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Abstract

In this paper we introduce a control variate estimator for a
quantity that can be expressed as the expectation of a function
of a random process, that is itself the solution of a differential
equation driven by fast mean-reverting ergodic random forces.
The control variate is built with the same function and with
the limit diffusion process that approximates the original ran-
dom process when the mean reversion time of the driving forces
goes to zero. We propose a coupling of the original process and
the limit diffusion process that gives a control variate estima-
tor with small variance. We show that the correlation between
the two processes indeed goes to one when the mean rever-
sion time goes to zero and we quantify the convergence rate,
which makes it possible to characterize the variance reduction
of the proposed control variate estimator. The efficiency of
the method is illustrated on a few examples. c© 2000 Wiley
Periodicals, Inc.

1 Introduction

In this paper we consider a system driven by external time-
dependent random forces and we aim to compute a quantity of
interest that is the expectation of a function of the system. The
system state is the solution of an ordinary differential equation (or a
system of ordinary differential equations) driven by external forces
which are stationary random processes. The random processes may
have complicated spectra that have to be taken into account to com-
pute the quantity of interest. This happens for instance in seismic
probabilistic risk assessment studies or in the analysis of the struc-
tural performance of installations under seismic excitations [31] or
under other loading sources such as wind or waves [17, 33]. For
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instance, the reliability of complex systems such as fixed or float-
ing offshore wind turbines depends on its resistance against fatigue
damage. Fatigue damage can be assessed by time-domain simula-
tions in which the structure is subjected to wind, wave and current
loads [5]. The different loads can be described by (locally) stationary
Gaussian processes with tabulated power spectral densities (such as
the JONSWAP spectrum [15]). We may then wish to estimate the
mean cumulative fatigue damage or a probability of failure which
corresponds to the exceedance of a threshold value.

Monte Carlo simulations are standard methods to estimate the
quantities of interest but they may be very time consuming. We look
for an efficient variance reduction technique in this framework. It
is known from the diffusion approximation theory [6, 8, 21] that the
driving forces can often be approximated by white noises and the re-
sponses of the system can then be modeled by stochastic differential
equations. This makes it possible to implement a partial differential
equation approach to compute the quantity of interest. However, the
bias due to the approximation of the original driving force by a white
noise may be significant. A control variate method can compensate
for such a bias [12]. Such a strategy has already been implemented
in a Markov chain Monte Carlo context, where the goal is to sample
from a complex invariant probability distribution of a Markov chain
for which an approximate distribution has a known expression. The
expectation of the approximate distribution then provides an initial
guess, which can be corrected by simulating the two coupled pro-
cesses to estimate the difference (in expected values) between the
true distribution and the approximate distribution [13]. The imple-
mentation of a control variate method in our framework requires to
be able to simulate the system driven by the original driving force
with its complicated spectrum and the limit system driven by the
white noise in such a way that both systems are strongly correlated.
Unfortunately, most diffusion approximation results are established
in a weak sense [6, 8]. Some strong results have been obtained but
only when the drift is a term of order one [11, 19, 25], not when it
is a zero-mean large term as we deal with in this paper. In this
paper we build an efficient coupling between the original and limit
systems, we establish a strong convergence result by quantifying the
mean square distance between the original and limit processes, and
we characterize the variance reduction of the control variate method.
We show by our theoretical results and numerical simulations that
the variance reduction can be dramatic.
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Our method is relevant when the quality of the approximation of
the driving forces by a white noise is moderate. If it is very accurate,
then the quantity of interest can be estimated (up to a very small
and negligible bias) by resolution of a Kolmogorov equation based on
the limit diffusion system (or by a brute force Monte Carlo method
applied to the limit system), so there is no need to apply a control
variate method. If it is very poor, then the limit diffusion system is
not correlated to the original system and the control variate method
is not efficient. If it is moderate, then the bias of the estimation
method that consists in replacing the original system by the limit
one is non-negligible, and the two systems are correlated, and the
control variate method turns out to be very efficient.

The paper is organized as follows. In Section 2 we introduce the
random ordinary differential equations addressed in this paper and
we state the main results of the paper. Note that, motivated by ap-
plications in engineering mechanics and physics such as the study of
the risk analysis of failure for mechanical structures subjected to ran-
dom vibrations [1,2,7,23] or the modeling of the stochastic dynamics
of fluid-structure interaction in turbulent thermal convection [16], we
also consider the case of multivalued ordinary differential equations.
Sections 3-4 consider random ordinary differential equations. In Sec-
tion 3 we state the diffusion approximation theorem that gives the
convergence in probability of the original process to the limit process.
In Section 4 we apply the control variate method to a few examples.
The results are extended to the multivalued case in Sections 5-7.
In particular Section 7 reports numerical results for relevant engi-
neering mechanics problems. The concluding remark of Section 8
connects our findings to the multilevel Monte Carlo literature.

2 Main results

We consider the Rn-valued process Xε “ pXε
t qtPr0,T s solution of

the ordinary differential equation (ODE)1

(2.1)
dXε

dt
“ bpXεq `

1

ε
σpXεqηε, Xε

0 “ x0,

where bpxq is a Lipschitz function from Rn to Rn, σpxq is a function
of class C2 with bounded derivatives from Rn to Mn,dpRq, and ηε

is a Rd-valued rapidly varying mean-reverting process, with a mean
equal to zero, a unique invariant probability distribution, and a mean

1 Throughout the paper, symbols of scalar quantities are printed in italic type,
symbols of vectors are printed in bold italic type, and symbols of matrices are
printed in bold type.
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reversion time of the order of ε2. More exactly, in this paper we
address the case when ηε is a multivariate d-dimensional Ornstein-
Uhlenbeck process

(2.2) dηε “
K

ε
dWt ´

A

ε2
ηεdt,

where A is a d ˆ d matrix, whose eigenvalues have positive real
parts, K is a d ˆ d1 matrix, and W is a d1-dimensional Brownian
motion. This model is classical. It can be encountered in earthquake
engineering [24] and also in finance [35]. It can model stationary
Gaussian processes with very general spectra (see Section 3).

Our main motivation is to estimate a quantity of the form

(2.3) Iε fi ErF pXεqs

for a fixed, small or moderate, parameter ε, for a smooth real-valued
function F defined on the space of continuous functions over r0, T s.
We may think at F pXq “ fpXT q where f is smooth with polynomial

growth, or F pXq “
şT
0 hpXsqds ` fpXT q. By the Feynman-Kac

formula it is possible to get the value of Iε for the model (2.1-2.2)
by solving a parabolic equation, but this equation is formulated in a
d ` n-dimensional space and it possesses large terms (of order ε´2)
that give rapid fluctuations. These rapid fluctuations need to be
resolved by the numerical scheme, which imposes to take a time step
smaller than ε2. The numerical resolution (with a finite difference
method) is, therefore, challenging, if not impossible, and we look for
other resolution methods. It is also possible to estimate Iε by a brute
force Monte Carlo method. The Monte Carlo method, however,
requires many simulations to get an accurate estimation, and each
simulation requires to resolve the rapid fluctuations at the scale ε2,
so we would like to propose an efficient variance reduction method.
The main idea is to find a limiting process X0 that approximates
Xε in a strong sense when εÑ 0 and for which the value

(2.4) I0 “ ErF pX0qs

is known or can be estimated efficiently. It is then possible to propose
a control variate method to estimate Iε for a fixed ε.

We consider the limiting Rn-valued process X0 solution of the
stochastic differential equation (SDE)

(2.5) dX0 “ rbpX0qdt` ΓpX0qdWt,

where X0 shares the same driving Brownian motion as η, with the

functions rbpxq from Rn to Rn and Γpxq from Rn to Mn,d1pRq given

4



by

rbjpxq fi bjpxq `
n
ÿ

i“1

`

pBxiσpxqqA
´1CσpxqT

˘

ji
,(2.6)

Γpxq fi σpxqA´1K,(2.7)

and C is the dˆ d matrix defined by

(2.8) C fi

ż 8

0
e´AsKKT e´A

T sds.

The matrix C is the covariance matrix of the stationary distribution
of the process ηε. We show in Proposition 3.5 that the continuous
process pXε´X0q converges in probability to zero as εÑ 0. The fact
thatXε converges in distribution toX0 is well-known [8, Chapter 6],
but here we get a stronger result with a particular coupling between
the two processes Xε and X0, that is needed to implement the
control variate method that we have in mind.

The form of the limiting equation (2.5) is not surprising. Indeed,
by (2.2), we can anticipate that 1

εη
εdt » A´1KdWt`corrections,

which explains the form (2.7) of the diffusion Γ by substitition

into (2.1). The form (2.6) of the drift rb is a manifestation of the
Itô-versus-Stratonovich problem [32]. This problem is whether one
should interpret the stochastic integral in the limiting equation in
Itô’s sense, Stratonovich sense, or another sense. The Wong-Zakai
theory [36] claims that the limiting diffusion should be a Stratonovich
equation when d “ 1. Indeed, Eqs. (2.6-2.8) then reduce to Γpxq “
1
AσpxqK, C “ 1

2AKKT ,

rbjpxq ´ bjpxq “
1

2A2

n
ÿ

i“1

`

BxipσpxqKqpσpxqKq
T
˘

ji

“
1

2

n
ÿ

i“1

`

BxiΓpxqΓpxq
T
˘

ji
,

so that (2.5) can be written as

(2.9) dX0 “ bpX0qdt` ΓpX0q ˝ dWt,

where ˝ stands for the Stratonovich integral, because

`

ΓpX0q ˝ dWt

˘

j
“

`

ΓpX0qdWt

˘

j
`

1

2

n
ÿ

i“1

d1
ÿ

j1“1

BxiΓjj1pX
0qd

〈
X0
i ,Wj1

〉
t

“
`

ΓpX0qdWt

˘

j
`

1

2

n
ÿ

i“1

`

BxiΓpX
0qΓpX0qT

˘

ji
dt.
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The form (2.9) is valid when d “ 1 and it looks simpler than
(2.5), but we have chosen to write the stochastic integral in (2.5)
in Itô’s sense and to add the appropriate Itô-Stratonovich drift cor-

rection rb ´ b, because it is the natural starting point for numerical
schemes [20] and it is the appropriate form to express the martingale
problems used in the proofs (see Appendix and [9]). When d ą 1

the difference between rb and b is an Itô-Stratonovich correction that
is more complex and the limiting equation (2.5) cannot be reduced
to (2.9).

We can now introduce the Monte Carlo method for the estimation
of Iε. Let W k, k “ 1, . . . , N , be N independent and identically
distributed d1-dimensional Brownian motions. We consider three
Monte Carlo-type estimators of Iε:

1) The brute force Monte Carlo estimator is

(2.10) ÎεN fi
1

N

N
ÿ

k“1

F pXεpW kqq,

where XεpW kq is the solution of (2.1-2.2) with W k. The estimator

ÎεN is unbiased and its variance is

(2.11) VarpÎεN q “
1

N
VarpF pXεqq.

It is asymptotically normal as N Ñ `8:

(2.12)
?
N
`

ÎεN ´ I
ε
˘ dist.
ÝÑ N

`

0, σ2
Iε
˘

,

with the asymptotic variance

(2.13) σ2
Iε “ VarpF pXεqq,

which has the following behavior as εÑ 0 when F is continuous and
bounded (because Xε weakly converges to X0):

(2.14) σ2
Iε “ VarpF pX0qq ` op1q.

2) The control variate estimator [12] is

(2.15) ĴεN fi I0 `
1

N

N
ÿ

k“1

F pXεpW kqq ´ F pX0pW kqq,

where I0 “ ErF pX0qs is supposed to be known exactly (or with high
accuracy). The value I0 can be obtained by solving a Kolmogorov
equation in a n-dimensional framework and without large term; if
this is not possible (because n is too large for instance), then the
value I0 can be obtained by a brute force Monte Carlo method which
is easier than for Iε because there is no large term of order ε´2, so
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that a standard Euler scheme for stochastic differential equations
can be used [20]. The control variate estimator ĴεN is unbiased and
its variance is

(2.16) VarpĴεN q “
1

N
VarpF pXεq ´ F pX0qq.

It is asymptotically normal as N Ñ `8:

(2.17)
?
N
`

ĴεN ´ I
ε
˘ dist.
ÝÑ N

`

0, σ2
Jε

˘

,

with the asymptotic variance

(2.18) σ2
Jε “ VarpF pXεq ´ F pX0qq.

When F is continuous and bounded, we have by Proposition 3.5 that
σ2
Jε goes to zero as εÑ 0. More quantitatively, if F pXq “ fpXT q for

a smooth f with bounded derivatives, then the asymptotic variance
has the following behavior as εÑ 0 (by Lemma 3.8):

(2.19) σ2
Jε ď Cε2.

The order of magnitude ε2 of the asymptotic variance of ĴεN is con-
firmed by the numerical simulations that we report in Section 4.

3) The theoretical optimal control variate estimator is

(2.20) ÔεN fi ρεI0 `
1

N

N
ÿ

k“1

F pXεpW kqq ´ ρεF pX0pW kqq,

with

(2.21) ρε “ CovpF pXεq, F pX0qq{VarpF pX0qq.

This estimator is unbiased and has the minimal variance

(2.22) Var
`

ÔεN
˘

“
1

N
VarpF pXεq ´ ρεF pX0qq,

amongst all control variate estimators of the form

ρI0 `
1

N

N
ÿ

k“1

F pXεpW kqq ´ ρF pX0pW kqq.

Note that ρ “ 0 corresponds to the brute force Monte Carlo esti-
mator ÎεN , ρ “ 1 corresponds to the control variate estimator ĴεN ,

and ρ “ ρε corresponds to the optimal control variate estimator ÔεN .

The estimator ÔεN is asymptotically normal as N Ñ `8:

(2.23)
?
N
`

ÔεN ´ I
ε
˘ dist.
ÝÑ N

`

0, σ2
Oε

˘

,

with the asymptotic variance

(2.24) σ2
Oε “ VarpF pXεq ´ ρεF pX0qq.
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The estimator ÔεN is, however, not practical as it depends on ρε

which is unknown. The practical optimal control variate estimator
[12] is

(2.25) K̂ε
N fi ρ̂εNI

0 `
1

N

N
ÿ

k“1

F pXεpW kqq ´ ρ̂εNF pX
0pW kqq,

where ρ̂εN is the empirical correlation

(2.26) ρ̂εN “

řN
k“1pF pX

εpW kqq ´ ÎεN qpF pX
0pW kqq ´ Î0

N q
řN
k“1pF pX

0pW kqq ´ Î0
N q

2
,

with ÎεN “
1
N

řN
k“1 F pX

εpW kqq as in (2.10) and

Î0
N “

1

N

N
ÿ

k“1

F pX0pW kqq.

This estimator is a practical and approximate version of the theo-
retical optimal control variate estimator ÔεN in which the unknown
correlation coefficient ρε has been replaced by its empirical estimator
ρ̂εN . The estimator K̂ε

N may be slightly biased and may have a vari-
ance slightly larger than (2.22) because of the empirical estimation

of ρε. K̂ε
N is, however, asymptotically normal with an asymptotic

variance that is the same one as that of the optimal estimator ÔεN ,
as shown by the following proposition.

Proposition 2.1. As N Ñ `8,

(2.27)
?
N
`

K̂ε
N ´ I

ε
˘ dist.
ÝÑ N

`

0, σ2
Kε

˘

,

with

(2.28) σ2
Kε “ σ2

Oε “ VarpF pXεq ´ ρεF pX0qq.

Furthermore, if F is continuous and bounded, then σ2
Kε goes to zero

as εÑ 0. If F pXq “ fpXT q, with f with bounded derivatives, then
there exists C ą 0 such that

(2.29) σ2
Kε ď Cε2, 0 ď σ2

Jε ´ σ2
Kε ď Cε4.

Proof. By the law of large numbers, ρ̂εN converges to ρε as N Ñ `8.
The convergence holds almost surely, hence in probability. We have

K̂ε
N ´ I

ε “ pÔεN ´ I
εq ´ pρ̂εN ´ ρ

εqpÎ0
N ´ I

0q,

so we get (2.27-2.28) from Slutsky’s theorem.
Furthermore, we have

σ2
Jε ´ σ2

Kε “ VarpF pX0qqp1´ ρεq2.
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If F is continuous and bounded, then ρε goes to one and σ2
Jε goes

to zero as ε Ñ 0 by Proposition 3.5. If F pXq “ fpXT q, then, by
Lemma 3.8, 1´ρε and σ2

Jε are of order Opε2q for small ε. This shows
the desired result (2.29). �

Proposition 2.1 shows that the asymptotic variances of the es-
timators K̂ε

N and ĴεN are equivalent for vanishingly small ε and of
the order of Opε2q, and that the asymptotic variance of the estima-

tor K̂ε
N is slightly smaller than that of ĴεN for moderately small ε.

These statements are confirmed by the numerical simulations that
we report in Section 4.

In addition, motivated by the examples that we address in Sec-
tion 7, we consider the case where the Rn-valued process Xε satisfies
a multivalued ODE of the form

(2.30)
dXε

dt
` BϕpXεq Q bpXεq `

1

ε
σηε, Xε

0 “ x0,

and the case where Xε together with a Rm-valued process Zε satisfy
the multivalued ODE

(2.31)

$

’

&

’

%

dXε

dt
` BϕpXεq Q bXpXε,Zεq `

1

ε
σηε, Xε

0 “ x0,

dZε

dt
` BψpZεq Q bZpXε,Zεq, Zε

0 “ z0.

Here σ PMn,dpRq is constant, bpxq from Rn to Rn, bZpx, zq from

Rn`m to Rm and bXpx, zq from Rn`m to Rn are Lipschitz func-
tions. The operators Bϕ and Bψ are the subdifferentials of the lower
semi-continuous (l.s.c.) convex functions ϕ from Rn to r0,`8s and
ψ from Rm to r0,`8s. Stronger hypotheses will be assumed on ϕ
compared to ψ as explained in Section 5 and important examples
motivate the two situations as shown in Section 7. We observe that:
1) The multivalued operators that appear in the differential inclu-
sions (2.30) and (2.31) are subdifferential of convex functions, there-
fore existence and uniqueness are guaranteed [4, page 72]. For the
reader’s convenience, existence and uniqueness results are given in
Appendix C.
2) There is an alternative formulation using the language of varia-
tional inequalities, that is equivalent to differential inclusions. Eq. (2.30)
is equivalent to

@ξ P Rn, @t ą 0,
´

bpXεq`
1

ε
σηε´

dXε

dt

¯

¨
`

ξ´Xε
˘

`ϕpXεq ď ϕpξq,

9



with Xε
0 “ x0, and Eq. (2.31) is equivalent to

@ξ P Rn, @ζ P Rm, @t ą 0,
´

bXpXε,Zεq `
1

ε
σηε ´

dXε

dt

¯

¨
`

ξ ´Xε
˘

` ϕpXεq ď ϕpξq,

´

bZpXε,Zεq ´
dZε

dt

¯

¨
`

ζ ´Zε
˘

` ψpZεq ď ψpζq,

with Xε
0 “ x0 and Zε

0 “ z0.

Propositions 5.1 and 5.2 show that the multi-valued process Xε

strongly converges to a limiting process solution of a multivalued
SDE. Eqs. (6.8) and (6.9) show that the control variate estimators
have asymptotic variances of order ε2 for (2.30) and ε for (2.31).

To demonstrate the efficiency of our method on a practical prob-
lem, we consider a two-degree of freedom (TDOF) system as shown
in Figure 2.1. It describes a broad class of TDOF structures, includ-
ing a two-storey building as presented in [34, Figure 4.6(a)].

1

3

m1

forcing ε´1ηε

m3

X1 X3

c1

k3

Figure 2.1. A rheological model of a two-degree of free-
dom (TDOF) system. Two masses m1 and m3 are as-
sociated in series with elements which are themselves an
association of dampers and springs. Elements 1© and 3©
represent a spring and a damper respectively, both possi-
bly nonlinear or hysteretic. Here c1 is the damping coeffi-
cient associated to the linear damper connecting the mass
m1 to the foundation and k3 is the stiffness coefficient of
the linear spring linking the masses m1 and m3. A random
forcing ε´1ηε is applied to the mass m1 (e.g. wind forces
on a two-storey building).

When the external force ηε is a colored noise such as an Ornstein-
Uhlenbeck process, the equation of motion can be written in the form
of Equation (2.1) with n “ 4, where pXε

1 , X
ε
2q, resp. pXε

3 , X
ε
4q, repre-

sents the position and the velocity of the mass m1, resp. m3, shown
in Figure 2.1. Many nonlinear behaviours enter into this framework,
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we have in mind a nonlinear spring of the linear-plus-quadratic cubic
type and a nonlinear damper of the linear-plus-quadratic type (see
Example 4.3). Similarly Equations (2.30) and (2.31) arise in the
description of nonlinear behaviours with hysteresis such as elasto-
plasticity and friction, see [34, Chapter 8] and Section 7 (Exam-
ple 7.3). In Figures 2.2-2.3 we compare the behaviors of the brute

force Monte Carlo estimator ÎεN with the ones of the control variate

estimators ĴεN and K̂ε
N . We also plot the empirical estimators of the

asymptotic variances of the estimators ÎεN , ĴεN , and K̂ε
N as described

in Subsection 7.3. In addition, for each value of ε P t0.1, 0.5, 0.9u,
error bars (95% confidence interval) are shown for each of the esti-

mators (in ÎεN , ĴεN , K̂ε
N order from the left to the right). Here I0 is

obtained by a massive Monte Carlo estimation of the limit process,
which is possible with a coarse grid step as there is no large term
involved. We can observe that the control variate estimator K̂ε

N has
always the minimal variance. When ε is large and the original sys-
tem and the limit system are poorly correlated ρε » 0, it behaves as
the standard Monte Carlo estimator ÎεN . When ε is small and the
original system and the limit system are strongly correlated ρε » 1,
it behaves as the control variate estimator ĴεN . We can also observe
that the variance reduction is by a factor of order ε2 when the quan-
tity to be estimated is the expectation of a smooth function, while
it is of order ε when the quantity to be estimated is the expectation
of an indicator function.

3 Diffusion approximation for a driving multivariate
Ornstein-Uhlenbeck process

We consider the Rn-valued process Xε solution of the ODE (2.1)
when ηε is the multivariate d-dimensional Ornstein-Uhlenbeck pro-
cess (2.2). We give several explicit examples.

Example 3.1. ηε is a one-dimensional Ornstein-Uhlenbeck process,
d “ d1 “ 1, A,K ą 0,

(3.1) dηε “ ´
A

ε2
ηεdt`

K

ε
dWt.

Example 3.2. ηε is a Langevin process

dηε1 “
1

ε2
ηε2dt,(3.2)

dηε2 “ ´
1

ε2

“

µηε1 ` γη
ε
2

‰

dt`
K

ε
dWt,(3.3)
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ε

σ̂2
Iε,N

σ̂2
Jε,N
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Kε,N
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0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

ε

σ̂2
Iε,N

σ̂2
Jε,N

σ̂2
Kε,N

(b’)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

¨10´2

ε

σ̂2
Kε,N{ε

σ̂2
Kε,N{ε

2

(c)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ε

σ̂2
Kε,N{ε

σ̂2
Kε,N{ε

2

(c’)

Figure 2.2. Example 4.3 of a TDOF system modeling
a two-storey building driven by an Ornstein-Uhlenbeck
noise. In the left column (subfigures a-c), resp. in the
right column (subfigures a’-c’), the aim is to estimate Iε “
E
“

pXε
1,T q

2 ` pXε
3,T q

2
‰

for T “ 1, resp. Iε “ Pp|Xε
1,T | ď

a, |Xε
3,T | ď bq for T “ 1, a “ 0.1, b “ 0.1. The expec-

tation of the control variate I0 “ ErpX0
1,T q

2 ` pX0
3,T q

2s,

resp. I0 “ Pp|X0
1,T | ď a, |X0

3,T | ď bq, is obtained by a
massive Monte Carlo computation with coarse time step.
The numerical procedure is described in Section 4 (Euler-
Maruyama time discretization with time step δt “ 10´5).
The number of Monte Carlo samples is N “ 104 and
m1 “ m3 “ c1 “ k3 “ 1.

which corresponds to d “ 2, d1 “ 1, A “

ˆ

0 ´1
µ γ

˙

, and K “

ˆ

0
K

˙

.

The process ηε1 is a white-noise driven linear oscillator with stiffness
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ĴεN
K̂ε
N

I0

(a’)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

¨10´3

ε

σ̂2
Iε,N

σ̂2
Jε,N

σ̂2
Kε,N

(b)

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

ε

σ̂2
Iε,N

σ̂2
Jε,N

σ̂2
Kε,N

(b’)

0.2 0.4 0.6 0.8 1
0

2

4

6

8

¨10´3

ε

σ̂2
Kε,N{ε

σ̂2
Kε,N{ε

2

(c)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ε

σ̂2
Kε,N{ε

σ̂2
Kε,N{ε

2

(c’)

Figure 2.3. Example 7.3 of a TDOF system modeling
a two-storey building with an hysteretic spring of elasto-
plastic type, driven by an Ornstein-Uhlenbeck noise. The
quantities presented here are similar to those presented in
Figure 2.2. The details of the elements 1© and 3© with
nonlinear and hysteretic behaviours can be found in Ex-
ample 7.3.

µ ą 0 and damping γ ą 0. It can be encountered in earthquake
engineering because it is considered to be a realistic type of random
forcing to represent seismic excitation (it is the so-called Kanai-
Tajimi model [24]).

Example 3.3. If η̃ε is a real-valued zero-mean stationary Gauss-
ian process with power spectral density PSDεpωq “ ε2PSDpε2ωq,

PSDpωq “
řq
k“1

σ2
k

1`ω2{∆Ω2
k

, then it has the same distribution as the
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process
řq
k“1 σkη

ε
k where ηε is solution of (2.2) with d “ d1 “ q and

A “ K “ diag
`

∆Ωk, k “ 1, . . . , q
˘

.

This shows that any zero-mean stationary Gaussian process with
power spectral density that can be decomposed as a sum of centered
Lorentzians belongs to the model (2.2).

Example 3.4. If η̃ε is a real-valued zero-mean stationary Gauss-
ian process with power spectral density PSDεpωq “ ε2PSDpε2ωq,

PSDpωq “ 1
2

řq
k“1

σ2
k

1`pω´ωkq
2{∆Ω2

k
`

σ2
k

1`pω`ωkq
2{∆Ω2

k
, then it has the

same distribution as the process
řq
k“1 σkη

ε
2k´1 where ηε is solution

of (2.2) with d “ d1 “ 2q and

A “ ‘
q
k“1

ˆ

∆Ωk ´ωk
ωk ∆Ωk

˙

, K “ ‘
q
k“1

ˆ

∆Ωk 0
0 ∆Ωk

˙

.

This shows that any zero-mean stationary Gaussian process with
power spectral density that can be decomposed as a sum of non-
centered Lorentzian functions belongs to the model (2.2).

We also consider the limiting Rn-valued process X0 solution of the
SDE (2.5). The continuous process pXε ´X0q converges in proba-
bility to zero as εÑ 0 as stated in the following proposition.

Proposition 3.5. If Xε
0 “X

0
0 , then the continuous process pXε ´

X0q converges in probability to zero as ε Ñ 0. The convergence
holds in the space of continuous functions equipped with the topology
associated to the uniform norm over compact intervals.

The proof of Proposition 3.5 is based on the perturbed test func-
tion method as described first in [22, Chapter 7] or in [8, Chapter
6]. It is given in Appendix A.

Example 3.6. We consider the process Xε solution of the ODE
(2.1) where ηε is the rapidly varying mean-reverting process (3.1).
We also consider the limiting process

dX0 “ bpX0qdt`
K

A
σpX0qdWt `

K2

2A2
pσpX0q ¨∇x0qσpX0qdt,

driven by the same Brownian motion. The continuous process pXε´

X0q converges in probability to zero as εÑ 0.

Example 3.7. We consider the process Xε solution of the ODE
(2.1) where ηε is the rapidly varying mean-reverting process (3.2-
3.3). We also consider the limiting process

dX0 “ bpX0qdt`
K

µ
σpX0qdWt `

K2

2µ2
pσpX0q ¨∇x0qσpX0qdt,

14



driven by the same Brownian motion. The continuous process pXε´

X0q converges in probability to zero as εÑ 0.

The proof that the optimal control variate estimator K̂ε
N and the

control variate estimator ĴεN have asymptotic variances of the order
of ε2 as stated in Proposition 2.1 follows from the following lemma.

Lemma 3.8. Let f, g be smooth functions from Rn to R with bounded
derivatives. Let T ą 0. There exists C ą 0 such that, for any
t P rε, T s,

(3.4)

ˇ

ˇE
“

gpX0
t q
`

fpXε
t q ´ fpX

0
t q
˘‰
ˇ

ˇ ď Cε2,

E
“`

fpXε
t q ´ fpX

0
t q
˘2‰

ď Cε2.

The important hypothesis is that f should be smooth. We could
certainly relax the hypothesis on the bounded derivatives by using
uniform estimates of high-order moments of the process Xε. Lemma
3.8 is proved in Appendix B.

4 Numerical simulations

In this section, we investigate our control variate method and re-
port numerical results on different types of dynamical systems driven
by colored noises. The two examples are smooth oscillators that
can be described by Equation (2.1) (one being linear with time-
dependent coefficients and the other being of Van der Pol type).
Other examples with non-smooth dynamical systems will be ad-
dressed in Section 7.

We use the Euler-Maruyama approximation method to compute
the approximate numerical solution of a SDE [20]. In Subsection
4.1, we recall the two types of colored noise that we consider and
provide their time discretization. In Subsection 4.2, some details
and discretization of the dynamical systems under consideration are
given. In Subsection 4.3, numerical experiments are carried out in
each case.

4.1 Colored noise models and their discretization

The two models of noise are shown in Eq. (3.1) (OU) and in the
system of equations (3.2-3.3) (Langevin). The OU noise has two
parameters A,Kou ą 0 whereas the Langevin noise has three pa-
rameters µ, γ,Klan ą 0. Their discretization works as follows. Let
T ą 0 and NT P N be the number of time steps such that T “ NT δt.
Let N be the number of Monte Carlo samples. Consider a sequence
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of independent and identically distributed standard Gaussian vari-
ables

t∆W k
n „ N p0, 1q, 0 ď n ď NT ´ 1, 1 ď k ď Nu.

Let ε ą 0. For each 1 ď k ď N , we overload the notation by denoting

the discretized noise in both cases by tη̂ε,kn , 0 ď n ď NT u.

‚ Ornstein-Uhlenbeck noise: η̂ε,k0 „ N
ˆ

0,
K2

ou

2A

˙

and for

0 ď n ď NT ´ 1,

η̂ε,kn`1 “ η̂ε,kn

ˆ

1´ δt
A

ε2

˙

`
?
δt
Kou

ε
∆W k

n .

‚ Langevin noise: η̂ε,k0 and η̂ε,k2,0 are independent variables
with

η̂ε,k0 „ N
ˆ

0,
K2

lan

2γ

˙

, η̂ε,k2,0 „ N
ˆ

0,
K2

lan

2γµ

˙

and for 0 ď n ď NT ´ 1,

η̂ε,kn`1 “ η̂ε,kn `
δt

ε2
η̂ε,k2,n, η̂ε,k2,n`1 “ η̂ε,k2,n´

δt

ε2

“

µη̂ε,kn `γη̂
ε,k
2,n

‰

`
?
δt
Klan

ε
∆W k

n .

4.2 Details and discretization of the illustrative dynam-
ical systems

We consider systems of the form (2.1). We first consider the case
of smooth systems that can have time-dependent coefficients,

(4.1)
dXε

1

dt
“ Xε

2 ,
dXε

2

dt
“ ´hpXε

1 , X
ε
2 , tq `

1

ε
ηε.

Here we are interested in Er}Xε
T }

2s and in Pp|Xε
1,T | ď 1q for T “ 1.

Note that the second case corresponds to an expectation Pp|Xε
1,T | ď

1q “ ErfpXε
T qs with a non-smooth function fpxq “ 1|x1|ď1. As

εÑ 0, Xε “ pXε
1 , X

ε
2q converges to X0 “ pX0

1 , X
0
2 q where

(4.2) dX0
1 “ X0

2 dt, dX0
2 “ ´hpX

0
1 , X

0
2 , tqdt` CdW,

C “ KouA
´1 for an OU noise and C “ Klanµ

´1 for a Langevin
noise. For the stochastic simulation of (4.1) and (4.2), we proceed
as follows:

‚ X̂ε,k
1,0 “ x1,0, X̂

ε,k
2,0 “ x2,0 and for 0 ď n ď NT ´ 1,

#

X̂ε,k
1,n`1 “ X̂ε,k

1,n ` δtX̂
ε,k
2,n,

X̂ε,k
2,n`1 “ X̂ε,k

2,n ´ δthpX̂
ε,k
1,n, X̂

ε,k
2,n, nδtq `

δt
ε η̂

ε,k
n .
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‚ X̂0,k
1,0 “ x1,0, X̂

0,k
2,0 “ x2,0 and for 0 ď n ď NT ´ 1,

#

X̂0,k
1,n`1 “ X̂0,k

1,n ` δtX̂
0,k
2,n,

X̂0,k
2,n`1 “ X̂0,k

2,n ´ δthpX̂
0,k
1,n, X̂

0,k
2,n, nδtq ` C

?
δt∆W k

n .

X̂ε,k
n and X̂0,k

n are independent (in k) copies that are meant
to approximate Xε

nδt and X0
nδt.

Example 4.1 (linear oscillator with time-dependent coeffi-
cients). We take hpx1, x2, tq fi pptqx1`qptqx2 where pptq fi 1`cosptq
and qptq fi 1 ` sinptq (the choice is purely arbitrary). Here, in both
OU and Langevin cases, the limiting process X0 “ pX0

1 , X
0
2 q is a

Gaussian process provided that the initial condition is deterministic
or Gaussian. This is useful to derive the expectation of the control
variate. The distribution of X0

t “ pX
0
1,t, X

0
2,tq is characterized by its

first-order moment mptq fi ErX0
t s P R2 and second-order moment

Mptq fi pErX0
i,tX

0
j,tsq

2
i,j“1 PM2,2pRq which satisfy the following sys-

tems of differential equations:

‚ first-order moment
– pm1p0q,m2p0qq “ px0, 9x0q,
– 9m1ptq “ m2ptq,
– 9m2ptq “ ´pptqm1ptq ´ qptqm2ptq.

‚ second-order moment

(4.3)

$

’

’

’

&

’

’

’

%

pM11p0q,M22p0q,M12p0qq “ px
2
0, 9x

2
0, x0 9x0q,

9M11ptq “ 2M12ptq,
9M22ptq “ ´2pptqM12ptq ´ 2qptqM22ptq ` C

2,
9M12ptq “M22ptq ´ pptqM11ptq ´ qptqM12ptq.

The expectation of the control variate Er}X0
T }

2s with T “ 1 is esti-
mated by solving numerically, with an Euler method, the differential
equations for the first- and second-order moments.

Example 4.2 (Van der Pol oscillator). We take hpx1, x2q “

x1´ νp1´x
2
1qx2 where ν ą 0. The expectation of the control variate

can be represented by Er}X0
T }

2s “ cpx0, 0q with T “ 1, where c
satisfies the following backward in time PDE
(4.4)

#

Btc`
C2

2 B
2
x2c´ hpx1, x2qBx2c` x2Bx1c “ 0, in R2 ˆ r0, 1q,

cpx, 1q “ }x}2 in R2.

The expectation Er}X0
T }

2s is estimated by solving the PDE (4.4) with
a finite difference method.
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Example 4.3 (nonlinear TDOF). A TDOF modeling a nonlinear
spring of the linear-plus-quadratic cubic type and a nonlinear damper
of the linear-plus-quadratic type, can be seen as a coupling between
two systems of the form (4.1)

(4.5)

$

’

&

’

%

dXε
1

dt
“ Xε

2 ,
dXε

2

dt
“ ´g2pX

ε
1 , X

ε
2 , X

ε
3 , X

ε
4q `

1

ε
ηε,

dXε
3

dt
“ Xε

4 ,
dXε

4

dt
“ ´g4pX

ε
1 , X

ε
2 , X

ε
3 , X

ε
4q.

In addition to E
“

pXε
1,T q

2 ` pXε
3,T q

2
‰

for T “ 1, we are interested in

Pp|Xε
1,T | ď a, |Xε

3,T | ď bq. As εÑ 0, Xε ÑX0 where

(4.6)

$

&

%

dX0
1 “ X0

2 dt, dX0
2 “ ´g2pX

0
1 , X

0
2 , X

0
3 , X

0
4 qdt` CdW,

dX0
3 “ X0

4 dt, dX0
4 “ ´g4pX

0
1 , X

0
2 , X

0
3 , X

0
4 qdt.

Here

g2px1, x2, x3, x4q fik1x1p1`minpx2
1, L̃qq ` c1x2 ´ k3px3 ´ x1q

´ c3px4 ´ x2qp1`minp|x4 ´ x2|, L̃qq

and

g4px1, x2, x3, x4q fi k3px3 ´ x1q ` c3px4 ´ x2qp1`minp|x4 ´ x2|, L̃qq.

In the original model of Spanos L̃ “ 8, see pages 189-190 in [34].

For any positive finite value of L̃, the system above enters into the
scope of our results. The simulation of (4.5) and (4.6) is similar to

what is done for (4.1) and (4.2). We take L̃ “ 1000, c1 “ c3 “ k1 “

k3 “ 1.

4.3 Numerical experiments

We report our numerical results for the two systems mentioned
above. In each of the two figures below (Figures 4.1-4.2), there are
four subfigures (a)-(b)-(c)-(d). For subfigures (a) and (b), the driv-
ing force is an Ornstein-Uhlenbeck noise (3.1) with A “ K “ 1.
In subfigure (a), the dashed black, dotted blue, and solid red lines

represent the standard MC estimator ÎεN and the control variate esti-

mators ĴεN and K̂ε
N , respectively. For each value of ε P t0.1, 0.5, 0.9u,

error bars (95% confidence interval) are shown for each of the esti-

mators (in ÎεN , ĴεN , K̂ε
N order from the left to the right). The black

dotted line represents the expectation of the control variate. The
objective of the subfigure (b) is to illustrate the bound (2.19) and
to show that the ε2-behavior is actually sharp. The same descrip-
tion applies to (c) and (d), except they correspond to the case of a
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Langevin noise (3.2-3.3) with µ “ γ “ K “ 1. In the figures the

asymptotic variance of the standard MC estimator ÎεN is estimated
by

(4.7) pσ2
Iε,N “

1

N

N
ÿ

k“1

`

F pXεpW kqq
˘2
´ pÎεN q

2,

the asymptotic variance of the control variate estimator ĴεN is esti-
mated by

(4.8) pσ2
Jε,N “

1

N

N
ÿ

k“1

`

F pXεpW kqq ´ F pX0pW kqq ` I0
˘2
´ pĴεN q

2,

and the asymptotic variance of the optimal control variate estimator
K̂ε
N is estimated by

(4.9)

pσ2
Kε,N “

1

N

N
ÿ

k“1

`

F pXεpW kqq ´ ρ̂εNF pX
0pW kqq ` ρ̂εNI

0
˘2
´ pK̂ε

N q
2,

with ρ̂εN defined by (2.26). pσ2
Iε,N , pσ2

Jε,N , and pσ2
Kε,N are consistent

estimators of σ2
Iε , σ

2
Jε , and σ2

Kε , respectively.

We use N “ 104 samples with a time step of δt “ 10´5 (note that
δt{ε2 “ 0.1 for the smallest ε “ 10´2 used in the numerical exper-
iments). We report the numerical results for the linear oscillator
with time-dependent coefficients in Figure 4.1 and for the Van der
Pol oscillator in Figure 4.2. The numerical results concern the esti-
mation of Iε “ Er}Xε

T }
2s or Iε “ Pp|Xε

1,T | ď 1q with T “ 1 where

Xε satisfies (4.1) and thus the expectation of the control variate is
I0 “ Er}X0

T }
2s or Pp|X0

1,T | ď 1q where X0 satisfies (4.2).

The theoretical predictions provided by Eq. (2.19) and Proposi-
tion 2.1 are based on the condition that f has bounded derivatives.
As we have discussed above, the assumption that f is smooth is
important but the hypothesis on the boundedness of the derivatives
can certainly be relaxed. The numerical results shown in Figures
4.1-4.2 are actually in good agreement with the theoretical predic-
tions: the asymptotic variances σ2

Jε and σ2
Kε behave as Opε2q. The

only cases where the behavior is Opεq, and not Opε2q, are when the
quantity of interest is of the form ErfpXε

T qs with a function f that
is not smooth, which is not surprising.
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Figure 4.1. Example 4.1 (linear oscillator with time-
dependent coefficients) with hpx1, x2, tq fi pptqx1` qptqx2,
pptq fi 1 ` cosptq and qptq fi 1 ` sinptq. The aim is to
estimate Iε “ Er}Xε

T }
2s for T “ 1 and the expectation of

the control variate I0 “Er}X0
T }

2s is obtained by solving
the set of differential equations (4.3). In subfigures (a-b),
resp. in subfigures (c-d), the driving process is an OU,
resp. a Langevin, process.

5 Diffusion approximation for the multivalued case

In this section we consider multivalued ODEs of the form (2.30)
or (2.31).

5.1 Basic properties on differential inclusions

We recall that the subdifferential of a convex function F : Rr Ñ
p´8,8s such that Dom(F )fi tx P Rr, F pxq ă 8u is not empty,
is the map from Rr to PpRrq (the set of subsets of Rr) defined by
BF pxq fi tξ P Rr, @z P Rr, ξ¨pz´xq`F pxq ď F pzqu for x P Dom(F )
and BF pxq “ H for x R Dom(F ). To grasp quickly the idea when
r “ 1, BF pxq can be seen as the set of sub-slopes of F at the point x
and when F is differentiable at the point x, BF pxq “ tF 1pxqu. See [4]
for more details.

One way to construct a solution to a multivalued ODE of the
form (2.30) or (2.31) is to proceed by penalization. The inclusion is
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Figure 4.2. Example 4.2 (Van der Pol oscillator) with
hpx1, x2q fi x1 ´ p1 ´ x21qx2. In subfigures (a-d), resp. in
subfigures (a’-d’), the aim is to estimate Iε “ Er}Xε

T }
2s,

resp. Iε “ Pp|Xε
1,T | ď 1q, for T “ 1. The expectation of

the control variate I0 “Er}X0
T }

2s, resp. I0 “Pp|X0
1,T | ď

1q, is obtained by solving the PDE (4.4) with the suitable
final condition.
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replaced by an equality involving the Moreau-Yosida regularisation
of F : Rr Ñ p´8,`8s (with F “ ϕ, r “ n or F “ ψ, r “ m in our
cases), that is

(5.1) @p ě 1, @x P Rr, Fppxq fi inf
zPRr

!

F pzq `
p

2
}x´ z}2

)

.

We recall from Annex B in [30] some properties of Fp:

(1) Fp : Rr ÞÑ R is a convex differentiable function,
(2) @x P Rr, BFppxq “ t∇Fppxqu and ∇Fppxq P BF pJpxq where

Jpx fi x´ 1
p∇Fppxq,

(3) DC ą 0, @x P Rr, @p, }Jpx} ď }x} ` C,
(4) @x,y P Rr, }∇Fppxq ´∇Fppyq} ď p}x´ y},
(5) @x,y P Rr,

`

∇Fppxq ´∇Fppyq
˘

¨ px´ yq ě 0,
(6) @x P Rr,

(5.2) x ¨∇Fppxq ě 0,

(7) @x,y P Rr,

(5.3)
`

∇Fppxq´∇Fp1pyq
˘

¨px´yq ě ´

ˆ

1

p
`

1

p1

˙

∇Fppxq¨∇Fp1pyq,

(8) as a consequence of properties 2 and 3 above, we also have

(5.4) sup
pě1

sup
xPRr

}∇Fppxq}
pp1` }x}q

ă 8.

Thus, the penalized versions of (2.30) and (2.31) are

(5.5)
dXε,p

dt
`∇ϕppXε,pq “ bpXε,pq `

1

ε
σηε, Xε,p

0 “ x0,

and
(5.6)

$

’

&

’

%

dXε,p

dt
`∇ϕppXε,pq “ bXpXε,p,Zε,pq `

1

ε
σηε, Xε,p

0 “ x0,

dZε,p

dt
`∇ψppZε,pq “ bZpXε,p,Zε,pq, Zε,p

0 “ z0.

It can be shown [4] that, if ϕ satisfies the condition:

(5.7) sup
pě1

sup
xPRn

}∇ϕppxq} ă 8,

where ϕp is the Yosida approximation (5.1) of ϕ, then the sequence of
solutions of (5.5) tXε,p, p ě 1u is a Cauchy sequence in Cpr0, T s;Rnq,
the limit Xε satisfies the differential inclusion (2.30) and its solution
is unique.

A similar statement using the sequence of solutions of (5.6) tpXε,p,Zε,pq, p ě
1u in Cpr0, T s;Rn ˆ Rmq, holds for the existence and uniqueness of
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a solution for (2.31) when ϕ (but not necessarily ψ) satisfies the
condition (5.7), while ψ satisfies the assumption:

(5.8) sup
pě1

ψppz0q ă 8.

For the convenience of the reader we give the proofs of these results
in Appendix C.

5.2 Diffusion approximation for Equation (2.30)

We consider the Rn-valued processXε solution of the multivalued
ODE (2.30) when ηε is given by (2.2). We assume that b is Lipschitz
and that ϕ satisfies the condition (5.7). We also consider the limiting
Rn-valued process X0 solution of the multivalued SDE

(5.9) dX0 ` BϕpX0qdt Q bpX0qdt` ΓdWt,

driven by the same Brownian motion, with Γ “ σA´1K. Existence
and uniqueness of the solution of (5.9) is the same one as in Proposi-
tion C.1 and is discussed in Appendix D. The following proposition
gives the convergence of the process pXε´X0q to zero. It is proved
in [9, Appendix E].

Proposition 5.1. 1. We have for all p ě 1:

(5.10) sup
ε

E
„

sup
tďT

}Xε,p
t ´Xε

t }
2



ď
CT
p
,

where Xε,p is the approximation (5.5) of Xε.
2. The continuous process pXε ´ X0q converges in probability to
zero as εÑ 0.

5.3 Diffusion approximation for Equation (2.31)

We consider the RnˆRm-valued process pXε,Zεq solution of the
multivalued ODE (2.31) when ηε is given by (2.2). We assume that
bX and bZ are Lipschitz, that ϕ satisfies (5.7), and that ψ satisfies
(5.8). We also consider the limiting RnˆRm-valued process pX0,Z0q

solution of the multivalued SDE

(5.11)
dX0 ` BϕpX0qdt Q bXpX0,Z0qdt` ΓdWt,

dZ0 ` BψpZ0qdt Q bZpX0,Z0qdt,

driven by the same Brownian motion, with Γ “ σA´1K. Exis-
tence and uniqueness of the solution of (5.11) is the same one as in
Proposition C.2. The following proposition gives the convergence of
the continuous process pXε ´ X0,Zε ´ Z0q to zero. It is proved
in [9, Appendix F].

23



Proposition 5.2. 1. For all p ě 1, we have

(5.12) sup
ε

E
„

sup
tďT

 

}Xε,p
t ´Xε

t }
2 ` }Zε,p

t ´Zε
t }

2
(



ď
CT
p
,

where pXε,p,Zε,pq is the approximation (5.6) of pXε,Zεq.
2. The continuous process pXε ´X0,Zε ´Z0q converges in proba-
bility to zero as εÑ 0.

6 Control variate method in the multivalued case

We here consider the multivalued case. Let Xε satisfy (2.30)
or pXε,Zεq satisfy (2.31). We want to estimate Iε defined by
(2.3) when Xε satisfies (2.30) or Iε “ ErF pXε,Zεqs when pXε,Zεq

satisfies (2.31). The control variate method can be applied in this
framework as in the ODE case addressed in Section 2. The con-
trol variate estimator ĴεN and the optimal control variate estimator

K̂ε
N are defined by (2.15) and (2.25), respectively, for Xε satisfying

(2.30), they are asymptotically normal and their asymptotic vari-
ances are (2.18) and (2.28), respectively. For pXε,Zεq satisfying
(2.31) the control variate estimator
(6.1)

ĴεN fi
1

N

N
ÿ

k“1

F pXεpW kq,ZεpW kqq ´ F pX0pW kq,Z0pW kqq ` I0,

with I0 “ ErF pX0,Z0qs, is asymptotically normal with an asymp-
totic variance given by

(6.2) σ2
Jε “ Var

`

F pXε,Zεq ´ F pX0,Z0q
˘

.

The pratical optimal control variate estimator is
(6.3)

K̂ε
N fi ρ̂εNI

0`
1

N

N
ÿ

k“1

F pXεpW kq,ZεpW kqq´ρ̂εNF pX
0pW kq,Z0pW kqq,

where ρ̂εN is the empirical correlation
(6.4)

ρ̂εN “

řN
k“1pF pX

εpW kq,ZεpW kqq ´ ÎεN qpF pX
0pW kq,Z0pW kqq ´ Î0

N q
řN
k“1pF pX

0pW kq,Z0pW kqq ´ Î0
N q

2
,

ÎεN is the standard Monte Carlo estimator

(6.5) ÎεN fi
1

N

N
ÿ

k“1

F pXεpW kq,ZεpW kqq,
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and Î0
N “ 1

N

řN
k“1 F pX

0pW kq,Z0pW kqq. The estimator K̂ε
N is

asymptotically normal with an asymptotic variance given by

(6.6) σ2
Kε “ Var

`

F pXε,Zεq ´ ρεF pX0,Z0q
˘

,

with ρε “ CovpF pXε,Zεq, F pX0,Z0qq{VarpF pX0,Z0qq. The as-

ymptotic variance of the estimator ÎεN is

(6.7) σ2
Iε “ Var

`

F pXε,Zεq
˘

.

For small ε the asymptotic variance σ2
Iε is approximately equal to

Var
`

F pX0,Z0q
˘

and the asymptotic variances σ2
Jε and σ2

Kε are small,
by Propositions 5.1 and 5.2. More quantitiatvely, if F pX,Zq “
fpXT ,ZT q and f is a smooth function with bounded derivatives,
then the asymptotic variances σ2

Jε and σ2
Kε are of order ε2 when Xε

satisfies (2.30):

(6.8) σ2
Kε ď Cε2, 0 ď σ2

Jε ´ σ2
Kε ď Cε4,

or of order ε when pXε,Zεq satisfies (2.31):

(6.9) σ2
Kε ď Cε, 0 ď σ2

Jε ´ σ2
Kε ď Cε2.

Eqs. (6.8-6.9) are consequences of the following lemma proved in [9,
Appendix G].

Lemma 6.1. (1) Let Xε satisfy (2.30). If f, g : Rn Ñ R are
smooth functions with bounded derivatives and T ą 0, then
there exists C ą 0 such that, for any t P rε, T s,

(6.10)

ˇ

ˇE
“

gpZ0
t q
`

fpXε
t q ´ fpX

0
t q
˘‰ˇ

ˇ ď Cε2,

E
“`

fpXε
t q ´ fpX

0
t q
˘2‰

ď Cε2.

(2) Let pXε,Zεq satisfy (2.31). If f, g : Rn`m Ñ R are smooth
functions with bounded derivatives and T ą 0, then there
exists C ą 0 such that, for any t P rε, T s,

(6.11)

ˇ

ˇE
“

gpX0
t ,Z

0
t q
`

fpXε
t ,Z

ε
t q ´ fpX

0
t ,Z

0
t q
˘‰ˇ

ˇ ď Cε,

E
“`

fpXε
t ,Z

ε
t q ´ fpX

0
t ,Z

0
t q
˘2‰

ď Cε.

7 Numerical simulations in the multi-valued case

We present examples which are non-smooth dynamical systems
that are prevalent in engineering mechanics. Examples 7.1-7.2 are
oscillators involving friction or/and elasto-plastic behaviours, Exam-
ple 7.3 is a nonlinear and nonsmooth two-degree of freedom (TDOF)
system, they can be described by Eqs. (2.30) and (2.31). Examples
7.4-7.5 which do not fall within the scope of any aforementioned
case correspond to an obstacle problem and to the reflection of the
integral of a colored noise, respectively.
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7.1 Non-smooth systems in the form of Equations (2.30)
and (2.31)

Example 7.1 (friction behaviour). Consider Eq. (2.30) with ϕpxq fi
cf |x| @x P R, where cf ą 0 is a friction coefficient. The R-valued pro-
cess Xε represents the velocity of a material point (stick-slip motion)
subjected to friction and colored noise. See for instance [29] for an
explanation of the physics behind and [3] for the use of SDEs with
multivalued drift for modeling. As εÑ 0, Xε Ñ X0 where X0 satis-
fies Eq. (5.9). For the stochastic simulation, we proceed as follows:

‚ X̂ε,k
0 “ x0 and for 0 ď n ď NT ´ 1,

X̂ε,k
n`1 “ X̂ε,k

n `
δt

ε
η̂ε,kn ´ δtprojr´cf ,cf s

˜

X̂ε,k
n

δt
`

1

ε
η̂ε,kn

¸

,

with η̂ε,kn described in Subsection 4.1.

‚ X̂0,k
0 “ x0 and for 0 ď n ď NT ´ 1,

X̂0,k
n`1 “ X̂0,k

n ` pδtq1{2C∆W k
n ´ δtprojr´cf ,cf s

˜

X̂0,k
n

δt
`

C
?
δt

∆W k
n

¸

.

We are interested in ErpXε
T q

2
s for T “ 1. The expectation of the

control variate is ErpX0
T q

2s. The latter can be represented as cpx0, 0q
where c satisfies the following backward in time partial differential
inclusion
(7.1)
#

Btcpx, tq `
C2

2 B
2
xcpx, tq P BϕpxqBxcpx, tq, for px, tq P Rˆ r0, 1q,

cpx, 1q “ x2, for x P R.

It can be estimated by solving this partial differential inclusion with
a finite difference method. We proceed as follows. For every t ą
0, the function x ÞÑ cpx, tq is smooth and even, provided that the
initial condition is smooth and even. Indeed, this comes from the
probabilistic representation and the fact that, for any starting point
x P R, tXx

t , t ě 0u and tX´xt , t ě 0u have the same distribution
because ϕ is even. Therefore we must have @t ą 0, Bxcp0, tq “ 0.
The solution of (7.1) is thus estimated by applying a finite difference
method to
(7.2)
$

’

&

’

%

Btcpx, tq `
C2

2 B
2
xcpx, tq ´ cfBxcpx, tq “ 0, for px, tq P p0,8q ˆ r0, 1q,

Bxcp0, tq “ 0, for t P r0, 1q,

cpx, 1q “ x2, for x P r0,`8q.
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The whole function x ÞÑ cpx, tq can be recovered by using the sym-
metry property.

Example 7.2 (elasto-plastic behaviour). Consider Eq. (2.31)
with ϕ fi 0, ψ fi χD the indicator function of D fi r´cep, ceps in
the sense of convex analysis, that is χDpxq “ 0 if x P D and `8
otherwise. Here cep ą 0 is an elasto-plastic coefficient. The real-
valued process Xε represents the velocity of a material point subjected
to an elasto-plastic restoring force and colored noise. The process
Zε taking values in r´cep, ceps represents the restoring force. See
for instance [27] for an explanation of the physics and the use of
SDEs with multivalued drift for modeling. Here we are interested
in ErpXε

T q
2 ` pZεT q

2s and in P p|ZεT | “ cepq for T “ 1. As ε Ñ
0, pXε, Zεq Ñ pX0, Z0q where pX0, Z0q satisfies (5.11). For the
stochastic simulation, we proceed as follows:

‚ X̂ε,k
0 “ x0 and Ẑε,k0 “ z0 and for 0 ď n ď NT ´ 1,

#

Ẑε,kn`1 “ projr´cep,ceps

´

Ẑε,kn ` δtX̂ε,k
n

¯

,

X̂ε,k
n`1 “ X̂ε,k

n ´ δtẐε,kn ` δt
ε η̂

ε,k
n .

‚ X̂0,k
0 “ x0 and Ẑ0,k

0 “ z0 and for 0 ď n ď NT ´ 1,

#

Ẑ0,k
n`1 “ projr´cep,ceps

´

Ẑ0,k
n ` δtX̂0,k

n

¯

,

X̂0,k
n`1 “ X̂0,k

n ´ δtẐ0,k
n `

?
δtC∆W k

n .

The expectations of the control variates are ErpX0
T q

2 ` pZ0
T q

2s and
Pp|Z0

T | “ cepq for T “ 1. They are estimated using the PDE method
of [28].

Example 7.3 (nonlinear and nonsmooth TDOF). A TDOF
with an elasto-plastic element can be represented as a system of the
form (2.30) which becomes
(7.3)
$

’

&

’

%

dXε
1

dt
` BχDpX

ε
1q “ Xε

2 ,
dXε

2

dt
“ ´g̃2pX

ε
1 , X

ε
2 , X

ε
3 , X

ε
4q `

1

ε
ηε,

dXε
3

dt
“ Xε

4 ,
dXε

4

dt
“ ´g̃4pX

ε
1 , X

ε
2 , X

ε
3 , X

ε
4q.

Here D “ r´cp, cps, cp “ 0.25. In addition to E
“

pXε
1,T q

2 ` pXε
3,T q

2
‰

for T “ 1, we are interested in Pp|Xε
1,T | ď a, |Xε

3,T | ď bq. As εÑ 0,
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Xε ÑX0 where
(7.4)
$

&

%

dX0
1 ` BχDpX

0
1 qdt “ X0

2 dt, dX0
2 “ ´g̃2pX

0
1 , X

0
2 , X

0
3 , X

0
4 qdt` CdW,

dX0
3 “ X0

4 dt, dX0
4 “ ´g̃4pX

0
1 , X

0
2 , X

0
3 , X

0
4 qdt.

Here, for simplicity the other elements are linear,

g̃2px1, x2, x3, x4q fi k1x1 ` c1x2 ´ k3px3 ´ x1q ´ c3px4 ´ x2q

and
g̃4px1, x2, x3, x4q fi k3px3 ´ x1q ` c3px4 ´ x2q.

The simulation of (7.3) and (7.4) is similar to what is explained
above. We take c1 “ c3 “ k1 “ k3 “ 1.

7.2 Non-smooth systems : beyond Equations (2.30) and
(2.31)

The two models presented in this subsection do not fall in the
scope of our theoretical results, though they are not too far off. The
presentation of the impact problem remains formal. The behaviour
of the control variate estimator is investigated via numerical exper-
iments.

Example 7.4 (impact problem). The pair displacement-velocity
Xε “ pXε

1 , X
ε
2q (taking values in R2) of a colored noise driven os-

cillator constrained by an obstacle can be formulated in terms of
an equation of the form (4.1) when |Xε

1,t| ă PO with the condi-

tion (that expresses the switch of the velocity at collision): for all
t, |Xε

1,t| “ PO ùñ Xε
2,t` “ ´eXε

2,t´ where PO is the location of

the obstacle and e P r0, 1s is the coefficient of restitution of energy.
The notations Xε

2,t˘ stand for the velocity immediately before and

after the collision. Here we are interested in ErpXε
2,T q

2s for T “ 1.

Formally, as εÑ 0, the R2-valued limit process X0 “ pX0
1 , X

0
2 q is a

white noise driven oscillator constrained by an obstacle that can be
formulated similarly to the former case, except that we replace (4.1)
by (4.2). When e “ 1 (resp. 0 ď e ă 1), we say that the collisions
are elastic (resp. inelastic). It is important to stress that obstacle
problems with inelastic collisions deserve more attention for practical
purposes since in real world phenomena kinetic energy is dissipated
through heat or plastic deformation. With elastic collisions, there is
no loss of kinetic energy. For the stochastic simulation, we use the
same numerical procedure as for (4.1) and (4.2), except that if we
find out that the pn ` 1qst point does not satisfy the obstacle condi-

tion, i.e. |X̂ε,k
1,n`1| ą PO, we adjust the time step length to θn`1δt
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with θn`1 fi
˘PO´X̂

ε,k
1,n

X̂ε,k
1,n`1´X̂

ε,k
1,n

and set tn`1 fi tn ` θn`1δt, X̂
ε,k
1,n`1 fi PO,

X̂ε,k
2,n`1 fi ´e

ˆ

X̂ε,k
2,n ´ θn`1δtfpX̂

ε,k
1,n, X̂

ε,k
2,nq ` θn`1

δt

ε
η̂ε,kn

˙

,

η̂ε,k2,n`1 fi η̂ε,kn

ˆ

1´ θn`1δt
A

ε2

˙

`
a

θn`1δt
Kou

ε
∆W k

n .

A similar adjustment is done in the other cases with Langevin and
white noises. The expectation of the control variate is ErpX0

2,T q
2s for

T “ 1 which is estimated using the PDE method of [28].

Example 7.5 (reflection of an integrated colored noise). De-
fine E fi r0,8q and consider the indicator function of E, that is
χEpxq “ 0 if x P E and `8 otherwise. The reflection of an inte-
grated colored noise corresponds to the case where Xε satisfies

(7.5)
dXε

dt
` BχEpX

εq Q
1

ε
ηε,

and X0, the limit process as εÑ 0, is a reflected Brownian motion

(7.6) dX0 ` BχEpX
0qdt Q CdW.

We are interested in ErXε
T s for T “ 1. For the stochastic simulation

of (7.5) and (7.6), we use the following scheme: X̂ε,k
0 “ x0, X̂0,k

0 “

x0 and for 0 ď n ď NT ´ 1,

‚ X̂ε,k
n`1 “ projE

´

X̂ε,k
n ` δt

ε η̂
ε,k
n

¯

,

‚ X̂0,k
n`1 “ projE

´

X̂0,k
n `

?
δtC∆W k

n

¯

.

The expectation of the control variate is given by an explicit formula
ErX0

1 s “
a

2{π. Indeed, the backward Kolmogorov equation for the
reflected Brownian motion in (7.6) is

Btw “ CB2
xw, x ą 0, t ą 0,

wpx, t “ 0q “ x, x ą 0, Bxwp0, tq “ 0, t ą 0.

It has an explicit solution

wpx, tq “
1

?
4Cπt

ż 8

0
y

ˆ

exp
`

´
px´ yq2

4Ct

˘

` exp
`

´
px` yq2

4Ct

˘

˙

dy,

which gives ErX0
T s “ wp0, T q “

a

2{π for T “ 1. In this case,
we can provide an ad hoc proof to get an estimate similar to (3.4)
(see [9, Appendix H]):

(7.7) E
“

pXε
T ´X

0
T q

2
‰

ď Cε2| log ε|.
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The log ε correction comes from a maximal inequality for the OU
process [14] and a standard result on the maxima of Gaussian pro-
cesses [26].

7.3 Numerical experiments

We report our numerical results for the four systems mentioned
above. The convention is as in Subsection 4.3. In each of the four fig-
ures below (Figures 7.1-7.4), there are four subfigures (a)-(b)-(c)-(d).
For subfigures (a) and (b), the driving force is an Ornstein-Uhlenbeck
noise (3.1) with A “ K “ 1. In subfigure (a), the dashed black lines,
the dotted blue lines, and the solid red lines represent the standard
MC estimator ÎεN and the control variate estimators ĴεN and K̂ε

N ,
respectively. The dotted black line represents the expectation of the
control variate I0. The objective of the subfigure (b) is to illustrate
the bounds (6.8) and (6.9). The same description applies to (c) and
(d), except they correspond to the case of a Langevin noise (3.2-3.3)
with µ “ γ “ K “ 1. For the examples in which Xε satisfies
(2.30), the asymptotic variance of the standard MC estimator ÎεN is
estimated by (4.7), the asymptotic variance of the control variate es-

timator ĴεN is estimated by (4.8), and the asymptotic variance of the

optimal control variate estimator K̂ε
N is estimated by (4.9). For the

examples in which pXε,Zεq satisfies (2.31), the asymptotic variance

of the standard MC estimator ÎεN is estimated by

(7.8) pσ2
Iε,N “

1

N

N
ÿ

k“1

`

F pXεpW kq,ZεpW kqqq
˘2
´ pÎεN q

2,

the asymptotic variance of the control variate estimator ĴεN is esti-
mated by

pσ2
Jε,N “

1

N

N
ÿ

k“1

´

F pXεpW kq,ZεpW kqq

´ F pX0pW kq,Z0pW kqq ` I0
¯2
´ pĴεN q

2,(7.9)

and the asymptotic variance of the optimal control variate estimator
K̂ε
N is estimated by

pσ2
Kε,N “

1

N

N
ÿ

k“1

´

F pXεpW kq,ZεpW kqq

´ ρ̂εNF pX
0pW kq,Z0pW kqq ` ρ̂εNI

0
¯2
´ pK̂ε

N q
2,(7.10)
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with ρ̂εN defined by (6.4). pσ2
Iε,N , pσ2

Jε,N , and pσ2
Kε,N are consistent

estimators of σ2
Iε , σ

2
Jε , and σ2

Kε , respectively.

Similarly to what was presented in Section 4, we use N “ 104

samples with a time step of δt “ 10´5. In Figures 7.1 and 7.2,

we report the numerical results for the friction and elasto-plastic

problems, which are of the form (2.30) and (2.31), respectively. In

Figures 7.3 and 7.4, we report the numerical results for the obstacle

problem and for the reflection of the integral of a colored noise. The

numerical results include errors bars on the estimators for each value

of ε P t0.1, 0.5, 0.9u in the ÎεN , Ĵ
ε
N , K̂

ε
N order.

The theoretical predictions provided by (6.8) and (6.9) are based

on the condition that f has bounded derivatives. The assumption

that f is smooth is important but the hypothesis on the bound-

edness of the derivatives can certainly be relaxed. The numerical

results shown in Figures 7.1 and 7.2 are in good agreement with the

theoretical predictions: the asymptotic variances σ2
Jε and σ2

Kε be-
have as Opε2q. The only cases where the behavior is Opεq, and not

Opε2q, are when the quantity of interest is of the form ErfpXε
T qs or

ErfpXε
T ,Z

ε
T qs with a function f that is not smooth, which is not

surprising. In Figure 7.2, we also observe that σ2
Jε and σ2

Kε behave
as Opε2q which is better than the behaviour Opεq expected from (6.9)

(which is an upper bound). In Figures 7.3 and 7.4, the numerical

results concern two problems which do not fall within the scope of

our theoretical predictions. The first one (Figure 7.3) is the impact

problem that cannot be formulated in the form a differential inclu-

sion of the form (2.30) or (2.31). The function f is smooth but the

behavior of σ2
Jε and σ2

Kε is not of order Opε2q, only of order Opεq.

The second one (Figure 7.4) is the reflection of an integrated colored

noise that can be formulated with a differential inclusion which is

similar to (2.30) but the multivalued drift does not satisfy the con-

dition (5.7). However, σ2
Jε and σ2

Kε behave as Opε2q. To summarize,
the numerical simulations indicate that the Opε2q behavior of the

asymptotic variance is observed in the cases predicted by the theory

and also slightly beyond. The smoothness of the function f that

appears in the quantity of interest is, however, an important con-

dition to ensure the Opε2q-behavior, otherwise one only observes a

Opεq-behavior.
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Figure 7.1. Example 7.1 (friction problem). The aim is
to estimate Iε “ ErpXε

T q
2s for T “ 1 where Xε satisfies

(2.30) with ϕpxq fi cf |x| with cf ą 0. The expectation of
the control variate I0 “ErpX0

T q
2s, where X0 satisfies (5.9),

is obtained by solving the partial differential inclu-

sion (7.1).

8 Concluding remark

When the expectation of the limit process ErfpX0
T qs cannot be

computed by a PDE method but is estimated by a massive Monte
Carlo method, the control variate method with ĴεN (or K̂ε

N ) shares
an important similarity with a two-level Monte Carlo method [10] in
the sense that many but cheap simulations are performed (samples of
X0 used to estimate ErfpX0

T qs) together with a few expensive simu-
lations (samples of pXε,X0q used to estimate ErfpXε

T q ´ fpX
0
T qs).

More generally, Multilevel Monte Carlo (MLMC) methods rely on
random samples taken on different levels of accuracy, when several
approximations with different costs and accuracies are available. The
overall idea of MLMC methods is to reduce the computational cost
of standard Monte Carlo methods by taking most samples with a
low accuracy and corresponding low cost, and by taking only few
samples with a high accuracy and corresponding high cost [10].

In this two-level Monte Carlo framework, the total cost of com-
puting the control variate estimator ĴεN (or K̂ε

N ) is CεJ “ N0C0 `

N1C1 where C0 is the cost of computing one realization of fpX0
T q,
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Figure 7.2. Example 7.2 (elasto-plastic problem). In
subfigures (a-d) the aim is to estimate Iε “ ErpXε

T q
2 `

pZεT q
2s with T “ 1 where pXε, Zεq satisfies (2.31) with

ϕpxq fi 0 and ψpxq fi 0 if |x| ď cep and `8 otherwise.
Here cep “ 0.25. The expectation of the control variate
I0 “ErpX0

T q
2 ` pZ0

T q
2s, where pX0, Z0q satisfies (5.11), is

obtained by using the PDE method of [28]. In subfigures
(a’-d’) the aim is to estimate Iε “ Pp|ZεT | “ cepq.
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Figure 7.3. Example 7.4 (impact problem). The aim
is to estimate Iε “ ErpXε

2,T q
2s with T “ 1 where Xε

satisfies the impact problem with a colored noise forcing.
Here PO “ 0.25. The expectation of the control variate
I0 “ErpX0

2,T q
2s, where X0 satisfies the impact problem

with a colored noise forcing, is obtained by using the PDE
method of [28].

C1 is the cost of computing one realization of pfpXε
T q´ fpX

0
T qq, N0

is the number of samples of fpX0
T q, and N1 is the number of samples

of pfpXε
T q ´ fpX0

T qq. The variance of the control variate estimator

ĴεN is V ε
J “ N´1

0 V0`N
´1
1 V1, where V0 is the variance of fpX0

T q and
V1 is the variance of pfpXε

T q ´ fpX0
T qq. For a fixed total budget

Ctot, the variance is minimized when pN1{N0q
2 “ pV1{V0qpC0{C1q

and it is then equal to V ε
J “ p

?
V0C0 `

?
V1C1q

2{Ctot. This can
be compared to the brute force Monte Carlo method: the cost is
CεI “ NIC1 where NI is the number of samples of fpXε

T q (we ne-
glect the difference of cost between pfpXε

T q ´ fpX0
T qq and fpXε

T q,
which is very small because Xε is more difficult to simulate than
X0) and the variance is V ε

I “ V0{NI (by (2.11)), so that for the
total budget Ctot, we have V ε

I “ V0C1{Ctot. If V1{V0 “ Opε2q (by
Proposition 2.1) and C0{C1 “ Opε2q (because the time step used
to simulate Xε should be Opε2q smaller than the one used to sim-
ulate X0), then we find that N1{N0 “ Opε2q (hence the “massive
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ÎεN
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Figure 7.4. Example 7.5 (reflection of an integrated col-
ored noise). The aim is to estimate Iε “ ErXε

T s for T “ 1
where Xε satisfies (7.5). The expectation of the control

variate is I0 “ ErX0
T s “

a

2{π.

Monte Carlo” strategy for the control variate) and the ratio of the
variance of the control variate estimator over the one of the brute
force Monte Carlo estimator is finally V ε

J {V
ε
I “ Opε2q. The control

variate method is very advantageous in this context.

Appendix A: Proof of Proposition 3.5

Let us first study the driving noise. The process η1 is a Gaussian,
Markov process. It has the form

η1
t “ e´Atη1

0 `

ż t

0
e´Apt´sqKdWs.

Its infinitesimal generator is:

(A.1) Q “
1

2

d
ÿ

k,k1“1

d1
ÿ

k2“1

Kkk2Kk1k2B
2
ηkηk1

´

d
ÿ

k,k1“1

Akk1ηk1Bηk .

The properties of the matrix A show that the process η1 is stationary
and ergodic; its unique invariant probability measure is the Gaussian
measure with mean zero and variance C given by (2.8).
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The process pηεt qtě0 has the same distribution as pη1
t{ε2qtě0 because

pε´1Wtqtě0 has the same distribution as pWt{ε2qtě0. Therefore it is

a Markov process with generator ε´2Q.

The process pXε,X0,ηεq is Markov with generator Lε given by:

Lε “ 1

ε2
Q`

1

ε

”

n
ÿ

j“1

d
ÿ

i“1

σjipxqηiBxj `
n
ÿ

j“1

d
ÿ

i“1

d1
ÿ

k“1

Γjkpx
0qKikB

2
ηix0j

ı

`

”

n
ÿ

j“1

bjpxqBxj `
1

2

n
ÿ

i,j“1

d1
ÿ

k“1

Γikpx
0qΓjkpx

0qB2
x0i x

0
j

`

n
ÿ

j“1

rbjpx
0qBx0j

ı

,(A.2)

where Q is the generator (A.1).

Lemma A.1. For any smooth and bounded test function φ : Rn ˆ
Rn Ñ R, for any compact subset K of R2n, there exists a test func-
tion φε such that

sup
px,x0qPK

|φεpx,x0,ηq ´ φpx,x0q| ď Cεp1` }η}2q ,(A.3)

sup
px,x0qPK

|Lεφεpx,x0,ηq ´ Lφpx,x0q| ď Cεp1` }η}3q ,(A.4)

for any ε P p0, 1q, where L is the generator defined by

L “
n
ÿ

j“1

rbjpxqBxj `
n
ÿ

j“1

rbjpx
0qBx0j

`
1

2

n
ÿ

i,j“1

rΓpxqΓpxqT sijB
2
xixj

`
1

2

n
ÿ

i,j“1

rΓpx0qΓpx0qT sijB
2
x0i x

0
j
`

n
ÿ

i,j“1

rΓpxqΓpx0qT sijB
2
xix0j

.(A.5)

Proof of Lemma A.1: the proof is an application of the perturbed
test function method (see the extended online version [9]).

Appendix B: Proof of Lemma 3.8

We define
(B.1)
φpx,x0q “ gpx0q

`

fpxq ´ fpx0q
˘

or φpx,x0q “ pfpxq ´ fpx0qq2.

Lemma A.1 applied to φ gives an estimate for (3.4) of order ε, but
the particular form of φ makes it possible to get ε2. Lemma 3.8 can
be proved in four steps, see the extended online version [9].
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Appendix C: Existence and uniqueness of (2.30) and
(2.31)

Proposition C.1. Fix T ą 0, n P N‹. Suppose that f P Cpr0, T s;Rnq,
b is Lipschitz, and ϕ is a l.s.c. convex function satisfying (5.7).
Then there exists a unique solution x P Cpr0, T s;Rnq to the following
differential inclusion

(C.1) 9xptq ` Bϕpxptqq Q bpxptqq ` fptq, t ą 0.

with xp0q “ x0 P Rn.

Proposition C.2. Fix T ą 0, n,m P N‹. Suppose that f P Cpr0, T s;Rnq,
bx : Rn Ñ R and bz : Rm Ñ R are Lipschitz, and ϕ : Rn Ñ
R, ψ : Rm Ñ R are l.s.c. convex functions, with ϕ satisfying
(5.7) and ψ satisfying (5.8). Then there exists a unique solution
px, zq P Cpr0, T s;Rn ˆ Rmq to the following differential inclusion

(C.2)
9xptq ` Bϕpxptqq Q bxpxptq, zptqq ` fptq,
9zptq ` Bψpzptqq Q bzpxptq, zptqq,

t ą 0,

with pxp0q, zp0qq “ px0, z0q P Rn ˆ Rm.

Proofs of Propositions C.1-C.2: see the extended online version [9].

Appendix D: Existence and uniqueness for (5.9)

Let us first take a look at the case where we remove the multi-
valued operator Bϕ from the drift in (5.9). The problem becomes
the same as (2.5) where σ is constant and in particular it does
not involve a stochastic integral. Thus, as pointed out in page
294 of [18], the proof of existence and uniqueness of a solution
(still in [18], Theorem 2.9 page 289) can be simplified in a way
that makes no use of probabilistic tools. We consider the Wiener
space

`

Ω fi C
`

r0, T s;Rd
˘

,F fi B
`

C
`

r0, T s;Rd
˘˘

,P
˘

where Ω is the

space of Rd-valued continuous functions on r0, T s endowed with the
norm @ω P Ω, }ω} fi sup

0ďtďT
}ωptq}, B

`

C
`

r0, T s;Rd
˘˘

is the Borel

σ-algebra on Ω, P is the Wiener measure. We introduce the map-
pings indexed by t P r0, T s, Wtp¨q : Ω Ñ Rd, ω ÞÑ Wtpωq fi ωptq,
the sequence of σ-algebras F t fi σtWs, 0 ď s ď tu, and the map
X : Ω Ñ C pr0, T s;Rnq, ω ÞÑ Xpωq fi x where @0 ď t ď T, xptq “

xp0q `
şt
0 bpxpsqqds ` Γωptq. Under P, W is a Wiener process and

XpW q solves (2.5) where σ is constant. In this approach, the key in-
gredient is the mapping X. For obtaining the existence and unique-
ness of the solution to (5.9) with the multivalued operator Bϕ, we dis-
cuss below the properties of a similar mapping to X which involves
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the multivalued operator. This is done via the so-called “General-
ized Skorokhod Problem”. The discussion follows [30] from page 245
to page 252. We use the notation BV r0, T s for the space of functions
with bounded variation on r0, T s.

Definition D.1 (Generalized Convex Skorokhod Problem). If a pair
of functions px,∆q satisfies the following conditions

(1) x,∆ : r0, T s Ñ Rn are continuous, xp0q “ x0 and ∆p0q “ 0,

(2) @0 ď t ď T, xptq P DompBϕq, ∆ P BV pr0, T s;Rnq,
(3) @0 ď t ď T, xptq `∆ptq “ x0 `

şt
0 bpxpsqqds` Γωptq,

(4) @0 ď s ď t ď T, @z P Rn,
şt
s

`

xprq´z
˘

¨d∆prq`
şt
s ϕpxprqqdr ď

pt´ sqϕpzq,

then we say that x solves the generalized Skorokhod problem with pa-
rameters Bϕ,x0, b and ω and we use the notation x “ GSPpBϕ,x0, b,ωq.

Existence and uniqueness of a solution for the Generalized Sko-
rokhod Problem can be found in Theorem 4.17 page 252. This is
obtained under the following conditions : ϕ is a l.s.c convex func-
tion and int pDompϕqq ‰ H; b is Lipschitz, x0 P DompBϕq and
ω : r0, T s ÞÑ Rn is continuous with ωp0q “ 0. The continuity
of the mapping X : Ω Ñ C pr0, T s;Rnq, ω ÞÑ Xpωq fi x where
x “ GSPpBϕ,x0, b,ωq is shown in proposition 4.16 page 247. We
use the notation S0

nr0, T s for the space of progressively measurable
continuous stochastic processes (p.m.c.s.p.) from Ωˆ r0, T s to Rn,

S2
nr0, T s fi

"

Z P S0
nr0, T s, E

”

sup
0ďtďT

}Zptq}2
ı

ă 8

*

.

Within the framework of the aforementioned Wiener space, XpW q P

S0
nr0, T s solves (5.9). Furthermore, it can be shown that XpW q P

S2
nr0, T s.
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