
High to Low pellet cladding gap heat transfer modeling methodology in
an uncertainty quantification framework for a PWR Rod Ejection Accident

with Best Estimate coupling

G. K. Delipei1, J. Garnier2, J-C. Le Pallec1 and B. Normand1
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High to Low gap heat transfer modeling in uncertainty analysis of a PWR REA

ABSTRACT
High to Low modeling approaches can alleviate the computationally expensive fuel modeling
in nuclear reactor’s transient uncertainty quantification. This is especially the case for Rod
Ejection Accident (REA) in Pressurized Water Reactors (PWR) were strong multi-physics in-
teractions occur. In this work, we develop and propose a pellet cladding gap heat transfer (Hgap)
High to Low modeling methodology for a PWR REA in an uncertainty quantification frame-
work. The methodology involves the calibration of a simplified Hgap model based on high
fidelity simulations with the fuel-thermomechanics code ALCYONE1. The calibrated model is
then introduced into the CEA developed CORPUS Best Estimate (BE) multi-physics coupling
between APOLLO3® and FLICA4. This creates an Improved Best Estimate (IBE) coupling
that is then used for an uncertainty quantification study. The results indicate that with IBE the
distance to boiling crisis uncertainty is decreased from 57 % to 42 %. This is reflected to the
decrease of the sensitivity of Hgap. In the BE coupling Hgap was responsible for 50 % of the
output variance while in IBE it is close to 0. These results show the potential gain of High to
Low approaches for Hgap modeling in REA uncertainty analyses.
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1. INTRODUCTION

The improvement of nuclear reactors computational modeling together with the increasing requirements
in safety analyses lead to the development of Best Estimate Plus Uncertainty (BEPU) approaches [1].
BEPU is a systematic approach where Best Estimate (BE) codes are used to calculate safety criteria with
an estimation of their respective uncertainties. BEPU is a step forward from conservative approaches
allowing for better quantification of the safety margins. BE codes are considered the codes that take into
account the most important underlying physical phenomena, governing the different studied scenarios,
with reasonable approximations. Different BE codes usually model different physics. The correct mod-
eling of transient scenarios can require the coupling between different BE codes due to the multi-physics
interactions. This creates many challenges for the uncertainty quantification (UQ). With the term UQ we
mean the estimation of the statistical distributions of the outputs of interest (in particular, their means
and standard deviations) and the global sensitivity analysis of the outputs (in particular, their Shapley
indices). Many code evaluations are required for the estimation of the statistical quantities and of the
sensitivity indices rendering thus the computational expensive modeling the main limitation. A large
scope of undergoing research, in both academia and industry, is the multifidelity High to Low modeling
approaches that can reduce in an efficient way the computational cost while retaining a good predictive
modeling.

The multifidelity approaches combine different sources of information coming from high fidelity models,
low fidelity models and experiments. The fundamentals work of [2] and [3] created the theoretical
framework that lead to papers such as [4] in structural dynamics, where a cheap surrogate model based
on Polynomial Chaos was considered as a low fidelity model and corrected by a high fidelity code in
order to accelerate the Bayesian calibration process using experimental data. In [5] a methodology for
combining information from multifidelity codes and experiments in a Bayesian hierarchical model was
developed using Gaussian processes. In [6] a novel machine learning based multifidelity approach was
discussed in the context of Bayesian optimization. A comprehensive and detailed survey of multifidelity
methods in uncertainty quantification, statistical inference and optimization can be found in [7]. In
nuclear and more particularly in thermal-hydraulics the result of the PREMIUM project [8] indicated a
strong user effect in the input uncertainty quantification. For this purpose in [9] a set of good practices
is discussed regarding the input uncertainty quantification.

In this work we focus on the study of the Rod Ejection Accident (REA) in Pressurized Water Reactors
(PWR) with a multi-physics coupling in an UQ framework. During the REA strong multi-physics cou-
pling effects occur between neutronics, fuel-thermomechanics and thermal-hydraulics. This necessitates
a multi-physics modeling to take into account the interdisciplinary interactions increasing significantly
the computational cost. The uncertaintly quantification for REA becomes thus very challenging. In this
coupling the fuel-thermomechanics modeling is the most expensive since it solves at the fuel rod scale the
thermal conduction equations coupled with the thermo-mechanical ones at a fine discretization. A High
to Low modeling is necessary to introduce and use a simplified model for fuel-thermomechanics reducing
the computational cost. The high fidelity modeling manages to model complex thermo-mechanical and
physico-chemical phenomena occurring during a REA. Some examples are the high burn-up structure,
fission gas releases in the pellet-cladding gap and the pellet cladding mechanical interaction (PCMI). All
these phenomena impact the fuel rod behavior through the pellet cladding gap heat transfer (Hgap). For
this reason the low fidelity fuel-thermomechanics modeling usually does not model explicitly these phe-
nomena but directly use a predefinedHgap value. There is, therefore, a strong interest in developing High
to Low models for Hgap in REA. In this work, we develop and propose a methodology to develop such
High to Low models for Hgap. The high fidelity fuel-thermomechanics code ALCYONE1 [10] is used to



calibrate a simplified Hgap model based on fuel thermal expansion. Compared to previous works such as
[5], the low fidelity model is not a fitted surrogate but a physics based model that is calibrated in a prelim-
inary way by minimizing the discrepancy with ALCYONE1 predictions. The model is then introduced
into the CEA developed CORPUS [11] Best Estimate (BE) multi-physics tool, where core neutronics
code APOLLO3® [12] is coupled with core thermal-hydraulics code FLICA4 [13]. This creates an Im-
proved Best Estimate (IBE) modeling of REA that is used for UQ. To the knowledge of the authors this is
one of the first attempts to address Hgap High to Low modeling in transients. Some considerations have
been discussed in the context of the UAM (Uncertainty Analysis in Modelling) benchmark [14]. The
benchmark consists of three phases starting from stand-alone neutronics uncertainty analysis for steady
state and reaching up to full coupling at the system level for transient scenarios. In this benchmark the
Hgap is treated through lookup tables for the steady state and evolution calculations. However, there is
not a dedicated treatment for the transient scenarios and this work and its prospects could be potentially
integrated in the benchmark. Additionally in [15] the pellet cladding modeling was optimized including
experimental data. The model’s uncertainty was estimated as well.

In Section 2 we detail the two available coupling frameworks at CEA for the modeling of REA. The com-
putationally expensive Best Effort coupling and the cheaper BE coupling. In Section 3 the specifications
of the case study are presented. The geometry of the studied PWR core and the selected nodalization
are provided together with the REA characteristics and the inputs and outputs of interest. The High to
Low Hgap modeling methodology is based on the BE coupling UQ results. In Section 4 we present these
results. In Section 5 we present the calibration of the High to Low Hgap model. The simplified Hgap

model is detailed and the calibration results are presented. As mentioned above, the obtainedHgap model
is introduced into the previous coupling creating the IBE. In Section 6 an UQ analysis is performed with
the IBE coupling and the results are compared with the BE results of Section 4. Finally, we end this
article with the main conclusions and perspectives of this work.

2. REA COUPLING FRAMEWORK

The REA is initiated by a control rod ejection due to mechanical malfunction inserting positive reactivity
in the core. As a consequence power increases adiabatically until the fuel temperature starts increasing
as well introducing a Doppler negative feedback that creates a power peak. The power then continues to
decrease and when the heat flux reaches the moderator its density will start decreasing adding another
negative feedback due to the negative moderator temperature effect. Depending on the core state at the
moment of the ejection the power evolution and its damage on the first containment barrier (cladding) can
vary significantly. During the transient strong multi-physics interaction effects occur between neutronics,
fuel-thermomechanics and thermal-hydraulics necessitating a multi-physics coupling framework.

At CEA two different coupling schemes are established [16] for the modeling of REA based on CORPUS
multi-physics tool as can be seen in Figure 1a. APOLLO3® code is used for core neutronics, FLICA4
code for core thermal-hydraulics and ALCYONE1 code for pin fuel-thermomechanics. The Best Effort
scheme involves the full coupling between the codes. At each time step the codes exchange 3D fields.
APOLLO3® uses the fuel Doppler temperature Tf from ALCYONE1 and moderator temperature Tm
from FLICA4 to compute the power generated in the fuel Pf and the fluid Pl. FLICA4 uses Pl from
APOLLO3® and the cladding wall heat flux Φw from ALCYONE1 to compute the Tm and the external
cladding wall temperature T extc . ALCYONE1 uses the Pf from APOLLO3® and the T extc from FLICA4
to compute the Tf and Φw. The Best Effort scheme models each discipline accurately but it is computa-
tionally very expensive for a full core REA and thus its use for the uncertainty propagation and global
sensitivity analysis in the UQ framework is prohibited. For this reason the BE scheme is used where the



coupling is reduced between APOLLO3® and FLICA4. The complex fuel-thermomechanics phenom-
ena during REA are modeled by the fuel-thermal module in FLICA4. In this module only the thermal
aspects are modeled and all the other phenomena are taken into account through a constant Hgap during
the transient. This simplification is very limiting for the UQ because it leads to the use of large Hgap

uncertainties in order to penalize for the poor thermomechanics modeling. In this work we develop and
propose an offline High to LowHgap modeling methodology that alleviates the poorHgap modeling issue
during REA. This creates the IBE coupling scheme illustrated in Figure 1b.
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Figure 1: CEA coupling framework used for REA (a) and the proposed improvement in the BE scheme (b).

3. CASE STUDY

3.1. PWR geometry and modeling

The REA is studied in a large scale PWR core. The geometry has an 1/8 symmetry illustrated in Figure
2. It consists of 193 fuel assemblies with UO2 and UO2 −GdO3 fuel compositions. Two different types
of control rods are inserted at different depths. The black rods (B) with high neutrons absorption that
are typically used for the shutdown of the reactor and the grey rods with less neutrons absorption that
are used in the day to day reactivity control. The core is at Hot Zero Power (HZP) conditions at the
end of the cycle. Around the fuel assemblies there is one ring of water reflector assemblies. The total
height of the core is 468.72 cm with a bottom and top reflector of 21 cm leading to a fuel active height of
426.72 cm. Each assembly is a 17×17 lattice of fuel pins with pitch 21.504 cm. The control rod that will
be ejected initiating the REA is located on the periphery as highlighted in Figure 2. It is inserted 97 cm
from the top into the fuel active region. Due to the extraction of the control rod there is 1/2 symmetry
for the REA.

The REA in the PWR core geometry is modeled using the BE and IBE coupling scheme discussed in
Section 2. For core neutronics, APOLLO3® code is used with a two group Diffusion approximation
and void boundary conditions on the neutron current. The two group macroscopic cross-sections are
parameterized in burn-up, boron concentration, moderator density and fuel temperature. The radial
discretization is at the level of the quarter of assembly. For the axial discretization 34 meshes are used
of which 30 are for the fuel active height and the rest for the top and bottom reflectors. For core thermal-
hydraulics, FLICA4 is used with a 4 equations porous modeling and a multi-1D axial flow approximation.



The system of 4 equations consists of: mixture mass balance, vapor mass balance, mixture momentum
balance and mixture energy balance. The boundary conditions are the inlet mass flow and enthalpy
and the outlet pressure. For the radial discretization one thermal-hydraulic channel is used for each
assembly. For the axial discretization only the fuel active part is modeled using 30 meshes in accordance
to APOLLO3® modeling. One average fuel pin per thermal-hydraulic channel with 1D radial modeling
is used in FLICA4 with a discretization of 25 radial regions for the fuel and 3 for the cladding. For the
time discretization of the REA an adaptive end time is adopted based on the integral power evolution.
For each transient in the UQ when the power surpasses half its nominal value then a SCRAM signal is
sent. It is considered that from this time on 0.6 s are needed in order for the SCRAM to take place and
end the modeling of the transient. The incremental time step is constant and equal to 0.001 s. The control
rod is ejected in 0.1 s.
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Figure 2: PWR 1/8 core geometry and characteristic dimensions. B indicates assemblies with black control rods, G with
grey control rods and N with no control rods. The ejected control rod location is highlighted with red borders.

3.2. Initial state and reference transient

The PWR core is critical at the end of the cycle with HZP condition, meaning that the temperature is
around 290◦C and the power negligible (3.8W ). Since the core is at the end of the cycle the boron
concentration is quite low at 95.5 ppm. Other characteristic conditions of the core are provided in Table
I. There is a burn-up distribution resulting from core evolution calculation performed in a previous
internal CEA study. The obtained radial burn-up distribution at the end of cycle is illustrated in figure
3. The burn-up radially averaged at the level of the assembly ranges from 10 GWd/t to 52 GWd/t. The
location of the ejected control rod is close to the periphery. In the core there is a radial and axial Xenon
distribution that increases the control rod worth leading to an increased reactivity insertion and thus a
violent prompt driven transient.

The reference (without uncertainties) REA characteristics obtained with the BE coupling are presented
in Table II and Figure 4. The control rod worth is ρworth = 1.2 $ indicating a prompt driven transient.
In the Figure we can observe the created power pulse of width Γ = 38ms with a maximum power of
Pmax

core = 2.54Pnom at instant tmax = 292ms. The nominal power is Pnom = 3800MWth. Additionally,



the Fxyz deformation factor evolution in time is plotted. It starts from a value of 5 and reaches up to 25
when the control rod is fully ejected (0.1 s).

Table I: HZP initial conditions of the PWR core.

Initial core power 3.8 W

Moderator density 0.745 g/cm3

Pressure 155 bar

Volumetric flow rate 90954 m3/h

Fuel temperature 290 ◦C

Moderator temperature 290 ◦C

Boron concentration 95.5 ppm

Figure 3: PWR core burn-up radial distribution in the core.

Table II: Reference REA characteristic quantities.

Effective delayed neutron fraction 569 pcm

Control rod worth 1.2 $

Maximum core power 2.54Pnom

Final core power 0.09Pnom

Power pulse width 38 ms

Time of maximum core power 292 ms

Maximum 3D deformation factor 25
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Figure 4: Integral power and Fxyz deformation factor evolu-
tion for the reference REA.

3.3. Input and Outputs Identification

Before presenting the BE UQ results we define the uncertain inputs that will be considered together
with the outputs of interest. The inputs and outputs for the three disciplines are defined in Table III.
The statistical distributions of the inputs are presented in [17] and are included in the Appendix A. In
neutronics the two-group macroscopic cross-sections and the kinetic parameters are considered with a
multivariate normal distribution. The rest of the inputs are considered independent of the neutronic
inputs and between them. The thermal-hydraulic input distributions are mainly based on CEA experts
opinions and are applied as random multiplicative factors with mean 1 on the different models. The UAM
recommendations are used for the fuel-thermal inputs, i.e. for the thermal conductivities and specific heat
capacities. TheHgap is the quantity of focus in this work. In the BE coupling schemeHgap is an uncertain



constant with a uniform distribution between the value for a complete open gap (2e3Wm−2K−1) and
the one for a pellet-cladding contact (5e4Wm−2K−1). In the IBE Hgap is calculated by a model and
thus the uncertainty will be carried by the model parameters. For the outputs 3 scalars and 1 functional
quantity are considered. In neutronics we consider the maximum in time and space of the local linear
power during the REA Pmax

lin and the radial linear power distribution P 2D
lin at the time instance and axial

plane of Pmax
lin . In fuel-thermomechanics we selected the maximum in time and space of the local stored

enthalpy Hmax
f while in thermal-hydraulics the minimum in time of the distance to Departure from

Nucleate Boiling (DNB) DNBmin. The latter output is defined as the difference between the Departure
from Nucleate Boiling Ratio (DNBR) and the DNB threshold Rcrit. The UQ methodology is detailed
and tested in [17] and [18] and is not the focus of this work. The methodology consists of an initial
screening of the inputs and the use of kriging models [19] to perform uncertainty propagation and global
sensitivity analysis using Shapley indices [20] [21]. More details about the methodology are discussed
in Appendix 7. The obtained results for the uncertainty propagation and global sensitivity analysis will
be presented directly for both BE and IBE coupling schemes.

Table III: Inputs and outputs identification by discipline: neutronics, fuel-thermal and thermal-hydraulics.

Inputs (22)

TDg(2) Disappearance cross-section of group g NFg(2) νxfission cross-section of group g

Dg(2) Diffusion coefficient of group g S1→2 Scattering cross-section of group 1 to 2

IVg(2) Inverse velocity of group g βeff Effective delayed neutrons

λeff Effective decay constant

λf Fuel thermal conductivity λc Cladding thermal conductivity

Cpf Fuel specific heat capacity Cpc Cladding specific heat capacity

Hgap Fuel-cladding gap heat transfer TR Rowland temperature

Pr Power radial profile

Hc Convective heat transfer Rcrit Criterion for post-DNB heat transfer

Rv0 Recondensation Hdnb Post-DNB heat transfer

Outputs (3 scalars + 1 functional)

Pmax
lin Local linear power (max in time) P2D

lin (x,y) Radial distribution of

Hmax
f Fuel stored enthalpy (max in time) linear power at the time and

DNBmin Distance from Rcrit (min in time) axial position of Pmax
lin

4. BEST ESTIMATE UNCERTAINTY QUANTIFICATION

In this section we present the results of the BE UQ for the REA. The uncertainty propagation is performed
by training kriging models between each scalar output and a reduced number of screened inputs. The
screening is performed with a method based on HSIC statistical significance tests [22] [23] presented
in [17]. The kriging models are trained on a Latin Hypercube Sampling (LHS) of size 250. For the
functional quantity Principal Component Analysis (PCA) [24] is used and kriging models are trained for
two principal components that represent 95% of the outputs variances. For all the quantities of interest the
prediction errors of the kriging models, evaluated on a separate LHS of size 125, are small with largest
errors 2% for DNBmin and 5.5% for the second principal component of P 2D

lin . More detailed results
are provided in the Appendix 7. The kriging models are used for brute force Monte Carlo uncertainty
propagation with 105 samples and the results are presented in Figure 5. In each histogram we plot
also the pdf of a normal distribution with the estimated mean and standard deviation (blue line) for a



visual comparison of the normality. In the Appendix 7 we present also the estimated relative standard
deviations for the scalar quantities directly using the training LHS. It is important to notice that it is not
recommended to use surrogate models for accurate estimation of the tails of the output pdf since they
consist of rare events that the surrogate model has not been trained for.
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Figure 5: Pmaxlin , Hmax
f and DNBmin histograms and P 2D

lin relative standard deviation distribution for BE UQ analysis.

We observe a quite large relative standard deviation for Pmax
lin of around 57 %. The result for P 2D

lin shows
that the spatial distribution of the relative standard deviation does not vary significantly radially. For
Hmax
f a 20 % relative standard deviation is obtained and the distribution is approximately normal. For

DNBmin a large mean value is obtained with large relative standard deviation of 57 % resulting in a very
small probability of reaching boiling crisis.

For the global sensitivity analysis, Shapley indices are estimated for the scalar outputs and aggregate
Shapley indices for the functional ones as discussed in [17]. All the Shapley indices are estimated using
the kriging models. For a more detailed focus on the Shapley indices estimation with surrogate models
we refer to [25]. The R language [26] package ”sensitivity” [27] (function ”shapleyPermRand”) was used
for the estimation of the Shapley indices and their confidence intervals, that quantify the uncertainty of
the estimation method. The results are presented in Figure 6. The inputs in this Figure are the selected
ones by the screening process of the UQ methodology. For the outputs Pmax

lin , P 2D
lin and Hmax

f the βeff
is responsible for 50% of the output variance with the other 50% attributed to the cross-sections TD1,
D1, S1→2 and IV1. All these cross-sections are highly correlated to each other and thus it is difficult
to distinguish their separate contributions. For the output DNBmin the Hgap is the dominant input
responsible for 50% of the output variance while the remaining 50% is attributed to the cross-sections
and the βeff . This is due to the large Hgap uncertainty ranges and thus gives the incentive to improve its
modeling.
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Figure 6: Pmaxlin , Hmax
f and DNBmin Shapley indices and P 2D

lin aggregate Shapley indices for BE UQ analysis.

5. HIGH TO LOW PELLET CLADDING GAP HEAT TRANSFER MODELING
METHODOLOGY

5.1. Introduction

The gap heat transfer (Hgap) modeling in the BE coupling is performed through a constant value during
the REA with a uniform distribution over a large interval. This is one of the most important modeling
differences between Best Effort and BE coupling. There is a strong interest thus to improve the Hgap

modeling and to introduce it into a refined coupling that we will call Improved Best Estimate (IBE). In
this subsection we address this challenge by developing a High to LowHgap modeling methodology. The
methodology involves the calibration of a simplified Hgap model that is based on fuel thermal expansion.
We consider that this model is adequate for the REA and especially for the gap closing phase. The
calibration is performed through decoupled ALCYONE V1.4 calculations with imposed power evolution.
In this Section we first detail the model with its calibration parameters. Afterwards, we present the
methodology where we discuss issues such as how the power pulses are selected, how manyHgap models
will be created for the different fuel assemblies etc. Finally, we present the calibration results for the
PWR core.

5.2. Pellet cladding gap heat transfer simplified model

The sharp power increase in the REA leads to a corresponding sharp fuel temperature increase. We
assume that the Hgap evolution is driven by the gap closing due to fuel thermal expansion and by the gas
conductivity evolution in the gap. This is used to derive the simplified formulation for Hgap defined by
equations 1a - 1c.



Hgap =
λg(Tg, Ef )

e(Tf )
(1a)

λg = λg,init

(
1 + θ1

Tg − Tg,init
Tg,init

+ θ2Ef

)
(1b)

e(Tf ) = rc,init − rf (Tf ) (1c)

Where:

– λg is the gas conductivity in the gap and λg,init =
Hinit

gap

einit
its initial value prior to the REA. The latter is

calculated by the initial gap heat transfer H init
gap and initial gap width einit.

– Tg is the gas temperature and Tg,init the initial gas temperature prior to the REA.

– Ef is the energy stored in the fuel during the REA.

– θ1 and θ2 are two calibration parameters that have to be estimated.

– e is the pellet-cladding gap width. It is assumed that only the fuel expansion is responsible for the gap
evolution.

– rc,init is the initial internal cladding radius prior to the REA.

– rf = rf,initαf (Tf ) is the fuel external radius. The fuel expansion is modeled using the fuel expansion
coefficient αf (Tf ) in ALCYONE1 which is a cubic function of the fuel temperature Tf .

The Hgap predicted by the proposed simplified model is based on fuel thermal expansion and depends
on the evolution of the λg and e. The λg is considered a linear function of Tg and Ef . The latter allows
to include a historical effect on the Hgap. The two calibration parameters to be determined θ1 and θ2 are
the coefficients of Tg and Ef respectively. The e evolution is assumed to depend only on the fuel thermal
expansion while the cladding radius remains constant. For the modeling of the gas temperature Tg the
average between the external fuel temperature and the internal cladding temperature is used.

5.3. Methodology

Having defined the simplified Hgap model the next step is to calibrate it. To this purpose we developed
the High to Low methodology illustrated in Figure 7.
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One Hgap model for each group
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temperature
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Figure 7: High to Low Hgap modeling methodology scheme.

The starting point is the application of the UQ methodology in the BE coupling of Section 4. The
temperature evolution in the fuel depends on the fuel assembly burn-up and the power seen by this
assembly at its position in the core. Since we need to build a Hgap model for every fuel spatial mesh
(1080 meshes) a clustering is necessary. In step 1.1, we cluster the assemblies by similar radial average
burn-up. This means that we will construct one Hgap model for every identified cluster. While each
cluster will have the same model, their different fuel initial conditions and the different power seen
during the REA will lead to a 3D Hgap.

The next step 1.2 consists in selecting representative pulses from the BE UQ presented in Section 4. The
pulses must cover most of the possibleHgap variations inside the cluster due to both statistical and spatial
aspects. For the statistical aspect three pulses are extracted: namely the ones which have produced the
mean, the 97.5% upper quantile, and the 2.5% lower quantile of Pmax

lin . For the spatial aspects, one selects
the assembly that achieves the maximal power for the pulses corresponding to the mean and upper 97.5%
quantile and one selects the assembly that achieves the minimal power for the pulse corresponding to the
lower 2.5% quantile. For the spatial aspects, when the mean and the upper 97.5% quantile are imposed
then the assembly seeing the maximum power is selected. Correspondingly, when the lower quantile is
imposed the assembly seeing the lowest power is selected. This creates for each Hgap model different
representative axial and temporal profiles of linear power and external cladding temperature.

In step 2, the selected profiles are extracted and imposed in a decoupled ALCYONE1 REA transient
calculation. One representative fuel pin is modeled. The resulting temperature and gap heat transfer
profiles from ALCYONE1 are extracted and used for the Hgap model calibration. In step 3.1 the calibra-
tion is carried out by minimizing an objective function using the BFGS optimization method. The mean
square error on the Hgap maximal and final values during the REA for each axial slice is considered as



the objective function. Once the parameters that minimize this function are estimated the final step 3.2 is
to quantify the calibrated model’s uncertainty. The two main sources of uncertainties are the initial con-
ditions and the calibrated parameters. The former one is quantified as two multiplicative factors on the
initial gap width and the initial Hgap with normal distribution with mean one and standard deviation 0.1.
This is a result of a previous uncertainty propagation for fuel evolution calculations with ALCYONE1.
The results also showed that the initial gap width and Hgap are almost fully negatively correlated. This
leads to make the assumption that the two coefficients are fully negatively correlated (ρ = −1) render-
ing thus one effective uncertain quantity for the initial conditions Hg,i. The latter uncertainty source is
the calibrated parameters. For simplifying their uncertainty quantification, they are considered as fully
positively correlated (ρ = 1) with uniform distributions. The bounds of the distributions are calculated
in order to account for the calibration error. The effective uncertain input representing the calibration
uncertainty is Hg,m. Finally, the model of equations 1a - 1c, including its two effective uncertain param-
eters, is introduced into the multi-physics coupling creating the IBE modeling of Figure 1b. It can be
seen as an intermediate modeling between the BE and Best Effort modelings. Since the Hgap model is a
simple analytic function the computational cost of IBE is similar to BE amounting to a significant gain
compared to Best Effort coupling. The average Best Effort computational time for one REA is 3 hours
while the average BE and IBE is 6 minutes.

5.4. Results

The first step 1.1 consists in clustering assemblies with similar burn-ups. For each cluster one Hgap

model will be considered. In the PWR core there is a 3D burn-up distribution. This leads to a total of
193× 4× 30/2 = 11580 meshes (due to symmetry) with different Hgap evolutions due to different burn-
ups and power histories. In order to avoid constructing one Hgap model for each mesh, the clustering
of the assemblies of different burn-ups is carried out. At first we consider only radial burn-ups, by
averaging the axial variations. Secondly, we observe that the burn-ups have radially small variations
around three main values 15 GWd/t, 30 GWd/t and 45 GWd/t due to the PWR fuel loading pattern.
We, therefore, choose to cluster the assemblies based on these three values and we add one cluster for
the minimum 10 GWd/t and one cluster for the maximum burn-up 52 GWd/tt. This is done in order to
have models covering all the burn-up variations. Additionally, it could be potentially used in the future
for an application of a full 3D burn-up dependent Hgap model by constructing models that interpolate
the calibration parameters.

To summarize we consider a total of 5 fuel assembly clusters and for each cluster one Hgap model
will be constructed. We have to select for each cluster representative boundary conditions that vary
both randomly and spatially since each cluster includes different assemblies. This is performed in step
1.2. The selected boundary conditions are presented in Figure 8. We know that the REA is a local
phenomenon located in the upper part of the core around the ejected control rod position as seen in the
radial cross-section of the Figure. We thus expect large variations of Hgap on the upper part and low to
negligible variations in the lower part. For the random aspects we use the results from Section 4. More
specifically, we consider that Pmax

lin gives a good indicator of Hgap variations in REA. Based on this we
select samples corresponding to the mean, the upper 97.5% and lower 2.5% quantiles of Pmax

lin . From
these samples we extract the linear power and cladding wall temperature axial and temporal evolutions.
We combine both random and spatial aspects by selecting representative assemblies in the upper part for
the mean and upper quantiles while we select their mirror assemblies from the lower part. The selected
assemblies are presented in Figure 8 where each assembly has the burn-up value of its cluster. The green
circles correspond to the selection for the mean and upper quantile while the yellow circles for the lower
quantile. For the 10 GWd/t and 52 GWd/t clusters there is only one possible assembly for each cluster.



For the other clusters, from the many available options we prefer the assemblies close to the ejected
control rod location. For 15 GWd/t and 30 GWd/t clusters we select two different assemblies while for
the 45 GWd/t we select three, since we consider that this cluster will have the largest Hgap variations
due to its high burn-up.
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Figure 8: Selected assemblies on the symmetric 1/2 PWR geometry for each cluster. The green circles indicate the selection
of the mean and upper quantiles and the yellow circles indicates the selection for the lower quantile

In step 2 the extracted boundary conditions are imposed in ALCYONE1 and the REA stand-alone cal-
culations are performed for each cluster. A representative fuel pin for each selected assembly in each
sampling is modeled with the same axial discretization as the BE modeling. The Hgap and radial tem-
perature axial and temporal evolutions during the REA are computed. These results together with the
stored fuel energy are extracted and used for the Hgap model calibration of each cluster. Only the values
corresponding to the time of the maximum and last value of Hgap during the REA for all the axial slices
are kept for the calibration. The created dataset size varies for the different clusters depending on the
number of representative assemblies. The results will be presented for 15GWd/t and 30 GWd/t and
45GWd/t clusters, because they are the ones around the control rod ejection location. For 15 GWd/t
and 30 GWd/t cluster the dataset size is: 30 (axial slices) × 3 (quantiles and mean) × 2 (assembly
locations) × 2 (Hgap values during REA) = 360. For 45 GWd/t cluster the size is: 30 (axial slices) ×
3 (quantiles and mean) × 3 (assembly locations) × 2 (Hgap values during REA) = 540. The calibration
parameters of the Hgap models are estimated by minimizing the mean square error on these datasets. The
resulting calibration errors for the three different models are presented in Figure 9 and the estimated val-
ues of the calibration parameters in Table IV. We observe that the calibration errors increase in general
with burn-up. The maximum error is of the order of 8 % for the 45 GWd/t cluster.

Table IV: Estimated calibration parameters of Hgap model.

15GWd/t 30GWd/t 45GWd/t

θ1 1.7e−1 −1.7e−2 −7.3e−1

θ2 [J−1] 1.1e−5 1.6e−5 2.0e−5

For the uncertainty quantification of the calibration parameters θ1, θ2 we make the assumption that they
are positively fully correlated, which makes it possible to simplify significantly their uncertainty quan-
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Figure 9: Hgap model calibration errors for the different assembly clusters where index is the label of the data used for the
calculations.

tification. Additionally, as for all the other inputs they are also fully correlated spatially. This means that
the calibration parameters of each cluster vary homogeneously. We assign uniform distribution to each
calibration parameter with ranges that cover the calibration errors (the uniform distribution maximizes
the entropy amongst distributions with prescribed ranges). The results for the estimated ranges for each
parameter are shown in Table V.

Table V: Estimated distributions of Hgap model calibration parameters.

15 30 45

θ1 U(1.4e−1, 2.0e−1) U(−1.7e−1, 1.3e−1) U(−1.3,−1.8e−1)

θ2 [J−1] U(8e−6, 1.4e−5) U(1.3e−5, 1.8e−5) U(1.6e−5, 2.4e−5)

The bounds of the uniform distributions are used for the prediction of the Hgap evolution during REA
by the calibrated models. The results are compared to the ALCYONE1 calculations and are illustrated
in Figures 10-12. For the comparison the axial slice with the maximum Hgap value for the three main
clusters is presented. The plotted Hgap predictions are also the ones with the largest errors and we can
see that for all the predictions the ALCYONE1 calculation is within the uncertainty bounds created by
the calibration parameters.



0 200 400 600 800 1000 1200

46
00

46
20

46
40

Time steps

ga
p 

he
at

 tr
an

sf
er

  (
W

 m
2  K

)

ALCYONE
Calibrated model

(a) Lower 2.5% Quantile

0 200 400 600 800

60
00

70
00

Time steps

ga
p 

he
at

 tr
an

sf
er

  (
W

 m
2  K

)

ALCYONE
Calibrated model

(b) Mean

0 200 400 600 800

60
00

70
00

80
00

90
00

Time steps

ga
p 

he
at

 tr
an

sf
er

  (
W

 m
2  K

)

ALCYONE
Calibrated model

(c) Upper 97.5% Quantile

Figure 10: 15GWd/t Hgap model prediction with its uncertainty bounds in green.
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Figure 11: 30GWd/t Hgap model prediction with its uncertainty bounds in green.
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Figure 12: 45GWd/t Hgap model prediction with its uncertainty bounds in green.

Finally, there are two different sources of uncertainties for the calibrated models. The first one is due to
the calibration error and is quantified by the distributions of the calibration parameters. The parameters
are assumed fully positively correlated. The second one as discussed previously is due to the initial
conditions. At the end, two new uncertain parameters replace the constant Hgap of the BE modeling.
The first one is related to the calibration error of the models Hg,m and the other is related to the initial
conditions Hg,i.

6. IMPROVED BEST ESTIMATE UNCERTAINTY QUANTIFICATION

The calibrated Hgap models from Section 5 are introduced into the BE coupling to create an intermediate
IBE multi-physics coupling. The complete UQ methodology detailed in [17] is applied on this improved
modeling. It is important to mention that the computational cost does not increase. As in the BE UQ,
kriging models were trained on a LHS of size 250 and used in brute force Monte Carlo for uncertainty
propagation with 105 samples for each output. The results are presented in Figure 13. The validation of
the kriging model’s training show small prediction errors with the largest being 1.3% for DNBmin and
5.5% for the second principal component of P 2D

lin . More detailed results are provided in the Appendix 7.

The obtained histogram for Hmax
f is approximately normal as for the BE UQ. We observe small increase

of 2 % in the mean value and a reduced relative standard deviation from 20 % to 16 %. For Pmax
lin the mean

value significantly decreases by 10 % with similar relative standard deviation. The relative standard
deviation of P 2D

lin is not affected by the improved Hgap model. The output quantity that is the most
impacted is the DNBmin with an increase of 14 % of the mean value and a decrease of the relative
standard deviation from 57 % to 42 %. This means that there is significantly smaller probability to reach
boiling crisis. In the Appendix 7 we present also the estimated relative standard deviations of the scalar



quantities directly using the training LHS. Although there are some discrepancies due to the limited
number of samples, the same trends are observed as well.

The impact on the different mean values is attributed to the more realistic modeling of theHgap evolution
during the REA. In the BE modeling the mean constant value ofHgap is 2.4e4W/m2K , much larger than
the one predicted by the calibrated models, and it is applied during the whole duration of the transient.
This leads to more heat transferred from the fuel to the coolant. The fuel temperatures are lower with a
corresponding weaker Doppler feedback and thus a higher maximum linear power. The increased heat
extracted from the coolant in the BE UQ explains also the smaller minimum distance to boiling crisis
compared to the IBE UQ. The lower fuel temperatures induce also the observed lower stored enthalpy.

µ = 8.86e+05 [W/m] σ = 57.00 %
0e+00 1e+06 2e+06 3e+06 4e+06

Pmaxlin

µ = 8.65e+04 [J/Kg] σ = 16.34 %
6.0e+04 1.0e+05 1.4e+05

Hmax
f

µ = 6.92  σ = 41.80 %
0 5 10 15

DNBmin

53

54

55

56

 53 

 5
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 55 

 55 

 5
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 5
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 56 

 5
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Figure 13: Pmaxlin , Hmax

f and DNBmin histograms and P 2D
lin relative standard deviation distribution for IBE UQ analysis.

The global sensitivity analysis is performed by estimating Shapley indices for all the outputs. The results
are presented in Figure 14. For Pmax

lin , P 2D
lin and Hmax

f as in the BE modeling the βeff is responsible for
around 50% of the outputs variances and the TD1 and D1 are responsible for the remaining 50%. A
significant difference in observed for the DNBmin sensitivities. The gap heat transfer is not any more
the dominant input, instead as for the other outputs the βeff and the TD1 and D1 account for most of
the DNBmin variations. This explains also the significant reduction of the DNBmin relative standard
deviation.
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Figure 14: Pmaxlin , Hmax
f and DNBmin Shapley indices and P 2D

lin aggregate Shapley indices for IBE UQ analysis.

Finally, we studied the 3D Hgap (H3D
gap) as an output of interest and included it in the uncertainty quan-

tification methodology. For H3D
gap two principal components are needed to represent 95 % of its variance.

The estimated means and standard deviations for the radial and axial cross-sections at the location and
instant of the local maximum are presented in Figures 16 - 15. As expected by the calibrated Hgap mod-
els, the assemblies with higher burn-up have also higher Hgap. The maximum value is obtained at the
assemblies on the right and left of the assembly with the ejected control rod. This is due to the important
power seen by these assemblies in combination with their high burn-up. The relative standard deviation
distribution exhibits strong variations from 10 % up to 32 %. The 10 % lower bound on theHgap is related
to the initial conditions uncertainties.
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Figure 15: H3D
gap estimated mean and relative standard deviation in the radial cross-section for IBE UQ analysis.
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Figure 16: H3D
gap estimated mean and relative standard deviation in the axial cross-section for IBE UQ analysis.

The aggregate Shapley indices for H3D
gap are estimated and presented in Figure 17. In this case the Hg,i

is the dominant input responsible for 80 % of the outputs variances. The remaining 20 % is mainly
explained by βeff . This result is not surprising since the initial conditions determine the Hgap evolution.
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Figure 17: H3D
gap Shapley indices for IBE UQ analysis.

7. CONCLUSION AND PERSPECTIVES

In this work we have presented a High to Low Hgap model methodology for REA uncertainty quan-
tification in a PWR core. A simplified Hgap model based on fuel thermal expansion has been con-
sidered. The CORPUS multi-physics coupling framework is used for the transient modeling. The
fuel-thermomechanics code ALCYONE1 is used as the high fidelity code. The available Best Esti-
mate (BE) coupling scheme involves a coupling between core neutronics code APOLLO3® and core
thermal-hydraulics code FLICA4. For APOLLO3® a two-group diffusion modeling is used while for
FLICA4 an axial multi-channel 1D modeling. The internal fuel thermal modeling of FLICA4 is updated
to include the Hgap predicted by the calibrated model. This creates an Improved Best Estimate (IBE)



coupling scheme.

The calibration methodology involves different steps. The starting point is a previous BE REA uncer-
tainty propagation that creates the set of available results from which representative ones will be selected
for the calibration. Then the first step is to cluster the assemblies and use one Hgap model for each
cluster. The assemblies are clustered based on their burn-up, which creates 3 main clusters: 15, 30 and
45 GWd/t. The next step is to select the fuel-thermomechanics boundary conditions on which ALCY-
ONE1 is run for each cluster. REA power pulses are selected from the available BE results in such a way
to cover the extreme cases and in locations where the higher and lower power variations are observed.
The ALCYONE1 calculations are performed for each cluster power pulses and the Hgap and tempera-
tures evolutions are extracted. TheHgap model calibration is performed for all the axial slices at two time
instances: the instance of the maximum Hgap during the REA and the last value of Hgap. The calibration
parameters are estimated for these datasets and the calibration error for all the time steps is computed.
The assumption has been made that the calibration parameters are fully positively correlated. Their un-
certainty bounds are selected in order to create Hgap intervals that cover the ALCYONE1 results. The
results indicate that the uncertainty of the parameters increases with burn-up, which shows the limitation
of such a simplified model for high burn-up fuel rods. Additionally, an uncertainty of 10 % on the initial
rod conditions is considered as a result of ALCYONE1 evolution calculations. Finally, the last step is to
include the calibrated Hgap model into the BE coupling and to create the IBE.

An uncertainty quantification study is performed using the IBE and compared to the BE results. The most
significant impact is on the distance to boiling crisis with an increase of 14 % in its mean value reducing
the probability of boiling crisis. The relative standard deviation of DNBmin is reduced from 57 % to
42 %. The reason is the decreased sensitivity on the Hgap due to its better uncertainty quantification and
modeling. This is observed in the estimated Shapley indices, where the Hgap sensitivity reduces from
50 % to almost 0. These results, although in an academic proof of concept study, show the potential gain
of High to Low approaches for Hgap modeling in REA uncertainty quantification.

Many future prospects open following this work. On the one hand a more elaborated Hgap model could
be sought with incorporation of the burn-up parameter to avoid creating one model for each burn-up.
Besides that, a more direct High to Low modeling could be investigated in order to inform specific low
level code models, such as simplified dynamical Hgap models, from the high level code. On the other
hand, different transient scenarios and different reactor types could be studied in order to cover a larger
spectrum of applications since they all share the common need for High to Low Hgap modeling.
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[17] G.-K. Delipei, J. Garnier, J-C. Le Pallec, B.Normand, “Uncertainty analysis methodology for
multi-physics coupled rod ejection accident,” ANS International Conference on Mathematics and
Computational Methods Applied to Nuclear Science and Engineering (M&C), Portland, 2019.

[18] G.-K. Delipei, J. Garnier, J-C. Le Pallec, B.Normand, “Multi-physics uncertainties propagation
in a PWR Rod Ejection Accident modeling - Analysis methodology and first results,” ANS Best
Estimate Plus Uncertainty International Conference (BEPU), Lucca, 2018.

[19] T. Santner, B. Williams, W. Notz, “The Design and Analysis of Computer Experiments,” Springer,
2003

[20] A. Owen, “Sobol’ Indices and Shapley Value,” SIAM/ASA Journal on Uncertainty Quantification,
2:245–251, 2014.

[21] E. Song, B. Nelson, and J. Staum, “Shapley effects for global sensitivity analysis: Theory and
computation,” SIAM/ASA Journal on Uncertainty Quantification,4:1060-1083, 2016.



[22] A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf, “Kernel methods for measur-
ing independence,” Journal of Machine Learning Research, 6:2075-2129, 12, 2005.

[23] M. De Lozzo and A. Marrel, “New improvements in the use of dependence measures for sensitivity
analysis and screening,” Journal of Statistical Computation and Simulation, 86(15):3038–3058,
2016.

[24] J.O. Ramsey and B.W. Silverman, “Functional Data Analysis,” Springer, New York, 2005.

[25] N. Benoumechiara and K. Elie-Dit-Cosaque, “Shapley Effects for Sensitivity Analysis with De-
pendent Inputs: Bootstrap and Kriging-Based Algorithms,” ESAIM: Proc. Surveys, 65:266–293,
2019.

[26] R Core Team (2013), “‘R: A language and environment for statistical computing,” R Foundation
for Statistical Computing, Vienna, Austria.

[27] B. Iooss, et al., “‘sensitivity: Global Sensitivity Analysis of Model Outputs,” R package version
1.22.0., https://CRAN.R-project.org/package=sensitivity (2020)



APPENDIX A: INPUT UNCERTAINTY QUANTIFICATION

The input uncertainty quantification is performed by using the UAM recommendations when they are
available and by using expert opinions for the rest. The resulting pdf for the inputs are presented in figure
18.

Fuel-thermal

λf N(1,0.05)

λc N(1,0.05)

Cpf N(1,0.05)

Cpc N(1,0.05)

Hgap U(2000,50000)

Pr U(0,0.04) + N(0,0.0175)

TR U(0,1)

Thermal-hydraulics

Hc N(1,0.15)

Rcrit N(1,0.15)

Rv0 N(1,0.125)

Hdnb U(0.8,1.2)
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Figure 18: Input uncertainty quantification, where U(a,b) is a uniform distribution over (a,b) and N(a,b) is a normal distribu-
tion with mean a and standard deviation b. Pr is the sum of two independent random variables.

A multivariate normal distribution is used for the neutronic inputs. The mean vector of the pdf is the
reference cross-sections produced at CEA ΣCEA and the covariance matrix CUAM is empirically es-
timated by the results of UAM. The UAM provides a dataset of two-group macroscopic cross-sections
obtained by neutronic lattice uncertainty propagation simulations. This dataset of 100 realizations was
adapted to the cross-sections used by APOLLO3 ® by assuming:

1. Negligible uncertainties on the up-scattering cross-section S2→1.

2. Negligible n− 2n, n− 3n . . . cross-sections uncertainties.

The adapted macroscopic cross-sections dataset is used to estimate the correlation matrix and the relative
standard deviations of the cross-sections. Finally, CUAM is calculated using the correlation matrix,
the relative standard deviations and the reference CEA cross-sections. The UAM correlation matrix
is illustrated in figure 18, where we can observe large positive and negative correlations. The TD1 is
strongly positively correlated with S1→2 and IV1 and negatively correlated with D1. The βeff is also
strongly positively correlated with λeff .

The rest of the inputs are considered independent of the neutronic inputs and between them. The thermal-
hydraulic inputs are mainly based on CEA experts opinions and are applied as multiplicative coefficients
on the different parameters. The Rcrit usually is penalized to 1.3 and in this work we consider this value
as the 95% upper quantile of a normal distribution with mean value 1 and standard deviation 0.15. For
HDNB a uniform distribution is used reflecting the limited current knowledge about this phenomenon.
In fuel-thermomechanics inputs and more specifically for the thermal conductivities and specific heat
capacities the UAM recommendations are used. For the Rowlands temperature a uniform distribution
is considered on the weight fraction of the fuel centerline temperature. In the reference situation the
Rowlands temperature has a 4/9 weight on the fuel centerline temperature and 5/9 on the fuel external



surface temperature. By using an uncertain multiplicative factor with U(0, 1) on the centerline tempera-
ture weight we consider that it can only decrease uniformly between 4/9 and zero with a corresponding
increase in the external surface temperature weight. The Hgap is a particular input quantity since in the
BE coupling it is an uncertain constant in FLICA4 with uniform pdf bounded from bellow by its value
for a complete open gap (2000Wm−2K−1) and from above by its value for a pellet-cladding contact
(50000Wm−2K−1). In the IBE coupling Hgap is a result and thus is not considered, instead the calibra-
tion parameter’s uncertainty and the initial conditions of the model are used. Finally, the power radial
profile uncertainty is modeled by a multiplicative factor on the fuel external surface power with a pdf
resulting from the convolution of a normal and a uniform distribution. The power radial profile is peaked
towards the periphery for the high burn-up fuel pins. The deformation is increasing with burn-up and
to model it an explicit function of burn-up is used. The uncertainty is a convolution of two effects: the
uncertainty of the function used N (0, 0.0175) and the uncertainty due to the presence or not of a guide
tube near the fuel pin U(0, 0.04). The latter effect is a result of a previous CEA study.

APPENDIX B: UNCERTAINTY QUANTIFICATION METHODOLOGY ADDITIONAL
RESULTS

In Section 4 we apply the UQ methodology developed in a previous work [17] on the BE coupling. The
methodology consists of an initial screening of the inputs based on HSIC statistical significance tests,
a training of a surrogate kriging model between each output and the reduced inputs and the use of the
kriging models to perform uncertainty propagation and global sensitivity analysis. The computational
cost of this modeling is 3 hours in average. In this Appendix we provide additional results regarding
the identified reduced input space and the validation of the kriging models. Concerning the screening
process, a random sampling of size 125 is used as a Design of Experiments (DOE). The result for the
identified important input parameters for each output of interest are gathered in table VI. They and can
be grouped into two subspaces: I1 = (TD1, NF2, D1,S1→2,IV1,IV2, βeff ,Cpf Hgap, TR) and I2 = (TD1,
NF2, D1,S1→2,IV1, βeff , Hgap, Hc).

Table VI: Screening results for BE coupling

Selected inputs

Pmax
lin TD1, NF2, D1,S1→2, βeff , Hgap

P2D
lin,pc1 TD1, NF2, D1,S1→2, βeff , Hgap

P2D
lin,pc2 TD1, NF2, D1,S1→2, βeff , Hgap

Hmax
f TD1, NF2, D1, βeff , Cpf , Hgap,TR

DNBmin TD1, NF2, D1,S1→2,IV1, βeff , Hgap, Hc

Concerning the training of the kriging models a LHS of size 250 optimized in both the complete input
space and the two important subspaces is used as DOE. The kriging models are trained on the identified
input subspaces. The resulting prediction errors include the dimension reduction error. The interpolation
(εint), leave-one-out (εloo) and prediction error (εpred) are presented in table VII. The prediction error is
estimated on an independent LHS of size 125. For all the outputs the prediction errors are small with
larger errors for DNBmin (2%) and the second principal component of P 2D

lin (5.5%).



Table VII: Kriging models validation for BE coupling

εint (%) εloo (%) εpred (%)

Pmax
lin 0.00 0.12 0.14

P2D
lin,pc1 0.00 0.17 0.10

P2D
lin,pc2 0.00 0.62 5.53

Hmax
f 0.00 0.16 0.46

DNBmin 0.00 2.10 1.89

The same methodology is applied afterwards in the IBE coupling, where the calibrated Hgap models
are introduced into the BE coupling. It is important to mention that the computational cost does not
increase. The uncertain inputs and outputs of the previous study are used with the replacement of the
constant Hgap uncertain input by the Hgap model uncertain parameters. The two new uncertain inputs
are Hg,m and Hg,i related to the Hgap model calibration error and initial conditions. For the screening,
as before, a random sampling of size 125 is used as DOE. The result for the identified important input
parameters are gathered in table VIII. They can be grouped into two subspaces: I1 = (TD1, NF2, D1,
βeff , Cpf ,Hg,i, TR) and I2 = (TD1, NF2, D1, βeff , Hg,i, Hc, Rcrit, TR).

Table VIII: Screening results for IBE coupling

Selected inputs

Pmax
lin TD1, NF2, D1, βeff , TR

P2D
lin,pc1 TD1, NF2, D1, βeff , TR

P2D
lin,pc2 TD1, D1, βeff

Hmax
f TD1, NF2, D1, βeff , Cpf ,Hg,i, TR

DNBmin TD1, NF2, D1, βeff , Hg,i, Hc, Rcrit, TR

Compared to the BE study we observe the inclusion of the parameter Hg,i in both subspaces while the
parameter Hg,m is rejected. This means that for the outputs of interest the initial conditions are more
important than the calibration parameters uncertainties. For the kriging models a training LHS of size
250 with optimized subspaces I1 and I2 is constructed. The result for the interpolation, leave-one-out
and prediction error are presented in table IX. The prediction error is estimated on an independent LHS
of size 125. For all the outputs the prediction errors are small with larger errors for DNBmin (1.3%) and
the second principal component of P 2D

lin (5.5%).



Table IX: Kriging models validation for IBE coupling

εint (%) εloo (%) εpred (%)

Pmax
lin 0.00 0.49 0.48

P2D
lin,pc1 0.00 0.16 0.11

P2D
lin,pc2 0.00 0.63 5.55

Hmax
f 0.00 0.85 0.84

DNBmin 0.00 1.38 1.28

Finally, we present in table X the estimated relative standard deviations using directly the training LHS
code evaluations. We observe some differences compared to the kriging model’s brute force Monte Carlo
due to the limited number of samples. However, similar trends are observed between the BE and IBE
study. The most noticeable is the decrease of the DNBmin relative standard deviation from 50.32% to
36.63%.

Table X: Relative standard deviations estimated by the training LHS of size 250 for BE and IBE

BE IBE

Pmax
lin 61.00% 56.63%

Hmax
f 20.37% 16.25%

DNBmin 50.32% 36.63%


