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Abstract In this paper, we first propose an efficient method for the dimension reduction of the functional
input of a code with functional output. It is based on the approximation of the output by a model which is
linear with respect to the functional input. This approximation has a sparse structure, whose parameters can
be accurately estimated from a small set of observations of the code. The Gaussian predictor based on this
projection basis is significantly more accurate than the one based on a projection obtained with Partial Least
Squares. Secondly, the surrogate modeling of two nested codes with functional outputs is considered. In such
a case, the functional output of the first code is one of the inputs of the second code. The Gaussian process
regression of the second code is performed using the proposed dimension reduction. A Gaussian predictor of
the nested code is obtained by composing the predictors of the two codes and linearizing this composition.
Moreover, two sequential design criteria are proposed. Since we aim at performing a sensitivity analysis,
these criteria are based on a minimization of the prediction variance. Moreover, one of the criteria enables to
choose, if it is possible, which of the two codes to run. Thus, the computational budget is optimally allocated
between the two codes and the prediction error is substantially reduced.

Keywords nested computer codes, Gaussian process regression, uncertainty quantification, dimension
reduction, sequential designs.

1 Introduction

The role of simulation for the design and the certification of complex systems is increasing. The design and
the certification of complex systems involve methods like optimization, risk analysis or sensitivity analysis
(Sobol, 2001). However, such methods require the evaluation of the output of the studied system at a large
number of input points. Therefore, if the computer codes are costly, the use of surrogate models becomes
necessary.

In this paper, we focus on a chain of two codes with functional outputs, which are time-varying functions. By
functional output, we mean high dimensional vectorial output and not infinite dimensional output (Pinski
et al., 2015). The functional output of the first code is one of the inputs of the second code.

Several challenges are posed by such a system:

there are two codes,
the two codes are computationally expensive, with different computational costs,
the second code has a functional input and a functional output,
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— the two codes are coupled by a functional variable.

We want to perform a sensitivity analysis of the nested code output with respect to its inputs. Given the
high computational cost of the codes, our first objective is to emulate the nested code output.

Among the surrogate modeling methods, the Gaussian process regression is a widely used technique (Sacks
et al., 1989; Santner et al., 2003; Rasmussen and Williams, 2006). In the Gaussian process regression frame-
work, the output of a code is treated as being the realization of a Gaussian process. However, the literature
on Gaussian process regression generally deals with a single code or regard a chain or a network of codes as
a single code. Besides, Marque-Pucheu et al. (2018) only treats the case of two nested codes which are linked
by a scalar intermediary variable.

Besides, the literature for the Gaussian process regression of a code with functional output generally deals
with the case of low dimensional vectorial inputs. Two approaches exist for the Gaussian process regression
of such a code. The first one is based on a dimension reduction of the functional output (through a Principal
Components Analysis for example) and the independent surrogate modeling of the projected components
(Fricker et al., 2013; Higdon et al., 2008). The second one is based on a tensorized (Kronecker) structure of
the covariance of the Gaussian process modeling the code, which means a separation between the time (or
the indices of the functional output) and the other inputs (Hung et al., 2015; Rougier, 2008; Williams et al.,
2006; Conti et al., 2009; Conti and O’Hagan, 2010). Given that the Principal Components can be difficult
to estimate from a small number of observations, and following Perrin (2018), the second approach will be
chosen in this paper.

Concerning the Gaussian process regression of a code with a functional input, the existing approaches
generally rely on a projection of the functional input on a basis and consider a scalar output. There exist
numerous projection methods of a functional variable. Among these methods, two approaches provide a
projection basis of the functional input which is based on the relationship between the input and the output.
These methods are based on Partial Least Squares (PLS) (Nanty et al., 2017) or Active Subspaces (Russi,
2010; Constantine et al., 2014). Moreover, Zahm et al. (2018) studies the projection based on the Active
Subspace in the case of a vectorial output and a ridge approximation (Pinkus, 2015) of the code. However,
the first approach cannot take into account additional information about the code, like causality. Indeed, in
this paper, the output of the second code at a given time depends only on the functional input at previous
times. The second approach requires the knowledge of the derivatives of the code’s output, but this information
is not always available.

The contributions of this paper are the following. First, we propose a method for the dimension reduction of
the functional input of a code which is adapted to the output of the code. This method has two steps. First,
the output is approximated by a model which is causal and linear with respect to the functional input in a first
stage. Secondly, the functional input is reduced using a projection basis based on the linear approximation.
This new dimension reduction method does not require the knowledge of the derivatives of the code and can
take into account additional information about the code, like causality. By causality, we mean that the output
at a given time depends only on the inputs at previous times. Moreover, the Gaussian predictor constructed
using this dimension reduction is significantly more accurate than the one constructed using the projection
based on Partial Least Squares.

In a second phase, we provide an extension of the work presented in Marque-Pucheu et al. (2018) to the
case of two codes linked by a functional intermediary variable. The proposed method enables to obtain a
predictor of the nested code which can take into account observations of the functional intermediary variable
or observations of one of the two codes only. Moreover, this predictor of the nested code is Gaussian with fast
to compute conditioned mean and variance. Finally, we propose sequential design criteria (Jones et al., 1998;
Picheny et al., 2010; Bect et al., 2012) which are suited for the improvement of the accuracy of the predictor
of two nested codes with a functional intermediary variable. In particular, the nested structure of the codes
is exploited by adding observations of one or the other code in order to improve the prediction accuracy. This
enables to optimally allocate the computational budget between the two codes.

The proposed dimension reduction method is presented in Section 2. Section 3 details the chosen approach
for the surrogate modeling of a code with low dimensional vectorial inputs and a functional output. Section
4 contains the description of the Gaussian process predictor of the nested code and the associated sequential
designs. Finally, the methods are applied to two numerical examples in Sections 5 and 6.

Note that the proofs of the results presented in the remainder of this paper are given in Section 8.
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2 Dimension reduction of the functional input of a code

In this section, we provide a technique for the dimension reduction of the functional input of a code with
functional input and output.

2.1 Notations

In this paper, the following notations will be used:

— £ denotes the equality in distribution.

— x,y correspond to scalars.

— «,y correspond to vectors.

— X,Y correspond to matrices.

— (x); denotes the entries of the vector  and (X);; the entries of the matrix X.

— X7 denotes the transpose of the matrix X.

— diag (x) corresponds to a diagonal matrix with diagonal x.

— Tr (X)) denotes the trace of the matrix X.

— N(z, X) corresponds to the multivariate normal distribution with mean vector x and covariance matrix
X.

— GP(m, k) corresponds to a Gaussian process with mean function m and covariance function k.

— E[], V[-] and cov (-) denote the mathematical expectation, the variance and the covariance.

— X¢=1Iy, — X where Iy, denotes the identity matrix and X is a (V¢ x N¢)-dimensional matrix.

— ||/l = denotes the Frobenius norm.

2.2 Formalism

In this paper, a system characterized by a low dimensional vectorial input @pest € Xnest, 1S considered.
The output of the system is a time varying function. The computer codes associated with this system are
discretized and their outputs are very high dimensional vectors. The number of discretization steps is denoted
N;. The output of the system can thus be associated with the deterministic function y, g : Xnest — R
Moreover, we focus on the case where the deterministic function y,., can be split into two nested computer
codes with functional outputs. The two codes are characterized by the deterministic functions y; : X; — RN
and y, : RV x Xy — R™. The nested code can therefore be defined as follows:

T2

Ynest (Tnest) = Yo (yq (21), Z2), (1)
1 — y(z1)

where Tnest 1= (1, X2) € Xnest = X1 X X2, X; and Xs are subsets of R% and R%, and d; and ds are two non-
negative integers. The inputs are uncertain and are modeled by random variables with known distributions.
We denote by px, the probability measure associated with X; and px, the probability measure associated
with XQ.

The two codes are computationally expensive. Since we want to perform a sensitivity analysis of the nested
code output with respect to its inputs, we aim therefore at constructing an emulator of the output of the
nested code, which has to be accurate on the most likely regions of the input domain.

Furthermore, a set of n observations of the nested code is available. The observations of the inputs are
independently drawn according to ux, X px,. The sets of observations of the inputs and output of the first
code are denoted by:

. T .
Xllnlt = (as(ll), .. ,wgn)) , Yllmt = (y(ll) =1y, (mgl)) ,...,y(ln) =y (as(ln))) , (2)
and those of the second code are denoted by:
. T .
X5 (2, af) T Y (0 =g (0 08) ) =0 (700)) . @)

where X" is a (n x d;)-dimensional matrix and Y™ is a (N; x n)-dimensional matrix, i € {1,2}.

As mentioned in Section 1, several challenges are raised by the objective of emulating the studied system.
One of these challenges is the Gaussian process regression of the second code, which has a functional input
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and a functional output. Moreover, few observations of the second code are available and these observations
do not include the derivatives of the second code’s output. The number of observations is small compared to
the dimension of the functional variables. Besides, the existing methods for the Gaussian process regression
of a code with a functional output are generally suited for the case of low dimensional vectorial inputs. Our
first objective is therefore to reduce the dimension of the functional input of the second code.

Then, thanks to the dimension reduction of the functional input of the second code, the surrogate modeling
of this code can be performed using an existing framework for the surrogate modeling of a code with low
dimensional vectorial inputs and a functional output (see Conti et al. (2009)).

As explained in Section 1, two methods of dimension reduction coupled with a Gaussian process regression are
commonly used. The first one is based on Partial Least Squares (see Nanty et al. (2017)) and the second one
is based on Active Subspaces (see Constantine et al. (2014)). The first one cannot easily take into account
additional information about the code, like causality. The second one requires the knowledge of the first
derivatives of the output of the code, which are, in our case, not available.

In this section, we propose an innovative method for the dimension reduction of a functional input which is
adapted to the output.

The proposed method is based on the remark that the estimation of the m-dimensional projection basis of
y, which is adapted to y, can be associated with the following minimization problem:

argmin / Y2 (Y1 (1), @2) — yo (F1 + Z (yy (1) — F1) s @2)||* dpae, (1) dppe, (m2) . (4)
Xy X Xa

71 ERNt Z of rank <m

We propose to split this minimization problem into two parts. First a linear model of y, is obtained, by
estimating a matrix A which minimizes:

/ lys (¥ (®1), @2) — Ayy (1)) dps, (%1) dps, (w2) - (5)
X1 xXo

Furthermore, the estimation of the linear model can take into account the causality of the system. Second, we
compute the Ny x N¢-dimensional matrix Z of rank < m and the N;-dimensional vector y;, which minimize:

[ 14w, @) - A@, + 2 @) - 7)) s, 1), ©

X1
Thanks to this two-stage approach, we can provide a method for the dimension reduction of the functional
input of a code which:

1. is adapted to the surrogate modeling of the output of the code,
2. does not require the knowledge of the derivatives of the output,
3. can take into account additional information about the code, like causality.

The following sections detail the two steps of the proposed method, as well as the details regarding the
estimation of the projection basis from a reduced number of observations.

2.3 A two-stage dimension reduction based on a linear approximation of the output
2.3.1 A linear approximation with a sparse structure
In this section, we describe the approximation of the functional output of the code by a causal filter. This

causal filter has the interesting property of being characterized by few parameters. The matrix A character-
izing this causal filter is of the form L (a), with:

a1
a2 ai O
L@=]2"Y |, (7)
(JJNt ..o a2 al
and a := (a1,...,an,)". Such a form corresponds to a linear causal model or filter. This linear causal model

is characterized by a Ny-dimensional vector only, instead of N7 in the case of a classical linear model. By
noting that L (a)y; = L (y;) @, an estimate of a can be obtained from the observations:

a* = argmini Hy(;) — L (ygi)) aH2 , (8)
b =1
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where the observations ygi) are introduced in Eq. (2) and the observations yéi) are introduced in Eq. (3).

This leads to the following estimate:
n + .,
.- (ZL (y(li))T L (y(IZ))> Z L (ygl))T y(Qi)’ (9)
=1 i=1
where (;::1 L (ygi))T L (ygz)))"’ is the pseudo-inverse of iz::l L (ygi))T I (ygz))

2.3.2 A linear model-based dimension reduction of the functional input

In this section, we propose an output-based dimension reduction of the functional input of a linear model.
First, the following Proposition provides a method of dimension reduction which is adapted to a linear model.

Proposition 1 If one considers:

1. a linear model of the form Ax: with A a (N X Ni)-dimensional matriz and x+ a zero-mean Ny-dimensional
vector,

2. a set of N, observations of x {mgi), 1 < i < N}, which are gathered in the (Ny X Ng)-dimensional
matriz X,

N, , NP
then the m-rank matriz Z* which minimizes > HAmgz) — AZ:I),(&Z) with respect to Z, is given by:

=1

1
2

W=
—
—
(=)
=

7" = (ATA) UmDmV%cov(Xt)f ,

where:

cov (Xt)_% is the pseudo-inverse of (XtXf)%,

(ATA)_% is the pseudo-inverse of (ATA)%,

UDV?7 is the singular-value decomposition of (ATA)% (XtXtT)%, U, and V., gather the m first columns

of matrices U and V', and D, is a diagonal matriz, whose diagonal gathers the m highest singular values.

The proof of this Proposition is given in Section 8.

Corollary 1 If one considers:

1. a linear model of the form Ax: with A a (N X Nit)-dimensional matriz and x+ a zero-mean Ny-dimensional
vector,
2. a set of Ny observations of x: {wgi), 1 < i < N}, which are gathered in the (Nt x N)-dimensional
matriz X,
then a m-dimensional projection of x, which is adapted to this linear model, is defined by the following
application:
Ty V%cov(Xt)fé T+, (11)

1
with V o, gathering the m right-singular vectors associated with the m highest singular values of (ATA) 2 cov (Xt)% .

Corollary 2 The pair (y,, Z) which minimizes:

/X Ay, (1) — A @ + Z (yy (21) = §) | dpx, (1) (12)
with Y, a N¢-dimensional vector and Z a (Nt X Ni)-dimensional matriz of rank < m, is given by:
Y =Efy,], (13)
and: )
Z=(A"A) *UnDnVicon(y,) ?, (14)

with U, and V., gathering respectively the left and right-singular vectors associated with the m highest
1
singular values of (ATA) 2 cov (yl)%, which are gathered in the diagonal of the diagonal matriz D,,.
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2.3.8 An efficient estimation of the covariance matriz of the functional input

If a predictor of the first code output is available, then, following the Kriging believer approach of Ginsbourger
et al. (2010), the covariance matrix can be estimated from the predicted output at a large number Np of
input points independently drawn according to ux,. The predictor can be constructed from the set of n
observations of the input and output of the first code X"t and Y'i"'t. This estimate of the covariance matrix
can be written:

LSS0 (i) T
7 _— 7 _
R, = N.—1 Zl (lh - H1) (lh - H1) ) (15)
i
where ,ugi) =y 5:?) is the mean of a Gaussian process emulator of y, at input :igi). The {:igi), 1<i<Ni}

are independently drawn according to px, and
1 &
= p 16
231 N, ;lﬁ (16)

is the empirical average of the predicted trajectories.

The estimation of the covariance matrix from an increased number of paths compared to the initial set of
observations enables to increase the rank of the estimator of the covariance matrix. We observed on a series of
test cases (see Section 5.2) that this procedure leads to a more accurate estimation of the covariance matrix
of the first output.

2.3.4 Combination between the linear approximation and the linear model-based dimension reduction

In what follows, we combine the approximation by a linear model with a sparse structure and the linear model-
based dimension reduction of Proposition 1. Such an approach is similar to the PLS regression, because the
dimension reduction of the input is adapted to the output. However, unlike PLS regression, the proposed
approach can take into account the sparse structure of the linear model of Eq. (7).

Thus, if A* = L (a™) denotes the matrix characterizing the approximated sparse linear model, then, based
on Corollary 1, we can define the projection matrix as follows:

o,=VLR,?, (17)

1 1
where Ry, is defined by Eq. (15), R, ? is the pseudo-inverse of Rj; and V., gathers the m right-singular

!
vectors corresponding to the m highest singular values of ((A*)T A*) : R; .
Based on Corollary 2, we can therefore define the dimension reduction function 7,,:

rm (Y1) = O (yy — 1) s (18)

with IT,, the m x Ni-dimensional matrix defined by Eq. (17).
By comparison, in the case of the PLS method (see Wold (1966) and Hoskuldsson (1988)), this function
would have been:

rm (y1) = Lo (31— 977 (19)

The (N x m)-dimensional matrix L,, gathers the left-singular vectors associated with the m highest singular
values of the covariance matrix Ryinit yripic, which is defined by:

1 o i) Tt TN
Rygoyss === 37 (40 ~557) (5~ )" 0
i=1

where ygi) are introduced in Eq. (2), yéi) are introduced in Eq. (3) and

- I~ )
yrt= Yyl e {12y (21)
=1

The optimal size m of the projection basis can be estimated using a stepwise forward selection criterion
(Efroymson, 1960) when constructing the predictor of the second code.
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Besides, it is worth noticing that, when computing the singular value decomposition of matrices of rank below
n (the number of observations), only the n first singular values (or eigenvalues for the symmetric matrices)
are non-zero.

In this paper, we adopt a Gaussian process regression framework. Thanks to the dimension reduction of the
functional input of the second code, the second code can be associated with a Gaussian process which has
a functional output and a low dimensional vectorial input comprising the projection of the functional input
and the inputs x2. The next section describes the properties of the Gaussian process regression of a code
with a low dimensional vectorial input and a functional output.

3 Gaussian process regression with low dimensional inputs and a functional output

As mentioned previously, the surrogate modeling will be performed using the Gaussian process regression
framework proposed in Conti et al. (2009). The Gaussian processes modeling the codes have a tensorized
structure, which means that there is a separation between the time (or the indices of the functional output)
and the other inputs. This tensorized structure is obtained through a Kronecker structure of the covariance
function and a specific structure of the mean function.

As mentioned in the introduction of this paper, we consider the system defined by Eq. (1). In order to
construct a predictor of the nested code output, we propose the following system of Gaussian processes:

2 Y,
y27 (22)
z Yo pi=rm(y)
and v
T —> Y, (23)

where 7, : RNt R™ denotes the projection function of the functional input of the second code on its
reduced basis of size m, and Y1, Y2 and Y3 are Gaussian processes.

The Gaussian process Y1 : X1 — R™* is used for the estimation of the projection basis (more precisely, for
the estimation of the covariance matrix of y,), and for one of the sequential designs. For further details, the
interested reader can refer to the definition of the sequential design criteria in Section 4.2. The Gaussian
process Y3 : X1 — R™ is used for the emulation of the function @1 — ry, (y; (x1)). The output of the second
code is emulated by the Gaussian process Y : R™ x Xo — Rt which is indexed by (p, z2) € R™ x Xo.
Notice that if two outputs of the first code y, (x1) and y, (¢}) have the same image under 7,,, then their
predicted values under Y2 are the same, but they can be different under y,.

Finally, the composition of the Gaussian predictors based on the Gaussian processes Y3 and Y2 will be
useful for the prediction of the function (x1,z2) — y5 (y; (®1),2), where Yo (Y3 (1), 2) approximates

Yo (Y1 (1), 22).

To harmonize the notations, we define:

w1 J{zsXqYifi=1ori=3,
@ Xi} = { {(p,z2);R™ x Xo}, if i =2, (24)
and:
Y3 =Tm (yl) . (25)

Moreover, a set of observations of the inputs and outputs of the two codes is available. In this paper, we
consider the case where an initial design is drawn according to the distribution of the inputs of the nested
code, i.e. ux, X px,. The design can be enriched at a later stage. However, this initial design will be useful
for the estimation of the hyperparameters of the covariance functions of the Gaussian processes, as well
as the estimation of the projection basis of the functional intermediary variable. Then this initial design is
sequentially enriched. The criteria used for the sequential design will be defined in Section 3.2.

The sets of n1 observations of the inputs and the functional output of the first code are denoted by:

T
X = (ol

Vi e () = gy (2) ) =, (a))
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where X" is a (n1 x dq)-dimensional matrix, and Y$* a (N; x n1)-dimensional matrix.
In the same way, the sets of na observations of the inputs and the output of the second code are denoted by:

45c1>bs = (gpgl), PN 7¢§n2)) s
T
P = (pD =1 (007 0™ =1 (00))
T
X5bs .= (wél), e ,:Iiém)) )

Y5 = (w8 = v (017 2V) ) =y (00,20

where X3P is a (n2 x da)-dimensional matrix, P°® is a (na x m)-dimensional matrix and #$°* and Y'$b
are (V¢ X na2)-dimensional matrices. Note that ¢, can be the output of the first code or a prediction of the
output of the first code.

Finally, at the initial stage, we have:

th)bs _ )(ilnit7 Ytl)bs _ Yilnit, (28)

and dstl)bs _ Yilnit, ngs — )(iQnit7 ngs — 1,—12nit7 (29)
where XMt Yint are defined by Eq. (2) and X, Y are defined by Eq. (3).
Notice that, at the initial stage, the number of observations of the two codes is the same. However, in the
following, we provide a predictor of the nested code which can take into account a different number of
observations of the two codes.
We can therefore introduce the following notations for the observations of the inputs of the three studied
functions:

XSS ifi=1ori=3,

X = (30)
((p(l),mgl)) R (p(m),mg”))) ,if 4= 2.

Furthermore, the observations of y; can be defined as:

5 = (o (1)) o (o (577) o

3P is a (m x n1)-dimensional matrix.

where Y3

3.1 Prediction for a given set of observations

Following Conti et al. (2009) and its generalization of Universal Kriging to the multi-output case, a functional
output y,, ¢ € {1,2, 3}, can be modeled by a realization of a Gaussian process Y ;, whose a priori distribution
is:
where Y (Z:) := (Y (Zi,t1),...,Y: (Zi,tn,))", M is a (N; x p;)-dimensional matrix to be determined, h;
is a vector of p; basis functions, Ry, is a (Nt X Nt)_—dimgnsional symmetric non negative definite matrix, to
be determined, and C; is a covariance function on X; x X;.
Moreover, in the Universal Kriging framework, if the prior distribution of M; is an improper uniform dis-
tribution on the space of the (N; X p;)-dimensional real-valued matrices, the conditional distribution of Y;
given the observations is:

Y§ =YY, G~ GP (5, Ry, 0 ) (33)

with:
H§ (30) = Muh () + Y9 = MoH™ | (RS™) ™ €3 (X034,
ce (a‘:@) - C (a‘::f:z) ye? (:ﬁi,Y?bs) (R™) ™' ¢ (Y‘;bs, a‘;’i)

s (20)7 (P (BT () w ().

wi () = h; (&) — H™ (RY™) ™' ¢ (Y?bs, 5) .
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J\A/Ii denotes the posterior mean of M ;:

M; = E[M;|Y{™ R, Ci]

— e () ()T (e () (re)T) )
R;, is the maximum likelihood estimator of Ry, (see (Perrin, 2018) for further details):
R. = R, (Y?bs) - ni (Y;?bs - J\A/I,-H?bs) (R;?bs) - (Y;?bs - J\A/IiHﬁbs)T , (36)
and R?bs is the (n; x n;)-dimensional matrix such that:
(Rg’bs)kl Sy (5:5’”, zgw) . (37)

Here a'sgk) denotes the k-th observation of Yibs and H?" is a (n; x p;)-dimensional matrix whose j-th row
NT
is given by h; (@(J)) .
The prediction variance of the functional output at input Z; is thus defined by:
(0)° () = diag (V [ (@) [Y2™]). (38)
This prediction variance can also be written:
(09)? (%) = diag (Rti (Y?bs)) v (@-;Y?bs) : (39)

~ob
where v; ({I_Zi; X(i) s) = C§ (Zi, ;).
In our case, the regularity of the correlation functions C; is unknown. Following Cornford et al. (2002), we
5 . . . . . .
use Matérn — correlation functions for the functions Cj, i € {1,2,3}. However, other correlation functions

can be chosen. For a further discussion on the choice of the regularity of the Matérn correlation function, the
interested reader is referred to Rasmussen and Williams (2006).

Since our objective is to obtain an accurate prediction mean, the correlation lengths of the covariance function
are estimated by minimizing a Cross-Validation criterion of the form (Perrin, 2018):

=N i . . ) 2
l; = argminz HIE [Yi (ng)) |Ci<li), yobs \ y; (wij))] -y, (mgj)) H , (40)
2, €R%i =1

where Ci(e") takes into account the fact that the covariance function C; depends on the correlation length £;.

As for the correlation lengths, the size of the projection basis associated with 7, can be chosen according to
a Cross-Validation criterion (see Eq. (40)) of the form:

m* = argmin HngSRQ_ (m) diag (RQ_ (m))_1 ) (41)
me{l,...,na} F
where: . . .
Ry (m) = (R5"™ (m)) + (B3™ (m)) (HE"™ (m))
(42)

(15 () (RS () ™ (B3 (m)) ") HS™ o) (RS ()

R3PS (m) is a (n2 x na)-dimensional matrix and H$™ (m) is a (p2 (m) x n)-dimensional matrix, such that:
RS (m, - C T (4) ,:Ij(i) A 7m (9) ,:Ij(j) , 43
(88 m), = o ((rm (7)) (rm (61 227)) (43)

(H8™(m)) = ho (v (o) .287)). (44)

7

and

Notice that the hyperparameters of the covariance function C2 have to be re-estimated for each value of m.
These computations can be speeded up using the criterion of Eq. (40).
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3.2 Sequential enrichment of the design of experiments

From Eq. (33), it can be inferred that the accuracy of the Gaussian posterior predictor depends on the choice
of the set of observations Y¢P5. Consequently, the predictor can be improved by choosing an appropriate
design.

In the case of a code with scalar output, if one aims at improving the prediction accuracy of a given quantity
of interest, a design criterion based on the integrated prediction variance can be used (see Sacks et al.
(1989); Santner et al. (2003)). However, the computation of such a design criterion in one step can be
cumbersome, because of the high number of possible sets. Indeed, if a discrete search is performed, the
number of possible combinations is (f{:), where N is the number of candidates. Moreover, the covariance
function of the Gaussian process C; is generally not known at the initial stage and it has to be estimated from
an initial set of observations of the codes associated with the Gaussian process. Then this initial design can be
enriched thanks to sequential design criteria or Stepwise Uncertainty Reduction (SUR) methods (Bect et al.,
2012; Picheny et al., 2010). Besides, the hyperparameters of the covariance function of the Gaussian process
can be re-estimated from the new set of observations at each step. Following Bates et al. (1996) and Picheny
et al. (2010), a sequential design criterion based on the reduction of the integrated prediction variance and a
SUR approach can be used.

In this paper, since the codes have functional outputs, we propose a criterion based on the trace of the
integrated prediction variance. Based on Eq. (38), this criterion can be written:

Ty = argmin/
i:EXi

. Tr (V [Y,» (Z:) Y™y, (i?)D dug, (%), (45)

where

ux,,ifi=1ori=3,

g, = . (46)

tip X pi, i 6 = 2,
with 4, denoting the probability measure over R™ associated with the distribution of rp, (y; (z1)) under ux, .
This probability measure is unknown, because the distribution of y; (1) under pux, is not known. However,
draws according to p, can be obtained approximately by drawing independent points according to px, and
then considering the image of these points under p5, which is defined by Eq. (34).

Furthermore, y, (Z;) is not known. In order to compute the design criterion, a Kriging Believer approach
(Ginsbourger et al., 2010) can be used, as mentioned in the Proposition below. Moreover, the Proposition is
based on the simplifications presented in the Lemma 1.

Lemma 1 In the Kriging Believer approach, the posterior mean of M ; and the mazimum likelihood estimate
of R:, given the observations Y ¢** and a new observation at input point T}, are given by:

E [Mi|{Y;’bs,Yi (£7) = pus (z;‘)},ci} —E [Mi|Y;’bs, ci} , (47)
and )
R, (bes,uf (5;‘)) - n”+ -Ri, (Y;’“) , (48)

where Ry, (Y¢) is defined by Eq. (36)
The proof of this lemma can be found in Section 8.

Proposition 2 In the Kriging Believer framework, the criterion of Eq. (45) can be written:

T = argmin/ v; (:zi;Yf’”,:iZ) dpz, (Z4), (49)
&l eX; X; '

~~0bs _«

where v; (a‘:Z,XZ ,a:i) is defined by Eq. (39), with Y?bs defined by Eq. (30).

The proof of this Proposition is given in Section 8. The integral of the criterion can be computed using the

following Monte-Carlo method: the function v; (@-;Yi’bs, a‘:f) is computed at independent points Z;, drawn

according to p5 , and an estimate of the integral is obtained by computing the empirical mean of these
computed outputs of v;.

Once a predictor of all the studied functions can be defined, we can study the surrogate modeling of the
nested code.
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4 Surrogate modeling of the nested code

In this section, we propose a predictor of the nested code which can take into account all the available
observations. This predictor is obtained through the coupling of two predictors associated with the two codes
and the linearization of this coupling. We also define sequential design criteria aiming at improving the
accuracy of the predictor of the nested code. The predictor obtained is Gaussian, with fast to compute mean
and variance.

4.1 A Gaussian predictor of the nested code thanks to a linearization of the coupling of two predictors

In the previous section, two Gaussian predictors were obtained: Y§ : R™ x R% — RVt and Y'§ : R" — R™.
Based on these predictors, we propose the following predictor of (x1,x2) — ys (y; (x1),x2):

Yﬁest (2111, mQ) = Yg (Yg (2111) va) ) (50)

with Y'§ and Y'§ defined by Eq. (33).
Proposition 3 For all (x1,z2) € X1 x Xo, if E ~ N (O,ﬁt3), then:

E[Y est(z1, 22)] = E [p5(p3(21) + 0z, (21)€, 22)] (51)

s (s (1) + 05, (21)€, 2) ps(ps(21) + o5, (x1)€,z2)"

+ {05, (W5 (21) + 03, (21)€, 22) P Ry
where o5, (1) = /C{(x1,z1) and og,(x2) = \/C5(x2, z2).

The proof of this Proposition is given in Section 8. It can be seen that the computation of each of the two
first moments of the coupling of the predictors involves the computation of a m-dimensional integral. This
computation can be performed using Monte-Carlo methods (Baker, 1977), which can be computationally
expensive. We therefore develop an adaptation of the linearized method proposed in Marque-Pucheu et al.
(2018) to the case where the outputs of the two codes are time-varying functions. This enables to obtain a
Gaussian predictor of the nested code with conditioned mean and variance which can be computed quickly.

E |:Y$Lest(m1: .’132) (chzest(wlv :Eg))Ti| =E

Proposition 4 If

1. Y§ = ui + € denotes a predictor of y,; for i € {2,3} and €5 (-) ~ GP (O,ﬁtin (- )), where pi and C§

are defined in Eq. (34) and ﬁti in Eq. (36).
2. the magnitude of the prediction error €5 is small,

then a Gaussian predictor of the nested code can be obtained, and its mean and covariance functions are
defined as follows:

ll'flest (.’131, .’132) = :ug (ll'g (:131) ,.’132) ’ (53)

C% oot ((:1:1,:1:2) , (a:ll,:clz)) = ﬁtzCQC ((ug (z1),22), (ug (mll) ,:1:/2))

o Y | (54)
+ 57 (15 (1) 2) R, (6—p (ks (=) ,wQ)) Cs (wr,2}).
The predictor obtained can also be written in the form Y o := Wy oo + Enests Where:
c _ a“g c c c c
Enest (wlan) - 6p (IJ’B (331),:E2)€3 (:I:1)+€2 (l"’S (2111),:152). (55)

The proof of this Proposition is given in Section 8. The predictor obtained is therefore Gaussian and can take
into account a different number of observations for each code. Moreover, the smaller C3, the more valid the
linearization. Moreover, since the linearization is performed using the conditioned process Y5, the norm of
C% is more likely to be small. Besides, the norm of C% can be reduced by an appropriate enrichment of the
set of observations of the first code.
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4.2 Sequential designs

In the previous section, we have proposed a method to construct a Gaussian process emulator of the nested
code output for a given set of observations of the two codes. By construction, the accuracy of this predictor
depends on the set of observations of the two codes. A way to improve this accuracy is an appropriate choice
of the set of observations. As for the case of a single code (see Section 3), sequential design criteria or Stepwise
Uncertainty Reduction (Bect et al., 2012; Picheny et al., 2010) methods are chosen. Since we want to perform
a sensitivity analysis of the nested code output with respect to its inputs, the design has to lead to an accurate
prediction mean on the most likely regions of the input domain of the nested code.

The two proposed design criteria are therefore a generalization of Eq. (49) to the case of two nested codes. They
are also an adaptation to the case of two codes with functional outputs of the criteria proposed in Marque-
Pucheu et al. (2018) for the case of two nested codes with scalar outputs. One of the criteria corresponds
to the case where the two codes can be run separately, the other one corresponds to the case where they
cannot be run separately. It is worth noticing that the previously proposed predictor of the nested code can
take into account a different number of observations for the two codes. This property enables to define a
sequential design criterion which chooses the best candidate among the two codes and takes into account the
computational costs of the codes.

Definition 1 In the case of two nested codes with functional outputs, two selection criteria based on the
minimization of the integrated prediction variance can be defined:

— the Chained I-optimal criterion selects the candidate in Xpest which minimizes the trace of integrated pre-
diction variance given this candidate:

(xpe, at) = ( arg)min / . {1 (Re, (Y37)) 02 (5 (20) , 22) s X5, (5 (2) ,@3) ) +
z] 2y )EXpest 1 X A2
1 2 (56)

oS ops T —obs .
Tr ( 6’;2 (4§ (1), 2) Ry, (Y5*) (ailf (s (:1:1),332)) ) vs (a:l;le ,ml)}dlle (21) dpx, (x2) ,

where Ry, (Y?bs), i € {2,3} is defined by Eq. (36), and v; is defined by Eq. (79),
— the Best I-optimal criterion selects the candidate among the input domains of the two Gaussian processes,
which maximizes the reduction of the trace of the integrated prediction variance per unit of computational

cost, given this candidate:
Uz

(i @) =

Vi (&), (57)

1
argmin  —
(i,a)€{1,2}x %, Ti i + 1

with 7; denoting the computational cost of the code i, and:

~ - 6.“’5 c obs 6_.“'(2: c T
Vi (21) = /Xlxxz Tr ( op (15 (®1) ,22) Rey (YS™) op (k5 (x1) , @2)
(o3 (@05 X17) = va (@1 X7 21) | dp, (20) dp, (),

Vo (Z2) := /X o [vg ((ug (z1), z2) ;Y;bs) — Vo ((,ug (z1),2) ;Y;bs, (15 (x7) ,w}))}

Tr (Rt? (ngs)) dp'Xl (2111) dp'X2 (wQ) 5

(59)

and:
5 {.’BT,Xl}, ifi:L
{Z:, X3} = (60)
{(CET,.’B;) 5 Xl X Xg}, if1=2.

Moreover, if a candidate Z2 = (27, x3) is chosen, the second code will be evaluated at (p§ (x7),23).

Note that the Best I-optimal criterion is based on the assumption that the integrated variance decreases
linearly at each step. Both criteria imply a multidimensional integration and optimization on X; or X; X
X2. The integration is computed using the empirical average of a Monte-Carlo draw. The optimization is
performed on a finite set of candidates drawn according to pux, or px,xx,. The fact that the prediction
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variance has a closed-form expression, and is thus fast to evaluate, is an advantage for the computation of
the criteria. Indeed, they both require a high number of evaluations of the prediction variance.

The estimation of the projection basis, the hyperparameters of the covariance functions Cj, i € {1,2, 3}, the
functional covariance matrices ﬁti, i € {1,2,3}, as well as the conditioned mean functions u$, i € {1,2,3},
require an initial design of experiments. Once again, since we aim at predicting the nested code output on
its input set Xpest and we have no a priori information, the initial set of observations is drawn according to
Hxy X X,

The projection basis associated with 7, is estimated from the initial set of observations. The dimension m
of the projection of the functional input of the second code is chosen according to the criterion of Eq. (41).
The hyperparameters of the covariance function Cs are estimated from the initial design and when a new
observation of the first code is added. The hyperparameters of the covariance functions C; and Cs are esti-
mated from the initial design and when a new observation of the second code is added. The hyperparameters
are estimated thanks to the Cross-Validation criterion of Eq. (40).

4.3 Summary of the proposed approach for the surrogate modeling of two nested codes

In this section we sum up our proposed approach for the surrogate modeling of the output of two nested
codes. As a first step, a set of observations of the nested code is drawn on X3 x X2. Second, the projection basis
of the output of the first code is estimated using the approach proposed in Section 2.3.4. The computation
of this projection basis requires the computation of the covariance matrix of the output of the first code and
the computation of the vector a characterizing a sparse linear approximation of the second code output using
the method of Section 2.3.1. The covariance matrix of the first code output is estimated from a predictor of
the first code output as mentioned in Section 2.3.3. This predictor is built using the formalism of Section
3.1. Once the dimension of the intermediary variable has been reduced, predictors of each code with the
projected intermediary variable are constructed. Then the two predictors are coupled to obtain a predictor
of the nested code. The coupled predictor is then linearized to get a Gaussian predictor of the nested code
with analytical mean and variance (see Section 4.1 for further details). Finally, the set of observations can
be enriched according to two sequential design criteria based on a minimization of the integrated prediction
variance. The Chained I-optimal criterion is adapted to the case where the two codes cannot be launched
separately. The Best I-optimal criterion can be applied if the two codes can be launched separately (see
Section 4.2 for further details on the criteria).

The approach is also summarized by the flowchart of Figure 1.

5 First test case

In this section we apply the proposed methods to a test case.

5.1 Description of the test case

This first test case is the coupling of two codes: a detonation code and a damped oscillator. The second code
has a closed-form expression and is thus very fast to evaluate. The first code is a quick and simplified version
of a detonation code. The two codes of this test case are therefore fast to evaluate, which enables to repeat
the draws and the validation of the proposed methods, thus quantifying their performance. Moreover, their
features are representative of the features of the industrial problem which motivates this work:

the first code has a low dimensional vectorial input and a functional output,

the second code has low and high dimensional vectorial inputs and a functional output,
the functional input of the second code is the output of the first code,

the functional output of the first code can be non-smooth.

The inputs of the first code have a uniform distribution on Xj, with:
X3 = [0.01,0.02] x [-1,1]%. (61)
Table 1 presents the input variables of the first code and their distributions.

Figure 2 shows several trajectories of the functional output of the first code. The trajectories have a similar
shape, but their magnitudes can vary considerably depending on the inputs of the code, ;.
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Fig. 1 Flowchart of the proposed method

| Distribution of the input |

[ Input name | Description and unit
(z1), Radius of the explosive charge (m) U4 ({0.01,0.02])
(1), Temporal dilatation parameter (no unit) U ([-1,1])
(x1)5 Shock magnitude parameter (no unit) U ([-1,1])
(1) 4 Attenuation parameter (no unit) U ([-1,1])

Table 1 First test case: Input parameters of the first code. All variables are independent.
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Fig. 2 First test case: Output of the first code for five different values of x;.

The second code is a damped oscillator, which is defined by the following second order linear differential
equation:

Gio + 2 (22), ((€2)5 +wo) G + ((x2)y +wo) Yy = ¥y

This damped oscillator is characterized by an angular frequency wo. Two frequencies are studied: wo €
{27,207}. These two values of wg correspond to qualitatively different relationships between the two codes
(low-pass filter and high-pass filter).

The inputs of the second code have a uniform distribution on Xsz, with:

X = [0,0.2] x [~0.1,0.1]. (62)
Consequently, the definition domain of the nested code is:
Xnest = [0.01,0.02] x [—1,1]* x [0,0.2] x [-0.1,0.1]. (63)

Moreover, the basis functions of the mean function of the Gaussian processes are defined as follows:
_ 1
hz(m,): (,) (64)

Note that an increase in the order of the polynomials does not yield more accurate prediction.

Figure 3 shows several trajectories of the output of the second code for the two studied frequencies. For a
given frequency, the trajectories have a similar shape, but their magnitudes vary depending on the inputs of
the code.

5.2 Estimation of the proposed projection basis

In this section, we study the accurate estimation of the proposed basis from a small number of observations
of the two codes.
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Fig. 3 First test case: Output of the nested code for five values of (z1,x2) and two values of wq.

5.2.1 Estimation of the covariance matrixz of the first code output

Figure 4 compares the error of the estimation of the covariance matrix of the output of the first code
with an estimation from the observations only or from the mean of a Kriging predictor constructed using

~ 2
the observations (see Eq. (15)). The estimation error is given by HRf R, || where R, is the reference
F

covariance matrix and R is the estimate of the covariance matrix. The reference covariance matrix is estimated
from 102 observations of the output of the first code. The figure shows that, for a given number of observations,
the estimation of the covariance matrix from the predictor of the first code is more accurate than the
estimation from the small set of observations. Moreover, the accuracy is less sensitive to the choice of the
observations for a given number of observations.

5.2.2 Estimation of the linear approzimation

n -\ T .
Given that > L (y&”) L (ygl)) is not always invertible, the estimation of the vector a given by Eq. (9)
i=1

is not alwaysinumerically stable. In what follows, we study two methods of regularization of this matrix in
order to invert it. In the case of a La regularization, the estimate of a* given by Eq. (9) can be rewritten :

¢ =a(pri ) - (o) L) < p) Y)W o
i=1 i=1

with D a positive-definite (N; x N¢)-dimensional matrix. Consequently, the following optimization problem
is solved:

n . . 2 2
a® = argmin Z Hy(;) - L (ygl)) aH + HD%aH . (66)
a€RM
Two parametric forms are studied for the definition of the matrix D:
D =4Iy, 6 € Ry, (67)
and: N
. 1 2 r— 1
D= — ... 1 R Ry.
dlag (ﬂ0+/81 (Nt7Nt7 ) N, ) ))a /806 +5 /81 € R4 (68)

This second increasing regularization is proposed because the considered system is a damped system, and
thus i — a; is a decreasing function.
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Fig. 4 First test case: Boxplots of the estimation error of the covariance matrix of the output of the first code. The estimation
2 —~
» where Ry, is the reference covariance matrix and R is the estimate of the covariance matrix.
The reference covariance matrix is estimated from 10% observations of the first code output. The covariance matrices have
been estimated from the observations (grey) or from the mean of a Gaussian predictor constructed from the observations (see
Eq. (15)) (black). The design sets of increasing size contain observations which are independently drawn according to px, -

error is given by Hfi — Ry,

[ Angular frequency | Regularization matrix defined in Eq. (67) [ Regularization matrix defined in Eq. (68) |

wo = 27 0.2 0.05
wo = 207 1.3 0.6
_ L * 2
Table 2 First test case: Order of magnitude of the error d2 = M depending on the regularization matrix

[y2 — Y2 I?
used for the estimation of a: the one defined in Eq. (67) or the one defined in Eq. (68). a* is estimated from the draws
according to px, X px, of increasing size, repeated 20 times. The accuracy does not vary significantly with the size of the set
of observations.

2

By noting that L (a)y,; = L (y;)a, the parameters §, 8o and 1 can be estimated with Cross-Validation
argmin Z , (69)

criteria of the form:
ol 1 () a (51 (v1%)_(v2) )
SERL p— —1 —1

yéi) L (ygz)) a (diag (,30 + 51 (Nit’ e 1)) , (chbs)_i, (ngs)_i> H2 ) (70)

with (Y‘l’bs)_i and (ngs)_i denoting the observations of the functional input and output of the second
code, except the i-th.

and:

argmin
Bo,B1ERT =1

lys — L (a*) y,|?
Y2 — yol|?

Y. The two regularization methods of Eqs. (67) and (68) are studied. The linear regularization of Eq. (68)

leads to the most accurate prediction of y, by the linear model.

The regularization matrix D of Eq. (68) will therefore be chosen for the estimation of a in the remainder

of the numerical examples. Indeed, the more accurate the linear model is, the more accurate the projection

basis based on this linear model will be (see Proposition 1).

Table 2 shows the error

of the linear sparse model compared to the output of the code

5.3 Influence of the dimension reduction method on the accuracy of the prediction of the second code

In this section, we study the influence of the dimension reduction method on the accuracy of the prediction
of the second code.
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[ Angular frequency | PLS [ Proposed projection basis |
wo = 27 7 4
wo = 207 6 6

Table 3 Median of the sizes of the projection basis estimated with the Leave One Out criterion of Eq. (41) from 20 sets of
40 observations.

We assume that a set of N validation points of the codes is available. The prediction errors of the second
code and the nested code can thus be defined by:

Hy ( (val, z) éval,i)) — s (rm ((pgual,i)) ’w(;az,i)) H2

, ((P(lval,i)7w§ual,i)) B NLQ;X::I ((Pgualaj) éwl’j)) 2>

Ay = -

and

o ;2::1 Hynest (wgztsltl’l)) - Nﬁest ( fff;sltl Z)) H (72)
N X N
2 nes (#5657 = 57 2 Ynen (wi.i?é*”)

=1

nest

where z(227) = (wgml’j), a:(Qval’j)) and (") = 4, (a:(lval’j)). The observations of the inputs {@?%) 1 <
j < N} are independently drawn according to px, X px,.

Figure 5 shows the prediction error Az (defined by Eq. (71)) of the Gaussian predictor Y§ of the second code.
Two projection functions 7., are studied (see Eqs. (19) and (18)). The first one is based on a PLS regression.
The second one is based on the matrix Z* of Proposition 1 with a linear model of the form L (a)y; and a
estimated from Eq. (65) with the regularization matrix of Eq. (68). Two cases are considered for the estimation
of the projection bases. The latter are estimated either from a large set of 10% observations of the functional
input and output of the second code or from the observations used for the construction of the predictor.
Finally, in all cases, the size of the projection basis is estimated with the Leave One Out criterion of Eq. (41).
For a given number of observations used for the construction of the predictor, the dimension reduction of
Proposition 1 based on the linear model of the form L (a) y, leads to the most accurate prediction, whether
the bases are estimated from a small or a high number of observations.

Besides, the accuracy of the prediction with the dimension reduction based on Proposition 1 with the linear
model of the form L (a)y, is quite the same if the projection basis is estimated from a small number of
observations or from a high number of observations. Thanks to the increase in the rank of the covariance
matrix of y; with a predictor of the first code and the sparse structure of the linear model, the proposed
projection basis can be estimated accurately from a relatively small number of observations.

In contrast, the projection basis based on PLS is much more sensitive to the decrease in the number of
observations from which it is estimated.

Table 3 shows the median of the sizes of the bases estimated from the set of observations of 40 observations
with the Cross-Validation criterion of Eq. (41) for the proposed and the PLS dimension reduction methods.
The size of the basis varies less and is smaller with the dimension reduction of Proposition 1 with a linear
model of the form L (a*) y; where a” is given by Eqs. (65) and (68) than with the dimension reduction based
on PLS.

In the remainder of the section, the dimension reduction of the functional intermediary variable will be
performed using the method defined in Proposition 1. A linear model of the form L (a)y, will be considered,
and a will be estimated using Eqs. (65) and (68). Indeed, it has been shown that this method leads to the
most accurate linear approximation of y,. The more accurate the linear model is, the more appropriate the
dimension reduction based on this linear model will be.

The covariance matrix of the functional input of the second code will be computed using a predictor of the
output of the first code, as defined in Eq. (15). Finally, the size m of the projection basis is estimated with
the Cross-Validation criterion of Eq. (41).
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Fig. 5 First test case: Prediction error of the output of the second code As (see Eq. (71)). The observations are independently
drawn according to px, X px, and the design sets are of increasing size. Two types of projection functions r, are considered.
The first one is based on PLS regression (grey) and the second one is based on the projection of Proposition 1 with a linear
model of the form L (a*)y; where a* is given by Eqgs. (65) and (68) (black). The size of the projection basis is estimated with
the Leave One Out criterion of Eq. (41). The reference bases are computed from a set of 1000 observations of the functional
input and output of the second code. The estimated bases are estimated from the observations of the design sets.

5.4 Prediction of the nested code

Once the dimension of the functional intermediary variable has been efficiently reduced, we can study the
surrogate modeling of the nested code. We first define the reference method, called "blind-box". In this
method, the nested computer code is treated as a single computer code. Only the inputs Tnest and the
output y,.. are taken into account. The intermediary variable is not considered. A surrogate model of
this single computer code is constructed using the formalism of Section 3. Note that, in this case, only the
sequential design criterion of Section 3.2 can be applied.

The "linearized" method refers to the construction of the predictor of the nested code proposed in Proposition
4.

Figure 6 compares the prediction error Anest (see Eq. (72)) for the predictors of the nested code constructed
with the linearized and the blind-box methods. For a given number of observations, the prediction accuracy is
better with the linearized method. Moreover, this accuracy is less sensitive to the choice of the observations.
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Fig. 6 First test case: Boxplots of the prediction error Apest (see Eq. (72)) for the linearized (black) and the blind-box
(grey) predictors. The observations are drawn according to px, X px, and the design sets are of increasing size. The draws
are repeated 20 times. The dimension reduction of the intermediary variable is performed using the method of Proposition 1
and a linear approximation of the form L (a*)y, where a* is given by Egs. (65) and (68).

5.5 Sequential designs

Figure 7 shows the prediction error Anesy (see Eq. (72)) along the sequential designs of Definition 1. A
reference corresponding to the case of the blind-box predictor with an I-optimal sequential design (see Eq.
(49) and Proposition 2) is also shown. All the sequential designs have the same initial design sets drawn
according to px, X px,.

It can be seen that both proposed sequential designs with the linearized predictor enable to obtain a better
prediction accuracy than the blind-box predictor with an I-optimal design. Furthermore, the Best I-optimal
criterion leads to an improved prediction accuracy compared to the one obtained with the Chained I-optimal
design. Besides, it is worth noticing that the Best I-optimal criterion leads to different numbers of code
evaluations for the two codes.

Figure 8 shows the distribution of the number of code evaluations of the two codes along the Best I-optimal
design. The first new observation points are observations of the first code. However, the distribution of the
number of observations of the two codes can vary a lot depending on the angular frequency of the oscillator
of the second code. For the angular frequency equal to 27, there are more evaluations of the first code. For
the angular frequency equal to 20w, the number of evaluations is almost the same for both codes at the
beginning, but then the number of observations of the second code increases faster than those of the first
code.

6 Second test case
6.1 Description of the test case

This second study deals with the motivating industrial problem exposed in Defaux and Evrard (2014) and
adapted to this field of research. This industrial problem is the study of the mechanical response of a spher-
ical tank subjected to an internal blast. The problem is model by the coupling of two codes and we aim at
performing a sensitivity analysis of the output of the nested code with respect to its inputs.

This first code is an Eulerian 2-dimensional code, which simulates the burn of the explosive charge, the
internal gas dynamics and the shock wave propagation. Its inputs are the same as those of the first code of
the first test case (see Table 1). The second code provides the mechanical response of the tank through the
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Fig. 7 First test case: Error of the nested code prediction along the sequential designs. The initial design sets are 40-points
design sets, drawn according to pux, X px, and are the same for the three series. The draw of the initial design is repeated
20 times. The solid lines represent the median and the two-dashed lines represent the first and the third quartiles. The three
series correspond to an I-optimal design with a blind-box predictor (mid-grey), the Chained I-optimal design with a linearized
predictor (light grey) and the Best I-optimal design with a linearized predictor (black). The computational cost of both codes

is the same: 71 = 12.
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Fig. 8 First test case: Number of evaluations of the first code (black) and the second code (grey) along the Best I-optimal
sequential designs of Figure 7. The solid lines represent the median and the two dashed-lines represent the first and the third

quartiles.
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(a) Tank (b) First code (c) Second code

Fig. 9 Second test case: Images from Defaux and Evrard (2014). The left-hand plot shows the tank. The middle plot shows
the output of the first code, with the detonation products in white and red. The right-hand plot shows the output of the
second code, the Von Mises stress at a given time at the inner surface of the tank. The areas in green are under stress and
those in blue are not under stress.

nput name escription and unit istribution of the input

T Descring Tom Distrbut Fihe
(x2); Internal radius of the tank (m) N (0.72,0.0057)
(w2), Thickness (m) N (0.073,0.00152)
(@2)4 Young modulus of the tank (Pa) | A (2.1 1011, (2.1 1010)2)
(x2), Young modulus of the tap (Pa) | N (2.1 101, (2.1 1010)2>

Table 4 Input parameters of the second code in the second test case. All variables are independent.

von Mises stress at the inner surface of the tank.

The spherical tank is presented in Figure 9(a). The output of the first code is shown on Figure 9(b). Figure
9(c) shows the second code output.

In this work, in order to reduce the computational cost of a code evaluation, we use a 1-dimensional ap-
proximation of the first code, by considering that the explosion and the tank are spherically symmetric. The
output of the first code corresponds here to the spherically symmetric time-varying shock-wave.

In the same way, a 2-dimensional approximation of the second code is considered. The approximation is based
on an axisymmetry of the mechanical response of the tank. Then the maximum value of the Von Mises stress
over the surface (in fact a curve) for each time step is considered. The time-varying output of the second
code is therefore this time-varying maximal value.

Moreover, the elastic limits of the tank and the tap have been set to an artificially high value in order to
obtain unsaturated output trajectories.

The components of x2 are independent and of dimension 4. Table 4 presents the input variables of the second
code and their distributions.

Figure 10 shows some trajectories of the output of the nested code for this second test case. The trajectories
have very similar shapes and are overall growing with time.

6.2 Results of the test case

Figure 11 shows the prediction accuracy for the output of the nested code along the sequential designs. Three
cases are presented. The first one is based on the blind-box predictor with an I-optimal enrichment (see
Proposition 2), the other two are based on the linearized predictor of Proposition 4 with the two sequential
design criteria of Definition 1. The results show that the linearized predictor is more accurate than the blind
box predictor. These results illustrate the interest of taking into account the intermediary observations of the
nested code.
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Fig. 10 Second test case: Example of trajectories of the output of the nested code for five values of (z1,z2).
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Fig. 11 Second test case: Prediction error Anest (see Eq. (72)), for the nested code along the sequential designs: I-optimal
sequential design with the blind-box predictor (solid line), Chained I-optimal sequential design with the linearized predictor
(dashed line), Best I-optimal sequential design with the linearized predictor (dotted line). The initial design of 50 points on

Xnest is drawn according to px, X px,-

Once an accurate predictor of the nested code has been obtained at the end of the sequential design (a Best
I-optimal design with the linearized predictor), the predictor can be used in order to perform a sensitivity
analysis (see Sobol (1993) for further details). A Kriging Believer approach (Picheny et al., 2010) is used,
which means that vy, . is replaced by py.q, for the computation of the Sobol indices of the maximum value

of the high dimensional vectorial output y, .q;-

The left-hand plot of Figure 12 shows the Sobol indices of the maximum value of the time-varying output of
the nested code with respect to the inputs of the nested code. The first-order and total indices are very close.
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Fig. 12 Second test case: on the left figure, the Sobol indices (first-order in grey and total in black) of the maximum value of
the functional output of the nested code. The indices are estimated with a predictor constructed from the set of observations
at the end of the Best I-optimal sequential design. On the right plot, the first-order indices at each time step of the functional
input of the nested code. At each time, the total indices are computed and normalized such that their sum is equal to 1.
The figure presents the normalized indices at each time, stacked from bottom to top in the following order for the associated
input variables: (1), ,...,(®1),,(®2)1,...,(x2),

This means that the first-order effects are important and the interactions almost negligible (see (Sobol, 1993)
for further details). Consequently, max (Y05t (Znest)) can be accurately approximated by an approximation
of the form:

dy+da
fo+ Z fi ((wnest)i) 5 (73)
i=1
where fo and f; are defined by:
fo = E [max (y,es; (@nest))] (74)
fi =E [maX (ynest (wnest)) | (wnest)i] - f0~ (75)

Besides, the indices of the first input of the first code @1 (radius of the explosive charge) are very high
compared to those of the other inputs. The radius of the explosive charge is thus a very influential input for
the maximum value of the Von Mises stress over the inner surface of the tank, over the time.

Besides, the indices associated with the inputs a2 of the second code are very low compared to those associ-
ated with the inputs 1. The second most influential input is the shock magnitude parameter (z1);.

The right-hand plot of Figure 12 shows the total Sobol indices for each time index of the output. The indices
have been normalized such that their sum at each time index is equal to 1. Note that the first-order Sobol
indices were very close to the total Sobol indices. The figure shows that the four input variables of the first
code are the most influential input variables. They explain more than 90% of the variance at each time step.

7 Conclusions

In this paper, we have focused our attention on a system of two nested codes with functional outputs, where
the functional output of the first code is one of the inputs of the second code. The objective was to construct
a surrogate model of the output of the nested code in order to perform a sensitivity analysis.

We aimed at extending the approach proposed in Marque-Pucheu et al. (2018) for the case of two nested
codes with scalar outputs. This latter is based on the coupling of the Gaussian predictors of the two codes.
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The first challenge posed by this objective was the surrogate modeling of the second code, which has functional
input and output. Indeed, the existing methods for the Gaussian process regression of a code are adapted to
the case of a low dimensional vectorial input.

In order to build a predictor of the second code, we have proposed an efficient dimension reduction method
of the functional input of the second code. This dimension reduction significantly outperforms the PLS when
it is used for the Gaussian process regression of a computer code with a functional input.

Then a Gaussian predictor of the nested code has been obtained by composing the predictors associated with
the two codes and linearizing this composition. This predictor can take into account all the observations.
Moreover, it is Gaussian with fast to compute mean and variance.

Finally, two sequential designs aiming at improving the prediction accuracy have been proposed. The possi-
bility of choosing which code to run enables an optimal allocation of the computational budget between the
two codes and substantially reduces the prediction error.

The application to numerical examples has shown the interest of the proposed methods. The proposed
dimension reduction method significantly improves the accuracy of the Gaussian predictor of the second
code compared to a dimension reduction based on PLS, and is more robust when only a limited number of
observations can be used for the estimation of the projection basis.

Moreover, the proposed predictor of the nested code is more accurate than a simple Gaussian process re-
gression of the nested code output without considering the intermediary variable. This shows the interest of
taking into account the observations of the intermediary variable.
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8 Appendix

Proof of Proposition 1

We aim at finding a m-rank matrix Z* such that:

N,
Z" = argmin Z HA*'I’EZ) - AZzx,'

ZGMNtht i=1

where Z is a m-rank matrix and m( %) denotes the i-th observation of the input.
The previous equation can be rewritten:

zZ* =

argmin

ZG./\/INtht =1

argmin
ZEMN, x N,
argmin
ZeMNt X N¢
argmin
ZEMN, x N,
argmin
ZeMNt X N¢
argmin
ZEMN, x N,
argmin
ZEMN, x N,
argmin
ZEMN, x N,
argmin
ZEMN, x N,
argmin
ZeMNt X N¢

Ne (7) i
> HA:I:t — AZx;

((AXt ~AZX)T (AX, — AZXt))
Tr ((AZ°X1)T (AZ°X))
Tr (Xz“ ()" ATAZCXt)
Tr ((zC)T ATAZCXtXtT)
T (X0 XT)F (20)" AT Az (x. X))
T (X, XT)* (297 (AT A)* (AT A)* z¢ (X,XT)?)
1 N\NT 1
Tr<((ATA)2 z° (X:xT)?) (ATA)% Z° (X, XT)Z)

|(a7a)% z (x.x7)3|°
F

1 1 1 112
[(ama)® (xoxT)? — (a7a)" z (x XD}

1 1
In (Eckart and Young, 1936), it is shown that the matrix @Q,,, of rank m which minimizes H ATA) 2 (XtXf) 2

vectors associated with the singular values sorted in ascending order, then we have Q,,
U,, and V,, gather the m first columns of U and V and D,, contain the m first lines and columns of D. It

can therefore be inferred that:

Hence, we have:

Proof of Lemma 1

First equation

A (ATA)% UnDn VT (XtXtT)

1 1

(ATA) 2zt (XtXtT) * —UmDnVE.

—1
2

From Eq. (35), it can be inferred that:

K2

) obs (=) ., C (=% 1 obs,new obs,new -1 obs,new T
E[MlHYz 7YZ (mz)_uz (wz)}vRthl] _Yz Rz H,

—1

—1 T

obs,new obs,new obs,new
(s (meree) ™ ()

)

2
F
is given by the m first singular-values of the singular- value decomposition of (ATA) (X X; ) : . If we denote

by UDVT the singular-value decomposition of (ATA) (XtXt )2, with U and V gathering the singular
=U, DV}, where
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where
YRR = (Y (x))
(76)
H(i)bs,new _ (Hti)bs ; hi (:i,:f))7
and
obs,new —obs _
qus,new _ Ri ¢ (‘)(z ’wi)
‘ c (z;‘,fﬁbs) 1
Using the Schur complement formulas, one get:
-t Q. Q
qus,nevv) _ ( 11 12) 7 7
( ’ Q21 Qo (77)
where
Qi = (B™) ™'+ Qo (R™) ™ (X0, 37) € (21, X0 (B™) ™
= (R?™) ™"+ Quavi @) vi @),
~1 ., [=obs _ . (78)
Quz = Qo (B) ' C (X7,87) = —Quyvi (&),
_x =sob -1 o
Q21 = —Q2C (miaX(i) s) (R?bs) = —Q5v; (%‘)T,
Q,, € R, and:
-1 .
v (#) = (B™) 0 (X2 (79)
From the previous equations, one has:
qus,new RQbs,new -1 qus,new T
= H?bsQu (H?bs) + h; (fj) Qo1 (H?bs)T + H?bsthi (ij)T + hi (ij) Qsohi (E:)T
-1 T — % — % T — % — % T
= P (RE) T (D) 4 Quo (s @) s @ ()" — e @ os @) (1)

—H™ v, (37) hi (37)" + ha () b ()"
= H™ (R™) " (H™)" + Qyy (hi (7)) — H™v; ())) (hs (7)) — H i (2))"
= H™ (™) (H?™)" + Quyui () wi (2)"

In the same way, one has:

ngs,new (RQbs,new) -1 (HQbs,new) T

=Y Qy, (H™) + pf (7]) Qo (H™) +YQuuohi (21)7 + pl (&) Quohi (77)7

= Yo (RS TN (HE) "+ Quy (Yvs (@) vi (a0)" (™) — it (37) v ()" (HE™)"
~Y "oy (37) ha (30)" + g (@) i (30)7)

— Y (RPP) T (H™) + Quy (45 (&) — Y™, (&) (ha (77) — (HI™) v; (27))

= Y (RP™) 71 (H™)" + Quy (u (2]) — Y™, (7)) ui (20)7 .

T

From Eq. (34), it can be inferred that:
pi (20) = Y770 (2]) = Mw; (27) -

where M; = E [M;|Y ¢, C;] is defined by Eq. (35).
Therefore, one has:

7 (2

1 T -1 T —~
Y(_)bs,new (Rgbs,new) (Hgbs,new) _ Y(i)bs (R(i)bs) (H?bs) + QQQMiUi (:i;k) w (a_::)T )
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From Eq. (80) it can be inferred that:
—1 T —~ _ —
Y(i)bs,new (R(i)bs,new) (H(i)bs,new) _ MiH(i)bs (R(i)bs) 1 (H(i)bs)T + QQQMiui (:f;;k) w; (:f:;k)T
AT - T — % — %
= M (H™ (™)™ (H)" + Quous () wi (30))
_ J/\Z'Hobs,new (Robs,new) -1 (Hobs,neW)T
- ? 7 (2 2

Therefore, one has:

-1

Y?bs,new (1{;’)bs,new)71 (H(i)bs,new)T (H?bs,new (1{;’)bs,new)71 (Hti)bs,new)T) _ ]/\Z—Z
Thus, one can conclude from the previous equation and Eq. (35) that:

E [MA{Y?bS, Y, (27) = ps (3)}, Rti,cz} ~E [MAY?bS, Rti,Cz} .

Second equation

From Eq. (36) it can be inferred that:

Rti (Y?bs, HZC (.’1_3:)) _ 14» - (Y(i)bs,new _ J/\Z—iH(i)bs,new) (R;)bs,new) -1 (Y?bs,new _ J/\ZiH?bs’neW)T . (8]_)
1z

From Eq. (76), one has:

3

Yqbs,new N J/\ZiHQbs,new _ Y?bs . ]/\Z—Z_Hti)bs 7 c :1_3;( N J/\Zzhz :1_3;( ) ]2
K3 K3 l‘l’

From Eq. (34), one get:

—

uE (&) - Mih (7)) = (Y~ MiH™) vi (1),
where v; (Z]) is defined by Eq. (79).
Therefore, Eq. (82) becomes:

YQbs,new _ MiH?bs,new _ (Y;_)bs _ ]/\Z—iH(i)bs) (Inl . v (:i;k)) )

K2

Eq. (81) can thus be rewritten:

1
n; +1

Ry, (Y%, u¢ (z))) = (Yoo — MH™) (I, i (&) (R?bs’new)_l (83)

—~ T
(Ln  vi @)T (VP — MH™)

Besides, one has:

(L v @) (R) 7 = (ho@) (G0 2
= (Q11 +vi (Z7) Qa1 , Q12 +vi (Z7) Qaz)

- ((Rg’bs)*1 , om).

=% Q11 Q2 ) ( I, ) ( obs)*1
I, , vi(&; , x = (R; .
( ' ( Z)) (Q21 Q2 (vi (mz))T ’
One can conclude from Eq. (83) and the previous equation, that:

Ry, (Y0 (21)) = R (V™).
K3

One can infer that:
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Proof of Proposition 2

From Eq. (39) it can be inferred that the criterion can be rewritten:

wm:mwm/T%&(Ywﬂmﬁnﬁ4m7ﬁjﬂwx@» (84)
& eX; X; ’

Moreover, based on Lemma 1:

;Y = argn}in/_ nanL 1Tr (Rti (Y?bs)) v; (:ii|Y?bs, ij) dyg, (). (85)
z eX; JX T

By noting that Tr (R, (Y'?"%)) does not depends on &; and &;, the criterion can finally be written:

Z7°° — argmin / i (X027 du, (@) (86)
zreX, JX ‘

T

Proof of Proposition 3

By definition (see Eq. (50)) and given the independence of Y2 and Y3, one has:

d
Yiest (@1, @2) = p3 (13 (®1) + §3023 (@1) , ®2) + £2002 (15 (1) + £3023 (21) ,22),

where &, and &5 are independent Gaussian variables, such that &, ~ N (O, ﬁtz) and &3 ~ N (O, ﬁt;;)-

This implies:
E [Y;:lest (z1, :132)] =K [:u'g (.ug (.’131) + 530533 (.’131) 7:132)] )
because £, and &5 are independent and E [€,] = 0.

Besides, one has:
Y fest (@1,@2) YViest (@1, @2)" = p5 (15 (21) + €3055 (1), @2) ps (5 (21) + &3055 (x1) , @2)"
+ (05 (p§ (T1) + €3055 (@1) , 12))* €567
+05 (5 (x1) + £3053 (1), w2) Eo s (p§ (T1) + €3053 (@1) ,2) "
+05 (5 (21) + £3053 (1), @2) p5 (p§ (21) + €3053 (21) , @2) €3 -

Given that &, and & are independent, E[¢,] = 0 and E [£,£5 ]| = R¢,, one has:
E [Yﬁest ("Elv :1:2) Yrclest (3317 wQ)T} =E [(05 (/"’g (:1:1) + 5302063 (:131) 5 :152))2] ﬁh

HE [ (15 (w1) + €305s (1) ,2) 5 (1§ (w1) + €505s (1) ,@2)" |

Proof of Proposition 4

By definition (see Eq. (50)), one has:
c d c c C C c c
Y hnest (@1, T2) = py (3 (@1) + €3023 (X1) , T2) + €502 (U3 (@1) + €3003 (T1) , T2),

where £, ~ A’ (0, ﬁb) and &5 ~ N (0, ﬁt3).
If 053 (1) is small enough, then the previous equation can be linearized with respect to o3 (x1). Thus, one

has:

C d C C 6 5 C C C C
Yiest (T1,T2) = py (ps (1), @2) + al;f (k5 (x1),22) 053 (%1) €3 + €202 (p3 (T1) , T2) -
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Thanks to the fact that £, and &5 are independent, a Gaussian predictor of the nested code can be obtained
from the previous equation. Furthermore, this Gaussian process has the following mean function:

I‘l’IcleSt (2111, :112) = IJ’S (Ng (wl) ’ :112) ) (87)

and its covariance function is:

’ ’

Crest ((331, x2), (331, 332)) = ﬁtQCQC ((Ng (z1),22), (Ng (511/1) ,33/2))

_’_38_/705 (1§ (1) , x2) Ry, (%—‘f (,u§ (w;) ,mé))TC’g'f (ml,mll) )
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