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Abstract

Wave propagation in random media can be studied by multiscale and stochastic
analysis. We review some recent advances and their applications. In particular, in
a physically relevant regime of separation of scales, wave propagation is governed
by a Schrödinger-type equation driven by a Brownian field. We study the associated
moment equations and describe the propagation of coherent and incoherent waves. We
quantify the scintillation of the wave and the fluctuations of the Wigner distribution.
These results make it possible to introduce and characterize correlation-based imaging
methods.

1 Wave propagation in random media

In many wave propagation scenarios the medium is not constant, but varies in a compli-
cated fashion on a spatial scale that is small compared to the total propagation distance.
This is the case for wave propagation through the turbulent atmosphere, the Earth’s crust,
the ocean, and complex biological tissue for instance. If one aims to use transmitted or re-
flected waves for communication or imaging purposes it is important to characterize how
such microstructure affects and corrupts the wave.

Motivated by the situation described above we consider wave propagation through time-
independent complex media with a spatially varying index of refraction. Typically we can-
not expect to know the index of refraction pointwise so we model it as a realization of a
random process. When the index of refraction is a random process, the wave field is itself
a random process and we are interested in how the statistics of the random medium affects
the statistics of the wave field. The analysis of wave propagation in random media has a
long history. It was first dealt with phenomenogical models such as the radiative transfer
theory. The first mathematical papers were written in the 60’s by Keller [1964] who con-
nected radiative transport theory and random wave equations. In the review presented at
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the ICM by Papanicolaou [1998], the main focus was on wave transport and localization
(when random inhomogeneities are strong enough to trap wave energy in a bounded re-
gion). The book Fouque, Garnier, Papanicolaou, and Sølna [2007] gives the state of the
art about wave propagation in randomly layered media, that is a situation mathematically
tractable and physically relevant (especially in geophysics). In the recent years several
new features have emerged.
1) First statistical stability has become a central issue. Indeed the modeling of a complex
medium by a random medium involves ensemble averages. In some circumstances, such
as the turbulent atmosphere or the ocean, the medium may change (slowly) in time so that
ensemble averages can be experimentally achieved. This is not the case in other configura-
tions, such as seismology, in which the Earth is not moving although it can be considered
as a realization of a random medium to model uncertainty and lack of information. It
is then important to look for statistically stable quantities, that is to say, quantities that
depend on the statistics of the random medium that can be known or estimated, but not
on the particular realization that is inaccessible. To quantify statistical stability, variance
calculations are required, which are based on high-order moment analysis.
2) Motivated by statistical stability analysis and time-reversal experiments for waves in
random media, new methods for communication and imaging have been introduced that
are based on wave field correlations. The understanding and analysis of these methods
again require high-order moments calculations.
3) Following the analysis of wave field correlations, it was understood that information
about the medium could be extracted from wave correlations even when the illumination
is provided not by controlled sources, but by uncontrolled, opportunistic or ambient noise
sources.
A common feature of these recent developments is the analysis and use of wave field
correlations that reveal very rich information. Modern imaging techniques such as seis-
mic interferometry (see N. M. Shapiro, Campillo, Stehly, and Ritzwoller [2005], Schuster
[2009], and Wapenaar, Slob, Snieder, and Curtis [2010]) or coherent interferometric imag-
ing (see Borcea, Papanicolaou, and Tsogka [2005, 2006]) correlate wave field traces that
have been corrupted by the microstructure of the medium and use their space-time corre-
lation function for imaging.

1.1 Multiscale analysis. In its most common form, the analysis of wave propagation
in random media consists in studying the wave field solution of the scalar time-harmonic
wave equation (called the Helmholtz equation with a randomly heterogeneous index of re-
fraction. Even though the scalar wave equation is simple and linear, the relation between
the statistics of the index of refraction and the statistics of the wave field is highly non-
trivial. In order to simplify and understand this relation, one can carry out a multiscale



MULTISCALE ANALYSIS OF WAVE PROPAGATION IN RANDOM MEDIA 2867

analysis that will transform the random Helmholtz equation into a mathematically tractable
yet physically relevant problem. This analysis is based on a separation of scales technique
and limit theorems (homogenization, diffusion-approximation, ...), in the framework set
forth by Asch, Kohler, Papanicolaou, Postel, and White [1991]. The wave propagation
problem can, indeed, be characterized by several length scales: the typical wavelength
(which depends on the source), the correlation radius of the medium, the typical propa-
gation distance. The bandwidth of the source and the relative amplitude of the medium
fluctuations may also play a role. Different scaling regimes (corresponding to different
physical configurations) can be analyzed when certain ratios between these length scales
go to zero or infinity. They lead to tractable and relatively easy to interpret asymptotic
results. Typically, the solution of the random Helmholtz equation can be shown to con-
verge to the solution of a deterministic or stochastic partial differential equation driven by
a Brownian field as in the situation addressed in Section 2. Stochastic calculus can then
be used to compute quantities of interest.

In the random travel time model, which is a special high-frequency regime in which
the wavelength is much smaller than the correlation radius of the medium, the fluctua-
tions of the medium affect only the phase of the wave, which satisfies a random eikonal
equation Borcea, Garnier, Papanicolaou, and Tsogka [2011] and Tatarskii [1961]. In the
random paraxial model in which the wavelength is smaller than the correlation radius of
the medium, backscattering can be neglected but there is significant lateral scattering as
the wave advances over long propagation distances and the wave field satisfies a random
Schrödinger-type equation Tappert [1977] and Uscinski [1977]. In the randomly layered
regime, the medium is only varying along the longitudinal direction (along the propaga-
tion axis), there is significant backscattering and the plane wave mode amplitudes satisfy
a system of ordinary random differential equations Fouque, Garnier, Papanicolaou, and
Sølna [2007]. In the radiative transport regime, in which the wavelength is of the same
order as the correlation radius of the medium, the angular distribution of the mean wave
energy satisfies a transport equation Ryzhik, Papanicolaou, and Keller [1996] and Sato
and Fehler [1998].

In this review paper we consider a scaling regime corresponding to long-range high-
frequency beam propagation and small-scale medium fluctuations giving negligible backscat-
tering. This is the so-called white-noise paraxial regime, as described by the Itô-Schrödinger
model, which is presented in Section 2. This model is a simplification of the random
Helmholtz equation since it corresponds to an evolution problem, but yet in the regime
that we consider it describes the propagated field in a weak sense in that it gives the cor-
rect statistical structure of the wave field. The Itô-Schrödinger model can be derived
rigorously from the random Helmholtz equation by a separation of scales technique in the
high-frequency regime (see Bailly, Clouet, and Fouque [1996] in the case of a randomly
layered medium and Garnier and Sølna [2008, 2009a,b] in the case of a three-dimensional
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random medium). It models many situations, for instance laser beam propagation Stro-
hbehn [1978], underwater acoustics Tappert [1977], or migration problems in geophysics
Claerbout [1985]. The Itô-Schrödinger model makes it possible to use Itô’s stochastic
calculus, which in turn enables the closure of the hierarchy of moment equations Fouque,
Papanicolaou, and Samuelides [1998] and Ishimaru [1997]. The equations for the first-
order and second-order moments are easy to solve. The equation for the fourth-order mo-
ments is difficult and only approximations or numerical solutions have been available for
a long time (see Fante [1975], Tatarskii [1971], and Uscinski [1985] and Ishimaru [1997,
Sec. 20.18]). In a special scaling regime, it is, however, possible to derive expressions for
the fourth-order moments as presented in Section 3.

The results on the higher-order statistics of the wave field open the mathematical anal-
ysis of important problems. Below we discuss a few applications, from the understanding
of physical conjectures such as star scintillation to the design of efficient correlation-based
imaging schemes in complex media. We believe that many more problems than those men-
tioned here will benefit from the results regarding the statistics of the wave field. In fact,
enhanced transducer technology and sampling schemes allow for using finer aspects of the
wave field involving second- and fourth-order moments and in such complex cases a rig-
orous mathematical analysis is important to support, complement, or sometimes disprove,
statements based on physical intuition alone.

1.2 A few conjectures. Star scintillation is a well-known paradigm, related to the obser-
vation that the irradiance of a star fluctuates due to interaction of the light with the turbulent
atmosphere. Experimental observations indicate that the statistical distribution of the ir-
radiance is exponential, with the irradiance being the square magnitude of the complex
wave field. In the physical literature it is a well-accepted conjecture that the statistics of
the complex wave field becomes circularly symmetric complex Gaussian when the wave
propagates through the turbulent atmosphere Valley and Knepp [1976] and Yakushkin
[1978], so that the irradiance is the sum of the squares of two independent real Gaussian
random variables, which has chi-square distribution with two degrees of freedom, that is
an exponential distribution. The mathematical proof of this conjecture has been obtained
in randomly layered media Fouque, Garnier, Papanicolaou, and Sølna [2007, Chapter 9]
but is still incomplete in three-dimensional random media Fouque, Papanicolaou, and
Samuelides [1998] and Garnier and Sølna [2014, 2016]. In Section 4 we report results
for the fourth-order moments that are consistent with the Gaussian conjecture.

Certain functionals of the wave field carry information about the medium and can be
characterized in some specific regimes Bal [2004], Bal and Pinaud [2010], Fannjiang
[2006], and Papanicolaou, Ryzhik, and Sølna [2007]. For instance, the Wigner distri-
bution (a transform in time-frequency analysis) is known to be convenient to study the
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solution of Schrödinger equation Gérard, Markowich, Mauser, and Poupaud [1997] and
Ryzhik, Papanicolaou, and Keller [1996]. An important issue is the so-called statistical
stability property: we look for functionals that become deterministic in the considered
scaling regime and that depend only on the statistics of the random medium and not on the
particular realization. The conjecture is that this can happen for well chosen functionals
in the limit of rapid decorrelation of the medium fluctuations. In Komorowski, Peszat,
and Ryzhik [2009] and Komorowski and Ryzhik [2012] the authors consider a situation
with rapidly fluctuating random medium fluctuations in which the Wigner distribution is
statistically stable. As shown in Bal [2004], however, the statistical stability also depends
on the initial data and can be lost for very rough initial data even with a high lateral diver-
sity as considered there. In Section 5 we present a detailed and quantitative analysis of
the stability of the Wigner distribution and derive an explicit expression of the coefficient
of variation of the smoothed Wigner distribution as a function of the smoothing parame-
ters, in the general situation in which the standard deviation can be of the same order as
the mean. This is a realistic scenario, which is not too deep into a statistical stabilization
situation, but which gives partly coherent but fluctuating wave functionals. These results
make it possible to quantify such fluctuations and how their magnitudes can be controlled
by optimal smoothing of the Wigner distribution.

1.3 Applications to communication and imaging. The understanding of the statistics
of the wave field is very important for applications to communication and imaging. Many
studies are driven by practical considerations or experimental observations.
1) The time-reversal experiments carried out by M. Fink and his group have motivated
many theoretical developments Fink, Cassereau, Derode, Prada, Roux, Tanter, Thomas,
and Wu [2000]. These experiments are based on the use of a special device called a time-
reversal mirror (TRM). A TRM is an array of transducers, that is to say, an array of sensors
that can be used as sources and as receivers. A time-reversal experiment has two steps.
In the first step, the TRM is used as an array of receivers. A wave is transmitted by a
point source far away from the TRM and is recorded by the TRM. In the second step, the
TRM is used as an array of sources. It transmits the time-reversed recorded signals. The
main observations are that i) the wave refocuses on the original source location, ii) refo-
cusing is enhanced when the medium is randomly scattering, and iii) the time-reversed
refocused wave is statistically stable, in the sense that the profile of the focal spot depends
on the statistical properties of the random medium, but not on its particular realization.
The phenomenon of focusing enhancement has been analyzed quantitatively Blomgren,
Papanicolaou, and Zhao [2002], Papanicolaou, Ryzhik, and Sølna [2004], and Fouque,
Garnier, Papanicolaou, and Sølna [2007]. Statistical stability of time-reversal refocus-
ing for broadband pulses is usually qualitatively proved by the fact that the time-reversed
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refocused wave is the superposition of many frequency-dependent components that are un-
correlated, which gives the self-averaging property by the law of large numbers Blomgren,
Papanicolaou, and Zhao [2002] and Papanicolaou, Ryzhik, and Sølna [2004]. For narrow-
band pulses the analysis of the statistical stability phenomenon involves the evaluation of a
fourth-order moment of the Green’s function of the random wave equation. This problem
has been addressed in Ishimaru, Jaruwatanadilok, and Kuga [2007] by using the circular
complex Gaussian assumption without rigorous justification. It is, however, possible to
prove that the fourth-order moments satisfy Isserlis formula (i.e. they can be expressed in
terms of sums of products of second-order moments) and to give a detailed analysis of the
statistical stability of the time-reversed refocused wave Garnier and Sølna [2016].

2) Wavefront-shaping-based schemes Vellekoop and Mosk [2007] have attracted a lot
of attention in recent years. The primary goal is to focus monochromatic light through a
layer of strongly scattering material. This is a challenging problem as multiple scattering
of waves scrambles the transmitted light into random interference patterns called speckle
patterns Goodman [2000]. By using a spatial light modulator (SLM) before the scatter-
ing medium (a device that can modulate the intensity and/or the phase profile of the light
beam), it is possible to focus light as first demonstrated in Vellekoop and Mosk [2007].
Indeed, the elements of the SLM can impose prescribed phase shifts, and an optimization
scheme makes it possible to choose the phase shifts so as to maximize the intensity trans-
mitted at one target point behind the scattering medium. The optimal phase shifts are the
opposite phases of the field emitted by a point source at the target point and recorded in
the plane of the SLM Mosk, Lagendijk, Lerosey, and Fink [2012]. In other words, the
wavefront-shaping optimization procedure is equivalent to phase conjugation or time re-
versal. Moreover, it has been shown that the speckle memory effect Feng, Kane, Lee, and
Stone [1988] and Freund, Rosenbluh, and Feng [1988] allows to focus on a neighboring
point close to the original target point Vellekoop and Mosk [2007], which opens the way
to the transmission of spatial patterns Popoff, Lerosey, Fink, Boccara, and Gigan [2010].
This phenomenon can be quantified by fourth-order moments calculations as shown in
Garnier and Sølna [2017].

3) In imaging in complex media, when the propagation distance is large enough, the
cross correlations of the recorded signals play an important role. This is because the mean
(or coherent) field vanishes while the correlations carry information about the medium
through which the waves propagate (see Section 3 in the random paraxial regime). The
mathematical analysis aims at two goals. First one needs to understand how information
about the medium is encoded in the wave field correlations. Second one needs to determine
how this information can be extracted in a statistically stable way. This requires detailed
fourth-order moment calculations. These calculations help determining imaging functions
that can operate in scattering media (see Borcea, Garnier, Papanicolaou, and Tsogka [2011]
and Garnier [2016] for instance).
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4) Intensity correlations is a recently proposed scheme for communication and imaging
in the optical regime. Indeed, in optics only intensities (i.e. the square moduli of the com-
plex envelopes of the wave fields) can be recorded. Intensity correlation-based imaging is
a promising scheme for communication and imaging through relatively strong clutter. By
using the correlation of the intensity or speckle for different incoming angles, or different
positions of the source, or different output angles, one can get spatial information about
the source Newman and Webb [2012]. The idea of using the information about the statis-
tical structure of speckle to enhance signaling is very interesting and corroborates the idea
that modern schemes for communication and imaging require a mathematical theory for
analysis of high-order moments.

5) In conventional imaging the waves are generated by an active array of sources and
after propagation through the medium they are recorded by an array of receivers (that can
be collocated or not with the array of sources). In passive imaging, only receiver arrays
are used and the illumination is provided by unknown, uncontrolled, asynchronous, or
opportunistic sources. From a theoretical point of view the cross correlations between
the recorded signals carry information about the medium through which the waves propa-
gate, as we explain in Section 6. Therefore they play an important role in passive imaging
and they can be used for travel-time tomography and reflector imaging Garnier and Pa-
panicolaou [2016]. From an applied point of view the emergence of correlation-based
imaging using ambient seismic noise has had a profound impact in seismology, as can be
seen in the work of M. Campillo and co-workers N. M. Shapiro, Campillo, Stehly, and
Ritzwoller [2005]. The use of seismograms generated by earthquakes was previously the
only way to image the Earth. With correlation-based imaging, the seismic noise recorded
by a distributed network of sensors on the surface of the Earth can provide a lot of in-
formation about its structure. Beyond seismology, there are many new, emerging areas
for correlation-based imaging methods, in passive synthetic aperture radar or in optical
speckle intensity correlations for communications and imaging. We introduce and explain
one of these methods called ghost imaging in Section 7.

2 The white-noise paraxial model

In this section we describe how to derive the mathematically tractable Itô-Schrödinger
model from the wave equation in a random medium. We consider the three-dimensional
scalar wave equation:

(1)
1

c2( Ex)

@2u

@t2
(t; Ex) � ∆ Exu(t; Ex) = F (t; Ex); t 2 R; Ex 2 R3:
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Here the source emits a time-harmonic signal with frequency ! and it is localized in the
plane z = 0:

(2) F (t; Ex) = ı(z)f (x)e�i!t , with Ex = (x; z) 2 R2
� R;

and the speed of propagation is spatially heterogeneous

(3)
1

c2( Ex)
=

1

c2o

�
1 + �( Ex)

�
;

where � is a zero-mean stationary random process with ergodic properties.
The time-harmonic field û such that u(t; Ex) = û( Ex)e�i!t is solution of the random

Helmholtz equation

(@2z +∆?)û +
!2

c2o

�
1 + �(x; z)

�
û = �ı(z)f (x);

where ∆ Ex = ∆? + @2z . The function �̂ (slowly-varying envelope of a plane wave going
along the z-axis) defined by

(4) û(x; z) =
ico

2!
ei !z

co �̂
�
x; z

�
satisfies

(5) @2z�̂ +

�
2i

!

co

@z�̂ +∆?�̂ +
!2

c2o
�

�
x; z

�
�̂

�
= 2i

!

co

ı(z)f (x):

In the paraxial regime “� � `c ; ro � z” (which means, the wavelength � = 2�co/! is
much smaller than the correlation radius `c of the medium and the radius ro of the source,
which are themselves much smaller than the propagation distance z) the forward-scattering
approximation in direction z is valid and �̂ satisfies the Itô-Schrödinger equation Garnier
and Sølna [2009a]

(6) dz�̂ =
ico

2!
∆?�̂ dz +

i!

2co

�̂ ı dB(x; z); �̂(z = 0;x) = f (x);

where ı stands for the Stratonovich integral, B(x; z) is a Brownian field, that is a Gaussian
process with mean zero and covariance

(7) E[B(x; z)B(x0; z0)] = 
(x�x0)min(z; z0) with 
(x) =

Z
R

E[ �(0; 0)�(x; z)]dz:

Remark: Existence, uniqueness and continuity of solutions of the Itô-Schrödinger model (6)
are established in Dawson and Papanicolaou [1984]. The proof of the convergence of the
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solution to (5) to the solution to (6) is in Garnier and Sølna [2009a]. A first proof in the
case of layered media (i.e. when � � �(z)) can be found in Bailly, Clouet, and Fouque
[1996]. More precisely, the paraxial regime “� � `c ; ro � z” corresponds to the scaled
regime

! !
!

"4
; �(x; z) ! "3�

� x
"2

;
z

"2

�
; f (x) ! f

� x
"2

�
;

where " is a small dimensionless parameter, and the convergence in C([0; 1); L2(R2)) (or
in C([0; 1); H k(R2))) of the solution of the scaled version of (5) to the solution of the
Itô-Schrödinger Equation (6) holds in distribution when " ! 0. This result requires strong
mixing properties for the random process �. If, however, the process � has long-range
properties, in the sense that E[�(x; z)�(x0; z0)] = r(z�z0)
(x�x0)with r(z) ∼ c˛jzj�˛

as jzj ! +1 and ˛ 2 (0; 1), then, under appropriate technical and scaling assumptions
Gomez and Pinaud [2017], the limiting equation is the fractional Itô-Schrödinger model
(6) in which B is a fractional Brownian field with Hurst index H = 1 � ˛/2 2 (1/2; 1),
i.e. a Gaussian field with mean zero and covariance

E[B(x; z)B(x0; z0)] = 
(x � x0)
c˛

2H (2H � 1)

�
z2H + z02H

� jz � z0
j
2H

�
:

In this case the stochastic integral in (6) can be understood as a generalized Stieljes integral
(as H > 1/2).

3 Statistics of the wave field

In this section we describe how to compute the moments of the wave field. By Itô’s
formula and (6), the coherent (or mean) wave satisfies the Schrödinger equation with ho-
mogeneous damping (for z > 0):

(8) @zE[�̂] =
ico

2!
∆?E[�̂] �

!2
(0)
8c2o

E[�̂];

and therefore E
�
�̂(x; z)

�
= �̂0(x; z) exp(�z/Zsca), where �̂0 is the solution in the ho-

mogeneous medium. The coherent wave amplitude decays exponentially with the propa-
gation distance and the characteristic decay length is the scattering mean free path Zsca:

(9) Zsca =
8c2o


(0)!2
:

This result shows that any coherent imaging or communication method
fails in random media when the propagation distance is larger than the scattering mean

free path Garnier and Papanicolaou [2016].



2874 JOSSELIN GARNIER

The mean Wigner distribution defined by

(10) Wm(x; �; z) =

Z
R2

exp
�

� i� � y
�
E

h
�̂

�
x+

y

2
; z

�
�̂

�
x �

y

2
; z

�i
dy

is the angularly-resolved mean wave energy density (the bar stands for complex conjuga-
tion). By Itô’s formula and (6), it solves the radiative transport equation

(11) @zWm +
co

!
� � rxWm =

!2

4(2�)2c2o

Z
R2


̂(�)
�
Wm(� � �) � Wm(�)

�
d�;

starting from Wm(x; �; z = 0) = W0(x; �), the Wigner distribution of the initial field f .

̂ is the Fourier transform of 
 and determines the scattering cross section of the radia-
tive transport equation. This result shows that the fields observed at nearby points are
correlated and their correlations contain information about the medium. Accordingly,
one should use local cross correlations for imaging and communication in random me-
dia Borcea, Papanicolaou, and Tsogka [2005] and Borcea, Garnier, Papanicolaou, and
Tsogka [2011].

In order to quantify the stability of correlation-based imaging methods, one needs to
evaluate variances of empirical correlations, which involves the fourth-order moment:

(12) M4(q1; q2; r1; r2; z) = E
h
�̂

�r1 + r2 + q1 + q2

2
; z

�
�̂

�r1 � r2 + q1 � q2

2
; z

�
� �̂

�r1 + r2 � q1 � q2

2
; z

�
�̂

�r1 � r2 � q1 + q2

2
; z

�i
:

By Itô’s formula and (6), it satisfies the Schrödinger-type equation

(13) @zM4 =
ico

!

�
rr1

� rq1
+ rr2

� rq2

�
M4 +

!2

4c2o
U4(q1; q2; r1; r2)M4;

with the generalized potential

U4(q1; q2; r1; r2) = 
(q2 + q1) + 
(q2 � q1) + 
(r2 + q1) + 
(r2 � q1)

� 
(q2 + r2) � 
(q2 � r2) � 2
(0):(14)

These moment equations have been known for a long time Ishimaru [1997]. Recently it
was shown Garnier and Sølna [2016] that in the regime “� � `c � ro � z” the fourth-
order moment can be expressed explicitly in terms of the function 
 . These results can be
used to address a wide range of applications in imaging and communication.
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4 The scintillation index

In this section we study the intensity fluctuations of the wave field solution of (6) and
characterize the scintillation index which quantifies the relative intensity fluctuations. It
is a fundamental quantity associated for instance with light propagation through the atmo-
sphere Ishimaru [1997]. It is defined as the square coefficient of variation of the intensity
Ishimaru [ibid., Eq. (20.151)]:

(15) S(x; z) =
E

�ˇ̌
�̂(x; z)

ˇ̌4�
� E

�ˇ̌
�̂(x; z)

ˇ̌2�2
E

�ˇ̌
�̂(x; z)

ˇ̌2�2 :

When the spatial profile of the source (or the initial beam) has a Gaussian profile,

(16) f (x) = exp
�

�
jxj2

r2o

�
;

and when “� � `c � ro � z”, the behavior of the scintillation index can be described
as follows Garnier and Sølna [2016].

Proposition 4.1. Let us consider the following form of the covariance function of the
medium fluctuations:


(x) = 
(0)
̃
� x

`c

�
;

with 
̃(0) = 1 and the width of the function 
̃ is of order one. In the regime “� � `c �

ro � z” the scintillation index 15 has the following expression:

(17) S(x; z) = 1 �

exp
�

�
2jxj2

r2
o

�
ˇ̌̌

1
4�

R
R2 exp

�
2z

Zsca

R 1
0 
̃

�
v z

Zc
s
�
ds �

jvj2

4
+ iv �

x
ro

�
dv

ˇ̌̌2 :

In fact this result follows from the complete expressions of the second moment of the
intensity and the second moment of the field that are given in Garnier and Sølna [ibid.].
The scintillation index at the beam center x = 0 is a function of z/Zsca and z/Zc only,
where Zc = !ro`c/co is the typical propagation distance for which diffractive effects
are of order one, as shown in Garnier and Sølna [2009a, Eq. (4.4)]. It is interesting to
note that, even if the propagation distance is larger than the scattering mean free path, the
scintillation index can be smaller than one if Zc is small compared to Zsca.

In order to get more explicit expressions that facilitate interpretation of the results let
us assume that 
(x) is smooth and can be expanded as

(18) 
(x) = 
(0)
�
1 �

jxj2

`2c
+ o

� jxj2

`2c

��
; x ! 0:
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When scattering is strong in the sense that the propagation distance is larger than the scat-
tering mean free path z � Zsca, the expressions of the second moments of the field and
of the intensity can be simplified:

Γ(2)(x;y; z) := E
h
�̂

�
x+

y

2
; z

�
�̂

�
x �

y

2
; z

�i
=

r2o
R2

z

exp
�

�
jxj2

R2
z

�
jyj2

�2
z

+ i
!
(0)z2x � y

2co`2c R2
z

�
;

Γ(4)(x;y; z) := E
hˇ̌

�̂
�
x+

y

2
; z

�ˇ̌2 ˇ̌
�̂

�
x �

y

2
; z

�ˇ̌2i
= jΓ(2)(x; 0; z)j2 + jΓ(2)(x;y; z)j2;

where the beam radius Rz is

(19) R2
z = r2o +


(0)z3

3`2c

and the correlation radius of the beam �z is

(20) �2
z =

4c2o`2c
!2
(0)z

r2o + 
(0)z3

3`2
c

r2o + 
(0)z3

12`2
c

:

Note that the fourth-order moments satisfy the Isserlis formula (i.e. they can be expressed
in terms of sums of products of second-order moments), and therefore the scintillation
index S(x; z) is equal to one. This observation is consistent with the physical intuition
that, in the strongly scattering regime z/Zsca � 1, the wave field is conjectured to have
zero-mean complex circularly symmetric Gaussian statistics, and therefore the intensity is
expected to have exponential (or Rayleigh) distribution Fante [1975] and Ishimaru [1997].

5 Fluctuations of the Wigner distribution

In this section we give an explicit characterization of the signal-to-noise ratio of the Wigner
distribution. The Wigner distribution of the wave field is defined by

(21) W (x; �; z) =

Z
R2

exp
�

� i� � y
�
�̂

�
x+

y

2
; z

�
�̂

�
x �

y

2
; z

�
dy:

It can be interpreted as the angularly-resolved wave energy density (note, however, that it
is real-valued but not always non-negative valued). Its expectation satisfies the radiative
transport Equation (11). It is known that the Wigner distribution is not statistically stable,
and that it is necessary to smooth it (that is to say, to convolve it with a smoothing kernel) to
get a quantity that can be measured in a statistically stable way (that is to say, the smoothed
Wigner distribution for one typical realization is approximately equal to its expected value)
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Bal [2004] and Papanicolaou, Ryzhik, and Sølna [2007]. Our goal in this section is to
quantify this statistical stability.

Let us consider two positive parameters rs and �s and define the smoothed Wigner
distribution:

(22) Ws(x; �; z) =
1

(2�)2r2s �2s

“
R4

W (x�x0; � ��0; z) exp
�

�
jx0j2

2r2s
�

j�0
j2

2�2s

�
dx0d�0:

If we denote by �z the correlation radius of the field (given by (20) in the strongly scat-
tering regime), we may anticipate that rs and 1/�s should be of the order of �z to ensure
averaging. The coefficient of variation Cs of the smoothed Wigner distribution, which
characterizes its statistical stability, is defined by:

(23) Cs(x; �; z) =

p
E[Ws(x; �; z)2] � E[Ws(x; �; z)]2

E[Ws(x; �; z)]
:

An exact expression of the coefficient of variation of the smoothed Wigner distribution
can be derived in the regime “� � `c � ro � z” Garnier and Sølna [2016]. It involves
four-dimensional integrals and it is complicated to interpret it. This expression becomes
simple in the strongly scattering regime z � Zsca. We then get the following expression
for the coefficient of variation Garnier and Sølna [ibid.].

Proposition 5.1. In the regime “� � `c � ro � z”, if additionally z � Zsca and 
 can
be expanded as (18), then the coefficient of variation of the smoothed Wigner distribution
(22) satisfies:

(24) Cs(x; �; z)2 =

1
�2

s �2
z
+ 1

4r2
s

�2
z
+ 1

;

where �z is the correlation radius (20).

Note that the coefficient of variation becomes independent of x and �. Equation (24)
is a simple enough formula to help determining the smoothing parameters �s and rs that
are needed to reach a given value for the coefficient of variation:

• For 2�srs = 1, we have Cs(x; �; z) = 1.

• For 2�srs < 1 (resp. > 1) we have Cs(x; �; z) > 1 (resp. < 1); in other words,
the smoothed Wigner transform can be considered as statistically stable as soon as
2�srs > 1.
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The critical value rs = 1/(2�s) is indeed special. In this case, the smoothed Wigner
distribution (22) can be written as the double convolution of the Wigner distribution W of
the random field �̂(�; z) (defined by (21)) with the Wigner distribution

(25) Wg(x; �) =

Z
R2

exp
�

� i� � y
�
�̂g

�
x+

y

2

�
�̂g

�
x �

y

2

�
dy

of the Gaussian state

(26) �̂g(x) = exp
�

� �2s jxj
2
�
;

since we have
Wg(x; �) =

2�

�2s
exp

�
� 2�2s jxj

2
�

j�j2

2�2s

�
;

and therefore

(27) Ws(x; �; z) =
4�2s
(2�)3

“
R4

W (x � x0; � � �0; z)Wg(x
0; �0)dx0d�0;

for rs = 1/(2�s). It is known that the convolution of a Wigner distribution with a kernel
that is itself the Wigner distribution of a function (such as Wg) is nonnegative real valued
(the smoothed Wigner distribution obtained with the Gaussian Wg is called Husimi func-
tion) Cartwright [1976] and Manfredi and Feix [2000]. This can be shown easily in our
case as the smoothed Wigner distribution can be written as

(28) Ws(x; �; z) =
2�2s
�

ˇ̌̌ Z
R2

exp
�
i� � x0

�
�̂g(x

0)�̂(x � x0; z)dx0
ˇ̌̌2

;

for rs = 1/(2�s). From this representation formula of Ws valid for rs = 1/(2�s), we can
see that it is the square modulus of a linear functional of �̂(�; z). The physical intuition that
�̂(�; z) has circularly symmetric complex Gaussian statistics in strongly scattering media
then predicts that Ws(x; �; z) should have an exponential distribution, because the sum of
the squares of two independent real-valued Gaussian random variables has an exponential
distribution. This is indeed consistent with our theoretical finding that Cs = 1 for rs =

1/(2�s).
If rs > 1/(2�s), by observing that

exp
�

�
jxj2

2r2s

�
=

Z
R2

Ψ(x � x0) exp
�

� 2�2s jx0
j
2
�
dx0;

where the function Ψ is defined by

(29) Ψ(x) =
8�4s r2s

�(4�2s r2s � 1)
exp

�
�

2�2s jxj2

(4�2s r2s � 1)

�
;
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we find that the smoothed Wigner distribution (22) can be expressed as:
(30)

Ws(z;x; �) =

Z
R2

Ψ(x � x0)

�
2�2s
�

ˇ̌̌ Z
R2

exp
�
i� � x00

�
�̂g(x

00)�̂(x0
� x00; z)dx00

ˇ̌̌2�
dx0;

for rs > 1/(2�s). From this representation formula for Ws valid for rs > 1/(2�s), we can
see that it is nonnegative valued and that it is a local average of (28), which has a unit
coefficient of variation in the strongly scattering regime. That is why the coefficient of
variation of the smoothed Wigner distribution is smaller than one when rs > 1/(2�s).

6 Green’s function estimation with noise sources

The previous section has explained that the cross correlation of the wave field (or equiva-
lently the Wigner distribution which is its local Fourier transform) is a convenient way to
look at waves propagating in complex media. In this section we show that it is also useful
to study waves emitted by unknown noise sources. In Section 7 we will combine both sit-
uations and show that incoherent illumination can provide new paradigms and offer new
opportunities for imaging in complex media.

We aim to exhibit a relation between the cross correlation of the signals emitted by noise
sources and recorded by two sensors and the Green’s function between the sensors. The
Green’s function is the signal recorded by the second sensor when the first one transmits
a short (Dirac) pulse. The relation between the cross correlation of the recorded noise sig-
nals and the Green’s function is very important. Indeed, in standard imaging, an array of
sources transmits waves that are recorded by an array of receivers, that can be collocated
with the array of sources (called an active array). One then gets the matrix of Green’s
functions from the sources to the receivers, that can be processed for imaging purposes.
In ambient noise imaging, an array of receivers (called a passive array) records the waves
emitted by ambient noise sources. Under favorable circumstances, the matrix of cross
correlations of the signals recorded by the receivers gives the matrix of Green’s functions
between the receivers. In other words, the passive array data have been transformed into
active array data ! The fact that ambient noise illumination allows for Green’s function es-
timation and subsequent imaging opens fascinating perspectives. In seismology, it means
that information is present in the seismic noise recorded by networks of seismometers and
that it can be extracted by computing cross correlations.

We consider the solution u of the scalar wave equation in a three-dimensional inhomo-
geneous medium with propagation speed c( Ex):

(31)
1

c2( Ex)

@2u

@t2
� ∆ Exu = n(t; Ex):
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The term n(t; Ex) models noise sources. It is a zero-mean stationary (in time) random
process with autocorrelation function

(32)
˝
n(t1; Ey1)n(t2; Ey2)

˛
= F (t2 � t1)Γ( Ey1; Ey2):

Here h�i stands for statistical average with respect to the distribution of the noise sources.
The time distribution of the noise sources is characterized by the correlation function

F (t2 � t1), which is a function of t2 � t1 only because of time stationarity. The Fourier
transform F̂ (!) of the time correlation function F (t) is a nonnegative, even, real-valued
function proportional to the power spectral density of the sources:

(33) F̂ (!) =

Z
R

F (t)ei!t dt:

The spatial distribution of the noise sources is characterized by the autocovariance
function Γ( Ey1; Ey2). In this review paper we assume that the random process n is delta-
correlated in space:

(34) Γ( Ey1; Ey2) = K( Ey1)ı( Ey1 � Ey2);

although it is possible to address correlated noise sources, as shown in Bardos, Garnier,
and Papanicolaou [2008] and Garnier and Papanicolaou [2010]. The nonnegative valued
function K characterizes the spatial support of the sources.

The solution of the wave Equation (31) has the integral representation:

u(t; Ex) =

Z
R3

Z
R

n(t � s; Ey)G(s; Ex; Ey)dsd Ey;

where G(t; Ex; Ey) is the time-dependent Green’s function, that is to say, the fundamental
solution of the three-dimensional scalar wave equation:

1

c2( Ex)

@2G

@t2
� ∆ ExG = ı(t)ı( Ex � Ey):

The empirical cross correlation of the signals recorded at Ex1 and Ex2 for an integration
time T is

(35) CT (�; Ex1; Ex2) =
1

T

Z T

0

u(t; Ex1)u(t + �; Ex2)dt:

It is a statistically stable quantity, in the sense that for a large integration time T , the em-
pirical cross correlation CT is independent of the realization of the noise sources and it is
equal to its expectation. This is stated in the following proposition Garnier and Papanico-
laou [2009].
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Proposition 6.1. 1. The expectation of the empirical cross correlation CT (with respect
to the statistics or distribution of the sources) is independent of T :

(36)
˝
CT (�; Ex1; Ex2)

˛
= C (1)(�; Ex1; Ex2);

where the statistical cross correlation C (1) is given by

(37) C (1)(�; Ex1; Ex2) =
1

2�

Z
R3

Z
R

F̂ (!)K( Ey)Ĝ(!; Ex1; Ey)Ĝ(!; Ex2; Ey)e�i!� d!d Ey;

and Ĝ(!; Ex; Ey) is the time-harmonic Green’s function (i.e. the Fourier transform of
G(t; Ex; Ey)).

2. The empirical cross correlation CT is a self-averaging quantity:

(38) CT (�; Ex1; Ex2)
T !1
�! C (1)(�; Ex1; Ex2);

in probability (with respect to the distribution of the sources).

Equation (37) holds whatever the spatial support of the sources but it does not give a
simple relation between the cross correlation of the recorded noise signals and the Green’s
function. Such a relation emerges when the spatial support of the sources is extended. We
give below a simple statement when the noise sources are located on the surface of a ball
that encloses both the inhomogeneous region and the sensors, located at Ex1 and Ex2.

Proposition 6.2. We assume that the medium is homogeneous outside the ball B(0; D)

with center 0 and radius D, and that the sources are localized with a uniform density on
the surface of the sphere @B(0; L) with center 0 and radius L. If L � D, then for any
Ex1; Ex2 2 B(0; D), we have

(39)
@

@�
C (1)(�; Ex1; Ex2) = �

co

2

�
F � G(�; Ex1; Ex2) � F � G(��; Ex1; Ex2)

�
:

Proposition 6.2 can be found in Schuster [2009] and Wapenaar, Slob, Snieder, and
Curtis [2010]. The proof is based on the Helmholtz-Kirchhoff identity, which results from
the second Green’s identity and the Sommerfeld radiation condition. It is simple and
gives the desired result quickly, but it requires a full aperture illumination. Multiscale
analysis reveals that full aperture illumination is sufficient but not necessary for the cross
correlation to be related to the Green’s function Garnier and Papanicolaou [2016].

Proposition 6.2 shows that, when the noise sources surround the region of interest, then
the lag-time derivative of the cross correlation of the signals recorded at two observation
points is the Green’s function between these two points, up to a convolution (in time) with
the time covariance function of the noise sources and a symmetrization (which means
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that we get in fact the causal and the anti-causal Green’s functions). We can present an
illustration of this result when the medium is homogeneous with background velocity co

and the Green’s function is G(t; Ex;y) = 1
4�j Ex� Eyj

ı(t �
j Ex� Eyj

co
). If F (t) = �g00(t) with

g(t) = exp(�t2/4) (the prime stands for derivative), so that F̂ (!) = 2
p

�!2 exp(�!2),
then the cross correlation is by (39):

C (1)(�; Ex1; Ex2) =
co

8�j Ex1 � Ex2j

h
g0

�
� �

jEx1 � Ex2j

co

�
� g0

�
� +

j Ex1 � Ex2j

co

�i
:

The autocorrelation function is

C (1)(�; Ex1; Ex1) = �
1

4�
g00(�) :

These two functions can be seen in Figure 1: the autocorrelation function C (1)(�; Ex1; Ex1)

has the form of the second derivative of a Gaussian function, and the cross correlation
C (1)(�; Ex1; Exj ), j � 2, has two symmetric peaks with the form of the first derivative of a
Gaussian function and centered at the travel times ˙jEx1� Exj j/co. From the imaging point
of view, this means that the travel times between the sensors can be estimated from the
cross correlations of the noise signals and subsequently background velocity estimation
can be carried out tomographically.

7 An example of incoherent wave imaging in complex media: Ghost
imaging

In this section we study an imaging method called ghost imaging introduced in the op-
tics literature. It illustrates the fact that incoherent illumination can be beneficial for
correlation-based imaging in complex media. The experimental set-up proposed in Va-
lencia, Scarcelli, D’Angelo, and Shih [2005] and J. H. Shapiro and Boyd [2012] is plotted
in Figure 2. The waves are emitted by a noise (or partially coherent) source. A beam
splitter is used to generate two wave beams from this source:
- the “reference beam”, labeled À, propagates through a homogeneous or scattering medium
up to a high-resolution detector that measures the spatially resolved transmitted intensity.
- the “signal beam”, labeled Á, propagates through a homogeneous or scattering medium
and interacts with an object to be imaged. The total transmitted intensity is measured by
a bucket detector that measures the spatially integrated transmitted intensity.
This method is called ghost imaging because the high-resolution detector does not see the
object to be imaged, and nevertheless a high-resolution image of the object is obtained by
cross-correlating the two measured intensity signals. From the previous section we can an-
ticipate that something may indeed happen when cross correlating these signals because
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Figure 1: The configuration is shown in the plane (xy) in Figure a: the circles
are the noise sources and the triangles are the sensors (the distance between two
successive sensors is 5). The sources are randomly distributed on the surface of the
three-dimensional sphere with center at (0; 50; 0) and radius 40. Figure b shows
the cross correlation � ! C (1)(�; Ex1; Exj ) between the pairs of sensors ( Ex1; Exj ),
j = 1; : : : ; 5, versus the distance j Exj � Ex1j. For j � 2 the values have been
multiplied by 6 as the autocorrelation function (j = 1) takes larger values than the
cross correlation functions (j � 2). Here co = 1.
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Figure 2: The ghost imaging setup. A partially coherent source is split into two
beams by a beam splitter. The reference beam (labeled À) does not interact with the
object and its intensity is measured by a high-resolution detector. The signal beam
(labeled Á) interacts with the object to be imaged and its intensity is measured by a
bucket (single-pixel) detector. From Garnier [2016].

the cross correlation should be related to the Green’s function between the plane of the
high-resolution detector in reference path À (or the corresponding plane just before the
object in the signal path Á) and the plane of the bucket detector in Á. The relation is not,
however, clear when only spatially-integrated intensities are measured, which requires a
detailed analysis.

The object to be imaged is a mask modeled by a transmission function T (x). In the
experiments, the object is typically a double slit J. H. Shapiro and Boyd [2012]. The
source is located in the plane z = 0. The propagation distance from the source to the
high-resolution detector in the reference path À is L. The propagation distance from the
source to the object in the signal path Á is L as well, and the propagation distance from
the object to the bucket detector is L0. In each path the scalar wave (t; Ex) 7! uj (t; Ex),
j = 1; 2, satisfies the scalar wave equation:

(40)
1

cj ( Ex)2
@2uj

@t2
� ∆ Exuj = n(t;x)ı(z);

where cj ( Ex) is the speed of propagation in the medium corresponding to the j th path and
the forcing term (t;x) 7! n(t;x) models the source (identical for the two waves).

In the ghost experiment the source is typically a laser beam passed through a rotating
glass diffuser Valencia, Scarcelli, D’Angelo, and Shih [2005] and J. H. Shapiro and Boyd
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[2012]. We model it as

(41) n(t;x) = f (t;x)e�i!ot + c:c:;

where c:c: stands for complex conjugate, !o is the carrier frequency, and f (t;x) is the
complex-valued slowly varying envelope, whose Fourier transform (in time) has a typical
width that is much smaller than !o. It is assumed to be a complex-valued, zero-mean
stationary Gaussian process with the covariance function:

(42) hf (t;x)f (t 0;x0)i = F (t � t 0)Γ(x;x0);

with F (0) = 1 (with real-valued functions F andΓ). The width of the Fourier transform of
F is much smaller than !o. Note that the modeling is similar to the one used for correlation-
based imaging using ambient noise sources as discussed in the previous section. In this
framework the scalar wave fields uj , j = 1; 2, can be written in the form

uj (t; Ex) = vj (t; Ex)e�i!ot + c:c::

The detectors measure the intensities, i.e. the square moduli of the slowly varying en-
velopes vj , j = 1; 2. More exactly, the quantity that is measured by the high-resolution
detector is the spatially-resolved intensity in the plane z = L of the reference path À:

(43) I1(t;x) =
ˇ̌
v1

�
t; (x; L)

�ˇ̌2
:

The quantity that is measured by the bucket detector is the spatially-integrated intensity in
the plane z = L + L0 of the signal path Á:

(44) I2(t) =

Z
R2

ˇ̌
v2

�
t; (x; L + L0)

�ˇ̌2dx:

These two quantities are correlated and their cross correlation defines the ghost imaging
function:

CT (x) =
1

T

Z T

0

I1(t;x)I2(t)dt �

h 1

T

Z T

0

I1(t;x)dt
ih 1

T

Z T

0

I2(t)dt
i
:(45)

We consider the partially coherent case:

(46) Γ(x;x0) = Io exp
�

�
jx+ x0j2

2r2o
�

jx � x0j2

2�2
o

�
;

in which the source is assumed to have a Gaussian spatial profile with radius ro and a local
Gaussian correlation function with radius �o. This model is called Gaussian-Schell in the
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optics literature Mandel and Wolf [1995]. Note that we always have ro � �o (because Γ

is a positive kernel). The limit case �o ! 0 corresponds to fully incoherent illumination:
the field is delta-correlated in space. The limit case �o = ro in which

Γ(x;x0) = Io exp
�

�
jxj2

r2o
�

jx0j2

r2o

�
corresponds to fully coherent illumination: the spatial profile of the field is determinis-
tic (up to a random multiplicative factor) and has a Gaussian form with radius ro. The
following proposition shows that the ghost imaging function gives an image of the square
transmission function T 2 up to an integral operator whose kernel can be identified Garnier
[2016].

Proposition 7.1. If T ! 1, then the ghost imaging function converges in probability to

(47) C(x) =

Z
R2

H (x;y)T (y)2dy;

with the kernel given by

H (x;y) =
I 2

o �4
or4o

28�2L4

Z
R2

d˛

Z
R2

dˇ exp
�

�
�
j˛j

2 + jˇj
2
��
1 +

!2
or2o �2

o

4c2oL2

��
� exp

�
� i

!o

coL

�
�o(x+ y) � ˛ + ro(x � y) � ˇ

��
 � exp

�
�

!2
oL

4c2o

Z 1

0

2
(0) � 

�
(�o˛ + roˇ)s

�
� 


�
(�o˛ � roˇ)s

�
ds

�
:(48)

If the medium is homogeneous along the two paths 
 = 0, then the kernel is

(49) H (x;y) =
I 2

o �2
or2o c4o

64!4
o�2

gi0R2
gi0

exp
�

�
jx � yj2

2�2
gi0

�
jx+ yj2

2R2
gi0

�
;

with

�2
gi0 =

2c2oL2

!2
or2o

+
�2

o

2
; R2

gi0 =
2c2oL2

!2
o�2

o

+
r2o
2

:(50)

Equation (50) shows that the resolution of the ghost imaging function is improved when
the source becomes less coherent (i.e., when �o decreases, the radius of the convolution
kernel �gi0 decreases). It also shows that imaging is possible provided the object to be
imaged (i.e. the support of the transmission function) is within the disk with radius Rgi0.
This radius increases when the source becomes less coherent (i.e., when �o decreases, Rgi0
increases).
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If the medium is random along the two paths and scattering is strong, in the sense that
the propagation distance is larger than the scattering mean free path L/Zsca � 1, then

(51) H (x;y) =
I 2

o �2
or2o c4o

64!4
o�2

gi1R2
gi1

exp
�

�
jx � yj2

2�2
gi1

�
jx+ yj2

2R2
gi1

�
;

with

�2
gi1 =

2c2oL2

!2
or2o

+
�2

o

2
+

8c2oL3

3!2
oZsca`2c

; R2
gi1 =

2c2oL2

!2
o�2

o

+
r2o
2

+
8c2oL3

3!2
oZsca`2c

;(52)

and the correlation radius of the medium `c is defined as in (18).
In the partially coherent case �o � ro, formula (52) shows that the resolution is im-

proved when the source becomes less coherent but it is degraded by scattering. Moreover,
the radius of the region that can be imaged increases when the source becomes less co-
herent and when scattering becomes stronger. In other words, scattering degrades the
resolution of the ghost imaging function, but it enhances the region that can be imaged.

In the limit case of a fully incoherent source �o ! 0 we have �2
gi1 ! �2

gi :=
2c2

oL2

!2
or2

o
+

8c2
oL3

3!2
oZsca`2

c
and R2

gi1 ! +1, which shows that the integral operator is then a convolution
with a Gaussian kernel with radius �gi.

In the limit case of a fully coherent source �o = ro, then �2
gi = R2

gi and

H (x;y) =
I 2

o r4o c4o
64!4

oR4
gi

exp
�

�
jxj2

R2
gi

�
jyj2

R2
gi

�
;

with R2
gi =

2c2
oL2

!2
or2

o
+

r2
o

2
+

8c2
oL3

3!2
oZsca`2

c
, which has a separable form. In this case we do not

get any image of the transmission function and the imaging function has a Gaussian form
with width Rgi whatever the form of the transmission function. This confirms that the
incoherence (or partial coherence) of the source is the key ingredient for ghost imaging.
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