High to Low pellet cladding gap heat transfer modeling methodology in
an uncertainty quantification framework for a PWR Rod Ejection Accident
with Best Estimate coupling

G. K. Delipei', J. Garnier?, J-C. Le Pallec' and B. Normand'
. DEN - Service d’études des réacteurs et des mathématiques appliquées (SERMA)
CEA, Université Paris-Saclay, F-91191 Gif-Sur-Yvette, France

2: Centre de Mathématiques Appliquées
Ecole Polytechnique, 91128 Palaiseau Cedex, France

delipei.gregoryk @gmail.com, josselin.garnier @polytechnique.edu,
jean-charles.le-pallec @cea.fr, benoit.normand @cea.fr

High to Low gap heat transfer modeling in uncertainty analysis of a PWR REA

ABSTRACT

High to Low modeling approaches can alleviate the computationally expensive fuel modeling
in nuclear reactor’s transient uncertainty quantification. This is especially the case for Rod
Ejection Accident (REA) in Pressurized Water Reactors (PWR) were strong multi-physics in-
teractions occur. In this work, we develop and propose a pellet cladding gap heat transfer (H ;)
High to Low modeling methodology for a PWR REA in an uncertainty quantification frame-
work. The methodology involves the calibration of a simplified H,,, model based on high
fidelity simulations with the fuel-thermomechanics code ALCYONEI. The calibrated model is
then introduced into the CEA developed CORPUS Best Estimate (BE) multi-physics coupling
between APOLLO3® and FLICA4. This creates an Improved Best Estimate (IBE) coupling
that is then used for an uncertainty quantification study. The results indicate that with IBE the
distance to boiling crisis uncertainty is decreased from 57 % to 42 %. This is reflected to the
decrease of the sensitivity of H,,,. In the BE coupling H,,, was responsible for 50 % of the
output variance while in IBE it is close to 0. These results show the potential gain of High to
Low approaches for H,,, modeling in REA uncertainty analyses.
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1. INTRODUCTION

The improvement of nuclear reactors computational modeling together with the increasing requirements
in safety analyses lead to the development of Best Estimate Plus Uncertainty (BEPU) approaches [1].
BEPU is a systematic approach where Best Estimate (BE) codes are used to calculate safety criteria with
an estimation of their respective uncertainties. BEPU is a step forward from conservative approaches
allowing for better quantification of the safety margins. BE codes are considered the codes that take into
account the most important underlying physical phenomena, governing the different studied scenarios,
with reasonable approximations. Different BE codes usually model different physics. The correct mod-
eling of transient scenarios can require the coupling between different BE codes due to the multi-physics
interactions. This creates many challenges for the uncertainty quantification (UQ). With the term UQ we
mean the estimation of the statistical distributions of the outputs of interest (in particular, their means
and standard deviations) and the global sensitivity analysis of the outputs (in particular, their Shapley
indices). Many code evaluations are required for the estimation of the statistical quantities and of the
sensitivity indices rendering thus the computational expensive modeling the main limitation. A large
scope of undergoing research, in both academia and industry, is the multifidelity High to Low modeling
approaches that can reduce in an efficient way the computational cost while retaining a good predictive
modeling.

The multifidelity approaches combine different sources of information coming from high fidelity models,
low fidelity models and experiments. The fundamentals work of [2] and [3] created the theoretical
framework that lead to papers such as [4] in structural dynamics, where a cheap surrogate model based
on Polynomial Chaos was considered as a low fidelity model and corrected by a high fidelity code in
order to accelerate the Bayesian calibration process using experimental data. In [5] a methodology for
combining information from multifidelity codes and experiments in a Bayesian hierarchical model was
developed using Gaussian processes. In [6] a novel machine learning based multifidelity approach was
discussed in the context of Bayesian optimization. A comprehensive and detailed survey of multifidelity
methods in uncertainty quantification, statistical inference and optimization can be found in [7]. In
nuclear and more particularly in thermal-hydraulics the result of the PREMIUM project [8] indicated a
strong user effect in the input uncertainty quantification. For this purpose in [9] a set of good practices
is discussed regarding the input uncertainty quantification.

In this work we focus on the study of the Rod Ejection Accident (REA) in Pressurized Water Reactors
(PWR) with a multi-physics coupling in an UQ framework. During the REA strong multi-physics cou-
pling effects occur between neutronics, fuel-thermomechanics and thermal-hydraulics. This necessitates
a multi-physics modeling to take into account the interdisciplinary interactions increasing significantly
the computational cost. The uncertaintly quantification for REA becomes thus very challenging. In this
coupling the fuel-thermomechanics modeling is the most expensive since it solves at the fuel rod scale the
thermal conduction equations coupled with the thermo-mechanical ones at a fine discretization. A High
to Low modeling is necessary to introduce and use a simplified model for fuel-thermomechanics reducing
the computational cost. The high fidelity modeling manages to model complex thermo-mechanical and
physico-chemical phenomena occurring during a REA. Some examples are the high burn-up structure,
fission gas releases in the pellet-cladding gap and the pellet cladding mechanical interaction (PCMI). All
these phenomena impact the fuel rod behavior through the pellet cladding gap heat transfer (/). For
this reason the low fidelity fuel-thermomechanics modeling usually does not model explicitly these phe-
nomena but directly use a predefined H,,, value. There is, therefore, a strong interest in developing High
to Low models for H,,, in REA. In this work, we develop and propose a methodology to develop such
High to Low models for H,,. The high fidelity fuel-thermomechanics code ALCYONEI] [10] is used to



calibrate a simplified H ,,, model based on fuel thermal expansion. Compared to previous works such as
[5], the low fidelity model is not a fitted surrogate but a physics based model that is calibrated in a prelim-
inary way by minimizing the discrepancy with ALCYONEI] predictions. The model is then introduced
into the CEA developed CORPUS [11] Best Estimate (BE) multi-physics tool, where core neutronics
code APOLLO3® [12] is coupled with core thermal-hydraulics code FLICA4 [13]. This creates an Im-
proved Best Estimate (IBE) modeling of REA that is used for UQ. To the knowledge of the authors this is
one of the first attempts to address H ,,, High to Low modeling in transients. Some considerations have
been discussed in the context of the UAM (Uncertainty Analysis in Modelling) benchmark [14]. The
benchmark consists of three phases starting from stand-alone neutronics uncertainty analysis for steady
state and reaching up to full coupling at the system level for transient scenarios. In this benchmark the
H q, 1s treated through lookup tables for the steady state and evolution calculations. However, there is
not a dedicated treatment for the transient scenarios and this work and its prospects could be potentially
integrated in the benchmark. Additionally in [15] the pellet cladding modeling was optimized including
experimental data. The model’s uncertainty was estimated as well.

In Section 2 we detail the two available coupling frameworks at CEA for the modeling of REA. The com-
putationally expensive Best Effort coupling and the cheaper BE coupling. In Section 3 the specifications
of the case study are presented. The geometry of the studied PWR core and the selected nodalization
are provided together with the REA characteristics and the inputs and outputs of interest. The High to
Low H 4, modeling methodology is based on the BE coupling UQ results. In Section 4 we present these
results. In Section 5 we present the calibration of the High to Low Hgap model. The simplified H
model is detailed and the calibration results are presented. As mentioned above, the obtained H ., model
is introduced into the previous coupling creating the IBE. In Section 6 an UQ analysis is performed with
the IBE coupling and the results are compared with the BE results of Section 4. Finally, we end this

article with the main conclusions and perspectives of this work.

2. REA COUPLING FRAMEWORK

The REA is initiated by a control rod ejection due to mechanical malfunction inserting positive reactivity
in the core. As a consequence power increases adiabatically until the fuel temperature starts increasing
as well introducing a Doppler negative feedback that creates a power peak. The power then continues to
decrease and when the heat flux reaches the moderator its density will start decreasing adding another
negative feedback due to the negative moderator temperature effect. Depending on the core state at the
moment of the ejection the power evolution and its damage on the first containment barrier (cladding) can
vary significantly. During the transient strong multi-physics interaction effects occur between neutronics,
fuel-thermomechanics and thermal-hydraulics necessitating a multi-physics coupling framework.

At CEA two different coupling schemes are established [16] for the modeling of REA based on CORPUS
multi-physics tool as can be seen in Figure 1a. APOLLO3® code is used for core neutronics, FLICA4
code for core thermal-hydraulics and ALCYONEI code for pin fuel-thermomechanics. The Best Effort
scheme involves the full coupling between the codes. At each time step the codes exchange 3D fields.
APOLLO3® uses the fuel Doppler temperature 7y from ALCYONEI and moderator temperature 75,
from FLICA4 to compute the power generated in the fuel P, and the fluid F;. FLICA4 uses P, from
APOLLO3® and the cladding wall heat flux ®,, from ALCYONEI to compute the 7;,, and the external
cladding wall temperature 7°**. ALCYONEI uses the Py from APOLLO3® and the 7" from FLICA4
to compute the 7 and ®,,. The Best Effort scheme models each discipline accurately but it is computa-
tionally very expensive for a full core REA and thus its use for the uncertainty propagation and global
sensitivity analysis in the UQ framework is prohibited. For this reason the BE scheme is used where the



coupling is reduced between APOLLO3® and FLICA4. The complex fuel-thermomechanics phenom-
ena during REA are modeled by the fuel-thermal module in FLICA4. In this module only the thermal
aspects are modeled and all the other phenomena are taken into account through a constant H ., during
the transient. This simplification is very limiting for the UQ because it leads to the use of large H,,
uncertainties in order to penalize for the poor thermomechanics modeling. In this work we develop and
propose an offline High to Low H g, modeling methodology that alleviates the poor H ., modeling issue
during REA. This creates the IBE coupling scheme illustrated in Figure 1b.

BEST ESTIMATE (BE) IMPROVED BEST ESTIMATE (IBE)

BEST EFFORT BEST EFFORT

Core Thermal-

hydraulics
s | FLICA4
Core Neutronics Core Neutronics
APOLLO3 ® APOLLO3 ®
(a) (b)

Figure 1: CEA coupling framework used for REA (a) and the proposed improvement in the BE scheme (b).
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3. CASE STUDY
3.1. PWR geometry and modeling

The REA is studied in a large scale PWR core. The geometry has an 1/8 symmetry illustrated in Figure
2. It consists of 193 fuel assemblies with U O, and UOy — GdOs5 fuel compositions. Two different types
of control rods are inserted at different depths. The black rods (B) with high neutrons absorption that
are typically used for the shutdown of the reactor and the grey rods with less neutrons absorption that
are used in the day to day reactivity control. The core is at Hot Zero Power (HZP) conditions at the
end of the cycle. Around the fuel assemblies there is one ring of water reflector assemblies. The total
height of the core is 468.72 ¢m with a bottom and top reflector of 21 cm leading to a fuel active height of
426.72 cm. Each assembly 1s a 17 x 17 lattice of fuel pins with pitch 21.504 ¢m. The control rod that will
be ejected initiating the REA 1is located on the periphery as highlighted in Figure 2. It is inserted 97 cm
from the top into the fuel active region. Due to the extraction of the control rod there is 1/2 symmetry
for the REA.

The REA in the PWR core geometry is modeled using the BE and IBE coupling scheme discussed in
Section 2. For core neutronics, APOLLO3® code is used with a two group Diffusion approximation
and void boundary conditions on the neutron current. The two group macroscopic cross-sections are
parameterized in burn-up, boron concentration, moderator density and fuel temperature. The radial
discretization is at the level of the quarter of assembly. For the axial discretization 34 meshes are used
of which 30 are for the fuel active height and the rest for the top and bottom reflectors. For core thermal-
hydraulics, FLICA4 is used with a 4 equations porous modeling and a multi-1D axial flow approximation.



The system of 4 equations consists of: mixture mass balance, vapor mass balance, mixture momentum
balance and mixture energy balance. The boundary conditions are the inlet mass flow and enthalpy
and the outlet pressure. For the radial discretization one thermal-hydraulic channel is used for each
assembly. For the axial discretization only the fuel active part is modeled using 30 meshes in accordance
to APOLLO3® modeling. One average fuel pin per thermal-hydraulic channel with 1D radial modeling
is used in FLICA4 with a discretization of 25 radial regions for the fuel and 3 for the cladding. For the
time discretization of the REA an adaptive end time is adopted based on the integral power evolution.
For each transient in the UQ when the power surpasses half its nominal value then a SCRAM signal is
sent. It is considered that from this time on 0.6 s are needed in order for the SCRAM to take place and
end the modeling of the transient. The incremental time step is constant and equal to 0.001 s. The control
rod is ejected in 0.1 s.

Figure 2: PWR 1/8 core geometry and characteristic dimensions. B indicates assemblies with black control rods, G with
grey control rods and N with no control rods. The ejected control rod location is highlighted with red borders.

3.2. Initial state and reference transient

The PWR core is critical at the end of the cycle with HZP condition, meaning that the temperature is
around 290°C' and the power negligible (3.8W/). Since the core is at the end of the cycle the boron
concentration is quite low at 95.5 ppm. Other characteristic conditions of the core are provided in Table
I. There is a burn-up distribution resulting from core evolution calculation performed in a previous
internal CEA study. The obtained radial burn-up distribution at the end of cycle is illustrated in figure
3. The burn-up radially averaged at the level of the assembly ranges from 10 GWd/t to 52 GWd/t. The
location of the ejected control rod is close to the periphery. In the core there is a radial and axial Xenon
distribution that increases the control rod worth leading to an increased reactivity insertion and thus a
violent prompt driven transient.

The reference (without uncertainties) REA characteristics obtained with the BE coupling are presented
in Table II and Figure 4. The control rod worth is pyon = 1.2 indicating a prompt driven transient.
In the Figure we can observe the created power pulse of width I' = 38 ms with a maximum power of
prax — 2 54P, o, at instant t™** = 292 ms. The nominal power is P, = 3800MWth. Additionally,

core



the Fy, deformation factor evolution in time is plotted. It starts from a value of 5 and reaches up to 25
when the control rod is fully ejected (0.1 s).

Rod ejection location

I o0GwWdit

15GWdrt

Table I: HZP initial conditions of the PWR core.

Initial core power 3.8 W
Moderator density 0.745 g/cm3
Pressure 155 bar 30GWdft

Volumetric flow rate 90954 m3 /h

Fuel temperature 290 °C
45GWd/t
Moderator temperature 290 °C l
Boron concentration 95.5 ppm 53GWd/t

Figure 3: PWR core burn-up radial distribution in the core.
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Table II: Reference REA characteristic quantities.
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Effective delayed neutron fraction | 569 pcm -
Control rod worth 1.28 % 3 gt u_%
Maximum core power 2.54Phom é} 1
Final core power 0.09Pnom | -9
Power pulse width 38 ms
Time of maximum core power 292 ms g - : : ‘ ‘ ‘ =0
Maximum 3D deformation factor 25 0.0 0.2 0.4 0.6 0.8

t[s]

Figure 4: Integral power and F,,, deformation factor evolu-
tion for the reference REA.

3.3. Input and Outputs Identification

Before presenting the BE UQ results we define the uncertain inputs that will be considered together
with the outputs of interest. The inputs and outputs for the three disciplines are defined in Table III.
The statistical distributions of the inputs are presented in [17] and are included in the Appendix A. In
neutronics the two-group macroscopic cross-sections and the kinetic parameters are considered with a
multivariate normal distribution. The rest of the inputs are considered independent of the neutronic
inputs and between them. The thermal-hydraulic input distributions are mainly based on CEA experts
opinions and are applied as random multiplicative factors with mean 1 on the different models. The UAM
recommendations are used for the fuel-thermal inputs, i.e. for the thermal conductivities and specific heat
capacities. The H,, is the quantity of focus in this work. In the BE coupling scheme H ,, is an uncertain



constant with a uniform distribution between the value for a complete open gap (2¢3 Wm 2K ') and
the one for a pellet-cladding contact (5¢* Wm™2K~'). In the IBE H,,, is calculated by a model and
thus the uncertainty will be carried by the model parameters. For the outputs 3 scalars and 1 functional
quantity are considered. In neutronics we consider the maximum in time and space of the local linear
power during the REA P/%* and the radial linear power distribution P2” at the time instance and axial

lin lin

plane of F];**. In fuel-thermomechanics we selected the maximum in time and space of the local stored
enthalpy Hy*** while in thermal-hydraulics the minimum in time of the distance to Departure from
Nucleate Boiling (DNB) DN B™™, The latter output is defined as the difference between the Departure
from Nucleate Boiling Ratio (DNBR) and the DNB threshold R..;;. The UQ methodology is detailed
and tested in [17] and [18] and is not the focus of this work. The methodology consists of an initial
screening of the inputs and the use of kriging models [19] to perform uncertainty propagation and global
sensitivity analysis using Shapley indices [20] [21]. More details about the methodology are discussed
in Appendix 7. The obtained results for the uncertainty propagation and global sensitivity analysis will
be presented directly for both BE and IBE coupling schemes.

Table III: Inputs and outputs identification by discipline: neutronics, fuel-thermal and thermal-hydraulics.

Inputs (22)
TDg(2) Disappearance cross-section of group g NF¢(2) vxfission cross-section of group g
Dg(2) Diffusion coefficient of group g S12 Scattering cross-section of group 1 to 2
IVg(2) Inverse velocity of group g Beff Effective delayed neutrons
Aeff Effective decay constant
Af Fuel thermal conductivity Ac Cladding thermal conductivity
Cps Fuel specific heat capacity Cpc Cladding specific heat capacity
Hgap Fuel-cladding gap heat transfer Tr Rowland temperature
P, Power radial profile
Hc Convective heat transfer Rerit Criterion for post-DNB heat transfer
Rvo Recondensation Hanp Post-DNB heat transfer

Outputs (3 scalars + 1 functional)

P2 Local linear power (max in time) Pﬁlrl) (x,y) Radial distribution of
Hpex Fuel stored enthalpy (max in time) linear power at the time and
DNBmin Distance from R4 (min in time) axial position of P1%*

4. BEST ESTIMATE UNCERTAINTY QUANTIFICATION

In this section we present the results of the BE UQ for the REA. The uncertainty propagation is performed
by training kriging models between each scalar output and a reduced number of screened inputs. The
screening is performed with a method based on HSIC statistical significance tests [22] [23] presented
in [17]. The kriging models are trained on a Latin Hypercube Sampling (LHS) of size 250. For the
functional quantity Principal Component Analysis (PCA) [24] is used and kriging models are trained for
two principal components that represent 95% of the outputs variances. For all the quantities of interest the
prediction errors of the kriging models, evaluated on a separate LHS of size 125, are small with largest
errors 2% for DN B™™ and 5.5% for the second principal component of P2”. More detailed results
are provided in the Appendix 7. The kriging models are used for brute force Monte Carlo uncertainty
propagation with 10° samples and the results are presented in Figure 5. In each histogram we plot
also the pdf of a normal distribution with the estimated mean and standard deviation (blue line) for a



visual comparison of the normality. In the Appendix 7 we present also the estimated relative standard
deviations for the scalar quantities directly using the training LHS. It is important to notice that it is not
recommended to use surrogate models for accurate estimation of the tails of the output pdf since they
consist of rare events that the surrogate model has not been trained for.
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Figure 5: P, Hy** and DN B™™ histograms and P22 relative standard deviation distribution for BE UQ analysis.
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We observe a quite large relative standard deviation for P7'%® of around 57 %. The result for P22 shows
that the spatial distribution of the relative standard deviation does not vary significantly radially. For
Hy " a 20 % relative standard deviation is obtained and the distribution is approximately normal. For
DN B™™ a large mean value is obtained with large relative standard deviation of 57 % resulting in a very

small probability of reaching boiling crisis.

For the global sensitivity analysis, Shapley indices are estimated for the scalar outputs and aggregate
Shapley indices for the functional ones as discussed in [17]. All the Shapley indices are estimated using
the kriging models. For a more detailed focus on the Shapley indices estimation with surrogate models
we refer to [25]. The R language [26] package “’sensitivity” [27] (function ’shapleyPermRand”) was used
for the estimation of the Shapley indices and their confidence intervals, that quantify the uncertainty of
the estimation method. The results are presented in Figure 6. The inputs in this Figure are the selected
ones by the screening process of the UQ methodology. For the outputs P*, P2P and H 7 the Bepy
is responsible for 50% of the output variance with the other 50% attributed to the cross-sections 7' D1,
Dy, S1 and IV;. All these cross-sections are highly correlated to each other and thus it is difficult
to distinguish their separate contributions. For the output DN B™" the H,,, is the dominant input
responsible for 50% of the output variance while the remaining 50% is attributed to the cross-sections
and the f3.s¢. This is due to the large H ,,, uncertainty ranges and thus gives the incentive to improve its
modeling.
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Figure 6: P, H 7" and DN B™i" Shapley indices and Pf”? aggregate Shapley indices for BE UQ analysis.

5. HIGH TO LOW PELLET CLADDING GAP HEAT TRANSFER MODELING
METHODOLOGY

5.1. Introduction

The gap heat transfer (H4,,) modeling in the BE coupling is performed through a constant value during
the REA with a uniform distribution over a large interval. This is one of the most important modeling
differences between Best Effort and BE coupling. There is a strong interest thus to improve the H g,
modeling and to introduce it into a refined coupling that we will call Improved Best Estimate (IBE). In
this subsection we address this challenge by developing a High to Low H ,, modeling methodology. The
methodology involves the calibration of a simplified H ., model that is based on fuel thermal expansion.
We consider that this model is adequate for the REA and especially for the gap closing phase. The
calibration is performed through decoupled ALCYONE V1.4 calculations with imposed power evolution.
In this Section we first detail the model with its calibration parameters. Afterwards, we present the
methodology where we discuss issues such as how the power pulses are selected, how many H ., models
will be created for the different fuel assemblies etc. Finally, we present the calibration results for the
PWR core.

5.2. Pellet cladding gap heat transfer simplified model

The sharp power increase in the REA leads to a corresponding sharp fuel temperature increase. We
assume that the H 4, evolution is driven by the gap closing due to fuel thermal expansion and by the gas
conductivity evolution in the gap. This is used to derive the simplified formulation for H,, defined by
equations la - Ic.



)‘g(Tgv Ef)

H,,,6 =-+-2" 1

gap G(Tf) ( a)

Ag = Aginit (1 + 91"T—"’;t + HzEf) (1b)
g,rne

e(Ty) = Teinit — 75(T%) (Ic)

Where:

init

— ), is the gas conductivity in the gap and A ;;; = Izg“p its initial value prior to the REA. The latter is

init

calculated by the initial gap heat transfer H " and initial gap width €.

— T, is the gas temperature and 7 ;,;; the initial gas temperature prior to the REA.
— Ly is the energy stored in the fuel during the REA.
— 61 and 6, are two calibration parameters that have to be estimated.

— e is the pellet-cladding gap width. It is assumed that only the fuel expansion is responsible for the gap
evolution.

— Tc.init 18 the initial internal cladding radius prior to the REA.

— r¢ = rpmics (1) is the fuel external radius. The fuel expansion is modeled using the fuel expansion
coefficient oy (7y) in ALCYONEL which is a cubic function of the fuel temperature 7.

The H,,, predicted by the proposed simplified model is based on fuel thermal expansion and depends
on the evolution of the \; and e. The ), is considered a linear function of 7, and E's. The latter allows
to include a historical effect on the H ,,. The two calibration parameters to be determined ¢; and 0, are
the coefficients of 7, and £/ respectively. The e evolution is assumed to depend only on the fuel thermal
expansion while the cladding radius remains constant. For the modeling of the gas temperature 7}, the
average between the external fuel temperature and the internal cladding temperature is used.

5.3. Methodology

Having defined the simplified H ., model the next step is to calibrate it. To this purpose we developed
the High to Low methodology illustrated in Figure 7.
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Figure 7: High to Low H 4, modeling methodology scheme.

The starting point is the application of the UQ methodology in the BE coupling of Section 4. The
temperature evolution in the fuel depends on the fuel assembly burn-up and the power seen by this
assembly at its position in the core. Since we need to build a H,, model for every fuel spatial mesh
(1080 meshes) a clustering is necessary. In step 1.1, we cluster the assemblies by similar radial average
burn-up. This means that we will construct one H,,, model for every identified cluster. While each
cluster will have the same model, their different fuel initial conditions and the different power seen
during the REA will lead to a 3D H .

The next step 1.2 consists in selecting representative pulses from the BE UQ presented in Section 4. The
pulses must cover most of the possible H ,,, variations inside the cluster due to both statistical and spatial
aspects. For the statistical aspect three pulses are extracted: namely the ones which have produced the
mean, the 97.5% upper quantile, and the 2.5% lower quantile of P;'“*. For the spatial aspects, one selects
the assembly that achieves the maximal power for the pulses corresponding to the mean and upper 97.5%
quantile and one selects the assembly that achieves the minimal power for the pulse corresponding to the
lower 2.5% quantile. For the spatial aspects, when the mean and the upper 97.5% quantile are imposed
then the assembly seeing the maximum power is selected. Correspondingly, when the lower quantile is
imposed the assembly seeing the lowest power is selected. This creates for each H ., model different

representative axial and temporal profiles of linear power and external cladding temperature.

In step 2, the selected profiles are extracted and imposed in a decoupled ALCYONE1 REA transient
calculation. One representative fuel pin is modeled. The resulting temperature and gap heat transfer
profiles from ALCYONEI] are extracted and used for the H ., model calibration. In step 3.1 the calibra-
tion is carried out by minimizing an objective function using the BFGS optimization method. The mean
square error on the H,,, maximal and final values during the REA for each axial slice is considered as



the objective function. Once the parameters that minimize this function are estimated the final step 3.2 is
to quantify the calibrated model’s uncertainty. The two main sources of uncertainties are the initial con-
ditions and the calibrated parameters. The former one is quantified as two multiplicative factors on the
initial gap width and the initial /., with normal distribution with mean one and standard deviation 0.1.
This is a result of a previous uncertainty propagation for fuel evolution calculations with ALCYONE].
The results also showed that the initial gap width and H g, are almost fully negatively correlated. This
leads to make the assumption that the two coefficients are fully negatively correlated (p = —1) render-
ing thus one effective uncertain quantity for the initial conditions H ;. The latter uncertainty source is
the calibrated parameters. For simplifying their uncertainty quantification, they are considered as fully
positively correlated (p = 1) with uniform distributions. The bounds of the distributions are calculated
in order to account for the calibration error. The effective uncertain input representing the calibration
uncertainty is H ,,,. Finally, the model of equations 1a - Ic, including its two effective uncertain param-
eters, is introduced into the multi-physics coupling creating the IBE modeling of Figure 1b. It can be
seen as an intermediate modeling between the BE and Best Effort modelings. Since the H,,, model is a
simple analytic function the computational cost of IBE is similar to BE amounting to a significant gain
compared to Best Effort coupling. The average Best Effort computational time for one REA is 3 hours
while the average BE and IBE is 6 minutes.

5.4. Results

The first step 1.1 consists in clustering assemblies with similar burn-ups. For each cluster one H,,
model will be considered. In the PWR core there is a 3D burn-up distribution. This leads to a total of
193 x 4 x 30/2