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Abstract. - The wave turbulence theory predicts that a conservative system of nonlinear waves
can exhibit a process of condensation, which originates in the singularity of the Rayleigh-Jeans
equilibrium distribution of classical waves. Considering light propagation in a multimode fiber,
we show that light condensation is driven by an energy flow toward the higher-order modes, and a
bi-directional redistribution of the wave-action (or power) to the fundamental mode and to higher-
order modes. The analysis of the near-field intensity distribution provides experimental evidence
of this mechanism. The kinetic equation also shows that the wave-action and energy flows can be
inverted through a thermalization toward a negative temperature equilibrium state, in which the
high-order modes are more populated than low-order modes. In addition, a Bogoliubov stability
analysis reveals that the condensate state is stable.

Bose-Einstein condensation (BEC) has been predicted
and experimentally reported in genuine quantum systems,
such as quantum degenerate gases of ultracold atoms [1],
exciton polaritons [2], magnons [3] and photons [4,5]. On
the other hand, several studies based on the wave turbu-
lence theory [6–10] predict that nonlinear waves can also
exhibit a phenomenon of condensation [7, 8, 11–25]. Al-
though the physics of quantum gases and wave condensa-
tion are different, the underlying mathematical origin of
the condensation process is similar because of the common
low-energy divergence of the equilibrium Bose distribution
for quantum particles and the equilibrium Rayleigh-Jeans
(RJ) distribution for waves [8, 12]. Other forms of con-
densation processes have been discussed for optical cav-
ity systems, whose nonequilibrium forced-dissipative fea-
tures [2,26–31] lead to different forms of universal proper-
ties [32].

Full 3D quantum thermalization and condensation with
optical waves in a conservative cavity-less free propagation

geometry has been predicted in [33], but has also been an-
ticipated to require prohibitive large propagation lengths.
Reducing to an effective 2D geometry using monochro-
matic classical light helps observing condensation effects,
but still requires propagation lengths that challenge ex-
perimental feasibility [25]. Actually, thermalization to the
RJ equilibrium is not even properly defined when the op-
tical beam propagates in a bulk medium because of the
ultraviolet catastrophe inherent to classical optical waves.
This issue can be circumvented by considering a waveguide
configuration, whose finite number of modes regularizes
the ultra-violet catastrophe and also substantially reduces
the rate of thermalization [17, 19]. In this respect, a re-
markable phenomenon of spatial beam self-organization,
termed ‘beam self-cleaning’, has been recently discovered
in (graded index) multimode fibers (MMF) [34–37]. Re-
cent works suggested that this phenomenon of beam self-
cleaning can be interpreted as a consequence of a wave
thermalization and condensation process [38–42]. In par-
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ticular, a wave turbulence kinetic equation (KE) describ-
ing this effect has been derived in [38,39]. This process has
been experimentally demonstrated in a recent work [43],
where the condensate fraction across the transition to con-
densation has been found in agreement with the RJ equi-
librium theory.
Our aim in this article is to provide more physical in-

sights into the experimental results reported in [43]. We
recall in this respect that wave condensation is usually un-
derstood as an inverse turbulence cascade that increases
the level of nonlinearity at large scales (i.e. low wave-
numbers), up to a breaking point of the weak turbulence
theory [8]. In the focusing regime of our experiment, such
a nonlinear breaking point is usually regularized by the
(Benjamin-Feir) modulational instability, which leads to
the generation of coherent soliton-like structures (‘soliton
condensation’) [8,18,44–46]. At variance with this strongly
nonlinear process that occurs far from thermal equilibrium,
in our experiments the transition to condensation is driven
by the thermalization to the RJ equilibrium in the weakly
nonlinear regime. More precisely, we show that the pro-
cess of condensation is characterized by a flow of the en-
ergy toward the higher-order modes, and a bi-directional
redistribution of the wave-action (or optical power, or par-
ticle number in a corpuscular picture), from intermedi-
ate modes to both the fundamental and the higher-order
modes.
Modal nonlinear Schrödinger equation.– We consider

the (2D+1) nonlinear Schrödinger equation (NLSE) ac-
counting for the polarization degree of freedom, which is
known to describe the transverse spatial evolution of an
optical beam in a waveguide modelled by a confining po-
tential V (r) [with r = (x, y)] [19]. Following the exper-
iments of beam cleaning, we consider a parabolic shaped
potential V (r) modelling a graded-index MMF, with the
mode eigenvalues βp = β0(px + py + 1) (the index p la-
bels the two integers (px, py) that specify a mode), where
β0 = 1/(nck0r

2
o) with k0 = 2π/λ, ro the radius of the fun-

damental mode, λ the laser wavelength, and nc the core
refractive index. By expanding the random wave into the
normalized Hermite-Gauss modes (up(r)) of the MMF,
the modal NLSE for the evolutions of the vector modal
components ap = (ap,x, ap,y)

T reads [38, 39]:

i∂zap = βpap +Dp(z)ap − γPp(a), (1)

where the nonlinear terms read Pp(a) =
∑

l,m,n Splmn

(

1
3a

T
l ama∗

n + 2
3a

†
namal

)

, Splmn denoting

the overlap among the modes – note that S0000 = 1 [39].
To explain the experiments of beam-cleaning, it is im-
portant to introduce the impact of a structural disorder,
which is known to affect light propagation in MMFs
due to inherent imperfections and external perturba-
tions [49]. We consider in (1) the dominant contribution
of weak disorder. In its most general form that con-
serves the wave-action N =

∑

p |ap|2, the Hermitian
matrices Dp(z) are expanded into the Pauli matrices

σj, Dp(z) =
∑3

j=0 νp,j(z)σj , where σ0 is the identity
matrix and νp,j(z) are independent and identically
distributed real-valued random processes, with variance
σ2 and correlation length ℓc. Introducing the parameter
∆β = σ2ℓc, the characteristic length scale of disorder is
Ld = 1/∆β [39]. Finally note that since the disorder is
(“time”) z dependent, our system is of different nature
than those studying the interplay of thermalization and
Anderson localization [24].
Kinetic equation.– It is important to recall that our ex-

periments are carried out in the weakly nonlinear regime
Llin ∼ 1/β0 ≪ Lnl ∼ 1/(γN) [43], and that linear prop-
agation effects dominate disorder effects, Llin ≪ Ld (or
∆β ≪ β0). According to this latter separation of spatial
scales, turbulence in MMFs is described by a discrete wave
turbulence approach [38,39], which means that only exact
resonances contribute to the KE, while quasi-resonances
can be neglected [8]. Indeed, assuming that disorder ef-
fects dominate nonlinear effects Ld ≪ Lnl, we have de-
rived a discrete wave turbulence KE that describes the
nonequilibrium evolution of the averaged modal compo-
nents np(z) =

〈

|ap|2(z)
〉

during the propagation through
the fiber [38, 39]:

∂znp(z) =
γ2

6∆β

∑

l,m,n

|Slmnp|2δK(∆ωlmnp)Mlmnp(n)

+
4γ2

9∆β

∑

l

|slp(n)|2δK(∆ωlp)(nl − np), (2)

with slp(n) =
∑

m′ Slm′m′pnm′ , and Mlmnp(n) =
nlnmnp+nlnmnn−nnnpnm−nnnpnl and ∆ωlp = βl−βp.
The term δK(∆ωlmnp) denotes the four-wave frequency
resonance ∆ωlmnp = βl+βm−βn−βp, with δK(∆ωlmnp) =
1 if ∆ωlmnp = 0, and zero otherwise. Note the presence of
∆β in the denominator of the KE, so that disorder signif-
icantly affects the rate of thermalization [39].
To derive the KE (2) we made use of the conventional

assumption of Gaussian statistics to achieve a closure of
the infinite hierarchy of the moments equations [6], a fea-
ture which is justified by the weakly nonlinear regime of
our experiments. In the absence of the confining potential
(V (r) = 0), the wave turbulence KE can be derived under
a weaker assumption than Gaussian statistics, namely the
random phase and amplitude (RPA) approximation [8]. In
the presence of the confining potential (V (r) 6= 0), we have
shown that the Gaussian approximation gives the same
result as the RPA for the coupling among non-degenerate
modes, while differences appear for the degenerate modes,
which only marginally affect the rate of thermalization.
Numerical simulations: Energy and wave-action flows.–

The KE conserves the wave-action N =
∑

p np and the
‘energy’ E =

∑

p βpnp – note that we call E ‘energy’ be-
cause it refers to the linear contribution to the Hamilto-
nian (E is in units of W·m−1), while we call N ‘wave-
action’ by following the wave turbulence terminology [6]
(N is in units of W). In a particle picture, np and N have
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Fig. 1: Numerical simulation of the modal NLSE (1) (a)-
(b), and KE (2) (c)-(d): Evolutions of the wave-action
ñg (a)-(c), and energy Ẽg (b)-(d), for gmax =15 groups of
non-degenerate modes. The dashed black lines in (a) and
(c) denote the RJ power-law ñeq

g ∼ 1/g. The thermaliza-
tion is featured by an energy flow toward the higher-order
modes and a wave-action flow toward the fundamental and
higher-order modes. Evolutions of n0(z) (e) and n4(z) (f)
obtained from the NLSE (1) simulation (red line) and the
KE (2) (dashed blue): The modal components thermal-
ize to the theoretical equilibrium value predicted by the
RJ theory (the dashed black line denotes neq

0 /N = 0.6).
Parameters: N =47.5kW, ℓc = 0.019m, 2π/σ = 0.26m.

the meaning of population of the p mode and of total par-
ticle number.

The KE (2) exhibits a H−theorem of entropy growth
(∂zS ≥ 0) for the nonequilibrium entropy S(z) =
∑

p log
(

np(z)
)

, so that it describes an irreversible evolu-
tion to the RJ equilibrium distribution neq

p = T/(βp − µ)
that realizes the maximum of entropy. Accordingly we
have N = T

∑

p(βp − µ)−1 and E = T
∑

p βp/(βp − µ)
and we recall that there is a one to one relation between
the equilibrium parameters (µ, T ) and the initial condi-
tions (N,E) [12, 19, 47] – note in particular that T is not
determined by a thermostat (T is in units of W·m−1).

This irreversible process of thermalization to the RJ
distribution is illustrated in Fig. 1(a)-(c), which reports
numerical simulations of the modal NLS Eq.(1) and cor-
responding KE (2) starting from the same initial condi-
tion. During the propagation, np essentially flows toward
the fundamental mode (inverse cascade), while a small

fraction of np flows toward the higher-order modes. For
convenience we have reported in Fig. 1 the average wave-
action ñg within each group of degenerate modes, where
g = 0, .., gmax − 1 indexes the mode group (in Fig. 1
gmax = 15 for a total M = gmax(gmax + 1)/2 = 120
modes). The RJ power-law ñg ∼ 1/g is verified by the
simulation of the KE and NLSE – due to the large com-
putation times, we are unable to perform an average over
the realizations of NLSE simulations, which explains the
noisy structure of ñg in Fig. 1a-b.

These results are corroborated by the modal distribu-
tion of the energy, which exhibits a flow toward the higher-
order modes (direct cascade). In this example, we con-
sidered a relatively small value of the conserved energy
E, which is below the critical value of the transition to
condensation Ec ≃ Emin

√

M/2, where Emin = Nβ0 de-
notes the minimum energy when all the ‘particles’ N pop-
ulate the fundamental mode. Note that Ec only depends
on the geometry of the waveguide potential, whose finite
number of modes M regularizes the ultraviolet catastro-
phe of classical waves. In the condensed state, µ → β−

0

[43], so that the waves that started from an initial state
with an excess energy in the low-energy modes, eventu-
ally tend to an equilibrium state displaying an energy
equipartition among the modes Ep = (βp − β0)np ∼ T

[or Ẽg = β0gñg ∼ T ], as illustrated in Fig. 1(b)-(d). Then
RJ thermalization is characterized by a macroscopic popu-
lation of the fundamental mode, as illustrated in Fig. 1(e),
where the condensate fraction relaxes toward the theoret-
ical equilibrium value neq

0 /N ≃ 0.6. Note that the good
agreement between NLSE and KE simulations in Fig. 1 is
obtained without using adjustable parameters.

One may question whether the above energy and wave-
action flows can be described theoretically by means of
the Zakharov-Kolmogorov spectra of turbulence [6]. While
these nonequilibrium stationary solutions are sustained by
the addition of a permanent forcing and damping at dif-
ferent scales in the system, they may be identified in the
transient evolution of a purely conservative system, before
reaching the RJ equilibrium [8,18]. Note however that our
KE (2) differs from the conventional wave turbulence KE
in two respects: (i) It involves the tensor |Splmn|2 instead
of the Dirac δ−function over the wave-vectors, because
the potential V (r) breaks the conservation of the momen-
tum; (ii) Our KE is discrete in frequencies. This latter
property does not allow the application of the standard
procedure based on the Zakharov conformal transforma-
tion to derive nonequilibrium stationary solutions featured
by a non-vanishing flux of the conserved energy and wave-
action. This appears consistent with the numerical simu-
lations, which do not evidence the formation of a nonequi-
librium power-law spectrum in the transient evolution that
precedes the formation of the equilibrium RJ spectrum.

Experimental results.– We performed experiments in a
MMF with the experimental setup of Ref. [43]. We used a
12m-long graded-index MMF that guides M = 120 modes
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Fig. 2: (a)-(c) Experimental intensities distributions av-
eraged over the realizations at the input (blue), and the
output (red) of the MMF. (d)-(f) Corresponding numeri-
cal simulations of the NLSE (1), see the text for param-
eters. The condensate fraction is neq

0 /N = 0.6 (1st line);
neq
0 /N = 0.4 (2nd line); neq

0 /N = 0.2 (3rd line). The
dashed green lines report the theoretical RJ intensity dis-
tribution Ieq(r) from Eq.(3) without using any adjustable
parameter. The intensities are plotted as a function of
the angle-averaged distance r = |r|. The insets show the
2D output intensity distributions with the same color-bar
(the circle denotes the MMF’s core).

(gmax = 15) with a core radiusR = 26µm characterized by
a parabolic shaped transverse refractive index. The origi-
nality with respect to conventional experiments of spatial
beam cleaning [34, 35, 37] relies on the fact that the laser
beam (Nd:YAG at λ = 1.06µm) is passed through a dif-
fuser to generate a speckle beam before injection into the
MMF. In the experiments we measure N and E from the
near-field and far-field measurements of the intensity dis-
tributions, see Ref. [43]. By moving the diffuser we obtain
different realizations of the speckle beams, and then we
can vary the energy E while keeping constant the power
(N = 7kW). Here, we focus the analysis into the near-field
intensity distribution. Note that, because of the parabolic
shaped potential V (r), the average near-field and far-field
intensity representations are equivalent to each other [43].

We report in Fig. 2 (left column) the experimental re-
sults of the near-field intensity distributions averaged over
∼50 realizations for three different values of the energies
E, which correspond to an equilibrium condensate frac-
tion of neq

0 /N = 0.6, 0.4, 0.2. We report the ‘output’ in-
tensity distributions recorded at 12m (red lines), and the

‘input’ intensities recorded after 20cm of propagation in
the MMF (representing the ‘initial conditions’ [38], blue
lines). The output intensities are compared to the theoret-
ical RJ intensity distributions Ieq(r) (dashed green lines).
It is important to stress that the good agreement between
the experiments and the theory in Fig. 2 (left column) is
obtained without any adjustable parameter: The experi-
mentally measured values (E,N) determine a unique pair
(µ, T ), which in turn determines neq

p = T/(βp−µ) and thus
the RJ equilibrium intensity distribution (dashed green
lines in Fig. 2):

Ieq(r) =
∑

p

neq
p u2

p(r). (3)

We do not have access to a measurement of the power np

within each individual mode p in the experiments. How-
ever, for large values of px = py, the asymptotic forms
for the Hermite-Gauss functions show that the normalized
mode up(r) is essentially supported in r ≤ √

2gro with
g = px + py [50], i.e., there is a correspondence between
the radius r and the mode number g. The bi-directional
wave-action flows toward the fundamental mode and the
higher-order modes (r ≃ R) is clearly visible for a strong
condensation, see Fig. 2(a) for neq

0 /N = 0.6. By increas-
ing the energy E (i.e. decreasing neq

0 /N), the amount
of incoherence (randomness) of the launched beam also
increases and then populates the higher-order modes, so
that only the inverse wave-action flow toward the funda-
mental mode is clearly visible, see Fig. 2(c). Note that, as
recently demonstrated experimentally [48], a self-cleaned
optical beam exhibits a high degree of phase coherence.
The numerical simulations of the modal NLSE (1) qual-

itatively reproduce the behavior observed experimentally.
This is illustrated in Fig. 2 (right column), where an
average over the propagation has been considered from
12m to 22m so as to smooth the output intensity pro-
files (red lines). Although the parameters that charac-
terize the disorder are not precisely known, we consid-
ered in Fig. 2 plausible experimental values ℓc = 0.3m
and 2π/σ = 2.14m [49]. For these parameters disorder no
longer dominates nonlinear effects (Ld ∼ Lnl), and strictly
speaking the KE (2) is no longer valid [39]. However, the
scaling predicted by the KE, namely that thermalization
is accelerated by decreasing the disorder (see the param-
eter ∆β in the denominator of (2)) is responsible for a
fast process of condensation for the small disorder consid-
ered in Fig. 2. This is apparent by comparing the simula-
tions in Fig. 1 (propagated over ∼ 100m) and Fig. 2 (over
L = 12m). In spite of the acceleration of thermalization,
we had to increase the power up to 22kW in the simula-
tions to get a good agreement between NLSE simulations
and the experimental results in Fig. 2. Then although the
purely spatial model considered in Eq.(1) captures many
features of the experimental results, an improved quantita-
tive agreement would require a spatio-temporal extension
of the model so as to account for the pulsed laser regime
considered in the experiments.
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Stability of the condensate.– The description of wave
condensation in the absence of a trapping potential (i.e., in
the homogeneous case V (r) = 0) is known to require a Bo-
goliubov approach, which shows that the condensate frac-
tion neq

0 /N strongly depends on the nonlinearity γ [11,12].
Here we show that the Bogoliubov approach is irrelevant
to describe the weakly nonlinear regime of our experiment.
The structural disorder considered in the modal NLSE

(1) enforces the random phase dynamics among the
modes. As described by the KE (2), the disorder then
has a stabilizing effect on the process of condensation
in the regime Ld ≪ Lnl. However, as discussed above
through the simulations of Fig. 2, the disorder does not
dominate nonlinear effects in the experiments. In the
following we show that the condensate is stable against
the focusing nonlinearity even in the absence of disor-
der effects. Then we neglect the impact of polarization
disorder and set Dp = 0, ap → ap in Eq.(1). We as-
sume that the fundamental mode is strongly occupied
(|a0| ≫ |am|, m 6= 0) and consider the weakly nonlin-
ear regime ε = Llin/Lnl = γN/β0 ≪ 1. The linearized
equations read:

∂za0 = −iβ0a0 + iγ|a0|2a0
+iγ

∑

p6=0

sp0(2|a0|2ap + a20a
∗
p),

∂zam = −iβmam + iγsm0|a0|2a0
+iγ

∑

p6=0

smp(2|a0|2ap + a20a
∗
p),

where smn = Smn00. Writing smn = wmxnx
wmyny

, we
have

wmxnx
=

(−1)
mx−nx

2

2mx+nx

√
mx!nx!

(mx + nx)!

(mx+nx

2 )!
, (4)

when mx and nx have the same parity, and wmxnx
= 0

otherwise (idem for wmyny
). We look for a particular so-

lution of the form a0 =
√
n0e

−iβ̄0z , where β̄0 will be de-

fined later, and am = dme−iβ̄0z with β̄m = βm − β̄0 (dm
real-valued). The ansatz is solution if

−β̄0n
1/2
0 = −β0n

1/2
0 + γn

3/2
0 + 3γn0

∑

p6=0 sp0dp

β̄mdm = +γsm0n
3/2
0 + 3γn0

∑

p6=0 smpdp, m 6= 0

Therefore the vector d is solution of the linear system
(I − K)d = y, with the elements of y given by ym =

γn
3/2
0 sm0/β̄m and the matrix K = (Kmp) given by Kmp =

3γn0smp/β̄m form 6= p and 0 otherwise. The matrix I−K

is invertible if supm
∑

p |Kmp| < 1, which is verified since
ε ≪ 1. Therefore there is a unique vector solution that is
d = (I − K)−1y. By considering only the leading order

corrections O(ε2β0), we have dm = γn
3/2
0 sm0/(βm − β0),

β̄0 = β0 − γn0, β̄m = βm − β0 + γn0, and the nonlinear
fundamental mode is of the form

ū0(r, z) =
√
n0e

−iβ̄0z
(

u0(r) +
∑

m 6=0

γn0sm0

βm − β0
um(r)

)

.

The field then consists of the superposition of the strong
condensate in the (slightly distorted) mode ū0 and the
incoherent mode fluctuations am 6=0, that can be written

in terms of ãm(z) = am(z)eiβ̄0z:

∂z ãm = −iβ̄mãm + iγn0

∑

p6=0

smp(2ãp + ã∗p). (5)

The stability of this system is carried out by comput-
ing the matrix eigenvalues, which reveals that all eigen-
values are purely imaginary for ε ≪ 1, i.e., the con-
densate is stable. Note that for mx,my ≫ 1, we
have sm0 ≃ 1/[

√
π(mxmy)

1/42(mx+my)/2] and smm ≃
4/[π(mxmy)

1/2], so that sm0 exhibit a rapid decay to
zero as compared to smm. Then assuming smm ≫ smp

(p 6= m), the eigenvalues are obtained in analytical form
with the Bogoliubov dispersion relation

β̄B
m =

√

(β̄m − 3γn0smm)(β̄m − γn0smm). (6)

Considering the weakly nonlinear regime of the experi-
ment ε = γN/β0 < 10−3, β̄B

m is real and β̄B
m ≃ β̄m ≃

βm − β0, i.e., the Bogoliubov dispersion relation of am(z)
in the presence of the condensate (

√
n0 ≫ |am|) is well

approximated by the linear expression βB
m ≃ βm. In other

words, the Bogoliubov nonlinear renormalization of the
dispersion relation is negligible. This is corroborated by a
scale-by-scale analysis of NLSE simulations, which reveals
that even the strongly condensed mode p = 0 evolves in
the weakly nonlinear regime [38].
Perspectives on negative temperatures.– We have seen

that light condensation in MMFs is driven by a flow of en-
ergy toward the higher order modes and a bi-directional re-
distribution of the wave-action. This thermalization pro-
cess exhibits properties similar to those identified numer-
ically in the absence of a confining potential, see e.g. [25].
However, the main difference is that condensation in a
MMF is described by a weakly nonlinear and discrete wave
turbulence approach where the structural disorder accel-
erates the process of thermalization over a relatively small
number of modes (M ≃ 120), see the KE (2).
An interesting consequence of the finite number of

modes with an upper energy bound (Emax = β0gmaxN)
is that the system can exhibit negative temperature equi-
librium states, T < 0 [41, 51, 52]. The condition neq

p =
T/(βp − µ) > 0 then requires µ > max(βp) = gmaxβ0

and the equilibrium distribution is featured by an inverted
modal population (ñeq

g+1 > ñeq
g ) for an energy E > Et =

N 〈βp〉 = Emin(2gmax+1)/3, where 〈βp〉 is the arithmetic
mean of the eigenvalues and we recall that Emin = Nβ0.
The denominator of the RJ equilibrium now vanishes for
µ → gmaxβ0. Accordingly, ñg essentially flows toward
the highest energy level, i.e. highest mode group g = 14,
while the energy Ẽg = β0gñg flows toward the low-order
modes. This process of thermalization toward a negative
temperature equilibrium is demonstrated by the numeri-
cal simulation of the KE (2) in Fig. 3. For such a negative
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(a) (b)
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Fig. 3: Simulation of the KE (2) showing RJ thermal-
ization toward a negative temperature equilibrium state:
ñg essentially flows to the last group of degenerate modes
(highest energy level g = gmax − 1) (a), while the energy
Ẽg flows to the low-order modes (b). The inset shows that

F̃g = β0(g − gmax + 1)ñg relaxes toward an equipartition

among the modes, F̃g ≃ T < 0 (red line), as predicted by
the RJ equilibrium distribution (N =47.5kW, ℓc = 0.3m,
2π/σ = 2.1m, gmax =15). (c) µ/β0 − 1 vs E/Emin: note
the asymptotic behaviors µ → β−

0 for E → Emin, and
µ → gmaxβ

+
0 for E → Emax. The horizontal dashed line

denotes µ = gmaxβ0 and the vertical one E = Et. (d)
Seq vs E/Emin showing 1/T = (∂Seq/∂E)M,N < 0 for
E > Et. The green circle denotes Seq

max = −M logM
at E = Et. (e) T/Emin vs E/Emin: The divergences
T = ±∞ for E = E∓

t are removed by plotting Emin/T vs
E/Emin (f).

temperature equilibrium, the role of energy equipartition
is played by the quantity Fp = (βp − gmaxβ0)np ≃ T < 0

[or F̃g = β0(g − gmax + 1)ñg ≃ T < 0], which is equally
distributed among the modes (inset of Fig. 3). In spite of
the fact that the highest energy level can be macroscopi-
cally populated ñgmax−1 ≫ ñg, there is no phase coherence
amongst such a group of degenerate modes, which suggests
an analogy with the notion of turbulent crystal [53].

We finally complete the study with the thermodynamic
properties of the system. We start from the equilibrium
entropy S̃eq =

∑

p log(n
eq
p ) – note that at equilibrium it

coincides with the previous nonequilibrium entropy veri-
fying the H−theorem. It proves convenient to shift the

entropy by a constant Seq = S̃eq − M logN , so that by
using T = N/

∑

p(βp − µ)−1, we can write

Seq(µ) = −
∑

p

log(βp − µ)−M log
(

∑

p

1

βp − µ

)

(7)

E(µ)

Emin
=

∑

p
βp

βp−µ
∑

p
β0

βp−µ

(8)

T (µ)

Emin
=

1
∑

p
β0

βp−µ

(9)

The evolution of µ vs E is reported in Fig. 3(c) from
Eq.(8). It evidences that µ → β−

0 for E → Emin, and
µ → gmaxβ

+
0 for E → Emax: In both cases the denomi-

nator of the RJ distribution vanishes, which leads to the
macroscopic population of the lowest mode (g = 0) and
the highest mode group (g = 15), respectively.
The parametric plot with respect to µ of (7) and (8)

gives Seq(E) in Fig. 3(d); while the corresponding para-
metric plot of (8) and (9) gives T vs E in Fig. 3(e).
Note the concavity of the entropy with respect of the en-
ergy as required by a self-consistent thermodynamic the-
ory. Negative temperatures equilibrium states arise for
E > Et, where the entropy decreases by increasing the
energy, T = (∂E/∂Seq)M,N < 0. Note that such negative
temperature states (E > Et) are actually “hotter” than
those at positive temperature (E < Et), as the energy will
spontaneously flow from negative to positive temperature
when the systems are put in contact.
Remark in Fig. 3(e) that the equilibrium state corre-

sponding to T = 0+ (T = 0−) refers to a population dis-
tribution concentrated in the lowest (highest) mode with
E = Emin (E = Emax). Accordingly, the sates T = 0+

and T = 0− are fundamentally different from each other,
whereas there is almost no difference between the states
T = +∞ and T = −∞ for E ≃ Et. This latter equilibrium
state for E = Et corresponds to an equipartition of the
wave-action among all the modes neq

p =const, and it refers
to the most disordered state with Seq

max = −M logM [43],
see the green circle in Fig. 3(c). The apparent paradoxi-
cal divergence of T = ±∞ around this homogeneous state
neq
p =const disappears if one considers the inverse of the

temperature as the appropriate parameter (just as the La-
grange multiplier 1/T that arises naturally in statistical
mechanics). In this case 1/T vs E exhibits a continuous
behaviour as shown in Fig. 3(f).
Work is in progress to study experimentally the unusual

thermalization to negative temperature equilibrium states.
Given the large degeneracy of the condensate mode in this
case, this raises interesting question about the possibility
of having fragmented condensates [54].
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