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Theoretical studies on wave turbulence predict that a purely classical system of random waves can
exhibit a process of condensation, which originates in the singularity of the Rayleigh-Jeans equilibrium
distribution. We report the experimental observation of the transition to condensation of classical optical
waves propagating in a multimode fiber, i.e., in a conservative Hamiltonian system without thermal heat
bath. In contrast to conventional self-organization processes featured by the nonequilibrium formation of
nonlinear coherent structures (solitons, vortices,…), here the self-organization originates in the equilibrium
Rayleigh-Jeans statistics of classical waves. The experimental results show that the chemical potential
reaches the lowest energy level at the transition to condensation, which leads to the macroscopic population
of the fundamental mode of the optical fiber. The near-field and far-field measurements of the condensate
fraction across the transition to condensation are in quantitative agreement with the Rayleigh-Jeans theory.
The thermodynamics of classical wave condensation reveals that the heat capacity takes a constant value in
the condensed state and tends to vanish above the transition in the normal state. Our experiments provide
the first demonstration of a coherent phenomenon of self-organization that is exclusively driven by optical
thermalization toward the Rayleigh-Jeans equilibrium.
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Several studies based on the wave turbulence theory
[1–5] predict that nonlinear waves can exhibit a phenome-
non of condensation [2,3,6–17]. This phenomenon of
condensation of classical waves differs substantially from
the quantum Bose-Einstein condensation (BEC) that has
been observed in ultracold atoms and molecules [18],
exciton polaritons [19], magnons [20], and photons
[21,22]. Although the physics of BEC and classical
condensation are different, the underlying mathematical
origin is similar because of the common singular behavior
(vanishing denominator) of the equilibrium Bose distribu-
tion for quantum particles and the equilibrium Rayleigh-
Jeans (RJ) distribution for classical waves [3,7]. Here, we
report the first observation of the RJ condensation of
classical optical waves.
Various forms of condensation processes have been

identified in optical cavity systems [19], which are inher-
ently forced-dissipative systems operating far from thermal
equilibrium [13,23–30]. On the other hand, equilibrium
condensation mediated by the RJ distribution requires a
(cavityless) free propagation of the optical beam through a
conservative (Hamiltonian) evolution. However, as a con-
sequence of the ultraviolet catastrophe inherent to classical
waves, the RJ condensation is not defined for optical free

propagation in a bulk medium. In this configuration, only a
nonequilibrium transient process of condensation is exper-
imentally accessible [15,17,31]. This problem can be
circumvented by considering a waveguide configuration,
whose finite number of modes introduces an effective
frequency cutoff that regularizes the RJ ultraviolet catas-
trophe [13,32]. In this framework, a remarkable effect of
spatial beam cleaning has been recently reported in multi-
mode optical fibers (MMFs) [33,34]. Although recent
works revealed that beam cleaning is characterized by a
transfer of power toward the low-order modes of the MMF,
the understanding of the underlying mechanism is still
debated [32–43]. Yet despite experimental progress, there
is still no clear-cut demonstration of the phenomenon of RJ
condensation of optical waves.
From a broader perspective, wave condensation can be

viewed as a self-organization process characterized by the
formation of a large scale coherent structure, a universal
behavior found in many fields of physics. As a general rule,
the formation of a coherent structure (e.g., solitons,
vortices, shock waves,…) requires a strong nonlinear
interaction regime [2–14,44–49], as discussed in recent
experiments in water tanks [50], vibrating elastic plates
[51], BECs [49], or nonlinear optics [12,17,48,52]. More
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precisely, wave condensation is usually understood as an
inverse turbulence cascade that increases the level of
nonlinearity at large scales, up to a breaking point of the
weak turbulence theory [3]. Such a nonlinear stage is well
known in the focusing regime, where the (Benjamin-Feir)
modulational instability leads to the generation of soliton-
like structures (“soliton condensation”) [3,12,45–47]. This
process is at the root of a variety of phenomena, e.g., optical
filamentation [2,3], or soliton-mediated supercontinuum
generation in optics [53] and hydrodynamics [54].
In contrast with this large variety of self-organization

processes that occur far from thermal equilibrium and
require a strong nonlinear interaction [2–10,12–14,44–52],
we report in our experiments a different mechanism of
spontaneous formation of a coherent structure (condensate)
that is driven by the equilibrium RJ statistics in the weakly
nonlinear regime. Condensation originates in the RJ dis-
tribution for the following reasons: (i) The transition takes
place when the chemical potential reaches the fundamental
mode eigenvalue, which leads to the macroscopic popula-
tion of the fundamental mode of the MMF; (ii) the
condensate fraction across the transition is in quantitative
agreement with the RJ equilibrium theory (without adjust-
able parameters); (iii) the nonlinearity is perturbative with
respect to linear propagation, even in the strongly con-
densed regime. Furthermore, our thermodynamic approach
clarifies the different nature of the classical RJ transition
with respect to the quantum BEC transition.
Aside from its fundamental importance, light cooling

and condensation find natural applications to achieve an
accurate control of the coherence properties of optical
beams in high-power multimode fiber sources [55].
Experimental setup.—We study the spatial evolution of a

speckle beam that propagates through a MMF featured by a
parabolic-shaped index of refraction supporting M ≃ 120

modes. The 2D parabolic potential VðrÞ ¼ qjrj2 is trun-
cated at V0 ¼ qR2, where R ¼ 26 μm is the fiber radius
and q a constant determined by the fiber characteristics.
The eigenvalues are well approximated by the ideal
harmonic potential βp ¼ β0ðpx þ py þ 1Þ, where p labels
the two integers ðpx; pyÞ that specify a mode. The trunca-
tion of the potential VðrÞ ≤ V0 and the corresponding finite
number of modesM introduce an effective frequency cutoff
in the far-field spectrum kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0=β0

p
=r0 ≃ 1.15 μm−1,

where r0 is the radius of the fundamental mode of the
MMF [56].
The source is a Nd:YAG laser (λ0 ¼ 1.06 μm) delivering

subnanosecond pulses that are passed through a diffuser
before injection into the MMF. After propagation through a
fiber length L ¼ 12 m, the near-field (NF) and far-field
(FF) intensities are recorded. The NF intensity INFðrÞ ¼
jψ j2ðrÞ provides the measurement of the power
N ¼ R

INFðrÞdr and of the potential energy
Epot ¼

R
VðrÞjψ j2ðrÞdr. The kinetic energy Ekin ¼

α
R j∇ψðrÞj2dr is retrieved from the FF intensity

IFFðkÞ ¼ jψ̃ðkÞj2, where α ¼ 1=ð2ncok0Þ with k0 ¼
2π=λ0 the laser wave number and nco the refractive index
[ψ̃ðkÞ ¼ ð2πÞ−1 R ψðrÞ expðik · rÞdr being the Fourier
transform]. This provides the linear contribution to the
energy (Hamiltonian) E ¼ Epot þ Ekin. Projecting on the
basis of the fiber modes, the power and energy read
N ¼ P

p np, E ¼ P
p βpnp, where np denotes the power

in the mode p [11]. We have confirmed experimentally that
both N and E are conserved during propagation in the
MMF [56].
Weakly nonlinear regime.— The speckle beam that

propagates through the MMF exhibits fluctuations that
vary over a linear propagation length Llin much smaller
than the nonlinear length Lnl:

Llin ∼ β−10 ∼ 0.2 mm ≪ Lnl ¼ 1=ðγNÞ ∼ 0.3 m; ð1Þ

where γ is the nonlinear coefficient of the MMF. This is
equivalent to λc ≪ ξ, where ξ ¼ ffiffiffiffiffiffiffiffiffi

αLnl
p

≃ 130 μm is the
healing length, and λc the transverse correlation length of
the speckle beam, which is typically smaller than the radius
of the fundamental mode of the MMF, λc ≲ r0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2α=β0

p
≃ 4.7 μm ≪ ξ. Such a large separation between

linear and nonlinear scales prevents a process of nonlinear
self-organization. Then the focusing nature (γ > 0) of the
fiber nonlinearity does not play any role: A spatial soliton
cannot be generated since its width ξ≳ 130 μm would be
much larger than the radius of the MMF (R ¼ 26 μm).
Rayleigh-Jeans thermalization.—In contrast with other

experiments (e.g., Ref. [21]), here no thermal bath is
present. As described by the wave turbulence theory and
the numerical simulations, optical wave thermalization
occurs through the propagation in the fiber as a conse-
quence of the four-wave interaction underlying the Kerr
nonlinearity [13,41]. This is a “closed” (Hamiltonian)
system, where the conserved energy E is the control
parameter of the transition to condensation. At equilibrium
the modal populations follow the RJ distribution

neqp ¼ T=ðβp − μÞ; ð2Þ

so that N ¼ T
P

pðβp − μÞ−1 and E ¼ T
P

p βp=ðβp − μÞ.
The solutions to these equations show that the pair ðμ; TÞ is
uniquely determined by the conserved quantities ðN;EÞ
[7,13,42] (T is in units of W · m−1 and it is not defined by a
thermostat). At variance with previous experiments of
spatial beam cleaning [33–36,40,43], here we study the
transition to condensation by decreasing the energy E
(“temperature”) while keeping constant the power N
(“number of particles”)—E being varied owing to the
diffuser before injection in the MMF [56].
We stress that RJ thermalization does not imply con-

densation: Here condensation occurs because the four-
wave interaction is a 2 ↔ 2 resonance with two conserved
quantities ðN;EÞ. Systems like capillary waves, acoustic
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waves, Rossby planetary waves, or vibrating elastic plates
do not conserve the “wave-action” N, so that μ ¼ 0 and
condensation cannot take place: The fundamental mode
cannot be macroscopically populated, i.e., neq0 ≃ neqp (for
small p) whatever the energy.
Note that the stationary distribution describing light

condensation in forced-dissipative lasers [27–30] resem-
bles Eq. (2), provided one substitutes the βp and the μ with
the cavity losses and the gain, while T is fixed by a
thermostat in Refs. [27–30]. Accordingly, the stationary
distribution and its underlying mechanism of relaxation in
Refs. [27–30] are fundamentally different from the RJ
thermalization discussed here.
Considering the parabolic potential VðrÞ and the corre-

sponding invariance of the Hermite-Gauss modes (wp)
under Fourier transform, we have expressed the mean NF
and FF intensities in equivalent forms. Splitting the
condensate and the incoherent contributions N ¼
neq0 þP

p≠0 n
eq
p , we obtain [56]

IcondNF ðrÞ ¼ neq0 r
2
0w

2
0ðr=r0Þ; IcondFF ðkÞ ¼ neq0 r

−2
0 w2

0ðr0kÞ;
ð3Þ

for the fundamental mode, and

IincNFðrÞ ¼ T
X

p≠0
r−20 w2

pðr=r0Þ=ðβp − μÞ; ð4Þ

IincFF ðkÞ ¼ T
X

p≠0
r20w

2
pðr0kÞ=ðβp − μÞ; ð5Þ

for the incoherent contribution from the other modes. The
total intensity is IeqNFðrÞ ¼ IcondNF ðrÞ þ IincNFðrÞ (idem for the
FF), with N¼R

INFðrÞdr¼
R
IFFðkÞdk, and r ¼ jrj, k ¼ jkj.

We performed averages from a total number of 2 × 1000
measurements of the NF and FF intensity distributions
recorded for a fixed power N ¼ 7 kW. We report in
Figs. 1(a)–1(b) the NF and FF intensities for the same
energy E (corresponding to neq0 =N ≃ 0.4) that have been
averaged over the realizations (blue lines). The experimen-
tal results are compared to the theoretical RJ intensity
distributions (dashed red lines). The quantitative agreement
in Figs. 1(a)–1(b) is obtained without any adjustable
parameter: The experimentally measured values ðE;NÞ
determine a unique pair ðμ; TÞ, which in turn determines
the intensity distributions IeqNFðrÞ and IeqFFðrÞ from Eqs. (3)–
(5). As a result of the averaging procedure, the NF and FF
representations are equivalent to each other [Eqs. (3)–(5)],
as evidenced experimentally in Figs. 1(a)–1(b).
We compare the “output” intensity distributions

recorded at 12 m with the “input” intensities recorded
after 20 cm of propagation in the MMF (“initial condi-
tions”). Figures 1(c)–1(d) report the NF and FF individual
realizations of the input and output beams corresponding to

the averaged intensities of Figs. 1(a)–1(b): The input-to-
output reduction of fluctuations enlightens the role of
“statistical attractor” of the RJ distribution.
To characterize the RJ attraction process, we introduce a

distance that measures the degree of similarity between the
radial intensity distribution of a beam recorded experimen-
tally and the theoretical RJ intensity: D ¼ P

i½INF;expðriÞ−
IeqNFðriÞ�2=

P
i I

eq
NFðriÞ2, where r ¼ jrj and ri the corre-

sponding spatial grid. The strong reduction of D from
the input to the output beams confirms the thermalization to
the RJ equilibrium; see Fig. 1(e) (the limited reduction ofD
for E≳ Ecrit is due to the polar-angle averaging procedure).
Rayleigh-Jeans condensation.—At variance with homo-

geneous condensation in a bulk medium [VðrÞ ¼ 0] [3,7],
the presence of the parabolic potential reestablishes con-
densation in the “thermodynamic limit” in two dimensions.
There exists a (nonvanishing) critical energy E�

crit ¼ NV0=2

FIG. 1. Rayleigh-Jeans thermalization. Experimental profiles
from the NF (a), and FF (b), intensity distributions recorded at the
output of the MMF for the same energy E=Ecrit ≃ 0.66
(neq0 =N ≃ 0.4) with an average over the realizations (blue lines).
Theoretical RJ intensity distributions showing the condensate
contribution from p ¼ 0: IcondNF ðrÞ, IcondFF ðkÞ [yellow region, from
Eq. (3)], and the incoherent contribution from p ≠ 0: IincNFðrÞ,
IincFF ðkÞ [gray region, from Eqs. (4)–(5)], and their respective sums
IeqNFðrÞ, IeqFFðkÞ (dashed red lines)—note the quantitative agree-
ment with the experiments (blue line) without adjustable param-
eters. The insets show the 2D intensity distributions averaged
over the realizations. The green lines report the averaged intensity
profiles recorded at the input of the MMF. (c)–(d) Individual
realizations of the input (green) and output (blue) intensities
corresponding to the average intensities in (a) and (b). The insets
report the 2D intensity patterns corresponding to the black lines
(same color bars for all insets). (e) Distance to the theoretical RJ
intensity for all NF realizations of the input (Din, blue) and output
(Dout, red) intensities. The ratio R ¼ Din=Dout ≫ 1 shows the
attraction to the RJ equilibrium (inset).
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such that μ ¼ β0 [11,56]. At this critical point the denom-
inator of the RJ distribution vanishes exactly [7] and the
singularity is regularized by the macroscopic population of
the fundamental mode [11,56]:

neq0 =N ¼ 1 − ðE − E0Þ=ðE�
crit − E0Þ: ð6Þ

Then, neq0 vanishes at E�
crit, and n

eq
0 =N → 1 as E reaches the

minimum E0 ¼ Nβ0. This mechanism of RJ condensation
is formally analogous to the quantum Bose-Einstein tran-
sition, which originates in the singularity of the Bose
distribution when the chemical potential reaches the ground
state energy [7,18].
Because of finite size effects, the experiment does not

occur in the strict thermodynamic limit. The theory
accounting for finite size effects gives Ecrit ¼ E0½1þ
ðM − 1Þ=ϱ�, where ϱ ¼ P

p≠0ðpx þ pyÞ−1 [11,13,56].
Considering the experimental parameters we obtain
E�
crit=Ecrit ≃ 0.95 [blue cross in Fig. 2(b)], so that our

experiment is “close” to the thermodynamic limit.
In order to compare the theory with the experiments, we

need to extract neq0 and μ from the experimental data. This
requires a fitting procedure: Using the experimental inten-
sities averaged over the realizations, we have retrieved
ðneq0 ; μÞ from the RJ intensity distributions [Eqs. (3)–(5)] by
a least squares method [56]. For this purpose, the temper-
ature T in Eqs. (4)–(5) has been expressed in terms of
ðneq0 ; μÞ by using N ¼ neq0 þ T

P
p≠0ðβp − μÞ−1. In this

way ðneq0 ; μÞ can be extracted independently from either the
NF or FF intensity distributions.
We report in Fig. 2(a) the chemical potential μ vs E: By

decreasing E, μ increases and condensation occurs when
μ → β−0 for E ¼ Ecrit. Below the transition (E ≤ Ecrit) the
fundamental mode gets macroscopically populated,
neq0 ≫ neqp≠0, see Fig. 2(b). The triangles report the exper-
imental data retrieved from the least square method for the

NF and FF intensity distributions. The red line reports the
RJ theory accounting for finite size effects for the MMF
used in the experiment; see Refs. [11,56]. The experimental
results in Fig. 2 are in quantitative agreement with the RJ
theory without adjustable parameters, i.e., β0 and M are
fixed by the MMF of the experiment [56]. Furthermore, the
experimental results are close to the thermodynamic limit
given by Eq. (6), see Fig. 2(b). As usual, finite size effects
make the transition to condensation “smoother” [red line in
Fig. 2(b)].
Thermodynamics of classical condensation.—We start

from the equilibrium entropy Seq ¼ P
p logðneqp Þ −

M logN that can be written SeqðEÞ ¼ −
P

p log½βp−
μðEÞ� −M logfPp½βp − μðEÞ�−1g. Figure 3(a) reports
Seq vs E by using the experimental data μðEÞ in
Fig. 2(a). The heat capacity CV ¼ ð∂E=∂TÞN;M is an
important quantity characterizing the transition to conden-
sation [18]. In our experiment the transition is studied by
varying E while holding N and M constant (M playing a
role analogous to the system volume [32]). Using the
energy-temperature relation E vs T ¼ ð∂E=∂SeqÞN;M in
Fig. 3(b), we obtain [56]

CVðEÞ ¼ M −
fPp½βp − μðEÞ�−1g2
P

p½βp − μðEÞ�−2 : ð7Þ

Below the transition (E < Ecrit) we have μ → β0. Then
writing the energy in the form E ¼ TM þ β0N gives
CV ¼ M, as expected from the theorem of energy equi-
partition, see Figs. 3(c)–3(d).

FIG. 2. Rayleigh-Jeans condensation. (a) Chemical potential vs
energy: For E≲ Ecrit, μ → β−0 , which leads to the macroscopic
population of the fundamental mode, see neq0 =N vs E=Ecrit (b).
The blue (yellow) triangles report the experimental results from
the NF (FF) intensity distributions (averaged over the realiza-
tions). The red lines report the RJ theory without using adjustable
parameters. The dashed black line in (b) refers to the thermo-
dynamic limit [Eq. (6)] and the blue cross denotes
E�
crit=Ecrit ≃ 0.95: The experiment is “close” to the thermody-

namic limit.

FIG. 3. Thermodynamics of classical condensation. (a) Entropy
Seq vs E=Ecrit; (b) E=Ecrit vs T=Tcrit. Heat capacity CV=M vs
E=Ecrit (c), and vs T=Tcrit (d). The blue (yellow) triangles report
the experimental results from the NF (FF) intensity distributions
(averaged over the realizations). The solid red lines report the RJ
theory without adjustable parameters (M ¼ 120modes). For E <
Ecrit (or T < Tcrit) the system exhibits energy equipartition
among the modes and CV=M → 1, whereas for E > Ecrit (or
T > Tcrit) the equipartition of power among the modes entails
CV → 0 (dashed-black lines are for M ¼ 500 500).
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Far above the BEC transition a quantum gas behaves
as a classical gas featured by a constant heat capacity
CVðTÞ ¼ const [18]. At variance with a classical gas, we
observe in our classical wave system that CV → 0 for E >
Ecrit (or T > Tcrit ¼ Nβ0=ϱ), see Figs. 3(c)–3(d). Actually,
the equilibrium properties of waves are of a different nature
than those of a gas: Above the transition the equilibrium
state no longer exhibits energy equipartition, but instead an
equipartition of the power among the modes, viz neqp ∼
T=ð−μÞ for −μ ≫ βp. This is the most disordered equilib-
rium state with Seqmax ¼ −M logM for E ¼ 2

3
NV0 and

1=T ¼ ð∂S=∂EÞN;M → 0. This means that the equilibrium
is not constrained by the conservation of the energy E
(the Lagrange multiplier 1=T is zero), but solely by the
conservation of N, which merely explains the
modal power equipartition [60]. Accordingly, a variation
of T does not affect E, which entails CV → 0. Approaching
the thermodynamic limit, CV exhibits a cusp featured
by an infinite derivative at E ¼ Ecrit (or T ¼ Tcrit); see
Figs. 3(c)–3(d).
Conclusion.—We have reported the first observation of

the equilibrium condensation of classical optical waves in
quantitative agreement with the RJ theory. Far above the
transition, the field exhibits an equipartition of power
among the modes and a vanishing heat capacity
[CVðTÞ → 0]. Below the transition (E < Ecrit), the funda-
mental mode is macroscopically populated and the constant
heat capacity reflects an energy equipartition among the
uncondensed modes.
Our experiments in MMFs pave the way for a thermo-

dynamic control of light coherence [32,61]. For instance, a
thermalized speckle beam in the normal state can be
adiabatically cooled to the condensed state owing to a
potential sink in a manufactured MMF, in analogy with the
adiabatic formation of quantum BECs [18].
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