us consider the case where the velocity is constant and
the two boundary conditions are Dirichlet. Then we have (47) and (55) and B can be expanded
as

B =
∞∑

q,q′=0

uq,q′v
†
q,q′ , (59)

with

uq,2q′+1 =

(√
2√
L

cos(α jza)βq
jα

2q′+1
j

)N

j=1

, (60)
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Figure 4. Images and localization error rates obtained with a horizontal antenna array
of M = 20 receivers and total length 0.25 * 0.04λo and with different levels of noise σ.
Here σmeas = σ‖p‖∞. The source position is at (xo, zo) = (100, 7.7). The source can be
localized if σ $ 10−10.

uq,2q′ =

(√
2√
L

sin(α jza)βq
jα

2q′
j

)N

j=1

, (61)

vq,2q′+1 =
iq

q!

(−1)q′+1

(2q′ + 1)!

(
xq

k z̃2q′+1
k

)M

k=1
, (62)

vq,2q′ =
iq

q!

(−1)q′

(2q′)!

(
xq

kz̃2q′

k

)M

k=1
. (63)

Proposition 6.3. The vectors (vq,q′)q+q′!Q−1 are linearly independent for arbitrary posi-
tions (xk, z̃k)M

k=1.

‘Arbitrary’ positions means outside a set of values of (xk, z̃k)M
k=1 in [−a, a]2M of Lebesgue

measure zero. For instance, if (xk, z̃k)M
k=1 are sampled independently and randomly with the

uniform distribution in [−a, a]2, then almost every realizations are ‘arbitrary’.

Proof. If the vectors (vq,q′)q+q′!Q−1 are linearly dependent, then the linear system∑
q+q′!Q−1 λq,q′vq,q′ = 0 has a non trivial solution λ = (λq,q′)q+q′!Q−1. This system reads as

Mλ = 0, where M is an M × Q(Q + 1)/2-matrix involving the coef!cients iq
q!

(−1)[(q′+1)/2]

q′! xq
kz̃q′

k .
If M ! Q(Q + 1)/2 we can extract the !rst Q(Q + 1)/2 lines of this matrix and we can claim
that the determinant of the resulting matrix must be zero. This determinant is a multivariate
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polynomial in (xk, z̃k)M
k=1. However, the set of points in R2M in which a nonzero multivariate

polynomial vanishes has zero Lebesgue measure [7]. "
If koa is small (a is the diameter of the planar antenna array), then

B =
∑

q+q′!Q−1

uq,q′v
†
q,q′ + O

(
(koa)Q

Q!

)
. (64)

The ε-regularization used when the noise level has relative standard deviation ε prevents
from exploiting the singular vectors whose singular values are smaller than ε. Then it seems
that the effective rank of B could be (Q + 1)Q/2, i.e. the number of pairs (q, q′) such that
q + q′ # Q − 1 where Q is such that (koa)Q

Q! * ε. Unfortunately, this is over-optimistic. Indeed,
the vectors (vq,q′)q+q′!Q−1 are typically linearly independent by proposition 6.3, but the vectors
(uq,q′)q+q′!Q−1 are not. Indeed, by the dispersion relation we have

α2
j + β2

j = k2
o, (65)

which implies by proposition 6.4

Span
(
(uq,q′)q+q′!Q−1

)
= Span

(
(u0,q′)q′!Q−1 ∪ (u1,q′)q′!Q−2

)
, (66)

and therefore the effective rank of B is only 2Q − 1. However, 2Q − 1 is approximately twice
as large as the effective rank obtained for a horizontal array or a vertical one. It is therefore
much more favorable to use this type of antenna array. But it is not as favorable as we could
have anticipated.

We can therefore claim that B has an effective rank 2Q − 1 where Q is such that
(koa)Q

Q! * ε. For instance, if ε = 10−4 and koa = 0.125, then Q * 3 and the rank should be 5.
If we compare with the singular values of the matrix B when ko = 1, L = 20, and (xk, zk)M

k=1
is a Latin hypercube sampling (LHS) design (a type of quasi Monte Carlo sampling [21])
of M = 20 points centered at (0, za), za = 11, with size 0.25, then we !nd that the !rst sin-
gular values of B are σ(1) * 2.4, σ(2) * 0.12, σ(3) = 0.03, σ(4) = 210−3, σ(5) = 110−4,
σ(6) = 510−6, so that indeed its effective rank is 5. We observe that the singular values decay
much slower than in the case of a vertical or horizontal array, which makes it possible to get
an approximation of the inverse of the matrix B even in the presence of moderate noise.

In !gure 5, a planar antenna array records the time-harmonic wave. It is centered at (0, za) =
(0, 11). It contains M = 20 receivers distributed as an LHS design with size a = 0.25. Here the
frequency isω = 1, the velocity is co = 1, L = 20, the original source is at (xo, zo) = (100, 7.7).
The planar array can localize the source with a higher level of noise compared to the linear,
horizontal or vertical, array. We can observe that the source can be localized if σ $ 10−4.
If the number of receivers is multiplied by K (for instance, K = 50 as in !gure 5 where the
con!gurations with M = 20 receivers and with M = 1000 receivers are compared), then we
gain a factor

√
K in the critical noise level below which we can estimate the source position

with accuracy and with high probability. This gain can be observed in the !gure plotting the
localization error rates by comparing the red (M = 20) and blue (M = 1000) crosses. Finally,
if the frequency is ω = 0.7, then there is only N = 4 guided modes and it is possible to get the
source position with a few percents of additive noise (see !gure 6).

6.4.2. Heterogeneous waveguide. The case of a homogeneous waveguide is special. We can
wonder whether the fact that the effective rank of the matrix B is found to be 2Q − 1 while we
could have expected Q(Q + 1)/2 is a particular feature of this waveguide or whether it holds
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Figure 5. Images and localization error rates obtained with a planar array of M = 20
receivers with side length 0.25 * 0.04λo and with different levels of noise σ. Here
σmeas = σ‖p‖∞. The source position is at (xo, zo) = (100, 7.7) and the frequency is
ω = 1. The localization error rate is plotted as a function of the noise level σ for
M = 20 (blue ×) and for M = 1000 (red +). The source can be localized if σ $ 10−4

(for M = 20) and if σ $ 10−3 (for M = 1000).

true for a general waveguide. In fact, it turns out that this is a general feature that happens for
any waveguide. Indeed, in the general case, the matrix B can be expanded as

Bk j =
∞∑

q,q′=0

φ(q′)
j (za)

z̃q′

k

q′!

(−iβ jxk)q

q!
, (67)

that is to say as (59) with

uq,q′ =
(
βq

jφ
(q′)
j (za)

)N

j=1
, (68)

vq,q′ =
iq

q!q′!

(
xq

k z̃q′

k

)M

k=1
. (69)

If koa is small (a is the diameter of the planar array), then

B =
∑

q+q′!Q−1

uq,q′v
†
q,q′ + O

(
(koa)Q

Q!

)
, (70)
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Figure 6. Images and localization error rates obtained with a planar array of M = 20
receivers with side length 0.25 * 0.03λo and with different levels of noise σ. Here
σmeas = σ‖p‖∞. The source position is at (xo, zo) = (100, 7.7) and the frequency is
ω = 0.7. The localization error rate is plotted as a function of the noise level σ for
M = 20 (blue ×) and for M = 1000 (red +). The source can be localized if σ $ 10−2

(for M = 20) and if σ $ 10−1 (for M = 1000).

so that the effective rank of the matrix could be Q(Q + 1)/2, provided the vectors vq,q′ and the
vectors uq,q′, for q + q′ # Q − 1, are linearly independent (by assuming that M, N are larger
than Q(Q + 1)/2). For arbitrary positions xk, z̃k, the vectors vq,q′ are linearly independent.
However, the vectors uq,q′ are not independent, as shown by the following proposition.

Proposition 6.4. If c is smooth at za, then

Span
(
(uq,q′)q+q′!Q−1

)
= Span

(
(uq,0)q!Q−1 ∪ (uq,1)q!Q−2

)
. (71)

Proof. Equation (2) implies the following relations for the derivatives of the mode pro!les:

φ(2)
j (za) =

(
β2

j −
ω2

c2(za)

)
φ j(za),

φ(3)
j (za) =

2ω2c(1)(za)
c3(za)

φ j(za) +

(
β2

j −
ω2

c2(za)

)
φ(1)

j (za),

φ(4)
j (za) =

((
β2

j −
ω2

c(za)2

)2

+ ω2
(

2c(2)(za)
c3(za)

− 6c(1)(za)2

c4(za)

))
φ j(za)
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+
4ω2c(1)(za)

c3(za)
φ(1)

j (za),

and more generally we can establish by a recursive argument that

φ(q)
j (za) = Pq(β2

j )φ j(za) + Qq(β2
j )φ

(1)
j (za), (72)

where Pq and Qq are polynomials of degree deg(Pq) # [q/2] and deg(Qq) # [(q − 1)/2],
whose coef!cients depend on ω and on derivatives c(k)(za), but not explicitly on j:

Pq+1(β2) = [∂zaPq](β2) + Qq(β2)
(
β2 − ω2

c2(za)

)
,

Qq+1(β2) = Pq(β2) + [∂zaQq](β2).

Consequently

βq
jφ

(q′)
j (za) =

[
βq

j Pq′(β2
j )
]
φ j(za) +

[
βq

j Qq′(β2
j )
]
φ(1)

j (za).

This shows that uq,q′ is a linear combination of (uq+2q′′,0)[q′/2]
q′′=0 and (uq+2q′′,1)[(q′−1)/2]

q′′=0 , and it is

therefore a linear combination of (uq′′,0)q+q′

q′′=0 and (uq′′,1)q+q′−1
q′′=0 . "

Therefore the effective rank of B is only 2Q − 1. Again, the effective rank 2Q − 1 is twice
as large as the effective rank obtained for a horizontal array or a vertical one. It is therefore
much more favorable to use this type of antenna array. Unfortunately, it is not possible to reach
the rank Q(Q + 1)/2 that would have been even more favorable.

Example 6.5. Let us consider the case of an ideal parabolic waveguide, with unbounded
transverse domain and a transverse velocity pro!le of the form

1
c2(z)

=
1
c2

o

(
1 − z2

L2

)
.

Denoting ko = ω/co, the eigenmodes have the form

φ j(z) = (ko/L)1/4 f j

(
(ko/L)1/2z

)
,

where the f j, j ! 0, are the Gauss–Hermite functions:

f j(s) =
1√

2 j
√
π j!

H j(s) exp(−s2/2),

that satisfy f ′′j (s) − s2 f j(s) = −(2 j + 1) f j(s). There are N + 1 guided modes, with

N =

[
koL − 1

2

]
.

For j = 0, . . . , N, the modal wavenumber of the jth guided mode is

β j =
√

k2
o − (2 j + 1)ko/L.

In !gure 7, a planar antenna array records the time-harmonic wave. It is centered at (0, za) =
(0, 2). It contains M = 20 receivers distributed as an LHS design with size a = 0.25. Here the
frequency is ω = 1, the waveguide is parabolic with co = 1 and L = 10, the original source is
at (xo, zo) = (100,−3). The result is very similar to the case of a homogeneous waveguide.
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Figure 7. Images and localization error rates obtained with a planar array of
M = 20 receivers with side length 0.25 * 0.04λo and with different levels of noise σ.
Here σmeas = σ‖p‖∞. The waveguide is parabolic. The source position is at (xo, zo) =
(100,−3). The source can be localized if σ $ 10−4.

7. Conclusion

In this paper we have considered the source imaging problem in a two-dimensional waveguide.
We have !rst addressed the case of dense antenna arrays in the high-frequency regime and
compared the performances of vertical and horizontal antenna arrays. The overall result is that
the length of a horizontal antenna array should be twice as long as the one of a vertical array to
present similar performance. We have focused our attention to the low-frequency regime, when
the number of guided modes is small and the diameter of the sensor array is smaller than the
wavelength. The principle of source localization is (1) to estimate the guided mode amplitudes
from the recorded data by resolution of an appropriate regularized inverse problem and (2)
to backpropagate the contributions of the guided mode amplitudes that have been estimated
correctly. The main !ndings of this paper are the following ones:

(i) Source localization is possible even with very small antenna arrays provided the SNR of
the data is high.

(ii) Vertical linear antenna arrays have better performance than horizontal linear arrays (for a
given diameter) but both require extremely high SNR.

(iii) The use of planar antenna arrays makes it possible to get an estimate of the source position
when the SNR is moderately high. The gain in performance and stability compared to
linear (horizontal or vertical) antenna arrays is signi!cant.
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(iv) There is a fundamental limitation that prevents from reaching an even better perfor-
mance and that is related to the wave equation and its dispersion relation. It is one sit-
uation where a PDE-constrained inverse problem (an inverse problem constrained by a
partial differential equation) shows poor results because the acquired data set is in fact
highly redundant.
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