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Abstract

In this paper we examine a control variate estimator for a quantity that can be expressed
as the expectation of a function of a random process, that is itself the solution of a differential
equation driven by fast mean-reverting ergodic forces. The control variate is the same function
for the limit diffusion process that approximates the original process when the mean-reversion
time goes to zero. To get an efficient control variate estimator, we propose a coupling method for
the original process and the limit diffusion process. We show that the correlation between the
two processes indeed goes to one when the mean reversion time goes to zero and we quantify the
convergence rate, which makes it possible to characterize the variance reduction of the proposed
control variate method. The efficiency of the method is illustrated on a few examples.

1 Introduction

In this paper we consider a system driven by external time-dependent random forces and we aim to
compute a quantity of interest that is the expectation of a function of the system. The system state
is the solution of an ordinary differential equation (or a system of ordinary differential equations)
driven by external forces which are modeled as stationary random processes. The driving processes
may have complicated spectra that have to be taken into account to compute the quantity of
interest. This happens for instance in seismic probabilistic risk assessment studies or in the analysis
of the structural performance of installations under seismic excitations [31] or under other loading
sources such as wind or waves [17,33]. For instance, the reliability of complex systems such as fixed
or floating offshore wind turbines depends on its resistance against fatigue damage. Fatigue damage
can be assessed by time-domain simulations in which the structure is subjected to wind, wave and
current loads [5]. The different loads can be described by (locally) stationary Gaussian processes
with tabulated power spectral densities (such as the JONSWAP spectrum [15]). We may then wish
to estimate the mean cumulative fatigue damage or a probability of failure which corresponds to
the exceedance of a threshold value.

Monte Carlo simulations are standard to estimate the quantities of interest but they may be
very time consuming. We look for an efficient variance reduction technique in this framework. It
is known from the diffusion approximation theory [6, 8, 21] that the driving forces can often be
approximated by white noises and the responses of the system can then be modeled by stochastic
differential equations. This makes it possible to implement a partial differential equation approach
to compute the quantity of interest. However, the bias due to the approximation of the original
driving force by a white noise may be significant and difficult to assess. To compensate for this bias,
one may think at a control variate method [12]. Such a strategy has already been implemented
in a Markov chain Monte Carlo context, where the goal was to sample from a complex invariant
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probability distribution of a Markov chain for which an approximate distribution has a known
expression. The expectation of the approximate distribution then provides an initial guess, which
can be corrected by simulating the two coupled processes to estimate the difference (in expected
values) between the true distribution and the approximate distribution [13]. The implementation
of a control variate method in our framework requires to be able to simulate the system driven
by the original driving force with its complicated spectrum and the limit system driven by the
white noise in such a way that both systems are strongly correlated. Unfortunately, most diffusion
approximation results are established in a weak sense [6,8]. Some strong results have been obtained
but only when the drift is a term of order one [11,19,25], not when it is a zero-mean large term as
we deal with in this paper. In this paper we build an efficient coupling between the original and
limit systems, we establish a strong convergence result by quantifying the mean square distance
between the original and limit processes, and we characterize the variance reduction of the control
variate method. We show by our theoretical results and numerical simulations that the variance
reduction can be dramatic.

Our method is relevant when the quality of the approximation of the driving forces by a white
noise is moderate. If it is very accurate, then the quantity of interest can be estimated (up to a
very small and negligible bias) by resolution of a Kolmogorov equation based on the limit diffusion
system (or by a brute force Monte Carlo method applied to the limit system), so there is no need to
apply a control variate method. If it is very poor, then the limit diffusion system is not correlated
to the original system and the control variate method is not efficient. If it is moderate, then the
bias of the estimation method that consists in replacing the original system by the limit one is
non-negligible, and the two systems are correlated, so that the control variate method turns out to
be very efficient.

The paper is organized as follows. In Section 2 we introduce the random ordinary differential
equations addressed in this paper and we state the main results of the paper. Note that, motivated
by applications in engineering mechanics and physics such as the study of the risk analysis of
failure for mechanical structures subjected to random vibrations [1, 2, 7, 23] or the modeling of
the stochastic dynamics of fluid-structure interaction in turbulent thermal convection [16], we
also consider the case of multivalued ordinary differential equations. Sections 3-4 consider random
ordinary differential equations. In Section 3 we state the diffusion approximation theorem that gives
the convergence in probability of the original process to the limit process. In Section 4 we apply
the control variate method to a few examples. The results are extended to the multivalued case
in Sections 5-7. In particular Section 7 report numerical results for relevant engineering mechanics
problems. The concluding remark of Section 8 connects our findings to the multilevel Monte Carlo
literature.

2 Main results

We consider the Rn-valued process Xε “ pXε
t qtPr0,T s solution of the ordinary differential equation

(ODE)1

dXε

dt
“ bpXεq `

1

ε
σpXεqηε, Xε

0 “ x0, (1)

1Throughout the paper, symbols of scalar quantities are printed in italic type, symbols of vectors are printed in
bold italic type, and symbols of matrices are printed in bold type.
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where bpxq is a Lipschitz function from Rn to Rn, σpxq is a function of class C2 with bounded
derivatives from Rn to Mn,dpRq, and ηε is a Rd-valued rapidly varying mean-reverting process,
with a mean equal to zero, a unique invariant distribution, and a mean reversion time of the order
of ε2. More exactly, in this paper we address the case when ηε is a multivariate d-dimensional
Ornstein-Uhlenbeck process

dηε “
K

ε
dWt ´

A

ε2
ηεdt, (2)

where A is a dˆ d matrix, whose eigenvalues have positive real parts, K is a dˆ d1 matrix, and W
is a d1-dimensional Brownian motion. This model is classical. It can be encountered in earthquake
engineering [24] and also in finance [35]. It can model stationary Gaussian processes with very
general spectra (see Section 3).

Our main motivation is to estimate a quantity of the form

Iε fi ErF pXεqs (3)

for a fixed, small or moderate, parameter ε, for a smooth real-valued function F defined on the
space of continuous functions over r0, T s. We may think at F pXq “ fpXT q where f is smooth with

polynomial growth, or F pXq “
şT
0 hpXsqds ` fpXT q. By the Feynman-Kac formula it is possible

to get the value of Iε for the model (1-2) by solving a parabolic equation, but this equation is
formulated in a d` n-dimensional space and it possesses large terms (of order ε´2) that give rapid
fluctuations. These rapid fluctuations need to be resolved by the numerical scheme, which imposes
to take a time step smaller than ε2. The numerical resolution (with a finite difference method)
is, therefore, challenging, if not impossible, and we look for other resolution methods. It is also
possible to estimate Iε by a brute force Monte Carlo method. The Monte Carlo method, however,
requires many simulations to get an accurate estimation, and each simulation requires to resolve
the rapid fluctuations at the scale ε2, so we would like to propose an efficient variance reduction
method. The main idea is to find a limiting process X0 that approximates Xε in a strong sense
when εÑ 0 and for which the value

I0 “ ErF pX0qs (4)

is known or can be estimated efficiently. It is then possible to propose a control variate method to
estimate Iε for a fixed ε.

We consider the limiting Rn-valued process X0 solution of the stochastic differential equation
(SDE)

dX0 “ rbpX0qdt` ΓpX0qdWt, (5)

where X0 share the same driving Brownian motion as η, with the functions rbpxq from Rn to Rn
and Γpxq from Rn to Mn,d1pRq given by

rbjpxq fi bjpxq `
n
ÿ

i“1

`

pBxiσpxqqA
´1CσpxqT

˘

ji
, (6)

Γpxq fi σpxqA´1K, (7)

and C is the dˆ d matrix defined by

C fi

ż 8

0
e´AsKKT e´A

T sds. (8)
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The matrix C is the covariance matrix of the stationary distribution of the process ηε. We show in
Proposition 3.5 that the continuous process pXε ´X0q converges in probability to zero as εÑ 0.
The fact that the continuous process Xε converges in distribution to X0 is well-known [8, Chapter
6], but here we get a stronger result with a particular coupling between the two processes Xε and
X0, that is needed to implement the control variate method that we have in mind.

The form of the limiting equation (5) is not surprising. Indeed, by (2), we can anticipate that
1
εη

εdt » A´1KdWt`corrections, which explains the form (7) of the diffusion Γ. The form (6) of

the drift rb is a manifestation of the Itô-versus-Stratonovich problem [32]. This problem is whether
one should interpret the stochastic integral in the limiting equation in Itô sense, Stratonovich
sense, or another sense. The Wong-Zakai theory [36] claims that the limiting diffusion should
be a Stratonovich equation when d “ 1. Indeed, Eqs. (6-8) then reduce to Γpxq “ 1

AσpxqK,
C “ 1

2AKKT ,

rbjpxq ´ bjpxq “
1

2A2

n
ÿ

i“1

`

BxipσpxqKqpσpxqKq
T
˘

ji
“

1

2

n
ÿ

i“1

`

BxiΓpxqΓpxq
T
˘

ji
,

so that (5) can be written as

dX0 “ bpX0qdt` ΓpX0q ˝ dWt, (9)

where ˝ stands for the Stratonovich integral, because

`

ΓpX0q ˝ dWt

˘

j
“

`

ΓpX0qdWt

˘

j
`

1

2

n
ÿ

i“1

d1
ÿ

j1“1

BxiΓjj1pX
0qd

〈
X0
i ,Wj1

〉
t

“
`

ΓpX0qdWt

˘

j
`

1

2

n
ÿ

i“1

`

BxiΓpX
0qΓpX0qT

˘

ji
dt.

The form (9) is valid when d “ 1 and it looks simpler than (5), but we have chosen to write the
stochastic integral in (5) in Itô’s sense and to add the appropriate Itô-Stratonovich drift correction
rb´b, because it is a natural starting point for numerical schemes [20] and it is the appropriate form
to express the martingale problems used in the proofs (see Appendix). When d ą 1 the difference
between rb and b is an Itô-Stratonovich correction that is more complex and the limiting equation
(5) cannot be reduced to (9).

We can now introduce the Monte Carlo method for the estimation of Iε. Let W k, k “ 1, . . . , N ,
be N independent and identically distributed d1-dimensional Brownian motions. We consider three
Monte Carlo-type estimators of Iε:
1) The brute force Monte Carlo estimator is

ÎεN fi
1

N

N
ÿ

k“1

F pXεpW kqq, (10)

where XεpW kq is the solution of (1-2) with W k. The estimator ÎεN is unbiased and its variance is

VarpÎεN q “
1

N
VarpF pXεqq. (11)
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It is asymptotically normal as N Ñ `8:

?
N
`

ÎεN ´ I
ε
˘ dist.
ÝÑ N

`

0, σ2
Iε
˘

, (12)

with the asymptotic variance
σ2
Iε “ VarpF pXεqq, (13)

which has the following behavior as εÑ 0 when F is continuous and bounded (because Xε weakly
converges to X0):

σ2
Iε “ VarpF pX0qq ` op1q. (14)

2) The control variate estimator [12] is

ĴεN fi I0 `
1

N

N
ÿ

k“1

F pXεpW kqq ´ F pX0pW kqq, (15)

where I0 “ ErF pX0qs is supposed to be known exactly (or with high accuracy). The value I0 can
be obtained by solving a Kolmogorov equation in a n-dimensional framework and without large
term; if this is not possible (because n is too large for instance), then the value I0 can be obtained
by a brute force Monte Carlo method which is easier than for Iε because there is no large term of
order ε´2, so that a standard Euler scheme for stochastic differential equations can be used [20].
The control variate estimator ĴεN is unbiased and its variance is

VarpĴεN q “
1

N
VarpF pXεq ´ F pX0qq. (16)

It is asymptotically normal as N Ñ `8:

?
N
`

ĴεN ´ I
ε
˘ dist.
ÝÑ N

`

0, σ2
Jε

˘

, (17)

with the asymptotic variance
σ2
Jε “ VarpF pXεq ´ F pX0qq. (18)

When F is continuous and bounded, we have by Proposition 3.5 that σ2
Jε goes to zero as εÑ 0. More

quantitatively, if F pXq “ fpXT q for a smooth f with bounded derivatives, then the asymptotic
variance has the following behavior as εÑ 0 (by Lemma 3.8):

σ2
Jε ď Cε2. (19)

The order of magnitude ε2 of the asymptotic variance of ĴεN is confirmed by the numerical simula-
tions that we report in Section 4.
3) The theoretical optimal control variate estimator is

ÔεN fi ρεI0 `
1

N

N
ÿ

k“1

F pXεpW kqq ´ ρεF pX0pW kqq, (20)

with
ρε “ CovpF pXεq, F pX0qq{VarpF pX0qq. (21)
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This estimator is unbiased and has the minimal variance

Var
`

ÔεN
˘

“
1

N
VarpF pXεq ´ ρεF pX0qq, (22)

amongst all control variate estimators of the form

ρI0 `
1

N

N
ÿ

k“1

F pXεpW kqq ´ ρF pX0pW kqq.

Note that ρ “ 0 corresponds to the brute force Monte Carlo estimator ÎεN , ρ “ 1 corresponds to

the control variate estimator ĴεN , and ρ “ ρε corresponds to the optimal control variate estimator

ÔεN . The estimator ÔεN is asymptotically normal as N Ñ `8:

?
N
`

ÔεN ´ I
ε
˘ dist.
ÝÑ N

`

0, σ2
Oε

˘

, (23)

with the asymptotic variance

σ2
Oε “ VarpF pXεq ´ ρεF pX0qq. (24)

The estimator ÔεN is, however, not practical as it depends on ρε which is unknown. The practical
optimal control variate estimator [12] is

K̂ε
N fi ρ̂εNI

0 `
1

N

N
ÿ

k“1

F pXεpW kqq ´ ρ̂εNF pX
0pW kqq, (25)

where ρ̂εN is the empirical correlation

ρ̂εN “

řN
k“1pF pX

εpW kqq ´ ÎεN qpF pX
0pW kqq ´ Î0

N q
řN
k“1pF pX

0pW kqq ´ Î0
N q

2
, (26)

with ÎεN “ 1
N

řN
k“1 F pX

εpW kqq as in (10) and Î0
N “ 1

N

řN
k“1 F pX

0pW kqq. This estimator is

a practical and approximate version of the theoretical optimal control variate estimator ÔεN in
which the unknown correlation coefficient ρε has been replaced by its empirical estimator ρ̂εN . The

estimator K̂ε
N may be slightly biased and may have a variance slightly larger than (22) because of

the empirical estimation of ρε. K̂ε
N is, however, asymptotically normal with an asymptotic variance

that is the same one as that of the optimal estimator ÔεN , as shown by the following proposition.

Proposition 2.1. As N Ñ `8,

?
N
`

K̂ε
N ´ I

ε
˘ dist.
ÝÑ N

`

0, σ2
Kε

˘

, (27)

with
σ2
Kε “ σ2

Oε “ VarpF pXεq ´ ρεF pX0qq. (28)

Furthermore, if F is continuous and bounded, then σ2
Kε goes to zero as εÑ 0. If F pXq “ fpXT q,

with f with bounded derivatives, then there exists C ą 0 such that

σ2
Kε ď Cε2, 0 ď σ2

Jε ´ σ2
Kε ď Cε4. (29)
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Proof. By the law of large numbers, ρ̂εN converges to ρε as N Ñ `8. The convergence holds almost
surely, hence in probability. We have

K̂ε
N ´ I

ε “ pÔεN ´ I
εq ´ pρ̂εN ´ ρ

εqpÎ0
N ´ I

0q,

so we get (27-28) from Slutsky’s theorem.
Furthermore, we have

σ2
Jε ´ σ2

Kε “ VarpF pX0qqp1´ ρεq2.

If F is continuous and bounded, then ρε goes to one and σ2
Jε goes to zero as εÑ 0 by Proposition

3.5. If F pXq “ fpXT q, then, by Lemma 3.8, 1 ´ ρε and σ2
Jε are of order Opε2q for small ε. This

shows the desired result (29).
Proposition 2.1 shows that the asymptotic variances of the estimators K̂ε

N and ĴεN are equivalent
for vanishingly small ε and of the order of Opε2q, and that the asymptotic variance of the estimator
K̂ε
N is slightly smaller than that of ĴεN for moderately small ε. These statements are confirmed by

the numerical simulations that we report in Section 4.
In addition, motivated by the examples that we address in Section 7, we consider the case where

the Rn-valued process Xε satisfies a multivalued ODE of the form

dXε

dt
` BϕpXεq Q bpXεq `

1

ε
σηε, Xε

0 “ x0, (30)

and the case where Xε together with a Rm-valued process Zε satisfy the multivalued ODE

$

’

&

’

%

dXε

dt
` BϕpXεq Q bXpXε,Zεq `

1

ε
σηε, Xε

0 “ x0,

dZε

dt
` BψpZεq Q bZpXε,Zεq, Zε

0 “ z0.

(31)

Here σ P Mn,dpRq is constant, bpxq from Rn to Rn, bZpx, zq from Rn`m to Rm and bXpx, zq
from Rn`m to Rn are Lipschitz functions. The operators Bϕ and Bψ are the subdifferentials of
some lower semi continuous (l.s.c.) convex functions ϕ from Rn to r0,`8s and ψ from Rm to
r0,`8s. Stronger hypotheses will be assumed on ϕ compared to ψ as explained in Section 5 and
important examples motivate the two situations as shown in Section 7. It is important to observe
that the multivalued operators that appear in the differential inclusions above are subdifferential of
convex functions, therefore existence and uniqueness are guaranteed [4, page 72]. For the reader’s
convenience, proofs of existence and uniqueness are given in Appendix C. It is worth mentioning that
there is an alternative formulation using the language of variational inequalities, that is equivalent
to differential inclusions. Eq. (30) is equivalent to

@ξ P Rn, @t ą 0,
´

bpXεq `
1

ε
σηε ´

dXε

dt

¯

¨
`

ξ ´Xε
˘

` ϕpXεq ď ϕpξq, Xε
0 “ x0,

and Eq. (31) is equivalent to

@ξ P Rn, @ζ P Rm, @t ą 0,
´

bXpXε,Zεq `
1

ε
σηε ´

dXε

dt

¯

¨
`

ξ ´Xε
˘

` ϕpXεq ď ϕpξq, Xε
0 “ x0,

´

bZpXε,Zεq ´
dZε

dt

¯

¨
`

ζ ´Zε
˘

` ψpZεq ď ψpζq, Zε
0 “ z0.
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Propositions 5.1 and 5.2 show that the multi-valued process Xε strongly converges to a limiting
process solution of a multivalued SDE. Eqs. (64) and (65) show that the control variate estimators
have asymptotic variances of order ε2 for (30) and ε for (31).

To demonstrate the efficiency of our method on a practical problem, we consider a two-degree
of freedom (TDOF) system as shown in Figure 1. It can describe a broad class of TDOF structures,
including a two-storey building as presented in [34, Figure 4.6(a)].

1

3

m1

forcing ε´1ηε

m3

X1 X3

c1

k3

Figure 1: A rheological model of a two-degree of freedom system. Two masses m1 and m3 are
associated in series with elements which are themselves an association of dampers and springs.
Elements 1© and 3© represent a spring and a damper respectively, both possibly nonlinear or
hysteretic. Here c1 is a damping coefficient associated to the linear damper connecting the mass
m1 to the foundation and k3 is a stiffness coefficient of the linear spring linking the masses m1 and
m3. A random forcing ε´1ηε is applied to the mass m1 (e.g. wind forces on a two-storey building).

When the external force ηε is a colored noise such as an Ornstein-Uhlenbeck process, the
equation of motion can be written in the form of Equation (1) with n “ 4, where pXε

1 , X
ε
2q, resp.

pXε
3 , X

ε
4q, represents the position and the velocity of the mass m1, resp. m3, shown in Figure 1.

Many nonlinear behaviours enter into this framework, we have in mind a nonlinear spring of the
linear-plus-quadratic cubic type and a nonlinear damper of the linear-plus-quadratic type (see
Example 4.3 and Figure 2). Similarly Equations (30) and (31) arise in the description of nonlinear
behaviours with hysteresis such as elasto-plasticity and friction, see [34, Chapter 8] and Section 7
(see Example 7.3 and Figure 3). In Figures 2-3 we compare the behaviors of the brute force Monte
Carlo estimator ÎεN with the ones of the control variate estimators ĴεN and K̂ε

N . We also plot the

empirical estimators of the asymptotic variances of the estimators ÎεN , ĴεN , and K̂ε
N as described in

Subsection 7.3. In addition, for each value of ε P t0.1, 0.5, 0.9u, error bars (95% confidence interval)
are shown for each of the estimators (in ÎεN , ĴεN , K̂ε

N order from the left to the right). Here I0 is
obtained by a massive Monte Carlo estimation of the limit process, which is possible with a coarse
grid step as there is no large term involved. We can observe that the control variate estimator K̂ε

N

has always the minimal variance. When ε is small and the original system and the limit system
are poorly correlated ρε » 0, it behaves as the standard Monte Carlo estimator ÎεN . When ε is
small and the original system and the limit system are strongly correlated ρε » 1, it behaves as the
control variate estimator estimator ĴεN . We can also observe that the variance reduction is by a
factor of order ε2 when the quantity to be estimated is the expectation of a smooth function, while
it is of order ε when the quantity to be estimated is the expectation of an indicator function.
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0.1

ε

ÎεN
ĴεN
K̂ε
N

I0

(a)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
¨10´2

ε

σ̂2
Iε,N

σ̂2
Jε,N

σ̂2
Kε,N

(b)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

¨10´2

ε

σ̂2
Kε,N{ε

σ̂2
Kε,N{ε

2

(c)

0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

ε

ÎεN
ĴεN
K̂ε
N

I0

(a)

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

ε

σ̂2
Iε,N

σ̂2
Jε,N

σ̂2
Kε,N

(b)

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ε

σ̂2
Kε,N{ε

σ̂2
Kε,N{ε

2

(c)

Figure 2: Example 4.3 of a TDOF modeling a two-storey building with nonlinear spring of the
linear-plus-quadratic cubic type and nonlinear damper of the linear-plus-quadratic type, driven by
an Ornstein-Uhlenbeck noise. In the top row the target is to estimate Iε “ E

“

pXε
1,T q

2 ` pXε
3,T q

2
‰

for T “ 1 and the expectation of the control variate I0 “ ErpX0
1,T q

2 ` pX0
3,T q

2s is obtained by
an intensive Monte Carlo computation with coarse time step. In the bottom row the target is to
estimate Iε “ Pp|Xε

1,T | ď a, |Xε
3,T | ď bq for T “ 1, a “ 0.1, b “ 0.1 and the expectation of the control

variate I0 “ Pp|X0
1,T | ď a, |X0

3,T | ď bq is also obtained by an intensive Monte Carlo computation
with coarse time step. The numerical procedure is standard and is described in Section 4 (Euler-
Maruyama time discretization with time step δt “ 10´5). Here the number of Monte Carlo samples
is N “ 104 and m1 “ m3 “ c1 “ k3 “ 1. The details of the elements 1© and 3© with nonlinear
behaviours can be found in Example 4.3.

3 Diffusion approximation for a driving multivariate Ornstein-
Uhlenbeck process

We consider the Rn-valued process Xε solution of the ODE (1) when ηε is the multivariate d-
dimensional Ornstein-Uhlenbeck process (2). We give several explicit examples.

Example 3.1. ηε is a one-dimensional Ornstein-Uhlenbeck process, d “ d1 “ 1, A,K ą 0,

dηε “ ´
A

ε2
ηεdt`

K

ε
dWt. (32)

Example 3.2. ηε is a Langevin process

dηε1 “
1

ε2
ηε2dt, (33)

dηε2 “ ´
1

ε2

“

µηε1 ` γη
ε
2

‰

dt`
K

ε
dWt, (34)
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Figure 3: Example 7.3 of a TDOF modeling a two-storey building with an hysteretic spring of
elasto-plastic type, driven by an Ornstein-Uhlenbeck noise. The quantities presented here are
similar to those presented in Figure 2. The details of the elements 1© and 3© with nonlinear and
hysteretic behaviours can be found in Example 7.3.

which corresponds to d “ 2, d1 “ 1, A “

ˆ

0 ´1
µ γ

˙

, and K “

ˆ

0
K

˙

. The process ηε1 is a white-

noise driven linear oscillator with stiffness µ ą 0 and damping γ ą 0. It can be encountered in
earthquake engineering because it is considered to be a realistic type of random forcing to represent
seismic excitation (it is the so-called Kanai-Tajimi model [24]).

Example 3.3. If η̃ε is a real-valued zero-mean stationary Gaussian process with power spectral

density PSDεpωq “ ε2PSDpε2ωq, PSDpωq “
řq
k“1

σ2
k

1`ω2{∆Ω2
k

, then it has the same distribution as

the process
řq
k“1 σkη

ε
k where ηε is solution of (2) with d “ d1 “ q and

A “ K “ diag
`

∆Ωk, k “ 1, . . . , q
˘

.

This shows that any zero-mean stationary Gaussian process with power spectral density that can be
decomposed as a sum of centered Lorentzians belongs to the model (2).

Example 3.4. If η̃ε is a real-valued zero-mean stationary Gaussian process with power spectral

density PSDεpωq “ ε2PSDpε2ωq, PSDpωq “ 1
2

řq
k“1

σ2
k

1`pω´ωkq
2{∆Ω2

k
`

σ2
k

1`pω`ωkq
2{∆Ω2

k
, then it has the

same distribution as the process
řq
k“1 σkη

ε
2k´1 where ηε is solution of (2) with d “ d1 “ 2q and

A “ ‘
q
k“1

ˆ

∆Ωk ´ωk
ωk ∆Ωk

˙

, K “ ‘
q
k“1

ˆ

∆Ωk 0
0 ∆Ωk

˙

.

This shows that any zero-mean stationary Gaussian process with power spectral density that can be
decomposed as a sum of non-centered Lorentzian functions belongs to the model (2).

10



We also consider the limiting Rn-valued process X0 solution of the SDE (5). The continuous
process pXε´X0q converges in probability to zero as εÑ 0 as stated in the following proposition.

Proposition 3.5. If Xε
0 “ X0

0 , then the continuous process pXε ´X0q converges in probability
to zero as ε Ñ 0. The convergence holds in the space of continuous functions equipped with the
topology associated to the uniform norm over compact intervals.

The proof of Proposition 3.5 is based on the perturbed test function method as described first
in [22, Chapter 7] or in [8, Chapter 6]. It is given in Appendix A.

Example 3.6. We consider the process Xε solution of the ODE (1) where ηε is the rapidly varying
mean-reverting process (32). We also consider the limiting process

dX0 “ bpX0qdt`
K

A
σpX0qdWt `

K2

2A2
pσpX0q ¨∇x0qσpX0qdt,

driven by the same Brownian motion. The continuous process pXε ´X0q converges in probability
to zero as εÑ 0.

Example 3.7. We consider the process Xε solution of the ODE (1) where ηε is the rapidly varying
mean-reverting process (33-34). We also consider the limiting process

dX0 “ bpX0qdt`
K

µ
σpX0qdWt `

K2

2µ2
pσpX0q ¨∇x0qσpX0qdt,

driven by the same Brownian motion. The continuous process pXε ´X0q converges in probability
to zero as εÑ 0.

The proof that the optimal control variate estimator K̂ε
N and the control variate estimator ĴεN

have asymptotic variances of the order of ε2 as stated in Proposition 2.1 follows from the following
lemma.

Lemma 3.8. Let f, g be smooth functions from Rn to R with bounded derivatives. Let T ą 0.
There exists C ą 0 such that, for any t P rε, T s,

ˇ

ˇE
“

gpX0
t q
`

fpXε
t q ´ fpX

0
t q
˘‰ˇ

ˇ ď Cε2, E
“`

fpXε
t q ´ fpX

0
t q
˘2‰

ď Cε2. (35)

The important hypothesis is that f should be smooth. We could certainly relax the hypothesis
on the bounded derivatives by using uniform estimates of high-order moments of the process Xε.
Lemma 3.8 is proved in Appendix B.

4 Numerical simulations

In this section, we illustrate our control variate method and report the numerical results on different
types of dynamical systems driven by colored noises. The two examples are smooth oscillators that
can be described by Equation (1) (one being linear with time-dependent coefficients and the other
being of Van der Pol type). Other examples with non-smooth dynamical systems will be addressed
in Section 7.

We use the Euler-Maruyama approximation method to compute the approximate numerical
solution of a SDE [20]. In Subsection 4.1, we recall the two types of colored noise that we consider
and provide their time discretization. Then, in Subsection 4.2, some details and discretization of the
dynamical systems under consideration are given. Finally, in Subsection 4.3, numerical experiments
on the control variate estimators are provided and discussed in each case.
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4.1 Colored noise models and their discretization

The two models of noise are shown in Eq. (32) (OU) and in the system of equations (33-34)
(Langevin). The OU noise has two parameters A,Kou ą 0 whereas the Langevin has three param-
eters µ, γ,Klan ą 0. Their discretization works as follows. Let T ą 0 and NT P N be the number
of time steps such that T “ NT δt. Let N be the number of Monte Carlo samples. Consider a
sequence of independent and identically distributed standard Gaussian variables

t∆W k
n „ N p0, 1q, 0 ď n ď NT ´ 1, 1 ď k ď Nu.

Let ε ą 0. For each 1 ď k ď N , we overload the notation by denoting the discretized noise in both
cases by tη̂ε,kn , 0 ď n ď NT u.

• Ornstein-Uhlenbeck noise: η̂ε,k0 „ N
ˆ

0,
K2

ou

2A

˙

and for 0 ď n ď NT ´ 1,

η̂ε,kn`1 “ η̂ε,kn

ˆ

1´ δt
A

ε2

˙

`
?
δt
Kou

ε
∆W k

n .

• Langevin noise: η̂ε,k0 and η̂ε,k2,0 are independent variables with

η̂ε,k0 „ N
ˆ

0,
K2

lan

2γ

˙

, η̂ε,k2,0 „ N
ˆ

0,
K2

lan

2γµ

˙

and for 0 ď n ď NT ´ 1,

η̂ε,kn`1 “ η̂ε,kn `
δt

ε2
η̂ε,k2,n, η̂ε,k2,n`1 “ η̂ε,k2,n ´

δt

ε2

“

µη̂ε,kn ` γη̂ε,k2,n

‰

`
?
δt
Klan

ε
∆W k

n .

4.2 Details and discretization of the illustrative dynamical systems

We consider systems of the form of (1). We first consider the case of smooth systems that can have
time-dependent coefficients,

dXε
1

dt
“ Xε

2 ,
dXε

2

dt
“ ´hpXε

1 , X
ε
2 , tq `

1

ε
ηε. (36)

Here we are interested in Er}Xε
T }

2s and in Pp|Xε
1,T | ď 1q for T “ 1. Note that the second case

corresponds to an expectation Pp|Xε
1,T | ď 1q “ ErfpXε

T qs with a non-smooth function fpxq “

1|x1|ď1. As εÑ 0, Xε “ pXε
1 , X

ε
2q converges to X0 “ pX0

1 , X
0
2 q where

dX0
1 “ X0

2 dt, dX0
2 “ ´hpX

0
1 , X

0
2 , tqdt` CdW, (37)

C “ KouA
´1 for an OU noise and C “ Klanµ

´1 for a Langevin noise. For the stochastic simulation
of (36) and (37), we proceed as follows:

• X̂ε,k
1,0 “ x1,0, X̂

ε,k
2,0 “ x2,0 and for 0 ď n ď NT ´ 1,

#

X̂ε,k
1,n`1 “ X̂ε,k

1,n ` δtX̂
ε,k
2,n,

X̂ε,k
2,n`1 “ X̂ε,k

2,n ´ δthpX̂
ε,k
1,n, X̂

ε,k
2,n, nδtq `

δt
ε η̂

ε,k
n .
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• X̂0,k
1,0 “ x1,0, X̂

0,k
2,0 “ x2,0 and for 0 ď n ď NT ´ 1,

#

X̂0,k
1,n`1 “ X̂0,k

1,n ` δtX̂
0,k
2,n,

X̂0,k
2,n`1 “ X̂0,k

2,n ´ δthpX̂
0,k
1,n, X̂

0,k
2,n, nδtq ` C

?
δt∆W k

n .

X̂ε,k
n and X̂0,k

n are independent (in k) copies that are meant to approximate Xε
nδt and X0

nδt.

Example 4.1 (linear oscillator with time-dependent coefficients). We take hpx1, x2, tq fi
pptqx1 ` qptqx2 where pptq fi 1` cosptq and qptq fi 1` sinptq (the choice is purely arbitrary). Here,
in both OU and Langevin cases, the limiting process X0 “ pX0

1 , X
0
2 q is a Gaussian process provided

that the initial condition is deterministic or Gaussian. This is useful to derive the expectation of
the control variate. The distribution of X0

t “ pX
0
1,t, X

0
2,tq is characterized by its first-order moment

mptq fi ErX0
t s P R2 and second-order moment Mptq fi pErX0

i,tX
0
j,tsq

2
i,j“1 PM2,2pRq which satisfy

the following systems of differential equations:

• first-order moment

– pm1p0q,m2p0qq “ px0, 9x0q,

– 9m1ptq “ m2ptq,

– 9m2ptq “ ´pptqm1ptq ´ qptqm2ptq.

• second-order moment
$

’

’

’

’

&

’

’

’

’

%

pM11p0q,M22p0q,M12p0qq “ px
2
0, 9x

2
0, x0 9x0q,

9M11ptq “ 2M12ptq,
9M22ptq “ ´2pptqM12ptq ´ 2qptqM22ptq ` C

2,
9M12ptq “M22ptq ´ pptqM11ptq ´ qptqM12ptq.

(38)

The expectation of the control variate Er}X0
T }

2s with T “ 1 is estimated by solving numerically,
with an Euler method, the differential equations for the first- and second-order moments.

Example 4.2 (Van der Pol oscillator). We take hpx1, x2q “ x1´ νp1´x
2
1qx2 where ν ą 0. The

expectation of the control variate can be represented by Er}X0
T }

2s “ cpx0, 0q with T “ 1, where c
satisfies the following backward in time PDE

#

Btc`
C2

2 B
2
x2c´ hpx1, x2qBx2c` x2Bx1c “ 0, in R2 ˆ r0, 1q

cpx, 1q “ }x}2 in R2.
(39)

The expectation Er}X0
T }

2s is estimated by solving the PDE (39) with a finite difference method.

Example 4.3 (nonlinear TDOF). A TDOF modeling a nonlinear spring of the linear-plus-
quadratic cubic type and a nonlinear damper of the linear-plus-quadratic type, can be seen as a
coupling between two systems of the form (36)

$

’

&

’

%

dXε
1

dt
“ Xε

2 ,
dXε

2

dt
“ ´g2pX

ε
1 , X

ε
2 , X

ε
3 , X

ε
4q `

1

ε
ηε,

dXε
3

dt
“ Xε

4 ,
dXε

4

dt
“ ´g4pX

ε
1 , X

ε
2 , X

ε
3 , X

ε
4q.

(40)
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In addition to E
“

pXε
1,T q

2 ` pXε
3,T q

2
‰

for T “ 1, we are interested in Pp|Xε
1,T | ď a, |Xε

3,T | ď bq. As

εÑ 0, Xε ÑX0 where
$

&

%

dX0
1 “ X0

2 dt, dX0
2 “ ´g2pX

0
1 , X

0
2 , X

0
3 , X

0
4 qdt` CdW,

dX0
3 “ X0

4 dt, dX0
4 “ ´g4pX

0
1 , X

0
2 , X

0
3 , X

0
4 qdt.

(41)

Here

g2px1, x2, x3, x4q fi k1x1p1`minpx2
1, L̃qq ` c1x2 ´ k3px3 ´ x1q ´ c3px4 ´ x2qp1`minp|x4 ´ x2|, L̃qq

and
g4px1, x2, x3, x4q fi k3px3 ´ x1q ` c3px4 ´ x2qp1`minp|x4 ´ x2|, L̃qq.

In the original model of Spanos L̃ “ 8, see pages 189-190 in [34]. For any positive finite value of
L̃, the system above enters into the scope of our results. The simulation of (40) and (41) is similar
to what is done for (36) and (37). We take L̃ “ 1000, c1 “ c3 “ k1 “ k3 “ 1.

4.3 Numerical experiments

We report our numerical results for the two systems mentioned above. In each of the two figures
below, there are four subfigures (a)-(b)-(c)-(d). For subfigures (a) and (b), the driving force is an
Ornstein-Uhlenbeck noise (32) with A “ K “ 1. In subfigure (a), the dashed black, dotted blue,
and solid red lines represent the standard MC estimator ÎεN and the control variate estimators ĴεN
and K̂ε

N , respectively. For each value of ε P t0.1, 0.5, 0.9u, error bars (95% confidence interval)

are shown for each of the estimators (in ÎεN , ĴεN , K̂ε
N order from the left to the right). The black

dotted line represents the expectation of the control variate. The objective of the subfigure (b)
is to illustrate the bound (19) and to show that the ε2-behavior is actually sharp. The same
description applies to (c) and (d), except they correspond to the case of a Langevin noise (33-34)
with µ “ γ “ K “ 1. In the figures the asymptotic variance of the standard MC estimator ÎεN is
estimated by

pσ2
Iε,N “

1

N

N
ÿ

k“1

`

F pXεpW kqq
˘2
´ pÎεN q

2, (42)

the asymptotic variance of the control variate estimator ĴεN is estimated by

pσ2
Jε,N “

1

N

N
ÿ

k“1

`

F pXεpW kqq ´ F pX0pW kqq ` I0
˘2
´ pĴεN q

2, (43)

and the asymptotic variance of the optimal control variate estimator K̂ε
N is estimated by

pσ2
Kε,N “

1

N

N
ÿ

k“1

`

F pXεpW kqq ´ ρ̂εNF pX
0pW kqq ` ρ̂εNI

0
˘2
´ pK̂ε

N q
2, (44)

with ρ̂εN defined by (26). pσ2
Iε,N , pσ2

Jε,N , and pσ2
Kε,N are consistent estimators of σ2

Iε , σ
2
Jε , and σ2

Kε ,
respectively.

We use N “ 104 samples with a time step of δt “ 10´5 (note that δt{ε2 “ 0.1 for the smallest
ε “ 10´2 used in the numerical results). We report the numerical results for the linear oscillator
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with time-dependent coefficients in Figure 4 and for the Van der Pol oscillator in Figure 5. The
numerical results concern the estimation of Iε “ Er}Xε

T }
2s or Iε “ Pp|Xε

1,T | ď 1q with T “ 1 where

Xε satisfies (36) and thus the expectation of the control variate is I0 “ Er}X0
T }

2s or Pp|X0
1,T | ď 1q

where X0 satisfies (37).
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Figure 4: Example 4.1 (linear oscillator with time-dependent coefficients) with hpx1, x2, tq fi

pptqx1 ` qptqx2, pptq fi 1 ` cosptq and qptq fi 1 ` sinptq. The target is to estimate Iε “ Er}Xε
T }

2s

for T “ 1 and the expectation of the control variate I0 “Er}X0
T }

2s is obtained by solving the set
of differential equations (38).
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Figure 5: Example 4.2 (Van der Pol oscillator) with hpx1, x2q fi x1 ´ p1 ´ x2
1qx2. In the top row

the target is to estimate Iε “ Er}Xε
T }

2s for T “ 1 and the expectation of the control variate
I0 “Er}X0

T }
2s is obtained by solving the PDE (39). In the bottom row the target is to estimate

Iε “ Pp|Xε
1,T | ď 1q for T “ 1 and the expectation of the control variate I0 “Pp|X0

1,T | ď 1q is
obtained by solving the PDE (39) with the suitable final condition.

The theoretical predictions provided by Eq. (19) and Proposition 2.1 are based on the condition
that f has bounded derivatives. As we have discussed above, the assumption that f is smooth
is important but the hypothesis on the boundedness of the derivatives can certainly be relaxed.
The numerical results shown in Figures 4-5 are actually in good agreement with the theoretical
predictions: the asymptotic variances σ2

Jε and σ2
Kε behave as Opε2q. The only cases where the

behavior is Opεq, and not Opε2q, are when the quantity of interest is of the form ErfpXε
T qs with a
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function f that is not smooth, which is not surprising.

5 Diffusion approximation for the multivalued case

In this section we consider multivalued ODEs of the form (30) or (31).

5.1 Basic properties on differential inclusions

We recall that the subdifferential of a convex function F : Rr Ñ p´8,8s such that Dom(F )fi tx P
Rr, F pxq ă 8u is not empty, is the map from Rr to PpRrq (the set of subsets of Rr) defined by
BF pxq fi tξ P Rr, @z P Rr, ξ ¨ pz ´ xq ` F pxq ď F pzqu for x P Dom(F ) and BF pxq “ H for x R
Dom(F ). To grasp quickly the idea when r “ 1, BF pxq can be seen as the set of sub-slopes of F at
the point x and when F is differentiable at the point x, BF pxq “ tF 1pxqu. See [4] for more details.

One way to construct a solution to a multivalued ODE of the form (30) or (31) is to proceed by
penalization. The inclusion is replaced by an equality involving the Moreau-Yosida regularisation
of F : Rr Ñ p´8,`8s (with F “ ϕ, r “ n or F “ ψ, r “ m), that is

@p ě 1, @x P Rr, Fppxq fi inf
zPRr

!

F pzq `
p

2
}x´ z}2

)

. (45)

We recall from Annex B in [30] some properties of Fp:

1. Fp : Rr ÞÑ R is a convex differentiable function,

2. @x P Rr, BFppxq “ t∇Fppxqu and ∇Fppxq P BF pJpxq where Jpx fi x´ 1
p∇Fppxq,

3. DC ą 0, @x P Rr, @p, }Jpx} ď }x} ` C,

4. @x,y P Rr, }∇Fppxq ´∇Fppyq} ď p}x´ y},

5. @x,y P Rr,
`

∇Fppxq ´∇Fppyq
˘

¨ px´ yq ě 0,

6. @x P Rr,
x ¨∇Fppxq ě 0, (46)

7. @x,y P Rr,

`

∇Fppxq ´∇Fp1pyq
˘

¨ px´ yq ě ´

ˆ

1

p
`

1

p1

˙

∇Fppxq ¨∇Fp1pyq, (47)

8. as a consequence of properties 2 and 3 above, we also have

sup
pě1

sup
xPRr

}∇Fppxq}
pp1` }x}q

ă 8. (48)

Thus, the penalized versions of (30) and (31) are

dXε,p

dt
`∇ϕppXε,pq “ bpXε,pq `

1

ε
σηε, Xε,p

0 “ x0, (49)
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and
$

’

&

’

%

dXε,p

dt
`∇ϕppXε,pq “ bXpXε,p,Zε,pq `

1

ε
σηε, Xε,p

0 “ x0,

dZε,p

dt
`∇ψppZε,pq “ bZpXε,p,Zε,pq, Zε,p

0 “ z0.

(50)

It can be shown [4] that, if ϕ satisfies the condition:

sup
pě1

sup
xPRn

}∇ϕppxq} ă 8, (51)

where ϕp is the Yosida approximation (45) of ϕ, then the sequence of solutions of (49) tXε,p, p ě 1u
is a Cauchy sequence in Cpr0, T s;Rnq, the limit Xε satisfies the differential inclusion (30) and its
solution is unique.

A similar statement using the sequence of solutions of (50) tpXε,p,Zε,pq, p ě 1u in Cpr0, T s;Rnˆ
Rmq, holds for the existence and uniqueness of a solution for (31) when ϕ (but not necessarily ψ)
satisfies the condition (51), while ψ satisfies the assumption:

sup
pě1

ψppz0q ă 8. (52)

For the convenience of the reader we give the proofs of these results in Appendix C.

5.2 Diffusion approximation for Equation (30)

We consider the Rn-valued process Xε solution of the multivalued ODE (30) when ηε is given by
(2). We assume that b is Lipschitz and that ϕ satisfies the condition (51). We also consider the
limiting Rn-valued process X0 solution of the multivalued SDE

dX0 ` BϕpX0qdt Q bpX0qdt` ΓdWt, (53)

driven by the same Brownian motion, with Γ “ σA´1K. Existence and uniqueness of the solution
of (53) is the same one as in Proposition C.1 and is discussed in Appendix D. The following
proposition gives the convergence of the process pXε ´X0q to zero. It is proved in Appendix E.

Proposition 5.1. 1. We have for all p ě 1:

sup
ε

E
„

sup
tďT

}Xε,p
t ´Xε

t }
2



ď
CT
p
, (54)

where Xε,p is the approximation (49) of Xε.
2. The continuous process pXε ´X0q converges in probability to zero as εÑ 0.

5.3 Diffusion approximation for Equation (31)

We consider the Rn ˆ Rm-valued process pXε,Zεq solution of the multivalued ODE (31) when ηε

is given by (2). We assume that bX and bZ are Lipschitz, that ϕ satisfies (51), and that ψ satisfies
(52). We also consider the limiting Rn ˆ Rm-valued process pX0,Z0q solution of the multivalued
SDE

dX0 ` BϕpX0qdt Q bXpX0,Z0qdt` ΓdWt, dZ0 ` BψpZ0qdt Q bZpX0,Z0qdt, (55)

driven by the same Brownian motion, with Γ “ σA´1K. Existence and uniqueness of the solution
of (55) is the same one as in Proposition C.2. The following proposition gives the convergence of
the continuous process pXε ´X0,Zε ´Z0q to zero. It is proved in Appendix F.
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Proposition 5.2. 1. For all p ě 1, we have

sup
ε

E
„

sup
tďT

 

}Xε,p
t ´Xε

t }
2 ` }Zε,p

t ´Zε
t }

2
(



ď
CT
p
, (56)

where pXε,p,Zε,pq is the approximation (50) of pXε,Zεq.
2. The continuous process pXε ´X0,Zε ´Z0q converges in probability to zero as εÑ 0.

6 Control variate method in the multivalued case

We here consider the multivalued case. Let Xε satisfy (30) or pXε,Zεq satisfy (31). We want to
estimate Iε defined by (3) when Xε satisfies (30) or Iε “ ErF pXε,Zεqs when pXε,Zεq satisfies
(31). The control variate method can be applied in this framework as in the ODE case addressed
in Section 2. The control variate estimator ĴεN and the optimal control variate estimator K̂ε

N are
defined by (15) and (25), respectively, for Xε satisfying (30), they are asymptotically normal and
their asymptotic variances are (18) and (28), respectively. For pXε,Zεq satisfying (31) the control
variate estimator

ĴεN fi
1

N

N
ÿ

k“1

F pXεpW kq,ZεpW kqq ´ F pX0pW kq,Z0pW kqq ` I0, (57)

with I0 “ ErF pX0,Z0qs, is asymptotically normal with an asymptotic variance given by

σ2
Jε “ Var

`

F pXε,Zεq ´ F pX0,Z0q
˘

. (58)

The pratical optimal control variate estimator is

K̂ε
N fi ρ̂εNI

0 `
1

N

N
ÿ

k“1

F pXεpW kq,ZεpW kqq ´ ρ̂εNF pX
0pW kq,Z0pW kqq, (59)

where ρ̂εN is the empirical correlation

ρ̂εN “

řN
k“1pF pX

εpW kq,ZεpW kqq ´ ÎεN qpF pX
0pW kq,Z0pW kqq ´ Î0

N q
řN
k“1pF pX

0pW kq,Z0pW kqq ´ Î0
N q

2
, (60)

ÎεN is the standard Monte Carlo estimator

ÎεN fi
1

N

N
ÿ

k“1

F pXεpW kq,ZεpW kqq, (61)

and Î0
N “ 1

N

řN
k“1 F pX

0pW kq,Z0pW kqq. The estimator K̂ε
N is asymptotically normal with an

asymptotic variance given by

σ2
Kε “ Var

`

F pXε,Zεq ´ ρεF pX0,Z0q
˘

, (62)

with ρε “ CovpF pXε,Zεq, F pX0,Z0qq{VarpF pX0,Z0qq. The asymptotic variance of the estimator
ÎεN is

σ2
Iε “ Var

`

F pXε,Zεq
˘

. (63)
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For small ε the asymptotic variance σ2
Iε is approximately equal to Var

`

F pX0,Z0q
˘

and the asymp-
totic variances σ2

Jε and σ2
Kε are small, by Propositions 5.1 and 5.2. More quantitiatvely, if

F pX,Zq “ fpXT ,ZT q and f is a smooth function with bounded derivatives, then the asymp-
totic variances σ2

Jε and σ2
Kε are of order ε2 when Xε satisfies (30):

σ2
Kε ď Cε2, 0 ď σ2

Jε ´ σ2
Kε ď Cε4, (64)

or of order ε when pXε,Zεq satisfies (31):

σ2
Kε ď Cε, 0 ď σ2

Jε ´ σ2
Kε ď Cε2. (65)

Eqs. (64-65) are consequences of the following lemma proved in Appendix G.

Lemma 6.1. 1. Let Xε satisfy (30). If f, g : Rn Ñ R are smooth functions with bounded
derivatives and T ą 0, then there exists C ą 0 such that, for any t P rε, T s,

ˇ

ˇE
“

gpZ0
t q
`

fpXε
t q ´ fpX

0
t q
˘‰ˇ

ˇ ď Cε2, E
“`

fpXε
t q ´ fpX

0
t q
˘2‰

ď Cε2. (66)

2. Let pXε,Zεq satisfy (31). If f, g : Rn`m Ñ R are smooth functions with bounded derivatives
and T ą 0, then there exists C ą 0 such that, for any t P rε, T s,

ˇ

ˇE
“

gpX0
t ,Z

0
t q
`

fpXε
t ,Z

ε
t q ´ fpX

0
t ,Z

0
t q
˘‰
ˇ

ˇ ď Cε, E
“`

fpXε
t ,Z

ε
t q ´ fpX

0
t ,Z

0
t q
˘2‰

ď Cε.
(67)

7 Numerical simulations in the multi-valued case

We present examples which are non-smooth dynamical systems that are prevalent in engineering
mechanics. Examples 7.1-7.2 are oscillators involving friction or/and elasto-plastic behaviours,
Exemple 7.3 is a nonlinear and nonsmooth two-degree of freedom (TDOF) system, they can be
described by Eqs. (30) and (31). Examples 7.4-7.5 which do not fall within the scope of any
aforementioned case correspond to an obstacle problem and to the reflection of the integral of a
colored noise, respectively.

7.1 Non-smooth systems in the form of Equations (30) and (31)

Example 7.1 (friction behaviour). With Equation (30) in mind, we take @x P R, ϕpxq fi

cf |x| where cf ą 0 is a friction coefficient. The R-valued process Xε represents the velocity of a
material point (stick-slip motion) subjected to friction and colored noise. See for instance [29] for
an explanation of the physics behind and [3] for the use of SDEs with multivalued drift for modeling.
As εÑ 0, Xε Ñ X0 where X0 satisfies Equation (53). For the stochastic simulation, we proceed
as follows:

• X̂ε,k
0 “ x0 and for 0 ď n ď NT ´ 1,

X̂ε,k
n`1 “ X̂ε,k

n `
δt

ε
η̂ε,kn ´ δtprojr´cf ,cf s

˜

X̂ε,k
n

δt
`

1

ε
η̂ε,kn

¸

,

with η̂ε,kn described in Subsection 4.1.
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• X̂0,k
0 “ x0 and for 0 ď n ď NT ´ 1,

X̂0,k
n`1 “ X̂0,k

n ` pδtq1{2C∆W k
n ´ δtprojr´cf ,cf s

˜

X̂0,k
n

δt
`

C
?
δt

∆W k
n

¸

.

We are interested in ErpXε
T q

2
s for T “ 1. The expectation of the control variate is ErpX0

T q
2s.

The latter can be represented as cpx0, 0q where c satisfies the following backward in time partial
differential inclusion

#

Btcpx, tq `
C2

2 B
2
xcpx, tq P BϕpxqBxcpx, tq “ 0, for px, tq P Rˆ r0, 1q,

cpx, 1q “ x2, for x P R.
(68)

It can be estimated by solving this partial differential inclusion with a finite difference method. We
proceed as follows. For every t ą 0, the function x ÞÑ cpx, tq is smooth and even, provided that the
initial condition is smooth and even. Indeed, this comes from the probabilistic representation and
the fact that, for any starting point x P R, tXx

t , t ě 0u and tX´xt , t ě 0u have the same distribution
because ϕ is even. Therefore we must have @t ą 0, Bxcp0, tq “ 0. The solution of (68) is thus
estimated by applying a finite difference method to

$

’

&

’

%

Btcpx, tq `
C2

2 B
2
xcpx, tq ´ cfBxcpx, tq “ 0, for px, tq P p0,8q ˆ r0, 1q,

Bxcp0, tq “ 0, for t P r0, 1q,

cpx, 1q “ x2, for x P r0,`8q.

(69)

The whole function x ÞÑ cpx, tq can be recovered by using the symmetry property.

Example 7.2 (elasto-plastic behaviour). With Eq. (31), we consider ϕ fi 0, ψ fi χD the
indicator function of D fi r´cep, ceps in the sense of convex analysis, that is χDpxq “ 0 if x P D and
`8 otherwise. Here cep ą 0 is an elasto-plastic coefficient. The real-valued process Xε represents
the velocity of a material point subjected to an elasto-plastic restoring force and colored noise. The
process Zε taking values in r´cep, ceps represents the restoring force. See for instance [27] for an
explanation of the physics and the use of SDEs with multivalued drift for modeling. Here we are
interested in ErpXε

T q
2 ` pZε

T q
2s and in P p|Zε

T | “ cepq for T “ 1. As εÑ 0, pXε,Zεq Ñ pX0,Z0q

where pX0,Z0q satisfies (55). For the stochastic simulation, we proceed as follows:

• X̂ε,k
0 “ x0 and Ẑε,k0 “ z0 and for 0 ď n ď NT ´ 1,

#

Ẑε,kn`1 “ projr´cep,ceps

´

Ẑε,kn ` δtX̂ε,k
n

¯

,

X̂ε,k
n`1 “ X̂ε,k

n ´ δtẐε,kn ` δt
ε η̂

ε,k
n .

• X̂0,k
0 “ x0 and Ẑ0,k

0 “ z0 and for 0 ď n ď NT ´ 1,

#

Ẑ0,k
n`1 “ projr´cep,ceps

´

Ẑ0,k
n ` δtX̂0,k

n

¯

,

X̂0,k
n`1 “ X̂0,k

n ´ δtẐ0,k
n `

?
δtC∆W k

n .

The expectations of the control variates are ErpX0
T q

2 ` pZ0
T q

2s and Pp|Z0
T | “ cepq for T “ 1. They

are estimated using the PDE method of [28].
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Example 7.3 (nonlinear and nonsmooth TDOF). A TDOF with an elasto-plastic element
can be represented as a system of the form (30) which becomes

$

’

&

’

%

dXε
1

dt
` BχDpX

ε
1q “ Xε

2 ,
dXε

2

dt
“ ´g̃2pX

ε
1 , X

ε
2 , X

ε
3 , X

ε
4q `

1

ε
ηε,

dXε
3

dt
“ Xε

4 ,
dXε

4

dt
“ ´g̃4pX

ε
1 , X

ε
2 , X

ε
3 , X

ε
4q.

(70)

Here D “ r´cp, cps, cp “ 0.25. In addition to E
“

pXε
1,T q

2 ` pXε
3,T q

2
‰

for T “ 1, we are interested in

Pp|Xε
1,T | ď a, |Xε

3,T | ď bq. As εÑ 0, Xε ÑX0 where

$

&

%

dX0
1 ` BχDpX

0
1 qdt “ X0

2 dt, dX0
2 “ ´g̃2pX

0
1 , X

0
2 , X

0
3 , X

0
4 qdt` CdW,

dX0
3 “ X0

4 dt, dX0
4 “ ´g̃4pX

0
1 , X

0
2 , X

0
3 , X

0
4 qdt.

(71)

Here, for simplicity the other elements are linear,

g̃2px1, x2, x3, x4q fi k1x1 ` c1x2 ´ k3px3 ´ x1q ´ c3px4 ´ x2q

and
g̃4px1, x2, x3, x4q fi k3px3 ´ x1q ` c3px4 ´ x2q.

The simulation of (70) and (71) is similar to what is explained above. We take c1 “ c3 “ k1 “

k3 “ 1.

7.2 Non-smooth systems : beyond Equations (30) and (31)

The two models presented in this subsection do not fall in the scope of our theoretical results,
though they are not too far off. The presentation of the impact problem remains formal. The
behaviour of the control variate estimator is investigated via numerical experiments.

Example 7.4 (impact problem). The pair displacement-velocity Xε “ pXε
1 , X

ε
2q (taking values

in R2) of a colored noise driven oscillator constrained by an obstacle can be formulated in terms
of an equation of the form (36) when |Xε

1,t| ă PO with the condition (that expresses the switch of
the velocity at collision): for all t, |Xε

1,t| “ PO ùñ Xε
2,t` “ ´eXε

2,t´ where PO is the location
of the obstacle and e P r0, 1s is the coefficient of restitution of energy. The notations Xε

2,t˘ stand

for the velocity immediately before and after the collision. Here we are interested in ErpXε
2,T q

2s for

T “ 1. Formally, as ε Ñ 0, the R2-valued limit process X0 “ pX0
1 , X

0
2 q is a white noise driven

oscillator constrained by an obstacle that can be formulated similarly to the former case, except
that we replace (36) by (37). When e “ 1 (resp. 0 ď e ă 1), we say that the collisions are elastic
(resp. inelastic). It is important to stress that obstacle problems with inelastic collisions deserve
more attention for practical purposes since in real world phenomena kinetic energy is dissipated
through heat or plastic deformation. With elastic collisions, there is no loss of kinetic energy. For
the stochastic simulation, we use the same numerical procedure as for (36) and (37), except that if

we find out that the pn ` 1qst point does not satisfy the obstacle condition, i.e. |X̂ε,k
1,n`1| ą PO, we

adjust the time step length to θn`1δt with θn`1 fi
˘PO´X̂

ε,k
1,n

X̂ε,k
1,n`1´X̂

ε,k
1,n

and set tn`1 fi tn` θn`1δt, X̂
ε,k
1,n`1 fi

PO, X̂ε,k
2,n`1 fi ´e

´

X̂ε,k
2,n ´ θn`1δtfpX̂

ε,k
1,n, X̂

ε,k
2,nq ` θn`1

δt
ε η̂

ε,k
n

¯

and η̂ε,k2,n`1 fi η̂ε,kn

ˆ

1´ θn`1δt
A

ε2

˙

`
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a

θn`1δt
Kou

ε
∆W k

n . A similar adjustment is done in the other cases with Langevin and white noises.

The expectation of the control variate is ErpX0
2,T q

2s for T “ 1 which is estimated using the PDE
method of [28].

Example 7.5 (reflection of an integrated colored noise). Define E fi r0,8q and consider
the indicator function of E, that is χEpxq “ 0 if x P E and `8 otherwise. The reflection of an
integrated colored noise corresponds to the case where Xε satisfies

dXε

dt
` BχEpX

εq Q
1

ε
ηε, (72)

and X0, the limit process as εÑ 0, is a reflected Brownian motion

dX0 ` BχEpX
0qdt Q CdW. (73)

We are interested in ErXε
T s for T “ 1. For the stochastic simulation of (72) and (73), we use the

following scheme: X̂ε,k
0 “ x0, X̂0,k “ x0 and for 0 ď n ď NT ´ 1,

• X̂ε,k
n`1 “ projE

´

X̂ε,k
n ` δt

ε η̂
ε,k
n

¯

,

• X̂0,k
n`1 “ projE

´

X̂0,k
n `

?
δtC∆W k

n

¯

.

The expectation of the control variate is given by an explicit formula ErX0
1 s “

a

2{π. Indeed, the
backward Kolmogorov equation for the reflected Brownian motion in (73) is

Btw “ CB2
xw, x ą 0, t ą 0, wpx, t “ 0q “ x, x ą 0, Bxwp0, tq “ 0, t ą 0.

It has an explicit solution

wpx, tq “
1

?
4Cπt

ż 8

0
y

ˆ

exp
`

´
px´ yq2

4Ct

˘

` exp
`

´
px` yq2

4Ct

˘

˙

dy,

which gives ErX0
T s “ wp0, T q “

a

2{π for T “ 1. In this case, we can provide an ad hoc proof to
get an estimate similar to (35) (see Appendix H):

E
“

pXε
T ´X

0
T q

2
‰

ď Cε2| log ε|. (74)

The log ε correction comes from a maximal inequality for the OU process [14] and a standard result
on the maxima of Gaussian processes [26].

7.3 Numerical experiments

We report our numerical results for the four systems mentioned above. The convention is as in
Subsection 4.3. In each of the four figures below, there are four subfigures (a)-(b)-(c)-(d). For
subfigures (a) and (b), the driving force is an Ornstein-Uhlenbeck noise (32) with A “ K “ 1. In
subfigure (a), the dashed black lines, the dotted blue lines, and the solid red lines represent the
standard MC estimator ÎεN and the control variate estimators ĴεN and K̂ε

N , respectively. The dotted
black line represents the expectation of the control variate I0. The objective of the subfigure (b)
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is to illustrate the bounds (64) and (65). The same description applies to (c) and (d), except they
correspond to the case of a Langevin noise (33-34) with µ “ γ “ K “ 1. For the examples in
which Xε satisfies (30), the asymptotic variance the standard MC estimator ÎεN is estimated by

(42), the asymptotic variance of the control variate estimator ĴεN is estimated by (43), and the

asymptotic variance of the optimal control variate estimator K̂ε
N is estimated by (44). For the

examples in which pXε,Zεq satisfies (31), the asymptotic variance of the standard MC estimator
ÎεN is estimated by

pσ2
Iε,N “

1

N

N
ÿ

k“1

`

F pXεpW kq,ZεpW kqqq
˘2
´ pÎεN q

2, (75)

the asymptotic variance of the control variate estimator ĴεN is estimated by

pσ2
Jε,N “

1

N

N
ÿ

k“1

`

F pXεpW kq,ZεpW kqq ´ F pX0pW kq,Z0pW kqq ` I0
˘2
´ pĴεN q

2, (76)

and the asymptotic variance of the optimal control variate estimator K̂ε
N is estimated by

pσ2
Kε,N “

1

N

N
ÿ

k“1

`

F pXεpW kq,ZεpW kqq ´ ρ̂εNF pX
0pW kq,Z0pW kqq ` ρ̂εNI

0
˘2
´ pK̂ε

N q
2, (77)

with ρ̂εN defined by (60). pσ2
Iε,N , pσ2

Jε,N , and pσ2
Kε,N are consistent estimators of σ2

Iε , σ
2
Jε , and σ2

Kε ,
respectively.

Similarly to what was presented in Section 4, we use N “ 104 samples with a time step of
δt “ 10´5. In Figures 6 and 7, we report the numerical results for the friction and elasto-plastic
problems, which are of the form (30) and (31), respectively. In Figures 8 and 9, we report the
numerical results for the obstacle problem and for the reflection of the integral of a colored noise.
The numerical results include errors bars on the estimators for each value of ε P t0.1, 0.5, 0.9u in
the ÎεN , Ĵ

ε
N , K̂

ε
N order.

The theoretical predictions provided by (64) and (65) are based on the condition that f has
bounded derivatives. The assumption that f is smooth is important but the hypothesis on the
boundedness of the derivatives can certainly be relaxed. The numerical results shown in Figures
6 and 7 are in good agreement with the theoretical predictions: the asymptotic variances σ2

Jε and
σ2
Kε behave as Opε2q. The only cases where the behavior is Opεq, and not Opε2q, are when the

quantity of interest is of the form ErfpXε
T qs or ErfpXε

T ,Z
ε
T qs with a function f that is not smooth,

which is not surprising. In Figure 7, we also observe that σ2
Jε and σ2

Kε behave as Opε2q which is
better than the behaviour Opεq expected from (65) (which is an upper bound). In Figures 8 and
9, the numerical results concern two problems which do not fall within the scope of our theoretical
predictions. The first one (Figure 8) is the impact problem that cannot be formulated in the form
a differential inclusion of the form (30) or (31). The function f is smooth but the behavior of σ2

Jε

and σ2
Kε is not of order Opε2q, only of order Opεq. The second one (Figure 9) is the reflection of

an integrated colored noise that can be formulated with a differential inclusion which is similar to
(30) but the multivalued drift does not satisfy the condition (51). However, σ2

Jε and σ2
Kε behave as

Opε2q. To summarize, the numerical simulations indicate that the Opε2q behavior of the asymptotic
variance is observed in the cases predicted by the theory and also slightly beyond. The smoothness
of the function f that appears in the quantity of interest is, however, an important condition to
ensure the Opε2q-behavior, otherwise one only observes a Opεq-behavior.
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Figure 6: Example 7.1 (friction problem). The target is to estimate Iε “ ErpXε
T q

2s for T “ 1
where Xε satisfies (30) with ϕpxq fi cf |x| with cf ą 0. The expectation of the control variate
I0 “ErpX0

T q
2s, where X0 satisfies (53), is obtained by solving the partial differential inclusion (68).
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Figure 7: Example 7.2 (elasto-plastic problem). In the top row the target is to estimate Iε “
ErpXε

T q
2 ` pZεT q

2s with T “ 1 where pXε, Zεq satisfies (31) with ϕpxq fi 0 and ψpxq fi 0 if |x| ď cep

and 8 otherwise. Here cep “ 0.25. The expectation of the control variate I0 “ErpX0
T q

2 ` pZ0
T q

2s,
where pX0, Z0q satisfies (55), is obtained by using the PDE method of [28]. In the bottom row the
target is to estimate Iε “ Pp|ZεT | “ cepq.

8 Concluding remark

When the expectation of the limit process ErfpX0
T qs cannot be computed by a PDE method but

is estimated by a massive Monte Carlo method, the control variate method with ĴεN (or K̂ε
N )

shares an important similarity with a two-level Monte Carlo method [10] in the sense that massive
but cheap simulations are performed (samples of X0 used to estimate ErfpX0

T qs) together with
a few expensive simulations (samples of pXε,X0q used to estimate ErfpXε

T q ´ fpX0
T qs). More

generally, Multilevel Monte Carlo (MLMC) methods rely on random samples taken on different
levels of accuracy, when several approximations with different costs and accuracies are available.
The overall idea of MLMC methods is to reduce the computational cost of standard Monte Carlo
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Figure 8: Example 7.4 (impact problem). The target is to estimate Iε “ ErpXε
2,T q

2s with T “

1 where Xε satisfies the impact problem with a colored noise forcing. Here PO “ 0.25. The
expectation of the control variate I0 “ErpX0

2,T q
2s, where X0 satisfies the impact problem with a

colored noise forcing, is obtained by using the PDE method of [28].
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Figure 9: Example 7.5 (reflection of an integrated colored noise). The target is to estimate Iε “
ErXε

T s for T “ 1 where Xε satisfies (72). The expectation of the control variate is I0 “ ErX0
T s “

a

2{π.

methods by taking most samples with a low accuracy and corresponding low cost, and by taking
only few samples with a high accuracy and corresponding high cost [10].

In this two-level Monte Carlo framework, the total cost of computing the control variate es-
timator ĴεN (or K̂ε

N ) is CεJ “ N0C0 ` N1C1 where C0 is the cost of computing one realization of
fpX0

T q, C1 is the cost of computing one realization of pfpXε
T q ´ fpX0

T qq, N0 is the number of
samples of fpX0

T q, and N1 is the number of samples of pfpXε
T q ´ fpX0

T qq. The variance of the

control variate estimator ĴεN is V ε
J “ N´1

0 V0 ` N´1
1 V1, where V0 is the variance of fpX0

T q and
V1 is the variance of pfpXε

T q ´ fpX0
T qq. For a fixed total budget Ctot, the variance is minimized

when pN1{N0q
2 “ pV1{V0qpC0{C1q and it is then equal to V ε

J “ p
?
V0C0 `

?
V1C1q

2{Ctot. This
can be compared to the brute force Monte Carlo method: the cost is CεI “ NIC1 where NI is
the number of samples of fpXε

T q (we neglect the difference of cost between pfpXε
T q ´ fpX

0
T qq and

fpXε
T q, which is very small because Xε is more difficult to simulate than X0) and the variance is

V ε
I “ V0{NI (by (11)), so that for the total budget Ctot, we have V ε

I “ V0C1{Ctot. If V1{V0 “ Opε2q

(by Proposition 2.1) and C0{C1 “ Opε2q (because the time step used to simulate Xε should be
Opε2q smaller than the one used to simulate X0), then we find that N1{N0 “ Opε2q (hence the
“massive Monte Carlo” strategy for the control variate) and the ratio of the variance of the control
variate estimator over the one of the brute force Monte Carlo estimator is finally V ε

J {V
ε
I “ Opε2q.

The control variate method is very advantageous in this context.
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A Proof of Proposition 3.5

Let us first study the driving noise. The process η1 is a Gaussian, Markov process. It has the form

η1
t “ e´Atη1

0 `

ż t

0
e´Apt´sqKdWs.

Its infinitesimal generator is:

Q “
1

2

d
ÿ

k,k1“1

d1
ÿ

k2“1

Kkk2Kk1k2B
2
ηkηk1

´

d
ÿ

k,k1“1

Akk1ηk1Bηk . (78)

The properties of the matrix A show that the process η1 is stationary and ergodic; its unique
invariant probability measure is the Gaussian measure with mean zero and variance C given by (8).
The process pηεt qtě0 has the same distribution as pη1

t{ε2qtě0 because pε´1Wtqtě0 has the same

distribution as pWt{ε2qtě0. Therefore it is a Markov process with generator ε´2Q.
The process pXε,X0,ηεq is Markov with generator Lε given by:

Lε “ 1

ε2
Q`

1

ε

”

n
ÿ

j“1

d
ÿ

i“1

σjipxqηiBxj `
n
ÿ

j“1

d
ÿ

i“1

d1
ÿ

k“1

Γjkpx
0qKikB

2
ηix0j

ı

`

”

n
ÿ

j“1

bjpxqBxj `
1

2

n
ÿ

i,j“1

d1
ÿ

k“1

Γikpx
0qΓjkpx

0qB2
x0i x

0
j
`

n
ÿ

j“1

rbjpx
0qBx0j

ı

, (79)

where Q is the generator (78).

Lemma A.1. For any smooth and bounded test function φ : RnˆRn Ñ R, for any compact subset
K of R2n, there exists a test function φε such that

sup
px,x0qPK

|φεpx,x0,ηq ´ φpx,x0q| ď Cεp1` }η}2q , (80)

sup
px,x0qPK

|Lεφεpx,x0,ηq ´ Lφpx,x0q| ď Cεp1` }η}3q , (81)

for any ε P p0, 1q, where L is the generator defined by

L “
n
ÿ

j“1

rbjpxqBxj `
n
ÿ

j“1

rbjpx
0qBx0j

`
1

2

n
ÿ

i,j“1

rΓpxqΓpxqT sijB
2
xixj

`
1

2

n
ÿ

i,j“1

rΓpx0qΓpx0qT sijB
2
x0i x

0
j
`

n
ÿ

i,j“1

rΓpxqΓpx0qT sijB
2
xix0j

. (82)

Proof. Let φpx,x0q be a smooth and bounded test function. We look for a perturbed test function
φε of the form

φεpx,x0,ηq “ φpx,x0q ` εφ1px,x
0,ηq ` ε2φ2px,x

0,ηq . (83)
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Applying Lε (given by (79)) to this φε we get

Lεφε “1

ε

”

Qφ1px,x
0,ηq `

n
ÿ

j“1

d
ÿ

i“1

σjipxqηiBxjφpx,x
0q

ı

`

”

Qφ2px,x
0,ηq `

n
ÿ

j“1

d
ÿ

i“1

σjipxqηiBxjφ1px,x
0,ηq `

n
ÿ

j“1

d
ÿ

i“1

d1
ÿ

k“1

Γjkpx
0qKikB

2
ηix0j

φ1px,x
0,ηq

ı

`

”

d
ÿ

j“1

bjpxqBxjφpx,x
0q `

d
ÿ

j“1

rbjpx
0qBx0j

φpx,x0q `
1

2

n
ÿ

i,j“1

d1
ÿ

k“1

Γikpx
0qΓjkpx

0qB2
x0i x

0
j
φpx,x0q

ı

`Opεq . (84)

The term Opεq depends on the first-order derivatives of φ1 and φ2 with respect to x and on the
first- and second-order derivatives of φ1 and φ2 with respect to x0.

We define the first corrector φ1 to cancel the ε´1 term in (84). This gives a Poisson equation
for φ1 as a function of η with px,x0q P R2n a frozen parameter. The Poisson equation

Qg “ ´η (85)

can be solved by Fredholm alternative because the process η1 has mean zero (with respect to its
invariant probability measure) [8, Chapter 6]. We can write a solution in the form:

gpηq “

ż 8

0
Erη1

s|η
1
0 “ ηsds,

which is here linear in η:
gpηq “ A´1η. (86)

Therefore we set

φ1px,x
0,ηq “

n
ÿ

j“1

d
ÿ

i“1

σjipxqgipηqBxjφpx,x
0q. (87)

We cannot define the second corrector φ2 so as to cancel the order-one terms in (84) because that
would require solving a Poisson equation with a right-hand side that is not centered. To center
this term we subtract its mean relative to the invariant distribution of η1. This gives the Poisson
equation

Qφ2px,x
0,ηq `

n
ÿ

j“1

d
ÿ

i“1

σjipxqηiBxjφ1px,x
0,ηq `

n
ÿ

j“1

d
ÿ

i“1

d1
ÿ

k“1

Γjkpx
0qKikB

2
ηix0j

φ1px,x
0,ηq

´ E
”

n
ÿ

j“1

d
ÿ

i“1

σjipxqη
1
i,0Bxjφ1px,x

0,η1
0q `

n
ÿ

j“1

d
ÿ

i“1

d1
ÿ

k“1

Γjkpx
0qKikB

2
ηix0j

φ1px,x
0,η1

0q

ı

“ 0 ,

where the expectation E is taken over η1
0 with respect to its invariant probability measure. Since φ1

is linear in η, the third term of the left-hand side is independent of η and is equal to its expectation,
so the Poisson equation can be reduced to

Qφ2px,x
0,ηq `

n
ÿ

j“1

d
ÿ

i“1

σjipxqηiBxjφ1px,x
0,ηq ´ E

”

n
ÿ

j“1

d
ÿ

i“1

σjipxqη
1
i,0Bxjφ1px,x

0,η1
0q

ı

“ 0 .
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This equation has a solution φ2 that is a smooth function in px,x0q and that is a quadratic form
in η. Note that φ1px,x

0,ηq and φ2px,x
0,ηq depend only on σpxq and its first-order derivatives,

and not on b. By assuming that σ belongs to C2 with bounded derivatives, we get the control of
the Opεq term in (84). It follows that

Lεφε “E
”

n
ÿ

j“1

d
ÿ

i“1

σjipxqη
1
i,0Bxjφ1px,x

0,η1
0q `

n
ÿ

j“1

d
ÿ

i“1

d1
ÿ

k“1

Γjkpx
0qKikB

2
ηix0j

φ1px,x
0,η1

0q

ı

`

”

n
ÿ

j“1

bjpxqBxjφpx,x
0q `

n
ÿ

j“1

rbjpx
0qBx0j

φpx,x0q `
1

2

n
ÿ

i,j“1

d1
ÿ

k“1

Γikpx
0qΓjkpx

0qB2
x0i x

0
j
φpx,x0q

ı

`Opεq .

Using (87), the expectation takes the form

E
”

n
ÿ

j“1

d
ÿ

i“1

σjipxqη
1
i,0Bxjφ1px,x

0,η1
0q `

n
ÿ

j“1

d
ÿ

i“1

d1
ÿ

k“1

Γjkpx
0qKikB

2
ηix0j

φ1px,x
0,η1

0q

ı

“

n
ÿ

j,j1“1

d
ÿ

i,i1“1

E
“

η1
i,0gi1pη

1
0q
‰

σjipxqBxj
`

σj1i1pxqBxj1φpx,x
0q
˘

`

n
ÿ

j,j1“1

d
ÿ

i,i1“1

d1
ÿ

k“1

E
“

Bηigi1pη
1
0q
‰

Γjkpx
0qKikBx0j

`

σj1i1pxqBxj1φpx,x
0q
˘

.

From the explicit form (86) of g we get

E
“

η1
i,0gi1pη

1
0q
‰

“

d
ÿ

k“1

pA´1qi1kCki “ pA
´1Cqi1i and E

“

Bηigi1pη
1
0q
‰

“ pA´1qi1i.
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Therefore

E
”

n
ÿ

j“1

d
ÿ

i“1

σjipxqη
1
i,0Bxjφ1px,x

0,η1
0q `

n
ÿ

j“1

d
ÿ

i“1

d1
ÿ

k“1

Γjkpx
0qKikB

2
ηix0j

φ1px,x
0,η1

0q

ı

“

n
ÿ

j,j1“1

d
ÿ

i,i1“1

pA´1Cqi1iσjipxqBxj
`

σj1i1pxqBxj1φpx,x
0q
˘

`

n
ÿ

j,j1“1

d
ÿ

i,i1“1

d1
ÿ

k“1

Γjkpx
0qKikσj1i1pxqpA

´1qi1iBx0jxj1
φpx,x0q

“

n
ÿ

j,j1“1

`

σpxqA´1CσpxqT
˘

j1j
Bxj1xjφpx,x

0q

`

n
ÿ

j1“1

´

n
ÿ

j“1

pBxjσpxqqA
´1CσpxqT qj1j

¯

Bxj1φpx,x
0q

`

n
ÿ

j,j1“1

`

σpxqA´1KΓpx0qT qj1jBx0jxj1
φpx,x0q

“
1

2

n
ÿ

j,j1“1

`

σpxqpA´1C`CAT´1
qσpxqT

˘

jj1
Bxj1xjφpx,x

0q

`

n
ÿ

j1“1

`

rbj1pxq ´ bj1pxq
˘

Bxj1φpx,x
0q `

n
ÿ

j,j1“1

`

ΓpxqΓpx0qT qj1j1Bx0jxj1
φpx,x0q.

We have from dη1 “ KdWt ´Aη1dt and Itô’s formula:

dpη1
i η

1
j q “

d1
ÿ

k“1

pKikη
1
j `Kjkη

1
i qdWkt `

d1
ÿ

k“1

KikKjkdt´
d
ÿ

k“1

pAikη
1
kη

1
j `Ajkη

1
kη

1
i qdt.

Taking the expectation (under the invariant probability measure) gives the identity:

KKT ´CAT ´AC “ 0.

By left-multiplying by A´1 and by right-multiplying by AT´1
we find

A´1KKTAT´1
´A´1C´CAT´1

“ 0,

which gives

σpxqpA´1C`CAT´1
qσpxqT “ ΓpxqΓpxqT ,

and we obtain the desired result:
Lεφε “ Lφ`Opεq.

We can then prove Proposition 3.5 as follows.
Proof of Proposition 3.5. By the perturbed test function method [8, Section 6.3], Lemma A.1
establishes that the continuous process pXε,X0q converges in distribution to the Markov process
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with infinitesimal generator L defined by (82). The infinitesimal generator L can be associated to

a diffusion process pX̃, X̃0q that is solution of the coupled SDEs:

dX̃ “ rbpX̃qdt` ΓpX̃qdW̃t,

dX̃0 “ rbpX̃0qdt` ΓpX̃0qdW̃t,

where W̃ is a d1-dimensional Brownian motion. This shows that, if X̃0 “ X̃
0
0 almost surely, then

X̃t´X̃
0
t “ 0 for all t almost surely. Therefore, if Xε

0 “X
0
0 , then the continuous process pXε´X0q

converges in distribution to 0, which implies convergence in probability.

B Proof of Lemma 3.8

We define
φpx,x0q “ gpx0q

`

fpxq ´ fpx0q
˘

or φpx,x0q “ pfpxq ´ fpx0qq2. (88)

Lemma A.1 applied to φ gives an estimate for (35) of order ε, but the particular form of φ makes
it possible to get ε2, as we show in the following. We prove Lemma 3.8 in four steps.

Step 1. There exist smooth functions φ1i, φ20, φ2ij ,Λ1i,Λ1ijk with bounded derivatives such that

φεpx,x0,ηq “φpx,x0q ` εφ1px,x
0,ηq ` ε2φ2px,x

0,ηq, (89)

φ1px,x
0,ηq “

d
ÿ

i“1

φ1ipx,x
0qηi, (90)

φ2px,x
0,ηq “φ20px,x

0q `

d
ÿ

i,j“1

φ2ijpx,x
0qηiηj , (91)

Lεφεpx,x0,ηq “εΛ1px,x
0,ηq `Opε2q, (92)

Λ1px,x
0,ηq “

d
ÿ

i“1

Λ1ipx,x
0qηi `

d
ÿ

i,j,k“1

Λ1ijkpx,x
0qηiηjηk. (93)

Proof. We apply the perturbed test function method as described in the proof of Lemma A.1 and
we get the result by keeping track of the η-dependence of the perturbed functions φ1 and φ2.

Step 2. For s ď t, the conditional distribution of ηεt given Fs “ σpWu, u ď sq is

N
´

exp
`

´
Apt´ sq

ε2

˘

ηεs,

ż pt´sq{ε2

0
e´AuKKT e´A

Tudu
¯

. (94)

There exists λ,C ą 0 such that

ˇ

ˇE
“

ηεi,t|Fs
‰
ˇ

ˇ ď e´λpt´sq{ε
2
}ηεs}, (95)

ˇ

ˇE
“

ηεi,tη
ε
j,tη

ε
k,t|Fs

‰
ˇ

ˇ ď Ce´λpt´sq{ε
2
}ηεs}p1` }η

ε
s}

2q. (96)

Proof. We can integrate (2) from s to t:

ηεt “ exp
`

´
Apt´ sq

ε2

˘

ηεs `

ż t

s
exp

`

´
Apt´ uq

ε2

˘K

ε
dWu,
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which gives (94) and

E
“

ηεt |Fs
‰

“ exp
`

´
Apt´ sq

ε2

˘

ηεs.

Eq. (95) is a straightforward consequence. Eq. (96) follows from (94) and Isserlis theorem for
multivariate normal random vectors.

Step 3. If px,x0q ÞÑ ψpx,x0q is a smooth function with bounded derivatives, then there exists
C ą 0 such that, for all i, j, k “ 1, . . . , d and t P rε, T s:

ˇ

ˇE
“

ηεi,tψpX
ε
t ,X

0
t q
‰
ˇ

ˇ ď Cε, (97)
ˇ

ˇE
“

ηεi,tη
ε
j,tη

ε
k,tψpX

ε
t ,X

0
t q
‰ˇ

ˇ ď Cε. (98)

Proof. We have for any t P rε, T s and δ ă ε:

ψpXε
t ,X

0
t q “ψpX

ε
t´δ,X

0
t´δq `

ż δ

t´δ

1

ε
ψ1pX

ε
s ,X

0
s ,η

ε
sqds

`

ż δ

t´δ
ψ2pX

ε
s ,X

0
s qds`

d
ÿ

j“1

ż δ

t´δ
ψ3jpX

ε
s ,X

0
s qdWjs,

with

ψ1px,x
0,ηq “σpxqη ¨∇xψpx,x

0q,

ψ2px,x
0q “rbpxq ¨∇xψ ` b̃px

0q ¨∇x0ψ `∇x0ψTΓpx0qTΓpx0q∇x0ψspx,x0q,

ψ3jpx,x
0q “

n
ÿ

i“1

Bx0i
ψpx,x0qΓijpx

0q.

We have, by (95),

ˇ

ˇE
“

ηεi,tψpX
ε
t´δ,X

0
t´δq

‰
ˇ

ˇ “
ˇ

ˇE
“

Erηεi,t|Ft´δsψpXε
t´δ,X

0
t´δq

‰
ˇ

ˇ ď C expp´λδ{ε2q.

Similarly, for any s P rt´ δ, ts

ˇ

ˇE
“

ηεi,tψ1pX
ε
s ,X

0
s ,η

ε
sq
‰
ˇ

ˇ “
ˇ

ˇE
“

Erηεi,t|Fssψ1pX
ε
s ,X

0
s ,η

ε
sq
‰
ˇ

ˇ ď C expp´λpt´ sq{ε2q,
ˇ

ˇE
“

ηεi,tψ2pX
ε
s ,X

0
s q
‰ˇ

ˇ ď C expp´λpt´ sq{ε2q,

and for j “ 1, . . . , d1 and for any positive q,

ˇ

ˇE
“

ηεi,t

ż t

t´δ
ψ3jpX

ε
s ,X

0
s qdWjs

‰ˇ

ˇ

ď

q´1
ÿ

k“0

ˇ

ˇE
“

Erηεi,t|Ft´kδ{qs
ż t´kδ{q

t´pk`1qδ{q
ψ3jpX

ε
s ,X

0
s qdWjs

‰
ˇ

ˇ

ď

q´1
ÿ

k“0

ˇ

ˇE
“

Erηεi,t|Ft´kδ{qs2
‰1{2

”

ż t´kδ{q

t´pk`1qδ{q
Erψ3jpX

ε
s ,X

0
s q

2sds
ı1{2

ď C

q´1
ÿ

k“0

expp´λkδ{pqε2qq
a

δ{q.
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Consequently

ˇ

ˇE
“

ηεi,tψpX
ε
t ,X

0
t q
‰
ˇ

ˇ

ď C exp
`

´
λδ

ε2

˘

`
C

ε

ż t

t´δ
exp

`

´
λpt´ sq

ε2

˘

ds` C

?
δ

?
q

q´1
ÿ

k“0

exp
`

´
λkδ

qε2

˘

ď C exp
`

´
λδ

ε2

˘

`
Cε

λ
` C

?
δ

?
q

q´1
ÿ

k“0

exp
`

´
λkδ

qε2

˘

.

By taking δ “ ε2| ln ε|{λ and q “ r| ln ε|s we finally get

ˇ

ˇE
“

ηεi,tψpX
ε
t ,X

0
t q
‰
ˇ

ˇ ď C 1ε` C 1ε
8
ÿ

k“0

ek ď C2ε,

which gives the first desired result. The calculations with the third-order product of coefficients η
are similar and use (96).

Step 4. Proof of Lemma 3.8.
For any t P rε, T s, we have

E
“

φpXε
t ,X

0
t q
‰

“ E
“

φεpXε
t ,X

0
t ,η

ε
t q
‰

´ εE
“

φ1pX
ε
t ,X

0
t ,η

ε
t q
‰

`Opε2q

“ E
“

φεpXε
t ,X

0
t ,η

ε
t q
‰

`Opε2q,

because (90) and (97) give Erφ1pX
ε
t ,X

0
t ,η

ε
t qs “ Opεq.

We have

E
“

φεpx0,x0,η
ε
0q
‰

“ εE
“

φ1px0,x0,η
ε
0q
‰

`Opε2q “ Opε2q,

because Erφ1jpx0,x0qη
ε
j,0s “ φ1jpx0,x0qErηεj,0s “ 0 for all j “ 1, . . . , d.

Therefore

E
“

φpXε
t ,X

0
t q
‰

“

ż t

0
E
“

LεφεpXε
s ,X

0
s ,η

ε
sq
‰

ds`Opε2q

“ ε

ż t

0
E
“

Λ1pX
ε
s ,X

0
s ,η

ε
sq
‰

ds`Opε2q

“ Opε2q,

because (93), (97) and (98) give ErΛ1pX
ε
s ,X

0
s ,η

ε
sqs “ Opεq for any s P rε, ts and ErΛ1pX

ε
s ,X

0
s ,η

ε
sqs “

Op1q for any s P r0, εs. This completes the proof of Lemma 3.8.

C Proofs of existence and uniqueness of (30) and (31)

Proposition C.1. Fix T ą 0, n P N‹. Suppose that f P Cpr0, T s;Rnq, b is Lipschitz, and ϕ is a
l.s.c. convex function satisfying (51). Then there exists a unique solution x P Cpr0, T s;Rnq to the
following differential inclusion

xp0q “ x0 P Rn, 9xptq ` Bϕpxptqq Q bpxptqq ` fptq, t ą 0. (99)
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Proof. Let ϕp be the Moreau-Yosida regularization of ϕ. For each p ě 1, we consider the penalized
problem

xpp0q “ x0 P Rn, 9xpptq `∇ϕppxpptqq “ bpxpptqq ` fptq, t ą 0.

This is a standard ODE with Lipschitz coefficients, so xp P Cpr0, T s;Rnq is well-defined. Now, we
show that xp is a Cauchy sequence in Cpr0, T s;Rnq. Fix p, q P N‹ and t P r0, T s. We have the
following expansion

1

2
}xpptq ´ xqptq}2 “

ż t

0

`

xppsq ´ xqpsq
˘

¨
`

bpxppsqq ´ bpxqpsqq
˘

ds

´

ż t

0

`

xppsq ´ xqpsq
˘

¨
`

∇ϕppxppsqq ´∇ϕqpxqpsqq
˘

ds

which, using the properties of b, ϕp, ϕq, leads to the following inequality

1

2
}xpptq ´ xqptq}2 ď C

ż t

0
}xppsq ´ xqpsq}2ds`

ˆ

1

p
`

1

q

˙
ż t

0
∇ϕppxppsqq ¨∇ϕqpxqpsqqds. (100)

Under the assumption sup
pě1

sup
xPRn

}∇ϕppxq} ă 8, we deduce from the inequality above that

1

2
}xpptq ´ xqptq}2 ď C

ż t

0
}xppsq ´ xqpsq}2ds`

ˆ

1

p
`

1

q

˙

Ct.

Thus, we can apply Gronwall’s inequality to obtain

sup
0ďtďT

}xpptq ´ xqptq}2 ď

ˆ

1

p
`

1

q

˙

CT . (101)

Therefore xp is a Cauchy sequence and there exists a function x P Cpr0, T s;Rnq such that xp Ñ x,
as p Ñ 8 in Cpr0, T s;Rnq. Next we verify that x satisfies the differential inclusion. Define @t P
r0, T s, ∆pptq fi

şt
0∇ϕppx

ppsqqds and denote ∆ptq fi lim
pÑ8

∆pptq. We then have

@t P r0, T s, xptq `∆ptq “ x0 `

ż t

0
bpxpsqqds`

ż t

0
fpsqds.

Moreover, since sup
p

şT
0 }∇ϕppx

ppsqq}2ds ă 8, there exists a function δ P L2p0, T q such that

@h P L2p0, T q, lim
pÑ8

ż T

0
∇ϕppxppsqq ¨ hpsqds “

ż T

0
δpsq ¨ hpsqds.

As a consequence, we must have ∆ptq “
şt
0 δpsqds. Now, to finally check the differential inclusion,

we want to show that @v P Cpr0, T s;Rnq,

@0 ď t ă t` h ď T,

ż t`h

t
δpsq ¨

`

vpsq ´ xpsq
˘

` ϕpxpsqqds ď

ż t`h

t
ϕpvpsqqds.

We exploit property 2 as listed in section 5.1

@t P r0, T s, ∇ϕppxpptqq P BϕpJpxpptqq
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which implies @v P Cpr0, T s;Rnq,

@t P r0, T s, ∇ϕppxpptqq ¨
`

vptq ´ Jpx
pptq

˘

` ϕpJpx
pptqq ď ϕpvptqq.

We integrate the inequality above on rt, t` hs and obtain @v P Cpr0, T s;Rnq,

@0 ď t ă t` h ď T,

ż t`h

t
∇ϕppxppsqq ¨

`

vpsq ´ Jpx
ppsq

˘

` ϕpJpx
ppsqqds ď

ż t`h

t
ϕpvpsqqds.

On the one hand, by using Fatou’s lemma (ϕ ě 0), the convergence Jpx
p Ñ x in Cpr0, T s;Rnq as

pÑ `8, and the fact that ϕ is l.s.c, we get

@0 ď t ă t` h ď T, lim inf
pÑ8

ż t`h

t
ϕpJpx

ppsqqds ě

ż t`h

t
lim inf
pÑ8

ϕpJpx
ppsqqds ě

ż t`h

t
ϕpxpsqqds.

On the other hand, we have

ż t`h

t
∇ϕppxppsqq ¨

`

vpsq ´ Jpx
ppsq

˘

ds “

ż t`h

t
∇ϕppxppsqq ¨

`

vpsq ´ xpsq
˘

ds

`

ż t`h

t
∇ϕppxppsqq ¨

`

xpsq ´ Jpx
ppsq

˘

ds.

By using ∇ϕppxppsqq Ñ δ in L2p0, T q weak, the first term of the right-hand side goes to zero. By
using }∇ϕppxppsqq} is uniformly bounded in L2p0, T q and }Jpx

p ´ x} Ñ 0 in L2p0, T q, the second
term of the right-hand side goes to zero. Therefore, we have

lim inf
pÑ8

ż t`h

t
∇ϕppxppsqq ¨

`

vpsq ´ Jpx
ppsq

˘

`ϕpJpx
ppsqqds ě

ż t`h

t
δpsq ¨

`

vpsq ´xpsq
˘

`ϕpxpsqqds,

which proves that x is solution of (99).
We now show uniqueness. Assume that x and y satisfy (99) with xp0q “ x0 and yp0q “ y0. Then

xptq `∆xptq “ x0 `

ż t

0
bpxpsqqds`

ż t

0
fpsqds

and

yptq `∆yptq “ y0 `

ż t

0
bpypsqqds`

ż t

0
fpsqds.

With
şt
0 δxpsqds “ ∆xptq and

şt
0 δypsqds “ ∆yptq, we have the following inequalities

@0 ď t ă t` h ď T,

ż t`h

t
δxpsq ¨

`

ypsq ´ xpsq
˘

` ϕpxpsqqds ď

ż t`h

t
ϕpypsqqds

and

@0 ď t ă t` h ď T,

ż t`h

t
δypsq ¨

`

xpsq ´ ypsq
˘

` ϕpypsqqds ď

ż t`h

t
ϕpxpsqqds,

which give

@0 ď t ă t` h ď T,

ż t`h

t

`

δxpsq ´ δypsq
˘

¨
`

ypsq ´ xpsq
˘

ds ď 0.
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That means

@0 ď t ă t` h ď T,

ż t`h

t

`

bpxpsqq ´ bpypsqq ´ p 9xpsq ´ 9ypsqq
˘

¨
`

ypsq ´ xpsq
˘

ds ď 0,

which turns into

@0 ď t ă t` h ď T, }xpt` hq ´ ypt` hq}2 ď }xptq ´ yptq}2 ` C

ż t`h

t
}xpsq ´ ypsq}2ds.

Gronwall inequality gives the desired result and it is clear that if x0 “ y0 then @t P r0, T s,xptq “
yptq.

Proposition C.2. Fix T ą 0, n,m P N‹. Suppose that f P Cpr0, T s;Rnq, bx : Rn Ñ R and
bz : Rm Ñ R are Lipschitz, and ϕ : Rn Ñ R, ψ : Rm Ñ R are l.s.c. convex functions, with ϕ
satisfying (51) and ψ satisfying (52). Then there exists a unique solution px, zq P Cpr0, T s;RnˆRmq
to the following differential inclusion pxp0q, zp0qq “ px0, z0q P Rn ˆ Rm,

9xptq ` Bϕpxptqq Q bxpxptq, zptqq ` fptq, 9zptq ` Bψpzptqq Q bzpxptq, zptqq, t ą 0. (102)

Proof. Let ϕp and ψp be the Moreau-Yosida regularization of ϕ and ψ. We consider the penalized
problems pxpp0q, zpp0qq “ px0, z0q P Rn ˆ Rm,

9xpptq `∇ϕppxpptqq “ bxpxpptq, zpptqq ` fptq,
9zpptq `∇ψppzpptqq “ bzpxpptq, zpptqq,

+

t ą 0. (103)

It can be shown than pxp, zpq is a Cauchy sequence in Cpr0, T s;RnˆRmq. The proof follows similar
steps as in the proof of Theorem C.1, except that we need a bound of the form

ż t

0
∇ψppzppsqq ¨∇ψqpzqpsqq ď Ct, (104)

where C does not depend on p, q, without using sup
pě1

sup
zPRm

}∇ψppzq} ă 8, which we do not assume.

We proceed first with the following expansion

ψppz
pptqq “ ψppz0q `

ż t

0
∇ψppzppsqq ¨

`

bzpxppsq, zppsqq ´∇ψppzppsqq
˘

ds,

which implies

ψppz
pptqq `

ż t

0
}∇ψppzppsqq}2ds “ ψppz0q `

ż t

0
∇ψppzppsqq ¨ bzpxppsq, zppsqqds.

We get

ψppz
pptqq `

1

2

ż t

0
}∇ψppzppsqq}2ds ď ψppz0q `

1

2

ż t

0
}bzpxppsq, zppsqq}2ds

which implies

ψppz
pptqq `

1

2

ż t

0
}∇ψppzppsqq}2ds ď C

ˆ

1`

ż t

0

 

}xppsq}2 ` }zppsq}2
(

ds

˙

. (105)
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Besides,

}xpptq}2 ` }zpptq}2 “ }xpp0q}2 ` }zpp0q}2 ` 2

ż t

0
xppsq ¨

`

bxpxppsq, zppsqq ´∇ϕppxppsqq ` fpsq
˘

ds

` 2

ż t

0
zppsq ¨

`

bzpxppsq, zppsqq ´∇ψppzppsqq
˘

ds.

Using
şT
0 }fpsq}

2ds ă 8, @x P Rn, x ¨∇ϕppxq ě 0, and @z P Rm, z ¨∇ψppzq ě 0, we get

}xpptq}2 ` }zpptq}2 ď C

ˆ

1`

ż t

0
}xppsq}2 ` }zppsq}2ds

˙

.

Thus, Gronwall inequality yields

sup
sďt

“

}xppsq}2 ` }zppsq}2
‰

ď C exppCtq.

Substituting into (105) and using the fact that ψp ě 0 gives (104). Next we can use the same
arguments as in the proof of Theorem C.1 to show that x satisfies the differential inclusion involving
ϕ. We finally discuss the case of z. Proceeding as in the proof of Theorem C.1, we have @v P
Cpr0, T s;Rnq,

@0 ď t ă t` h ď T,

ż t`h

t
∇ψppzppsqq ¨

`

vpsq ´ Jpz
ppsq

˘

` ψpJpz
ppsqqds ď

ż t`h

t
ψpvpsqqds.

We do not assume sup
pě1

sup
zPRm

}∇ψppzq} ă 8, so we cannot claim that Jpz
p Ñ z in Cpr0, T s;Rmq,

in contrast with the proof of Theorem C.1. However, since ∇ψppzppsqq “ p
`

zppsq ´ Jzpz
ppsq

˘

and

sup
p

şT
0 }∇ψppz

ppsqq}2ds ă 8, we get

lim
pÑ8

ż T

0
}zppsq ´ Jzpz

ppsq}2ds “ 0.

We can extract a subsequence pk to get

zpk ´ Jzpkz
pk Ñ 0, a.e in p0, T q.

Therefore
Jzpkz

pk Ñ z, a.e in p0, T q.

Observe that by the l.s.c. property of ψ, we have

ψpzptqq ď lim inf
kÑ8

ψpJzpkz
pkptqq, a.e in p0, T q.

Thus using Fatou’s lemma, we obtain

ż t`h

t
ψpzpsqqds ď

ż t`h

t
lim inf
kÑ8

ψpJzpkz
pkpsqqds ď lim inf

kÑ8

ż t`h

t
ψpJzpkz

pkpsqqds.
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Also, we have

ż t`h

t
∇ψpkpz

pkpsqq ¨
`

vpsq ´ Jzpkz
pkpsq

˘

ds “

ż t`h

t
∇ψpkpz

pkpsqq ¨
`

vpsq ´ zpsq
˘

ds

`

ż t`h

t
∇ψpkpz

pkpsqq ¨
`

zpsq ´ Jzpkz
pkpsq

˘

ds.

In the right-hand side, as k Ò 8, the first term goes to
şt`h
t δzpsq¨

`

vpsq´zpsq
˘

ds because ∇ψpkpzpkq
weakly converges to δz and the second term goes to 0 because }∇ψpkpzpkpsqq} is uniformly bounded
in L2p0, T q with respect to k and z ´ Jzpkpz

pkq goes to 0 in L2p0, T ;Rmq. Therefore

@0 ď t ă t` h ď T,

ż t`h

t
δzpsq ¨

`

vpsq ´ zpsq
˘

` ψpzpsqqds ď

ż t`h

t
ψpvpsqqds.

The proof is complete.

D Existence and uniqueness for (53)

Let us first take a look at the case where we remove the multivalued operator Bϕ from the drift in
(53). The problem becomes the same as (5) where σ is constant and in particular it does not involve
a stochastic integral. Thus, as pointed out in page 294 of [18], the proof of existence and uniqueness
of a solution (still in [18], Theorem 2.9 page 289) can be simplified in a way that makes no use of
probabilistic tools. We consider the Wiener space

`

Ω fi C
`

r0, T s;Rd
˘

,F fi B
`

C
`

r0, T s;Rd
˘˘

,P
˘

here Ω is the space of Rd-valued continuous functions on r0, T s endowed with the norm @ω P

Ω, }ω} fi sup
0ďtďT

}ωptq}, B
`

C
`

r0, T s;Rd
˘˘

is the Borel σ-algebra on Ω, P is the Wiener measure;

the mappings indexed by t P r0, T s, Wtp¨q : Ω Ñ Rd, ω ÞÑ Wtpωq fi ωptq, the sequence of σ-
algebras F t fi σtWs, 0 ď s ď tu and the map X : Ω Ñ C pr0, T s;Rnq, ω ÞÑ Xpωq fi x where
@0 ď t ď T, xptq “ xp0q`

şt
0 bpxpsqqds`Γωptq. Under P, W is a Wiener process and XpW q solves

(5) where σ is constant. In this approach, the key ingredient is the mapping X. For obtaining
the existence and uniqueness of the solution to (53) with the multivalued operator Bϕ, we discuss
below the properties of a similar mapping to X which involves the multivalued operator. This is
done via the so-called “Generalized Skorokhod Problem”. The discussion follows [30] from page
245 to page 252. We use the notation BV r0, T s for the space of functions with bounded variation
on r0, T s.

Definition D.1 (Generalized Convex Skorokhod Problem). If a pair of functions px,∆q satisfies
the following conditions

1. x,∆ : r0, T s Ñ Rn are continuous, xp0q “ x0 and ∆p0q “ 0,

2. @0 ď t ď T, xptq P DompBϕq, ∆ P BV pr0, T s;Rnq,

3. @0 ď t ď T, xptq `∆ptq “ x0 `
şt
0 bpxpsqqds` Γωptq,

4. @0 ď s ď t ď T, @z P Rn,
şt
s

`

xprq ´ z
˘

¨ d∆prq `
şt
s ϕpxprqqdr ď pt´ sqϕpzq,

then we say that x solves the generalized Skorokhod problem with parameters Bϕ,x0, b and ω and
we use the notation x “ GSPpBϕ,x0, b,ωq.
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Existence and uniqueness of a solution for the Generalized Skorokhod Problem can be found in
Theorem 4.17 page 252. This is obtained under the following conditions : ϕ is a l.s.c convex
function and int pDompϕqq ‰ H; b is Lipschitz, x0 P DompBϕq and ω : r0, T s ÞÑ Rn is continuous
with ωp0q “ 0. The continuity of the mapping X : Ω Ñ C pr0, T s;Rnq, ω ÞÑ Xpωq fi x where
x “ GSPpBϕ,x0, b,ωq is shown in proposition 4.16 page 247. We use the notation S0

nr0, T s for the
space of progressively measurable continuous stochastic processes (p.m.c.s.p.) from Ω ˆ r0, T s to
Rn,

S2
nr0, T s fi

"

Z P S0
nr0, T s, E

”

sup
0ďtďT

}Zptq}2
ı

ă 8

*

.

Within the framework of the aforementioned Wiener space, XpW q P S0
nr0, T s solves (53). Further-

more, it can be shown that XpW q P S2
nr0, T s.

E Proof of Proposition 5.1

Proof of the first item of Proposition 5.1. Using (47), we get

1

2
}Xε,p

t ´Xε,q
t }

2 “

ż t

0
pXε,p

s ´Xε,q
s q ¨ pbpX

ε,p
s q ´ bpX

ε,q
s qqds

´

ż t

0
pXε,p

s ´Xε,q
s q ¨ p∇ϕppXε,p

s q ´∇ϕqpXε,q
s qqds

ď C

ż t

0
}Xε,p

s ´Xε,q
s }

2ds

`

ˆ

1

p
`

1

q

˙
ż t

0
∇ϕppXε,p

s q ¨∇ϕqpXε,q
s qds.

Then under the condition (51) and from an application of Gronwall inequality, we obtain

}Xε,p
t ´Xε,q

t }
2 ď Cb,ϕ,t

ˆ

1

p
`

1

q

˙

.

Here the constant Cb,ϕ,t depends on b, ϕ and t. This implies the result.
Proof of the second item of Proposition 5.1. Using the same arguments as in the proof of the

first item, we get that

@p ě 1, E
„

sup
tďT

}X0,p
t ´X0

t }
2



ď
CT
p
, (106)

where X0,p is an approximation of X0 in the following sense:

dX0,p `∇ϕppX0,pqdt “ bpX0,pqdt` ΓdWt.

Therefore, for any δ ą 0 and p,

P
ˆ

sup
tďT

}Xε
t ´X

0
t } ě δ

˙

ď P
ˆ

sup
tďT

}Xε
t ´X

ε,p
t } ě

δ

3

˙

` P
ˆ

sup
tďT

}Xε,p
t ´X0,p

t } ě
δ

3

˙

` P
ˆ

sup
tďT

}X0,p
t ´X0

t } ě
δ

3

˙

ď
18CT
pδ2

` P
ˆ

sup
tďT

}Xε,p
t ´X0,p

t } ě
δ

3

˙

,
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by Markov inequality. From Proposition 3.5, we have

lim sup
εÑ0

P

˜

sup
tPr0,T s

}Xε
t ´X

0
t } ě δ

¸

ď
18CT
pδ2

,

which holds for any p, hence the desired result.

F Proof of Proposition 5.2

Proof of the first item of Propostion 5.2. We first note that ψ satisfies (48). Using (47) for ϕ and
ψ, we get

1

2
}Xε,p

t ´Xε,q
t }

2 `
1

2
}Zε,p

t ´Zε,q
t }

2

“

ż t

0
pXε,p

s ´Xε,q
s q ¨ pb

XpXε,p
s ,Zε,p

s q ´ b
XpXε,q

s ,Zε,q
s qqds

`

ż t

0
pZε,p

s ´Zε,q
s q ¨ pb

ZpXε,p
s ,Zε,p

s q ´ b
ZpXε,q

s ,Zε,q
s qqds

´

ż t

0
pXε,p

s ´Xε,q
s q ¨ p∇ϕppXε,p

s q ´∇ϕqpXε,q
s qqds

´

ż t

0
pZε,p

s ´Zε,q
s q ¨ p∇ψppZε,p

s q ´∇ψqpZε,q
s qqds

ď C

ż t

0

 

}Xε,p
s ´Xε,q

s }
2 ` }Zε,p

s ´Zε,q
s }

2
(

ds

`

ˆ

1

p
`

1

q

˙"
ż t

0
}∇ϕppXε,p

s q}}∇ϕqpXε,q
s q}ds`

ż t

0
}∇ψppZε,p

s q}}∇ψqpZε,q
s q}ds

*

.

From (51),
ż t

0
}∇ϕppXε,p

s q}}∇ϕqpXε,q
s q}ds ď Ct.

From now on we focus on
şt
0 }∇ψppZ

ε,p
s q}}∇ψqpZε,q

s q}ds. Let us proceed with the following expan-
sion

ψppZ
ε,p
T q “ ψppz0q `

ż T

0
∇ψppZε,p

s q ¨ pb
ZpXε,p

s ,Zε,p
s q ´∇ψppZε,p

s qqds,

which implies

ψppZ
ε,p
T q `

1

2

ż T

0
}∇ψppZε,p

s q}
2ds ď ψppz0q `

1

2

ż T

0
}bZpXε,p

s ,Zε,p
s q}

2ds.

Therefore

ψppZ
ε,p
T q `

1

2

ż T

0
}∇ψppZε,p

s q}
2ds ď ψppz0q `

C

2

ż T

0
t1` }Xε,p

s }
2 ` }Zε,p

s }
2uds. (107)
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We study the term in the integral of the right-hand side of the inequality (107):

}Xε,p
s }

2 ` }Zε,p
s }

2 “ }Xε,p
0 }2 ` }Zε,p

0 }2 ` 2

ż s

0
Xε,p
r ¨

´

bXpXε,p
r ,Zε,p

r q ´∇φppXε,p
r q ` σ

ηεr
ε

¯

dr

` 2

ż s

0
Zε,p
r ¨

`

bZpXε,p
r ,Zε,p

r q ´∇ψppZε,p
r q

˘

dr

ď }Xε,p
0 }2 ` }Zε,p

0 }2 ` 2C

ż s

0
t1` }Xε,p

r }
2 ` }Zε,p

r }
2udr

`

ż s

0
Xε,p
r ¨

´

σ
ηεr
ε

¯

dr, (108)

where we have used (46) to get the last inequality. We want to estimate the last term of the
right-hand side of (108). If we introduce the function φpx,ηq “ x ¨

`

σA´1η
˘

, then we get by
(85-86)

E
“

εφpXε,p
s ,ηεsqq ´ εφpX

ε,p
0 ,ηε0q

‰

“´ E
”

ż s

0
Xε,p
r ¨

´

σ
ηεr
ε

¯

dr
ı

` E
”

ż s

0

`

εbXpXε,p
r ,Zε,p

r q ´ ε∇ϕppXε,p
r q ` ση

ε
r

˘

¨
`

σA´1ηεr
˘

dr
ı

.

As ηε is stationary:

E
”

ż s

0

`

σηεr
˘

¨
`

σA´1ηεr
˘

dr
ı

“ C0s, C0 “ E
“`

ση1
0

˘

¨
`

σA´1η1
0

˘‰

.

As ∇ϕp is bounded and bX is Lipschitz, we get
ˇ

ˇ

ˇ

ˇ

E
”

ż s

0
Xε,p
r ¨

´

σ
ηεr
ε

¯

dr
ı

ˇ

ˇ

ˇ

ˇ

ď Cs` Cε
´

}Xε,p
0 } ` Er}Xε,p

s }
2s1{2 `

ż s

0
tEr}Xε,p

r }
2s ` Er}Zε,p

r }
2su1{2dr

¯

.

Therefore, by substituting into (108), we can deduce that

sup
sďt

E
“

}Xε,p
s }

2 ` }Zε,p
s }

2
‰

ď C

ˆ

1`

ż t

0
sup
sďr

E
“

}Xε,p
s }

2 ` }Zε,p
s }

2
‰

dr

˙

,

which yields by Gronwall’s inequality

sup
sďt

E
“

}Xε,p
s }

2 ` }Zε,p
s }

2
‰

ď C exppCtq.

The constant C does not depend on ε, p. Substituting into (107) and using (52) and ψp ě 0 (by
(45)) gives

sup
p

sup
ε

E
„
ż T

0
}∇ψppZε,p

s q}
2ds



ă 8. (109)

Finally, combining inequalities above, we obtain

E
„

sup
sďt

 

}Xε,p
s ´Xε,q

s }
2 ` }Zε,p

s ´Zε,q
s }

2
(



ďC

ż t

0
E
„

sup
sďr

 

}Xε,p
s ´Xε,q

s }
2 ` }Zε,p

s ´Zε,q
s }

2
(



dr

` C

ˆ

1

p
`

1

q

˙

,
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which in turn provides

E
„

sup
sďt

 

}Xε,p
s ´Xε,q

s }
2 ` }Zε,p

s ´Zε,q
s }

2
(



ď C

ˆ

1

p
`

1

q

˙

.

The constant C does not depend on ε, p, q. The proof is complete.
Proof of the second item of Proposition 5.2.
Using the same arguments as in the proof of Proposition 5.1 (note that E

“ şs
0X

0,p
r ¨

`

ΓdWr

˘‰

“ 0),
we get that

@p ě 1, E
„

sup
tďT

!

}Z0,p
t ´X0

t }
2 ` }Z0,p

t ´Z0
t }

2
)



ď
CT
p
, (110)

where pX0,p,Z0,pq is an approximation of pX0,Z0q in the following sense

#

dX0,p `∇ϕppX0,pqdt “ bXpX0,p,Z0,pqdt` ΓdWt,

dZ0,p `∇ψppZ0,pqdt “ bZpX0,p,Z0,pqdt.
(111)

The proof is then similar as the one of Proposition 5.1.

G Proof of Lemma 6.1

Let Xε satisfy (30). We address the evaluation of ErpfpXε
t q ´ fpX0

t qq
2s. For any p ą 0, by using

Eqs. (54) and (106), we have

E
“`

fpXε
t q ´ fpX

0
t q
˘2‰

ď 4E
“`

fpXε
t q ´ fpX

ε,p
t q

˘2‰
` 4E

“`

fpXε,p
t q ´ fpX

0,p
t q

˘2‰
` 4E

“`

fpX0,p
t q ´ fpX0

t q
˘2‰

ď
8CT }∇f}28

p
` 4E

“`

fpXε,p
t q ´ fpX

0,p
t q

˘2‰
.

In order to get an estimate of the last term, we can follow the steps of the proof of Lemma 3.8 in
the same way, because ∇φp, that appears only in Λ1, is bounded uniformly in p. We get

E
“`

fpXε
t q ´ fpX

0
t q
˘2‰

ď 4E
“`

fpXε
t q ´ fpX

ε,p
t q

˘2‰
` 4E

“`

fpXε,p
t q ´ fpX

0,p
t q

˘2‰
` 4E

“`

fpX0,p
t q ´ fpX0

t q
˘2‰

ď
8CT }∇f}28

p
` 4Cε2.

As this holds true for any p, this gives the desired result.
Let pXε,Zεq satisfy (31). We address the evaluation of ErpfpXε

t ,Z
ε
t q ´ fpX

0
t ,Z

0
t qq

2s. For any
p, by using (56) and (110), we have

E
“`

fpXε
t ,Z

ε
t q ´ fpX

0
t ,Z

0
t q
˘2‰

ď 4E
“`

fpXε
t ,Z

ε
t q ´ fpX

ε,p
t ,Zε,p

t q
˘2‰

` 4E
“`

fpXε,p
t ,Zε,p

t q ´ fpX
0,p
t ,Z0,p

t q
˘2‰
` 4E

“`

fpX0,p
t ,Z0,p

t q ´ fpX0
t ,Z

0
t q
˘2‰

ď
8CT }∇f}28

p
` 4E

“`

fpXε,p
t ,Zε,p

t q ´ fpX
0,p
t ,Z0,p

t q
˘2‰

.
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In order to get an estimate of the last term, we can follow the steps of the proof of Lemma 3.8 by
keeping track of the bound (48) on ∇ψp (that appears only in Λ1), and we get

E
“`

fpXε
t ,Z

ε
t q ´ fpX

0
t ,Z

0
t q
˘2‰

ď
8CT }∇f}28

p
` 4Cp1` pqε2.

By optimizing in p we get the desired result.

H Proof of (74)

We consider the case of an OU noise that satisfies the equation dηε “ ´ε´2ηεdt ` ε´1dW and
η0 „ N p0, 1{2q. The idea remains the same for the case of a Langevin noise. Define Xε

‹ and X0
‹ as

follows:

Xε
‹,t fi x0 `

1

ε

ż t

0
ηεsds and X0

‹,t fi x0 `Wt. (112)

We first show that
E
”

sup
0ďtďT

ˇ

ˇXε
‹,t ´X

0
‹,t

ˇ

ˇ

2
ı

“ Opε2| log ε|q. (113)

From the equation for ηε, it can be seen that Xε
‹,t “ X0

‹,t ` εpη0 ´ η
ε
t q. Thus, we have

E
”

sup
0ďtďT

ˇ

ˇXε
‹,t ´X

0
‹,t

ˇ

ˇ

2
ı

“ ε2E
”

sup
0ďtďT

|η0 ´ η
ε
t |

2
ı

ď ε2 ` 2ε2E
”

sup
0ďtďT

|ηεt |
2
ı

.

The process ηεt is a stationary centered Gaussian process with covariance function Erηεt ηεt1s “
p1{2q expp´|t´ t1|{ε2q. By the maximal inequality for the OU process [14] we get E

”

sup
0ďtďT

|ηεt |
ı

ď

C
a

logp1` T {ε2q and by [26, Proposition 3.19] we obtain

E
”

sup
0ďtďT

ˇ

ˇXε
‹,t ´X

0
‹,t

ˇ

ˇ

2
ı

ď ε2 ` ε2 ` C2ε2 logp1` T {ε2q ď C 1ε2p1` | log ε|q.

Next, we show that

E
”

sup
0ďtďT

ˇ

ˇXε
t ´X

0
t

ˇ

ˇ

2
ı

“ Opε2| log ε|q. (114)

We can use an explicit formula for Xε (resp. X0) that involves Xε
‹ (resp. X0

‹ ). Indeed, Xε
t “

MtpX
ε
‹q and X0

t “MtpX
0
‹ q whereM is the self map on the set of continuous functions defined by

Mtpfq fi fptq ´ min
0ďsďt

minp0, fpsqq. This leads to

|Xε
t ´X

0
t | ď |X

ε
‹,t ´X

0
‹,t| `

ˇ

ˇ

ˇ

ˇ

min
0ďsďt

minp0, Xε
‹,sq ´ min

0ďsďt
minp0, X0

‹,sq

ˇ

ˇ

ˇ

ˇ

.

The second term in the right-hand side can be bounded by using the following inequalites i)

|minp0, aq ´minp0, bq| ď |a´ b| for all a, b and ii)

ˇ

ˇ

ˇ

ˇ

min
0ďsďt

fpsq ´ min
0ďsďt

gpsq

ˇ

ˇ

ˇ

ˇ

ď max
0ďsďt

|fpsq ´ gpsq|, for

all continuous funtions f, g. Therefore,

E
”

sup
0ďtďT

ˇ

ˇXε
t ´X

0
t

ˇ

ˇ

2
ı

ď 4E
”

sup
0ďtďT

ˇ

ˇXε
‹,t ´X

0
‹,t

ˇ

ˇ

2
ı

“ Opε2| log ε|q,

which gives (74).
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